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Abstract

We present results from an experiment similar to one performed by Packard ����� in
which a genetic algorithm is used to evolve cellular automata �CA� to perform a particular
computational task� Packard examined the frequency of evolved CA rules as a function of
Langton	s � parameter �
��� and interpreted the results of his experiment as giving evidence
for the following two hypotheses� �
� CA rules able to perform complex computations are
most likely to be found near critical� � values� which have been claimed to correlate with
a phase transition between ordered and chaotic behavioral regimes for CA� ��� When CA
rules are evolved to perform a complex computation� evolution will tend to select rules with
� values close to the critical values� Our experiment produced very di�erent results� and
we suggest that the interpretation of the original results is not correct� We also review and
discuss issues related to �� dynamical�behavior classes� and computation in CA�

The main constructive results of our study are identifying the emergence and competition
of computational strategies and analyzing the central role of symmetries in an evolutionary
system� In particular� we demonstrate how symmetry breaking can impede the evolution
toward higher computational capability�
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�� Introduction

The notion of computation at the edge of chaos� has gained considerable attention in the
study of complex systems and arti�cial life �e�g�� ��� �� 
�� 
�� ��� �
��� This notion is related
to the broad question� What is the relationship between a computational system	s ability for
complex information processing and other measures of the system	s behavior� In particular�
does the ability for nontrivial computation require a system	s dynamical behavior to be near
a transition to chaos�� There has also been considerable attention given to the notion of
the edge of chaos� in the context of evolution� In particular� it has been hypothesized that
when biological systems must perform complex computation in order to survive� the process
of evolution under natural selection tends to select such systems near a phase transition from
ordered to chaotic behavior �
�� 
�� ����

This paper describes a re�examination of one study that addressed these questions in
the context of cellular automata ����� The results of the original study were interpreted
as evidence that an evolutionary process in which cellular�automata rules are selected to
perform a nontrivial computation preferentially selected rules near transitions to chaos� We
show that this conclusion is neither supported by our experimental results nor consistent
with basic mathematical properties of the computation being evolved� In the process of
this demonstration� we review and clarify notions relating to terms such as computation��
dynamical behavior�� and edge of chaos� in the context of cellular automata�

�� Cellular Automata and Dynamics

Cellular automata �CA� are discrete spatially�extended dynamical systems that have been
studied extensively as models of physical processes and as computational devices ��� 

� ���
��� ���� In its simplest form� a CA consists of a spatial lattice of cells� each of which� at time
t� can be in one of k states� We denote the lattice size or number of cells as N � A CA has a
single �xed rule used to update each cell� the rule maps from the states in a neighborhood
of cells�e�g�� the states of a cell and its nearest neighbors�to a single state� which is the
update value for the cell in question� The lattice starts out with some initial con�guration
of local states and� at each time step� the states of all cells in the lattice are synchronously
updated� In the following we will use the term state� to refer to the value of a single
cell�e�g�� � or 
�and con�guration� to mean the pattern of states over the entire lattice�

The CA we will discuss in this paper are all one�dimensional with two possible states per
cell �� and 
�� In a one�dimensional CA� the neighborhood of a cell includes the cell itself
and some number of neighbors on either side of the cell� The number of neighbors on either
side of the center cell is referred to as the CA	s radius r� All of the simulations will be of CA
with spatially periodic boundary conditions �i�e�� the one�dimensional lattice is viewed as a
circle� with the right neighbor of the rightmost cell being the leftmost cell� and vice versa��

The equations of motion for a CA are often expressed in the form of a rule table� This is
a look�up table listing each of the neighborhood patterns and the state to which the central
cell in that neighborhood is mapped� For example� the following displays one possible rule
table for an elementary� one�dimensional two�state CA with radius r � 
� Each possible
neighborhood � is given along with the output bit� s � ���� to which the central cell is
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Figure �� Two space�time diagrams for the binary�state Gacs�
Kurdyumov�Levin CA� N � ��� sites are shown evolving� with time
increasing down the page� from two di	erent initial con
gurations over
��� time steps� In �a� the initial con
guration has a density of �s of
approximately ����� in �b� a density of approximately ����� Notice
that by the last time step the CA has converged to a 
xed pattern of
�a� all �s and �b� all �s� In this way the CA has classi
ed the initial
con
gurations according to their density�
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In words� this rule says that for each neighborhood of three adjacent cells� the new state
is decided by a majority vote among the three cells� To run the CA� this look�up table is
applied to each neighborhood in the current lattice con�guration� respecting the choice of
boundary conditions� to produce the con�guration at the next time step�

A common method for examining the behavior of a two�state one�dimensional CA is to
display its space�time diagram� a two�dimensional picture that vertically strings together the
one�dimensional CA lattice con�gurations at each successive time step� with white squares
corresponding to cells in state �� and black squares corresponding to cells in state 
� Two
such space�time diagrams are displayed in Figure 
� These show the actions of the Gacs�
Kurdyumov�Levin �GKL� binary�state CA on two random initial con�gurations of di�erent
densities of 
	s ��� ��� In both cases� over time the CA relaxes to a �xed pattern�in one
case� all �	s� and in the other case� all 
	s� These patterns are� in fact� �xed points of the
GKL CA� That is� once reached� further applications of the CA do not change the pattern�
The GKL CA will be discussed further below�

