David Dunn |
James P. Crutchfield Complexity Sciences Center & Physics Department University of California Davis One Shields Avenue Davis, CA 95616 |
ABSTRACT: Rapidly expanding insect populations, deforestation, and global climate change threaten to destabilize key planetary carbon pools, especially the Earth's forests which link the micro-ecology of insect infestation to climate. To the extent mean temperature increases, insect populations accelerate deforestation. This alters climate via the loss of active carbon sequestration by live trees and increased carbon release from decomposing dead trees. A positive feedback loop can emerge that is self-sustaining—no longer requiring independent climate-change drivers. Current research regimes and insect control strategies are insufficient at present to cope with the present regional scale of insect-caused deforestation, let alone its likely future global scale. Extensive field recordings demonstrate that bioacoustic communication plays a role in infestation dynamics and is likely to be a critical link in the feedback loop. These results open the way to novel detection and monitoring strategies and nontoxic control interventions.