CA are of interest as models of physical processes because� like many physical systems�
they consist of a large number of simple components �cells� which are modi�ed only by
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local interactions� but which acting together can produce global complex behavior� Like
the class of dissipative dynamical systems� even the class of elementary one�dimensional CA
exhibit the full spectrum of dynamical behavior� from �xed points� as seen in Figure 
� to
limit cycles �periodic behavior� to unpredictable �chaotic�� behavior� Wolfram considered
a coarse classi�cation of CA behavior in terms of these categories� He proposed the following
four classes with the intention of capturing all possible CA behavior ��
��

Class �� Almost all initial con�gurations relax after a transient period to the same
�xed con�guration �e�g�� all 
	s��

Class �� Almost all initial con�gurations relax after a transient period to some �xed
point or some temporally periodic cycle of con�gurations� but which one depends on
the initial con�guration�

Class �� Almost all initial con�gurations relax after a transient period to chaotic
behavior� �The term chaotic� here and in the rest of this paper refers to apparently
unpredictable space�time behavior��

Class �� Some initial con�gurations result in complex localized structures� sometimes
long�lived�

Wolfram does not state the requirements for membership in Class � any more precisely than
is given above� Thus� unlike the categories derived from dynamical systems theory� Class �
is not rigorously de�ned�

It should be pointed out that on �nite lattices� there is only a �nite number ��N � of
possible con�gurations� so all rules ultimately lead to periodic behavior� Class � refers not
to this type of periodic behavior but rather to cycles with periods much shorter than �N �

�� Cellular Automata and Computation

CA are also of interest as computational devices� both as theoretical tools and as practical
highly e�cient parallel machines ���� ��� ��� ����

Computation� in the context of CA has several possible meanings� The most common
meaning is that the CA does some useful� computational task� Here� the rule is interpreted
as the program�� the initial con�guration is interpreted as the input�� and the CA runs
for some speci�ed number of time steps or until it reaches some goal� pattern�possibly a
�xed point pattern� The �nal pattern is interpreted as the output�� An example of this is
using CA to perform image�processing tasks �����

A second meaning of computation in CA is for a CA� given certain special initial con�
�gurations� to be capable of universal computation� That is� the CA can� given the right
initial con�guration� simulate a programmable computer� complete with logical gates� timing
devices� and so on� Conway	s Game of Life �
� is such a CA� one construction for univer�
sal computation in the Game of Life is given in �
�� Similar constructions have been made
for one�dimensional CA ��
�� Wolfram speculated that all Class � rules have the capacity
for universal computation ��
�� However� given the informality of the de�nition of Class ��
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not to mention the di�culty of proving that a given rule is or is not capable of universal
computation� this hypothesis is impossible to verify�

A third meaning of computation in CA involves interpreting the behavior of a given CA on
an ensemble of initial con�gurations as a kind of intrinsic� computation� Here computation
is not interpreted as the performance of a useful� transformation of the input to produce
the output� Rather� it is measured in terms of generic� structural computational elements
such as memory� information production� information transfer� logical operations� and so on�
It is important to emphasize that the measurement of such intrinsic computational elements
does not rely on a semantics of utility as do the preceding computation types� That is�
these elements can be detected and quanti�ed without reference to any speci�c useful�
computation performed by the CA�such as enhancing edges in an image or computing
the digits of �� This notion of intrinsic computation is central to the work of Crutch�eld�
Hanson� and Young ��� 
���

Generally� CA have both the capacity for all kinds of dynamical behaviors and the ca�
pacity for all kinds of computational behaviors� For these reasons� in addition to the compu�
tational ease of simulating them� CA have been considered a good class of models to use in
studying how dynamical behavior and computational ability are related� Similar questions
have also been addressed in the context of other dynamical systems� including continuous�
state dynamical systems such as iterated maps and di�erential equations ��� ��� Boolean
networks �
��� and recurrent neural networks ����� Here we will con�ne our discussion to CA�

With this background� we can now rephrase the broad questions presented in Section 

in the context of CA�

� What properties must a CA have for nontrivial computation�

� In particular� does a capacity for nontrivial computation� in any of the three senses
described above� require CA in a region of rule space near a transition from ordered to
chaotic behavior�

� When CA rules are evolved to perform a nontrivial computation� will evolution tend
to select rules near such a transition to chaos�

�� Structure of CA Rule Space

Over the last decade there have been a number of studies addressing the �rst question above�
Here we focus on Langton	s empirical investigations of the second question in terms of the
structure of the space of CA rules �
��� The relationship of the �rst two questions to the
third�evolving CA�will be described subsequently�

One of the major di�culties in understanding the structure of the space of CA rules
and its relation to computational capability is its discrete nature� In contrast to the well�
developed theory of bifurcations for continuous�state dynamical systems �
��� there appears
to be little or no geometry in CA space and there is no notion of smoothly changing one
CA to get another nearby in behavior�� In an attempt to emulate this� however� Langton
de�ned a parameter � that varies incrementally as single output bits are turned on or o� in
a given rule table� For a given CA rule table� � is computed as follows� For a k�state CA�
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one state q is chosen arbitrarily to be quiescent��� The � of a given CA rule is then the
fraction of non�quiescent output states in the rule table� For a binary�state CA� if � is chosen
to be the quiescent state� then � is simply the fraction of output 
 bits in the rule table�
Typically there are many CA rules with a given � value� For a binary CA� the number is
strongly peaked at � � 
��� due to the combinatorial dependence on the radius r and the
number of states k� It is also symmetric about � � 
��� due to the symmetry of exchanging
�	s and 
	s� Generally� as � is increased from � to �
 � 
�k�� the CA move from having the
most homogeneous rule tables to having the most heterogeneous�

Langton performed a range of Monte Carlo samples of two�dimensional CA in an attempt
to characterize their average behavior as a function of � �
��� The notion of average be�
havior� was intended to capture the most likely behavior observed with a randomly chosen
initial con�guration for CA randomly selected in a �xed�� subspace� The observation was
that as � is incremented from � to �
� 
�k� the average behavior of rules passes through the
following regimes�

�xed point � periodic � complex�� chaotic�

That is� according to Figure 
� in �
��� for example� the average behavior at low � is for a
rule to relax to a �xed point after a relatively short transient phase� As � is increased� rules
tend to relax to periodic patterns� again after a relatively short transient phase� As � reaches
a critical value� �c� rules tend to have longer and longer transient phases� Additionally�
the behavior in this regime exhibits long�lived� complex��non�periodic� but non�random�
patterns� As � is increased further� the average transient length decreases� and rules tend
to relax to apparently random space�time patterns� The actual value of �c depends on r� k
and the actual path of CA found as � is incremented�

These four behavioral regimes roughly correspond to Wolfram	s four classes� Langton	s
claim is that� as � is increased from � to �
 � 
�k�� the classes are passed through in the
order 
� �� �� �� He notes that as � is increased� ���one observes a phase transition between
highly ordered and highly disordered dynamics� analogous to the phase transition between
the solid and �uid states of matter�� ��
��� p� 
���

According to Langton� as � is increased from �
�
�k� to 
� the four regimes occur in the
reverse order� subject to some constraints for k � � �
��� For two�state CA� since behavior
is necessarily symmetric about � � 
��� there are two values of �c at which the complex
regime occurs�

How is �c determined� Following standard practice Langton used various statistics such
as single�site entropy� two�site mutual information� and transient length to classify CA be�
havior� The additional step was to correlate behavior with � via these statistics� Langton	s
Monte Carlo samples showed there was some correlation between the statistics and �� But
the averaged statistics did not reveal a sharp transition in average behavior� a basic prop�
erty of a phase transition in which macroscopic highly�averaged quantities do make marked
changes� We note that Wootters and Langton ���� gave evidence that in the limit of an
increasing number of states the transition region narrows� Their main result indicates that

�In ���� all states obeyed a �strong quiescence� requirement� For any state s � f�� ���� k� �g� the neigh�
borhood consisting entirely of state s must map to s�
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Figure �� A graph of the average di	erence�pattern spreading rate �

of a large number of randomly chosen r � �� k � � CA� as a function
of �� Adapted from ����� with permission of the author� No vertical
scale was provided there�

in one class of two�dimensional in�nite�state stochastic cellular automata there is a sharp
transition in single�site entropy at �c � �����

The existence of a critical � and the dependence of the critical region	s width on r and
k is less clear for �nite�state CA� Nonetheless� Packard empirically determined rough values
of �c for r � �� k � � CA by looking at the di�erence�pattern spreading rate 	 as a function
of � ����� The spreading rate 	 is a measure of unpredictability in spatio�temporal patterns
and so is one possible measure of chaotic behavior ���� �
�� It is analogous to� but not the
same as� the Lyapunov exponent for continuous�state dynamical systems� In the case of CA
it indicates the average propagation speed of information through space�time� though not
the rate of production of local information�

At each � a large number of rules was sampled and for each CA 	 was estimated� The
average 	 over the selected CA was taken as the average spreading rate at the given �� The
results are reproduced in Figure �� As can be seen� at low and high �	s� 	 vanishes� at
intermediate � it is maximal� and in the critical� � regions�centered about � � ���� and
� � �����it rises or falls gradually��

While not shown in Figure �� for most � values 		s variance is high� The same is true
for single�site entropy and two�site mutual information as a function of � �
��� That is�
the behavior of any particular rule at a given � might be very di�erent from the average

behavior at that value� Thus� the interpretations of these averages is somewhat problematic�
The recounting given above of the behavioral structure of CA rule space as parameterized
by � is based on statistics taken from Langton	s and Packard	s Monte Carlo simulations�
Various problems in correlating � with behavior will be discussed in Section �� A detailed
analysis of some of these problems can be found in ���� Other work on investigating the

�Li et al� �cf� ����� Appendix B� de�ne �c as the onset of non�zero �� and use mean��eld theory to
estimate �c in terms of r for two�state CA� The value from their formula� setting r � � is �c � ����� which
roughly matches the value for the onset of non�zero � seen in Figure ��
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structure of CA rule space is reported in �
�� ����

The claim in �
�� is that � predicts dynamical behavior well only when the space of rules
is large enough� Apparently� � is not intended to be a good behavioral predictor for the
space of elementary CA rules�r � 
� k � ��and possibly r � �� k � � rules as well�

�� CA Rule Space and Computation

Langton �
�� hypothesizes that a CA	s computational capability is related to its average
dynamical behavior� which � is claimed to predict� In particular� he hypothesizes that CA
capable of performing nontrivial computation�including universal computation�are most
likely to be found in the vicinity of phase transitions� between order and chaos� that is� near
�c values� The hypothesis relies on a basic observation of computation theory� that any form
of computation requires memory�information storage�and communication�information
transmission and interaction between stored and transmitted information� Above and be�
yond these properties� though� universal computation requires memory and communication
over arbitrary distances in time and space� Thus complex computation requires signi�cantly
long transients and space�time correlation lengths� in the case of universal computation�
arbitrarily long transients and correlations are required� Langton	s claim is that these phe�
nomena are most likely to be seen near �c values�near phase transitions� between order
and chaos� This intuition is behind Langton	s notion of computation at the edge of chaos�
for CA��

�� Evolving CA

The empirical studies described above addressed only the relationship between � and the
dynamical behavior of CA�as revealed by several statistics� Those studies did not correlate
� or behavior with an independent measure of computation� Packard ���� addressed this
issue by using a genetic algorithm �GA� ��� 
�� to evolve CA rules to perform a particular
computation� This experiment was meant to test two hypotheses� �
� CA rules able to
perform complex computations are most likely to be found near �c values� and ��� When
CA rules are evolved to perform a complex computation� evolution will tend to select rules
near �c values�

��� The Computational Task and an Example CA

The original experiment consisted of evolving two�state�s � f�� 
g�one�dimensional CA
with r � �� That is� the neighborhood of a cell consists of itself and its three neighbors
on each side� The computational task for the CA is to decide whether or not the initial
con�guration contains more than half 
	s� If the initial con�guration contains more than
half 
	s� the desired behavior is for the CA� after some number of time steps� to relax to
a �xed�point pattern of all 
	s� If the initial con�guration contains less than half 
	s� the
desired behavior is for the CA� after some number of time steps� to relax to a �xed�point

�This should be contrasted with the analysis of computation at the onset of chaos in �� 	� and� in
particular� with the discussion of the structure of CA space there�
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pattern of all �	s� If the initial con�guration contains exactly half 
	s� then the desired
behavior is unde�ned� This can be avoided in practice by requiring the CA lattice to be of
odd length� Thus the desired CA has only two invariant patterns� either all 
	s or all �	s� In
the following we will denote the density of 
	s in a lattice con�guration by 
� the density of

	s in the con�guration at time t by 
�t�� and the threshold density for classi�cation by 
c�

Does the 
c � 
�� classi�cation task count as a nontrivial� computation for a small�
radius �r � N� CA� Though this term was not rigorously de�ned in �
�� or ����� one possible
de�nition might be any computation for which the memory requirement increases with N
�i�e�� any computation which corresponds to the recognition of a non�regular language� and
in which information must be transmitted over signi�cant space�time distances �on the order
of N�� Under this de�nition the 
c � 
�� classi�cation task can be thought of as a nontrivial
computation for a small radius CA� The e�ectiveminimumamount of memory is proportional
to log�N� since the equivalent of a counter register is required to track the excess of 
	s in a
serial scan of the initial pattern� And since the 
	s can be distributed throughout the lattice�
information transfer over long space�time distances must occur� This is supported in a CA
by the non�local interactions among many di�erent neighborhoods after some period of time�

Packard cited a k � �� r � � rule constructed by Gacs� Kurdyumov� and Levin ��� ���
which purportedly performs this task� The Gacs�Kurdyumov�Levin �GKL� CA is de�ned by
the following rule�

If si�t� � �� then si�t� 
� � majority �si�t�� si���t�� si���t���
If si�t� � 
� then si�t� 
� � majority �si�t�� si���t�� si���t���

where si�t� is the state of site i at time t�

In words� this rule says that for each neighborhood of seven adjacent cells� if the state
of the central cell is �� then its new state is decided by a majority vote among itself� its left
neighbor� and the cell two cells to the left away� Likewise� if the state of the central cell is

� then its new state is decided by a majority vote among itself� its right neighbor� and the
cell two cells to the right away�

Figure 
 gives space�time diagrams for the action of the GKL rule on an initial con�gu�
ration with 
 � 
c and on an initial con�guration with 
 � 
c� It can be seen that� although
the CA eventually converges to a �xed point� there is a transient phase during which a spa�
tial and temporal transfer of information about local neighborhoods takes place� and this
local information interacts with other local information to produce the desired �nal state�
Very crudely� the GKL CA successively classi�es local� densities with the locality range
increasing with time� In regions where there is some ambiguity� a signal� is propagated�
This is seen either as a checkerboard pattern propagated in both spatial directions or as
a vertical white�to�black boundary� These signals indicate that the classi�cation is to be
made at a larger scale� Note that both signals locally have 
 � 
c� the result is that the
signal patterns can propagate� since the density of patterns with 
 � 
c is not increased or
decreased under the rule� In a simple sense� this is the CA	s strategy� for performing the
computational task�

It has been claimed that the GKL CA performs the 
c � 
�� task �
��� but actually this is
true only to an approximation� The GKL rule was invented not for the purpose of performing
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Figure �� Experimental performance of the GKL rule as a function
of ���� for the �c � ��� task� Performance plots are given for three
lattice sizes� N � ��� �the size of the lattice used in the GA runs��
���� and ����

any particular computational task� but rather as part of studies of reliable computation and
phase transitions in one spatial dimension� The goal in the former� for example� was to �nd a
CA whose behavior is robust to small errors in the rule	s update of the con�guration� It has
been proved that the GKL rule has only two attracting patterns� either all 
	s or all �	s ����
Attracting patterns here are those invariant patterns which� when perturbed a small amount�
return to the same pattern� It turns out that the basins of attraction for the all�
 and all��
patterns are not precisely the initial con�gurations with 
 � 
�� or 
 � 
��� respectively�� On
�nite lattices the GKL rule does classify most initial con�gurations according to this criterion�
but on a signi�cant number the incorrect� attractor is reached� One set of experimental
measures of the GKL CA	s classi�cation performance is displayed in Figure �� To make this
plot� we ran the GKL CA on ��� randomly generated initial con�gurations close to each of �

densities 
 � ����� 
���� The fraction of correct classi�cations was then plotted at each 
� The
rule was run either until a �xed point was reached or for a maximum number of time steps
equal to 
��N � This was done for CA with three di�erent lattice sizes� N � f
��� ���� ���g�

Note that approximately ��� of the initial con�gurations with 
 � 
c were misclassi�ed�
All the incorrect classi�cations are made for initial con�gurations with 
 � 
c� In fact� the
worst performances occur at 
 � 
c� The error region narrows with increasing lattice size�

The GKL rule table has � � 
��� not � � �c� Since it appears to perform a compu�
tational task of some complexity� at a minimum it is a deviation from the edge of chaos�
hypothesis for CA computation� The GKL rule	s � � 
�� puts it right at the center of
the chaotic� region in Figure �� This may seem puzzling since clearly the GKL rule does
not produce chaotic behavior during either its transient or asymptotic epochs�far from it�
in fact� However� the � parameter was intended to correlate with average� behavior of

�The terms �attractor� and �basin of attraction� are being used here in the sense of ��� and ����� This
di�ers substantially from the notion used in ���� for example� There �attractor� refers to any invariant or
time�periodic pattern� and �basin of attraction� means that set of �nite lattice con�gurations relaxing to it�
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CA rules at a given � value� Recall that 	 in Figure � represents an average over a large
number of randomly chosen CA rules and� while not shown in that plot� for most � values
the variance in 	 is high� Thus� as was mentioned above� the behavior of any particular rule
at its � value might be very di�erent from the average behavior at that value�

More to the point� though� we expect a � value close to 
�� for a rule that performs well on
the 
c � 
�� task� This is largely because the task is symmetric with respect to the exchange
of 
	s and �	s� Suppose� for example� a rule that carries out the 
c � 
�� task has � � 
���
This implies that there are more neighborhoods in the rule table that map to output bit
� than to output bit 
� This� in turn� means that there will be some initial con�gurations
with 
 � 
c on which the action of the rule will decrease the number of 
	s� And this is the
opposite of the desired action� However� if the rule acts to decrease the number of 
	s on
an initial con�guration with 
 � 
c� it risks producing an intermediate con�guration with

 � 
c� which then would lead �under the original assumption that the rule carries out the
task correctly� to a �xed point of all �	s� misclassifying the initial con�guration� A similar
argument holds in the other direction if the rule	s � value is greater than 
��� This informal
argument shows that a rule with � �� 
�� will misclassify certain initial con�gurations�
Generally� the further away the rule is from � � 
��� the more such initial con�gurations
there will be� Such rules may perform fairly well� classifying most initial con�gurations
correctly� However� we expect any rule that performs reasonably well on this task�in the
sense of being close to the GKL CA	s average performance shown in Figure ��to have a �
value close to 
���

This analysis points to a problem with using this task as an evolutionary goal in order
to study the relationship among evolution� computation� and �� As was shown in Figure ��
for r � �� k � � CA the �c values occur at roughly ���� and ����� and one hypothesis that
was to be tested by the original experiment is that the GA will tend to select rules close
to these �c values� But for the 
�classi�cation tasks� the range of � values required for
good performance is simply a function of the task and� speci�cally� of 
c� For example� the
underlying ��
 exchange symmetry of the 
c � 
�� task implies that if a CA exists to do
the task at an acceptable performance level� then it has � � 
��� Even though this does not
directly invalidate the adaptation hypothesis or claims about �	s correlation with average

behavior� it presents problems with using 
�classi�cation tasks as a way to gain evidence
about a generic relation between � and computational capability�

��� The Original Experiment

Packard used a GA to evolve CA rules to perform the 
c � 
�� task� His GA started out
with a randomly generated initial population of CA rules� Each rule was represented as a
bit string containing the output bits of the rule table� That is� the bit at position � �i�e�� the
leftmost position� in the string is the state to which the neighborhood ������� is mapped�
the bit at position 
 in the string is the state to which the neighborhood ������
 is mapped�
and so on� The initial population was randomly generated but it was constrained to be
uniformly distributed across � values between ��� and 
���

A given rule in the population was evaluated for ability to perform the classi�cation task
by choosing an initial con�guration at random� running the CA on that initial con�guration







for some speci�ed number of time steps� and at the �nal time step measuring the fraction
of cells in the lattice that have the correct state� For initial con�gurations with 
 � 
c� the
correct �nal state for each cell is 
� and for initial con�gurations with 
 � 
c� the correct
�nal state for each cell is �� For example� if the CA were run on an initial con�guration with

 � 
c and at the �nal time step the lattice contained ��� 
	s� the CA	s score on that initial
con�guration would be ����� The �tness of a rule was simply the rule	s average score over
a set of initial con�gurations� For each rule in the population� Packard generated a set of
initial con�gurations that were uniformly distributed across 
 values from � to 
�

Packard	s GA worked as follows� At each generation�


� The �tness of each rule in the population is calculated�

�� The population is ranked by �tness�

�� Some fraction of the lowest �tness rules are removed�

�� The removed rules are replaced by new rules formed by crossover and mutation from
the remaining rules�

Crossover between two strings involves randomly selecting a position in the strings and
exchanging parts of the strings before and after that position� Mutation involves  ipping
one or more bits in a string� with some low probability�

A diversity�enforcement scheme was also used to prevent the population from converging
too early and losing diversity ����� If a rule is formed that is too close in Hamming distance
�i�e�� the number of matching bits� to existing rules in the population� its �tness is decreased�

The results from Packard	s experiment are displayed in Figure �� The two histograms
display the observed frequency of rules in the GA population as a function of �� with rules
merged from a number of di�erent runs� The top graph gives this data for the initial
generation� As can be seen� the rules are uniformly distributed over � values� The middle
graph gives the same data for the �nal generation�in this case� after the GA has run for 
��
generations� The rules now cluster around the two �c regions� as can be seen by comparison
with the di�erence�pattern spreading rate plot� reprinted here at the bottom of the �gure�
Note that each individual run produced rules at one or the other peak in the middle graph�
so when the runs were merged together� both peaks appear ����� Packard interpreted these
results as evidence for the hypothesis that� when an ability for complex computation is
required� evolution tends to select rules near the transition to chaos� He argues� like Langton�
that this result intuitively makes sense because rules near the transition to chaos have the
capability to selectively communicate information with complex structures in space�time�
thus enabling computation�� ����

�A slight variation on this method was used in ���� Instead of measuring the fraction of correct states in
the �nal lattice� the GA measured the fraction of correct states over con�gurations from a small number n
of �nal time steps ����� This prevented the GA from evolving rules that were temporally periodic� viz� those
with patterns that alternated between all ��s and all ��s� Such rules obtained higher than average �tness at
early generations by often landing at the �correct� phase of the oscillation for a given initial con�guration�
That is� on the next time step the classi�cation would have been incorrect� In our experiments we used a
slightly di�erent method to address this problem� This is explained in subsection ����
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Figure �� Results from the original experiment on GA evolution of
CA for the �c � ��� classi
cation task� The top two 
gures are
populations of CA at generations � and ���� respectively� versus ��
The bottom 
gure is Figure �� reproduced here for reference� Adapted
from ����� with permission of the author�
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�� New Experiments

As the �rst step in a study of how well these general conclusions hold up� we carried out a set
of experiments similar to that just described� We were unable to obtain some of the exact
details of the original experiment	s parameters� such as the exact population size for the
GA� the mutation rate� and so on� As a result� we used what we felt were reasonable values
for these various parameters� We carried out a number of parameter sensitivity tests which
indicated that varying the parameters within small bounds did not change our qualitative
results�

��� Details of Our Experiments

In our experiments� as in the original� the CA rules in the population all have r � � and
k � �� Thus the bit strings representing the rules are of length ��r�� � 
�� and the size of the
search space is huge�the number of possible CA rules is ���	� The tests for each CA rule are
carried out on lattices of length N � 
�� with periodic boundary conditions� The population
size is 
��� which was roughly the population size used in the original experiment ����� The
initial population is generated at random� but constrained to be uniformly distributed among
di�erent � values� A rule	s �tness is estimated by running the rule on ��� randomly generated
initial con�gurations that are uniformly distributed over 
 � ����� 
���� Exactly half the initial
con�gurations have 
 � 
c and exactly half have 
 � 
c�	

We allow each rule to run for a maximum number M of iterations� where a new M
is selected for each rule from a Poisson distribution with mean ���� This is the measured
maximumamount of time for the GKL CA to reach an invariant pattern over a large number
of initial con�gurations on lattice size 
���
 A rule	s �tness is its average score�the fraction
of cell states correct at the last iteration�over the ��� initial con�gurations� We term this
�tness function proportional 	tness to contrast with a second �tness function�performance

	tness�which will be described below� A new set of ��� initial con�gurations is generated
every generation� At each generation� all the rules in the population are tested on this set�
Notice that this �tness function is stochastic�the �tness of a given rule may vary a small
amount from generation to generation depending on the set of ��� initial con�gurations used
in testing it�

�It was necessary to have this exact symmetry in the initial con�gurations at each generation to avoid
early biases in the � of selected rules� If� say� �� of the initial con�gurations have � � �c and 	�� of initial
con�gurations have � � �c� rules with � close to � would obtain slightly higher �tness than rules with �
close to � since rules with � close to � will map most initial con�gurations to all ��s� A rule with� say� � � �
would in this case classify 	�� of the initial con�gurations correctly whereas a rule with � � � would classify
only �� correctly� But such slight di�erences in �tness have a large e�ect in the initial generation� when
all rules have �tness close to ��	� since the GA selects the 	� best rules� even if they are only very slightly
better than the 	� worst rules� This biases the representative rules in the early population� And this bias
can persist well into the later generations�

	It may not be necessary to allow the maximumnumber of iterations M to vary� In some early tests with
smaller sets of �xed initial con�gurations� though� we found the same problem Packard reported ����
 that
if M is �xed� then period�� rules evolve that alternate between all ��s and all ��s� These rules adapted to
the small set of initial con�gurations and the �xed M by landing at the �correct� pattern for a given initial
con�guration at time step M � only to move to the opposite pattern and so wrong classi�cation at time step
M � �� These rules did very poorly when tested on a di�erent set of initial con�gurations�evidence for
�over��tting��
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Our GA is similar to Packard	s� In our GA� the fraction of new strings in the next
generation�the generation gap��is ���� That is� once the population is ordered according
to �tness� the top half of the population�the set of elite� strings�is copied without mod�
i�cation into the next generation� For GA practitioners more familiar with nonoverlapping
generations� this may sound like a small generation gap� However� since testing a rule on
��� training cases� does not necessarily provide a very reliable gauge of what the �tness
would be over a larger set of training cases� our selected gap is a good way of making a �rst
cut� and allowing rules that survive to be tested over more initial con�gurations� Since a
new set of initial con�gurations is produced every generation� rules that are copied without
modi�cation are always retested on this new set� If a rule performs well and thus survives
over a large number of generations� then it is likely to be a genuinely better rule than those
that are not selected� since it has been tested with a large set of initial con�gurations� An
alternative method would be to test every rule in every generation on a much larger set of
initial con�gurations� but given the amount of compute time involved� that method seems
unnecessarily wasteful� Much too much e�ort� for example� would go into testing very weak
rules� which can safely be weeded out early using our method�

The remaining half of the population for each new generation is created by crossover
and mutation from the previous generation	s population��� Fifty pairs of parent rules are
chosen at random with replacement from the entire previous population� For each pair� a
single crossover point is selected at random� and two o�spring are created by exchanging the
subparts of each parent before and after the crossover point� The two o�spring then undergo
mutation� A mutation consists of  ipping a randomly chosen bit in the string� The number
of mutations for a given string is chosen from a Poisson distribution with a mean of ��� �this
is equivalent to a per�bit mutation rate of ������ Again� to GA practitioners this may seem
to be a high mutation rate� but one must take into account that at every generation� half
the population is being copied without modi�cation�

��� Results of Proportional	Fitness Experiment

We performed �� di�erent runs of the GA with the parameters described above� each with
a di�erent random�number seed� On each run the GA was iterated for 
�� generations� We
found that running the GA for longer than this� up to ��� generations� did not result in
improved �tness� The results of this set of runs are displayed in Figure �� Figure ��a� is
a histogram of the frequency of rules in the initial populations as a function of �� merging
together the rules from all �� initial populations� thus the total number of rules represented
in this histogram is ����� The � bins in this histogram are the same ones that were used by
Packard� each of width ������� Packard	s highest bin contained only rules with � � 
� that
is� rules that consist of all 
	s� We have merged this bin with the immediately lower bin�

As was said earlier� the initial population consists of randomly generated rules uniformly
spread over the � values between ��� and 
��� Also plotted are the mean and best �tness
values for each bin� These are all around ���� which is expected for a set of randomly

�
This method of producing the non�elite strings di�ers from that in ���� where the non�elite strings were
formed from crossover and mutation among the elite strings only rather than from the entire population� We
observed no statistically signi�cant di�erences in our tests using the latter mechanism other than a modest
di�erence in time scale�
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Figure �� Results from our experiment with proportional 
tness� The
top histogram �a� plots as a function of � the frequencies of rules
merged from the initial generations of �� runs� The bottom histogram
�b� plots the frequencies of rules merged from the 
nal generations
�generation ���� of these �� runs� Following ���� the x�axis is divided
into �� bins of length ������ each� The rules with � � ��� are included
in the rightmost bin� In each histogram the best �cross� and mean
�circle� 
tnesses are plotted for each bin� �The y�axis interval for

tnesses is also �������
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generated rules under this �tness function� The best �tnesses are slightly higher in the very
low and very high � bins� This is because rules with output bits that are almost all �	s �or

	s� correctly classify all low density �or all high density� initial con�gurations� In addition
these CA obtain small partial credit on some high density �low density� initial con�gurations�
Such rules thus have �tness sightly higher than ����

Figure ��b� shows the histogram for the �nal generation �
���� merging together rules
from the �nal generations of all �� runs� Again the mean and best �tness values for each
bin are plotted�

In the �nal generation the mean �tnesses in each bin are all around ���� The exceptions
are the central bin with a mean �tness of ���� and the leftmost bin with a mean �tness of
����� The leftmost bin contains only �ve rules�each at � � ����� right next to the the bin	s
upper � limit� The standard deviations of mean �tness for each bin� not shown in the �gure�
are all approximately ��
�� except the leftmost bin� which has a standard deviation of �����
The best �tnesses for each bin are all between ���� and ����� except the leftmost bin which
has a best �tness of ����� Under this �tness function the GKL rule has �tness � ����� the
GA never found a rule with �tness above �����

As was mentioned above� the �tness function is stochastic� a given rule might be assigned
a di�erent �tness each time the �tness function is evaluated� The standard deviation under
the present �tness scheme on a given rule is approximately ���
�� This indicates that the
di�erences among the best �tnesses plotted in the histogram are not signi�cant� except for
that in the leftmost bin�

The lower mean �tness in the central bin is due to the fact that the rules in that bin
largely come from non�elite rules generated by crossover and mutation in the �nal generation�
This is a combinatorial e�ect� the density of CA rules as a function of � is very highly peaked
about � � 
��� as already noted� We will return to this combinatorial drift� e�ect shortly�
Many of the rules in the middle bin have not yet undergone selection and thus tend to have
lower �tnesses than rules that have been selected in the elite� This e�ect disappears in
Figure �� which includes only the elite rules at generation 
�� for the �� runs� As can be
seen� the di�erence in mean �tness disappears and the height of the central bin is decreased
by half�

The results presented in Figure ��b� are strikingly di�erent from the results of the orig�
inal experiment� In the �nal generation histogram in Figure �� most of the rules clustered
around either � � ���� or � � ����� In Figure ��b�� though� there are no rules in these �c
regions� Rather� the rules cluster much closer�with a ratio of variances of � between the
two distributions�to � � ���� Recall this clustering is what we expect from the basic ��

exchange symmetry of the 
c � 
�� task�

One rough similarity is the presence of two peaks centered around a dip at � � ����a
phenomenon which we will explain shortly and which is a key to understanding how the GA
is working� But there are signi�cant di�erences� even within this similarity� In the original
experiments the peaks are in bins centered about � � ���� and � � ����� In Figure ��b��
though� the peaks are very close to � � 
��� being centered in the neighboring bins�those
with � � ���� and � � ����� Thus� the ratio of original to current peak spread is roughly a
factor of �� Additionally� in the �nal�generation histogram of Figure � the two highest bin
populations are roughly �ve times as high as the central bin� whereas in Figure ��b� the two
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Figure �� Histogram including only the elite rules from the 
nal gen�
erations of the �� runs �cf� Figure ��b�� with the proportional�
tness
function�

highest bins are roughly three times as high as the central bin� Finally� the �nal�generation
histogram in Figure � shows the presence of rules in every bin� but in Figure ��b�� there are
rules only in six of the central bins�

Similar to the original experiment� we found that on any given run the population was
clustered about one or the other peak but not both� Thus� in the histograms that merge
all runs� two peaks appear� This is illustrated in Figure �� which displays histograms from
the �nal generation of two individual runs� In one of these runs the population clustered to
the left of the central bin� in the other run it clustered to the right of the center� The fact
that di�erent runs result in di�erent clustering locations is why we performed many runs
and merged the results rather than performing a single run with a much larger population�
The latter method might have yielded only one peak� Said a di�erent way� independent of
the population size a given run will be driven by and the population organized around the
�t individuals that appear earliest� Thus� examining an ensemble of individual runs reveals
more details of the evolutionary dynamics�

The asymmetry in the heights of the two peaks in Figure ��b� results from a small
statistical asymmetry in the results of the �� runs� There were 
� out of �� runs in which
the rules clustered at the lower � bin and 
� out of �� runs in which the rules clustered at
the higher � bin� This di�erence is not signi�cant� but explains the small asymmetry in the
peaks	 heights�

We extended 
� of the �� runs to ��� generations� and found that not only do the �tnesses
not increase further� but the basic shape of the histogram does not change signi�cantly�
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Figure �� Histograms from the 
nal generations of two individual runs
of the GA employing proportional 
tness� Each run had a population
of ��� rules� The 
nal distribution of rules in each of the �� runs we
performed resembled one or the other of these two histograms�
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��� E
ects of Drift

The results of our experiments suggest that� for the 
c � 
�� task� an evolutionary process
modeled by a genetic algorithm tends to select rules with � � 
��� This is what we expect
from the theoretical discussion given above concerning this task and its symmetries� We
will delay until the next section a discussion of the curious feature near � � 
��� viz� the
dip surrounded by two peaks� Instead� here we focus on the larger�scale clustering in that �
region�

To understand this clustering we need to understand the degree to which the selection of
rules close to � � 
�� is due to an intrinsic selection pressure and the degree to which it is
due to drift�� By drift� we refer to the force that derives from the combinatorial aspects of
CA space as explored by random selection �genetic drift�� along with the e�ects of crossover
and mutation� The intrinsic e�ects of random selection with crossover and mutation are to
move the population� irrespective of any selection pressure� to � � 
��� This is illustrated
by the histogram mosaic in Figure �� These histograms show the frequencies of the rules in
the population as a function of � every � generations� with rules merged from �� runs on
which selection according to �tness was turned o�� That is� on these runs� the �tness of the
rules in the population was never calculated� and at each generation the selection of the elite
group of strings was performed at random� Everything else about the runs remains the same
as before� Since there is no �tness�based selection� drift is the only force at work here� As
can be seen� under the e�ects of random selection� crossover� and mutation� by generation

� the population has largely drifted to the region of � � 
�� and this clustering becomes
increasingly pronounced as the run continues�

This drift to � � 
�� is related to the combinatorics of the space of bit strings� For
binary CA rules with neighborhood size n �� �r � 
�� the space consists of all ��

n

binary
strings of length �n� Denoting the subspace of CA with a �xed � and n as CA��� n�� we see
that the size of the subspace is binomially distributed with respect to ��

jCA��� n�j �
�
�n

��n

�
�

The distribution is symmetric in � and tightly peaked about � � 
�� with variance 	 ��n�
Thus� the vast majority of rules is found at � � 
��� The steepness of the binomial distribu�
tion near its maximum gives an indication of the magnitude of the drift force�� Note that
the last histogram in Figure � gives the GA	s rough approximation of this distribution�

Drift is thus a powerful force moving the population to cluster around � � 
��� For
comparison� Figure � gives the rule�frequency�versus�� histograms for the �� runs of our
proportional��tness experiment every �ve generations� The last histogram in this �gure is
the same one that was displayed in Figure ��b�� �Figure � gives the merged data from the
entire population of each run every �ve generations� A similar mosaic plotting only the elite
strings at each generation looks qualitatively similar��

Figure � looks roughly similar to Figure � up to generation ��� The main di�erence in
generations �!�� is that Figure � indicates a more rapid peaking about � � 
��� The in�
creased speed of movement to the center over that seen in Figure � is presumably due to the
additional evolutionary pressure of proportional �tness� At generation ��� something new
appears� The peak in the center has begun to shrink signi�cantly and the two surrounding

��


