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Figure �� Three typical errors made by Epoch � rules� In �a�� a rule
with � � ��	
 incorrectly expands blocks in an IC with �� � ����� In
�b�� a rule with � � ��	� expands blocks too slowly on an IC with
�� � ���� In �c�� a rule with � � ���� creates a block that was not
present in s� with �� � ���
� and expands it� All these examples led
to incorrect classi�cations�
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Figure 
� Performance of an Epoch 	 rule� plotted as a function of ���
with N � �	
� This rule has � � ���
�

of ICs� The experimental performance of an Epoch � rule as a function of �� is given in
Figure �� This plot was made in the same way as that in Figure �� Like the GKL rule� most
of the classi�cation errors occur close to � 	 ���� though the width of the error region is
much larger here than that seen for the GKL rule in Figure ��

�� �� Selection� and Combinatorial Drift

Up to this point we have described the GA
s behavior in terms of �i� the largescale time
history of the best �tness� �ii� the strategy epochs in this time history� and �iii� the details of
the actual strategies discovered at each epoch� This description examined properties of the
best individual rules rather than properties of the entire elite population� We now present
an intermediatelevel description of the GA
s behavior in terms of the distribution of � in the
elite population over time� This will reveal how populationlevel structures emerge in the
di�erent epochs and will aid in understanding the mechanisms by which the GA progresses
through the epochs�

The strategies described in the previous section each have two opposite instantiations�
one that specializes for low �� and the other that specializes for high ��� On a given run� the
GA discovers one or the other class of strategies� but not both� Figure �� displays histograms
of rule frequency versus � for the elite rules at generation �� in two typical runs� In ���a�
all the elite rules have � � ���� this run resulted in a population of low�� specialists which
implement Strategy �� In ���b�� all the elite rules have � � ���� this run resulted in a
population of high�� specialists which implement Strategy ��

Figure �� is a mosaic of histograms plotting the frequency of elite rules versus �� where
the elite rules from �� di�erent runs are merged together� Each histogram therefore contains
counts from ��� �� 	 ��� elite rules� These �� runs were the same ones for which statistics
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Figure ��� Histograms of the frequency of elite rules as a function of
� for two typical runs� The x�axis is divided into �� bins of length
���� each� In �a�� all the elite rules have � � ���� in �b�� all the
elite rules have � � ����

are given in Table �� The �gure shows how the structure of the elite populations changes with
time� In generation �� the elite rules are clustered close to � 	 � and � 	 �� Why is this�
Recall that in each run� the rules in the initial population are uniformly distributed over
� � ����� ����� Most of these rules have very low �tness� the best strategies � found are those
of Epoch � ��always relax to all �s� or �always relax to all �s��� These have F������ 	 ����
At generation � the rules implementing these strategies have either very low or very high
��for example� a rule with � 	 � maps all neighborhoods to � and thus implements the
all�s strategy� This results in the peaks at extreme � in the initial generation�

Very quickly� however� the elite populations move away from these extremes and towards
� 	 ���� The populations peak there between generations � and ��� The values for T� and
T��T� given in the �rst column of Table � indicate that the appearance of the peak roughly
corresponds with Epochs � and �� By generation �� the distribution has changed again�it
now has two peaks on either side of � 	 ���� By generation ��� these two peaks have grown
and the dip at � 	 ��� has deepened� After generation �� or so� the distribution does not
change appreciably�

The two peaks on either side of � 	 ��� result from merging together the elite rules from
runs with low�� specialists and runs with high�� specialists� Each peak represents rules
from runs of one or the other type� as seen in Figure ��� What is seen clearly in Figure �� is a
symmetry breaking on the part of the GA� as we discussed above� the �c 	 ��� task requires
certain symmetries� in particular� the ��� exchange symmetry F that requires � 	 ��� for
high performance� The GA breaks this symmetry� producing rules on either side of � 	 ����
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Figure ��� Frequency of elite rules versus � given every �ve gener�
ations� merged from �� GA runs with random �tnesses assigned at
each generation�

The spatialreverse symmetry R is also broken as seen in Figures ��b�� ��b�� ��a�� ��b��
and ��c�� Since this need not lead to a bias in �
s� it is not directly re�ected in the histograms
we will use here� another coordinate would be more appropriate for monitoring this symmetry
breaking�

To understand the degree to which selection for performance �tness rather than intrinsic
e�ects of crossover and mutation cause the e�ects seen in Figure ��� we performed �� runs
of the GA with random selection� Everything about the GA was the same as in the original
experiment� except that F��� was not calculated and instead at each generation �tnesses were
assigned at random� Figure �� is a mosaic of histograms from these runs� Each histogram
plots the frequency of elite rules at the given generation as a function of �� Since the �tness
function is not calculated� all e�ects seen in Figure �� are due to the combined intrinsic
e�ects of random selection� crossover� and mutation� which we term �combinatorial drift��
As can be seen� by generation �� the population has largely drifted to the region of � 	 ���
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and this clustering becomes increasingly pronounced as the run continues�

This drift to � 	 ��� is related to the combinatorics of the space of bit strings� For
binary CA with neighborhood size n �	 �r � ��� the space consists of all ��

n

binary strings
of length �n� Denoting the subspace of CAs with a �xed � and n as CA��� n�� we see that
the size of the subspace is binomially distributed with respect to ��

jCA��� n�j 	
�

�n

��n

�

where jSj denotes the size of set S� The distribution is symmetric in � and tightly peaked
about � 	 ��� with variance ��n��� Thus� the vast majority of rules is found at � 	 ����
Using Sanov
s theorem� for example� with r 	 � there are about ����� fewer rules at �c �
����� ���� than at � 	 ���� The steepness of the binomial distribution near its maximum
gives an indication of the magnitude of the drift �force�� Note that the last histogram in
Figure �� gives the GA
s rough approximation of this distribution�

Drift is thus a powerful force moving the population to cluster around � 	 ���� It is
partially responsible for the initial clustering around � 	 ��� seen in Figure ��� However� the
distribution in early generations �e�g�� generation ��� in Figure �� is more sharply peaked at
� 	 ��� than that for the same generation in Figure ��� indicating that there is an additional
clustering force due to selection for performance �tness� The striking di�erence in the two
distributions in later generations shows that the symmetry breaking is due to selection forces
rather than drift forces�

This completes our overview of the phenomena that were observed in the GA runs� In
the remainder of this paper� we answer the following questions�

Major questions�

� How are the strategies in each epoch implemented in the rule tables�

� In what way are the macroscopic properties of the � distributions presented in Figure ��
related to the four epochs� In particular� what causes the symmetry breaking seen at
approximately generation �� in Figure ���

� By what mechanisms does the GA produce the behavior that we have observed� In
particular� what are the mechanisms underlying the epochs of innovation�

� What impedes the GA from discovering better strategies� In particular� what prevents
the GA from discovering the GKL rule or similar rules�

�� Implementation of Strategies

To investigate how the strategies in each epoch are implemented in the rule tables� we will
de�ne a new statistic over rule tables� denoted As�d�� that measures the degree of agreement
of output bits with neighborhood densities� Let the density of symbol s in a neighborhood
pattern 	 be denoted by �s�	�� For example� ����������� 	 ���� ����������� 	 ���� Let
the set of neighborhoods 	 for which �s�	� � d be denoted by Ns�d�� where d � ����� ���� is
some constant� then

Ns�d� 	 f	 � �s�	� � dg
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Note that jNs�d�j is monotonically decreasing from ��� to � as d varies from � to �� For
k 	 �� r 	 � rules� N������ is the set of �� neighborhoods with a majority of �s in the
neighborhood pattern� and N������ is the set of eight neighborhoods with at least � �s in
the neighborhood pattern� �Note that jN��d�j 	 jN��d�j for all d� by the � � � exchange
symmetry��

Then for a given rule table �� consider the set Ms�d� of neighborhoods 	 � Ns�d�� that
map to output symbol s�

Ms�d� 	 f	 � 	 � Ns�d� and ��	� 	 sg

The �sagreement� As�d� is the fraction of these neighborhoods� that is

As�d� 	
jMs�d�j

jNs�d�j

Note that A���� 	 �� A������ is the fraction of ruletable neighborhoods with a majority of
�s whose output bits are �� For the �majority� rule given in Section �� A������ 	 �� since
this is precisely how the rule was de�ned� For the GKL rule� A������ 	 �����

The temporal development of As����� and As����� for s 	 � and s 	 � averaged over
the elite population helps identify how the di�erent epochs
 strategies are implemented� For
rules with �bit neighborhoods� j	j 	 �� As����� measures the degree to which ��	� agrees
with �s�	� in neighborhoods that have at least � s
s ��majority agreement��� Similarly�
As����� measures the degree to which ��	� agrees with with �s�	� in neighborhoods that
have at least � s
s ��supermajority agreement���

Figure �� caption� A��d� statistics for a run that resulted in low�� spe
cialists� �a� Mean and standard deviation of elite �agreement A������
versus generation� The mean elite �tness F elite is plotted for reference�
�b� Mean and standard deviation of elite �agreement A������ versus
generation� Mean elite �tness F elite is plotted for reference� �c� Scatter
plot of elite � values� The generations of takeover of Epochs � and �
are marked by vertical dashed lines�

Figure �� displays plots for fs 	 �gagreement and Figure �� displays plots for fs 	 �g
agreement� for one typical run that resulted in low�� specialists� Figures ���a� and ���a�
plot the mean and standard deviation 
 of As����� over the elite rules at each generation�
For reference� the mean �tness F elite of the elite rules is also plotted� The generations of
takeover for Epochs � and � in the elite are marked by vertical dashed lines� Recall that
the generation of takeover for a given epoch is de�ned as the �rst generation at which all or
almost all elite rules implement the strategy associated with that epoch�

The A��d� statistics reveal how the Epoch � strategies ��always relax to all �s�� are
implemented� In Figure ���a�� A������ rises quickly and saturates at ��� �with 
 	 ���� at
generation �� The initial sharp rise does not indicate the onset of a new epoch� since no new
strategy is discovered� Rather� the rise is due to the depletion of high�� high�� specialist
rules� as can be seen in Figure ���c�� a scatter plot of the elite � values at each generation�
At generation � the � values are clustered at the two extremes� but they quickly consolidate
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at low values� since the chromosomes with � 	 � and � 	 �� to take the extremes� are
destroyed by recombination and mutation without compromising �tness� The population
consists entirely of low values by generation �� at which time A������ is essentially saturated
at ���� This saturation indicates that in all rules in the elite� the eight neighborhood patterns
consisting of at least six out of seven �s map to s 	 �� This is a necessary condition for
implementing the Epoch � strategy of �always relax to all �s��

The saturation of A������ marks the takeover of the Epoch � strategy� From the onset
of Epoch � at generation � to the takeover at generation �� the shape of the �agreement
statistics indicates the rate at which the strategy spreads in the population� As Figures ���a�
and ���b� show� this occurs without an increase in mean �tness F elite� The extreme � rules
die out� but their strategy lives on in later generations�

Figure ���b� plots the mean and 
 of A������ over the elite rules at each generation�
The mean A������ also rises quickly during Epoch � and 
 sharply decreases� particularly
at generation �� indicating that most neighborhoods with even four and �ve �s have � as
the output bit� In short� the GA implements the �always relax to all �s� strategy on low
�� patterns by �nding rules with high A������� The rise in mean A������ corresponds to
more and more rules implementing this strategy� The sharp drop in 
 corresponds to this
consolidation�

The A��d� statistics reveal how the Epoch � strategies are implemented� Figure ���a�
plots the mean and 
 of the �agreement A������ averaged over the elite rules at each
generation of the same run� During Epoch �� the mean A������ is noisy� with 
 remaining
above ����� Four generations after the Epoch � takeover� the mean A������ begins to rise�
corresponding to a slight rise in F elite� This is the onset of Epoch �� at generation ��� which
in this run is about three times longer than the average T� quoted in Table �� At the Epoch �
takeover � at generation �� � the mean A������ makes a sharp jump to become saturated
at ��� with 
 	 ���� A similar sharp jump at the Epoch � takeover is observed in every
run in which Epoch � was reached� �In high�� specialist runs� the sharp jump is seen in
mean A�������� What does this sharp jump tell us� Recall that the initial Epoch � low��
specialists always relax to � except on ICs with extremely high density �cf� Figure ��� The
GA implements this strategy by �nding rules with A������ 	 �� Most neighborhoods in an
IC with very high density will thus map to �� quickly �lling the lattice with �s as the CA is
iterated�

Figure ���b� plots the mean and 
 of A������ over the elite rules at each generation�
Again the mean A������ is noisy over most of Epoch �� though there is a sharp drop in 
 at
generation �� again corresponding to the sudden disappearance of high�� specialists� But
close to the Epoch � onset� A������ begins to rise�at the same time as� though less sharply
than A�������and rises signi�cantly at the takeover as 
 falls to near �� �Again� a similar
rise was seen in every run�� This rise is partially due to the saturation of A������� which
re�ects a uniform mapping of ���	� � ��� neighborhoods to �s� But it is also due to the
additional mapping of some ��� � ���	� � ��� neighborhoods to �s� This rise coincides
with a rise in F elite� By mapping many of the ��� � ���	� � ��� neighborhoods to �s�
the GA is discovering rules that are doing an increasingly good job of implementing the
Epoch � strategies� That is� it is �nding rules that correctly classify an increasing number
of highdensity ICs� and thus obtain increasingly higher �tness�
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At the Epoch � takeover� the meanA������ begins to fall� and continues to fall appreciably
for several generations� �A similar fall was seen in every run�� Note that this is di�erent
from the behavior of the mean A������� which remains saturated at ���� The reason for
this decrease is the following� The elite rules at Epoch � implement a wholly new strategy�
relaxing to all �s by default but expanding su�ciently large blocks of �s if they are present in
the IC� Once A������ 	 ���� implementing the blockexpanding strategy only requires setting
a few additional neighborhoods to �s�this does not a�ect A������ appreciably� This block
expanding strategy accomplishes the same thing as the Epoch � trick of increasing A�������
but in a di�erent way� In the later part of Epoch �� the elite rules correctly classify many
highdensity ICs because ���	� � ��� neighborhoods map to �� However� a highdensity
IC is very likely to contain at least one� if not many� su�ciently large blocks of �s� and so
the Epoch � rules do not need this trick of immediately mapping most of the ���	� � ���
neighborhoods to ��they can rely on expanding blocks to do the job instead� Thus many
of the ���	� � ��� neighborhoods are not required have output �s for high �tness� so under
mutation� some of these �s drift to �s� The latter also enhances �tness since it reduces the
creation of spurious �blocks as shown in Figure ��c��

Let us summarize this section brie�y� For runs resulting in low�� specialists� Epoch �
strategies ��relax to all �s�� are implemented by mapping almost all ���	� � ��� neighbor
hoods to �� Epoch � strategies ��relax to all �s� unless the IC has very high density� in which
case relax to all �s�� are implemented by mapping many of ���	� � ��� neighborhoods to
�s� The more such mappings� the more highdensity ICs will be correctly classi�ed� Epoch
� strategies ��relax to all �s� unless the IC contains a su�ciently large block of �s� in which
case expand it�� are implemented� once all the ���	� � ��� neighborhoods map to �s� by
mapping a small number of speci�c neighborhoods to �s�

Which bits in the rule table need to be set in order to expand �blocks� This can be
determined by direct enumeration� To expand a �block in both directions at equal velocities
in a sea of �s� for example� a � � � ������ � � � wall must be propagated to the right and a
� � � ������ � � � wall must be propagated to the left� �Note that walls can be more complicated
than this� as seen in Figures ��b�� ��b�� and ��a�� for example�� The neighborhoods which
participate in this are those patterns of length �r � � that contain one or both types of
wall� The required output bit for each such neighborhood is simply read o� the spacetime
diagram from the cell below the pattern
s center at the next time step� From this it can
be seen that a bidirectional expansion of �blocks of length greater than the neighborhood
size requires �� bits in the chromosome to be properly set� Presumably� these bits or similar
constellations that support the observed strategies are set during Epochs � and become �xed
in Epochs � and �� In light of this� a better statistic for Epoch � would be based not on
A������ but on the appearance of the constellations of output bits supporting walls that
expand blocks�

In any case� the discovery of a strategy to expand sblocks relaxes the constraints on
many of the ���	� � ��� neighborhoods that were set to � in Epoch �� many of these drift
back to �� possibly reducing the tendency to create spurious blocks�

This account of how strategies are implemented applies to runs that evolve low�� spe
cialists� A similar account applies to runs that evolve high�� specialists with the roles of �
and � reversed�
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Figure ��� �a� Histograms of elite rule frequency versus � at each
epoch� with rules merged from �� runs that evolved low��� specialists�
�b� Histograms of elite rule frequency versus � at each epoch� with
rules merged from �
 runs that evolved high��� specialists�

��� Epochs and � Distributions

We have now described in some detail how strategies at di�erent epochs are implemented
in the rule table� This answers the �rst of our major questions� This understanding helps
us to answer the second question� In what way are the macroscopic properties of the �
distributions presented in Figure �� related to the four epochs� In particular� what causes
the symmetry breaking seen in Figure ���

Figure �� gives two sets of histograms similar to those in Figure ��� Each histogram in
Figure ���a� represents elite rules merged from �� runs that evolved low�� specialists� The
�Epoch �� histogram plots the elite rules from each run at generation �� The �Epoch ��
histogram plots the elite rules from each run at the generation of Epoch � takeover�de�ned�
as above� as the �rst generation at which all or almost all the elite rules are implementing
Epoch � strategies� This generation is di�erent for each run� so the rules represented in this
histogram are from di�erent generations on di�erent runs� In short� the runs are lined up
with respect to epoch
s generation of takeover� The �Epoch �� histogram plots rules at the
generation of Epoch � takeover in each run� and the �Epoch �� histogram plots the elite
rules at generation �� in each run� Figure ���b� gives the same histograms for �� runs that
evolved high�� specialists� �These are the same �� � �� 	 �� runs for which statistics are

��



given in the �rst column of Table ���

Both Epoch � histograms show most elite rules to be clustered at very low and very high
� values� As was noted above� these are the rules that are selected in the �rst generation
because they are the ones that initially implement the Epoch � strategies�

Both Epoch � histograms show the elite population clustered much closer to � 	 ����on
the low side in ���a� and on the high side in ���b�� This movement of the elite population
towards � 	 ��� has two sources� The �rst is combinatorial drift� which moves even Epoch �
rules closer to � 	 ���� The second is the selection of rules implementing Epoch � strategies�
In runs that evolve low�� specialists� most Epoch � rules have low � �e�g�� see Figure ���c���
The innovation at Epoch � is to increase the number of ���	� � ��� neighborhoods with
output bit �� These two trends result in an increase in �� The opposite is true for runs that
evolve high�� specialists� In both cases� the result is to move closer to � 	 ����

Both Epoch � histograms show even narrower distributions� now close to being peaked at
� 	 ���� As was said above� the Epoch � blockexpanding strategies require only relatively
few bits to be set in the rule table� so the discovery of these strategies does not appreciably
change the � distribution� �Generally� as epoch � is reached the utility of � declines as an
information projective coordinate for monitoring changes in the population structure�� Drift
continues to move rules closer to � 	 ���� and rules implementing Epoch � strategies can
be found at these � values� However� as was seen in Figure �� these rules make a number of
errors� such as expanding blocks that are too small� or creating and expanding blocks that
were not in the IC� The GA can correct such errors without destroying the new strategy
by setting bits so as to increase the minimum block size required for expansion �Correction
A�� and by ensuring that if there are no su�ciently large blocks present in the IC� that the
CA very quickly relaxes to the default �xedpoint con�guration �Correction B�� For low��
specialists� both these corrections require mapping more neighborhoods to �s� This is a
way to ensure that the all�s �xed point is reached quickly on ICs without su�ciently large
blocks� For high�� specialists� they require mapping more neighborhoods to �s� For low��
specialists� the corrections increase �� for high�� specialists� they decrease it� This is seen in
the Epoch � histograms� the low��specialist runs are now clustered below � 	 ��� and the
high��specialist runs are now clustered above � 	 ���� Thus� the symmetry breaking in
Epoch � results from improvements in the blockexpanding strategies� The result is clearly
seen in Epoch � where the � 	 ��� rules are largely suppressed�

��� GA Mechanisms of Innovation

We have now answered the �rst two of our major questions� In this section we address the
third� What GA mechanisms underlie the epochs of innovation� In particular� we investigate
the roles of crossover and mutation in producing the behavior that we have observed�

To better understand the role of crossover� we performed a set of �� GA runs with the
same parameter values as were described in Section �� but with crossover turned o�� In these
runs� the new �� rules at each generation were created from the �� elite rules by mutation
only�pairs of parents were chosen at random from the elite as before� but no crossover was
performed and each o�spring was a copy of its parent with exactly two mutations�
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Figure �� Best �tness versus generation for two of the �� runs per�
formed with no crossover�
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Figure �� displays the best �tness at each generation for two of the runs without crossover�
In the run displayed in Figure ���a�� the GA never found a rule with �tness greater than
���� This occurred in �� out of the �� runs� compared with � out of �� runs when crossover
was turned on� These statistics are given in Table ��

The other �� runs were similar to Figure ���b�� More detailed examination of these runs
showed that the GA made the same progression through strategy epochs as in the runs with
crossover� but the onset of Epoch � was� on average� much later� However� once Epoch �
rules were discovered� the GA moved on to Epoch � rules very quickly� The �rst two columns
of Table � compare these times for the �� runs with crossover and for the �� runs with no
crossover that reached Epoch ��

Crossover clearly plays a role in speeding up the onset of Epoch �� However� its role in
the move from Epoch � to Epoch � is much less pronounced� The analysis we gave above of
how Epoch � strategies are implemented in the rule tables helps to explain why� Consider�
for example� a run that evolves low�� specialists� To get to Epoch �� the GA must discover
a low� rule with A������ 	 �� The lexicographic ordering of neighborhoods in the ruletable
chromosome happens to allow singlepoint crossover to create such a rule in one time step�
This is because� under our encoding� most of the eight ���	� � ��� neighborhoods are at the
extreme �righthand� side of the chromosome� A crossover between an Epoch � low� rule
and an Epoch � high� rule thus has a fair chance of yielding an Epoch � rule� And� since
low and high � rules are in the initial population to begin with� it does not take much time
to discover an Epoch � rule when crossover is in e�ect� However� when crossover is turned
o�� the GA must rely on mutation alone to set the ���	� � ��� neighborhood bits correctly�
The waiting time for this is re�ected in the �GA� no xover� statistics given in Table �� In
�� out of �� runs� the nocrossover waiting time was greater than �� generations�

Once an Epoch � rule is discovered� a small number of mutations can turn it into an
Epoch � rule� This is seen in the T� � T� statistics given in Table �� The mean length of
Epoch � is small for both the crossover and nocrossover runs� Thus� mutation alone su�ces
to quickly move to Epochs � and � and to discover the associated strategies� Crossover does
not play a large role� though it does appear to shorten the times�

We performed an additional experiment without crossover in which� for each run� the
initial population was not uniformly distributed over � � ����� ����� but rather each initial
rule had � � ��� ��GA� no xover� initpop � ���� Our hypothesis was that there would be
more rules in the initial population with� say� low � but high A������� and thus the rules in
the population would be closer than in the original nocrossover experiment to the conditions
necessary for the discovery of Epoch � strategies� The results� given in column � of Table �
supported this hypothesis� the number of runs reaching Epoch � and the mean values for
T� and T�� T� were intermediate between those measured in the crossover and nocrossover
experiments� In a sense� the original uniform� initial population is responsible for a long
transient� it substantially slows down the GA�

We performed a �nal experiment in which we used a simple stochastic hill climbing
method instead of a GA to search the space of rules� A run of this method is the following�
A bit string is chosen at random and its �tness is evaluated� A random bit is �ipped� and
if the new �tness is equal to or higher than the original �tness� the mutation is retained�
if not� the original string is retained� This process continues for �� ��� total evaluations�
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the same total number of evaluations as performed in one run of the GA� We performed
�� such runs� each with a di�erent randomnumber seed� The purpose of this experiment
was� again� to test the hypothesis that crossover confers an advantage for reaching Epoch
�� The results of �� runs of the hill climbing method� given in column � of Table �� further
support this hypothesis� Under Monte Carlo search Epoch � was reached in only � out of ��
runs and T� �given here in generations� where each generation equals ��� �tness evaluations�
is close to that of the �GA� no xover� initpop � �� experiment� It is interesting that the
duration of Epoch � with stochastic hill climbing search is about half that with the � � ���
initialpopulation runs and closer to that of the basic experiment ��GA� xover� in Table ���

��� GA Impediments

With this understanding of the GA
s behavior on the �c 	 ��� task� we now can address
the last of our major questions� What impedes the GA from discovering better strategies�
In particular� what prevents the GA from discovering the GKL rule or similar rules� Here
we list a number of impediments that are� or might be� faced by our GA on this problem�
We will discuss their relevance to GAs in general and propose ways in which they could be
overcome� Perhaps surprisingly� most of the impediments we identify are also forces that
help the GA in the initial stages of its search� What is needed is a theory of how the costs
and bene�ts of these various forces trade o�� Such a theory would allow for active monitoring
of the change from bene�cial to harmful e�ects�

Symmetry breaking

A primary impediment is the GA
s tendency to break the task
s symmetries by producing
low�� or high�� specialists� A pressure towards symmetry breaking is e�ectively built into
our �tness function� since specializing on one half of the ICs is an easy way to obtain a higher
�tness than that of a random rule� This kind of symmetry breaking occurs in generation
� with the selection of the two types of Epoch � rules and� in subsequent generations� the
entire elite population naturally drifts into one or the other specialist �camps�� The Epoch
� and Epoch � strategies are simply elaborations of these original symmetrybroken Epoch
� strategies� Symmetry breaking thus produces a shortterm gain for the GA� but later
prevents it from making improvements beyond Epoch � strategies� as the long periods of
stasis seen in Figures �� ��� ��� and �� over generations �� to ��� We hypothesize that
this propensity to break symmetries for shortterm gain is a general feature of GAs and
even of natural evolution� This implies that when one wants to apply a GA to a particular
problem� one should �rst determine all the relevant symmetries in the optimization� and
then restrict the GA
s search space to candidate solutions with those symmetries� This can
be done either by having the �tness function penalize asymmetric candidate solutions or by
building the desired symmetries into the representation� This is akin to the general problem
of using domain knowledge to assist the GA
s search �e�g�� see ������ We plan to investigate
the e�ect of the latter approach on the GA
s performance on the �c 	 ��� task� As pointed
out in our description of T���� the task has a number of symmetries in addition to the ��
symmetry that requires � 	 ��� for high performance� One possible problem in imposing
symmetries on the GA� though� is that this could make innovation substantially more di�cult
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to achieve� In other words� it could be the case that brokensymmetry solutions can lead to
symmetryrespecting ones more quickly than in a symmetryrestricted chromosome space�
This is exactly what has not happened in our experiments� however�

Drift

A second possible impediment is the force due to combinatorial drift� As was seen in Fig
ure ��� the intrinsic e�ects of crossover and mutation� apart from selection� produce a strong
drift force moving the population close to � 	 ���� This stochastic drift is the force that pro
duces conditions necessary for Epoch � strategies to be discovered� For example� it creates
low�� specialists with higher �s� in some cases creating low�� specialists with A������ 	 ��
However� later in the run drift also restricts the GA
s search to one part of the chromosome
space� In the absence of strong selection� it is di�cult for the GA to maintain candidate
solutions far away from � 	 ���� This may present a problem for some GA applications�
though not necessarily for the �c 	 ��� task� The force due to drift is something GA prac
titioners should take into account when designing a GA for a particular application� and it
may be necessary to design operators to counteract this force�

�c 	 ��� 	tness landscape

A third possible impediment is the e�ective �tness landscape of the �c 	 ��� task� We
have seen that there is a ready path for the GA to take from the easily discovered Epoch
� rules to Epoch � rules�almost every run of the GA follows this path by generation ��
or so� Following this path leads to one or the other of two relatively high�tness �potential
wells��to make a physical analogy�by a breaking of symmetries� But if the GA could
avoid this symmetrybroken potential� is there another readily accessible path that the GA
could follow to discover GKLrulelike behavior�

We performed some preliminary experiments that indicate that such a path could exist�
We ran the GA on populations of mutants of the GKL rule and found that many di�erent
rules have GKLlike behavior� using signals such as those described in Section � to classify IC
density� Such rules were found at Hamming distances of up to �� bits or more from the GKL
rule� They had F��� � ���� and thus indicate an intermediate �tness plateau between that of
the Epoch � rules with maximum F��� � ����� and that of the GKL rule with F��� � ������
Further investigations of the landscape around the GKL rule will be reported in future work�

Finally� a more detailed analysis using F��� of the generation�� populations revealed
that a fairly sophisticated rule had been evolved in one run� This rule had F��� � ������
whereas most Epoch � rules had F��� � ������ This rule exhibited signaling mechanisms
similar to that of the GKL �F��� � ������ and the mutants mentioned above� More details
of this rule
s structure will be reported elsewhere� But it does suggest the existence of yet
another �tness plateau between Epoch � and the GKL CA�
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Stochastic nature of F���

A fourth impediment is the stochastic nature of F���� The small sample of ICs used to
compute �tness limits the resolution available to the GA for distinguishing among competing
rules� This limited resolution obscures di�erences in �tness that might be signi�cant� This
was observed in our experiments with mutations of the GKL rule mentioned above� Even
when the initial population consisted of rules that were each one bit di�erent from the GKL
rule� the GA did not rediscover and retain the GKL rule because F��� could not reliably
distinguish the mutated rules with F��� � ���� from the GKL rule with F��� � ������ This
problem of low resolution could be solved�at considerable computational cost�by using a
much enlarged sample of ICs� An intermediate solution would be for the GA to retain and
use accumulated �tness information for individuals over many generations� for example� it
could keep a running �tness average for rules that survive� This di�ers from the present
method which discards �tness information from previous generations� determining the elite
rules only from the �tnesses calculated on the given generation� More experiments need
to be performed to determine what level of �tness resolution is needed to obtain improved
performance�

Structure of IC sample

A �fth impediment is presented by the structure of the IC sample chosen at each generation�
Our current method is to choose a sample uniformly distributed over �� � ����� ����� with
exactly half the sample having �� � �c and exactly half having �� � �c� This distribution
was meant to present some �easytoclassify� extreme�� ICs to the evolving rules in order
to allow evolution to get o� the ground� However� aside from the abovementioned pres
sure towards very early symmetry breaking arising from this distribution� there is another
impediment� After a small number of generations� this IC distribution does not present a
su�cient challenge to the evolving rules� For example� all Epoch � rules correctly classify
half the distribution in addition to the extreme�� cases of the other half� This means that
the �tness di�erences among Epoch � rules are being judged on the basis of the remaining
ICs�less than half of the original ����which exacerbates the �tnessresolution problems
discussed above� That is� the reduction in the fraction of informative test ICs reduces the
number of useful �tness evaluations and so increases the variance in the mean �tness� Epoch
� rules� for example� routinely achieve ���! correct classi�cation on some set of ICs during
a run of the GA� whereas under F���� they never reach �tnesses above � ����� One possi
ble solution to this problem is to coevolve a population of IC samples with the population
of CA rules� with the �tness of an IC sample being inversely related to the classi�cation
performance of the current CA population on this sample� In principle� such coevolution�
analogous to biological �arms races� seen in nature�should produce sets of ICs that are
tuned expressly to present challenges to rules in the current population� In this situation�
the absolute meaning of the �tness function F��� would change over the generations� This
approach should help alleviate the problem of �tness accuracy without requiring computa
tionally intractable sample sizes� Such a coevolutionary approach has been studied in the
context of using GAs to discover e�cient sorting networks ����� Another alternative would
be to use modern statistical evaluation methods that make more e�cient use of the available
�tness evaluations�
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Fixed lattice size

A sixth impediment� due to our particular method� is the restriction of �tness evaluation to
a �xed lattice size�here� N 	 ���� As was shown in Figure �� the GKL rule
s classi�cation
performance improves as lattice size increases� The opposite is true of the �ttest evolved
rules in our experiments� The performance of one Epoch � rule as a function of �� is plotted
in Figure �� for lattice sizes of N 	 ���� ���� and ���� �This is the same rule whose
performance was plotted in Figure ��� This rule has � � ����� it increases su�ciently large
blocks of adjacent or nearly adjacent �s� We used the same procedure to make these plots as
was described for Figure �� As can be seen� the performance according to this measure is not
only signi�cantly worse than that of the GKL rule on N 	 ��� lattices� but also decreases
dramatically for larger N � The worst performances for N 	 ��� and N 	 ��� are centered
slightly above �� 	 �c� �Since we used only odd N � the actual ��s plotted at ��� are slightly
above ����� With �� � �c� the CA should relax to a �xed point of all �s� Detailed inspection�
however� revealed that on almost every IC with �� slightly above �c� the CA is relaxing to a
�xed point of all �s� This is a result of this rule
s strategy of expanding �su�ciently large�
blocks of �s� The appropriate block size b to expand was evolved to be a good predictor
of �� for N 	 ���� With larger lattices the probability of blength �blocks in ICs with
�� � �c increases� And so the closer high ��s are to �c� the more likely such blocks are to
occur� In the CA we tested with N 	 ��� and N 	 ���� such blocks occurred in most ICs
with �� slightly above �c� always leading to incorrect classi�cations� This shows that keeping
the lattice size �xed during GA evolution can lead to over�tting for the particular lattice
size� We plan to experiment with varying the lattice size during evolution in an attempt to
prevent such over�tting�
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Representation

A seventh impediment is the lexicographic bitstring representation used for the CA rules�
This ordering has the initially bene�cial e�ect of grouping together most of the �s�	� � ���
neighborhoods� with s 	 � neighborhoods at the �left� extreme and s 	 � neighborhoods
at the �right� extreme� As pointed out above� this ordering enables crossover to quickly
produce Epoch � rules�low�� specialists with A������ 	 � or high�� specialists with
A������ 	 �� However� the lexicographic ordering of output bits may hinder the GA
s
progress in later generations� since to produce the kinds of coordinated signals used in the
GKL rule� a number of neighborhood output bits must work in concert� These coactive
neighborhoods are unlikely to be adjacent in a lexicographic ordering� and thus cannot be
moved together from a parent to an o�spring via simple crossover� More disruptive crossover
operators such as uniform crossover ���� run the risk of destroying the necessary structures�
The problem of designing a representation that will work well with genetic operators is a
general one for GAs� One solution that has been explored is adapting the representation
to suit the operators �e�g�� see ������ Phenomena in natural genetics such as inversion and
jumping genes may be a form of representation adaptation� These have inspired some work
in GAs along these lines �e�g�� see ���� �����

Loss of diversity

Finally� an eighth impediment is the loss of diversity over time in the population� When a
new strategy is discovered� it sweeps through the population and quickly all the elite rules
are representatives of that strategy� This convergence aids the rapid moves from Epoch �
to Epoch � to Epoch �� However� convergence� like drift� limits the region of chromosome
space that the GA is searching� Controlling convergence in GAs has been the subject of
much research� �See ���� for a review of work in this area�� In our experiments with E 	 ���
diversity �measured as the mean pairwise Hamming distance in the elite� falls quickly�more
rapidly� in fact� than it did in our previous experiments with E 	 ��� However� the smaller
E also sped up the onsets of the di�erent epochs� since the newly discovered strategies were
able to invade the population more quickly� We also performed experiments in which a
minimum level of diversity was explicitly maintained� This scheme did not yield improved
performance ����� But in spite of these results� it may be the case that the rapid decrease in
diversity is an impediment for moving beyond Epoch � strategies� The need to balance the
level of population diversity with the need to quickly propagate newly discovered innovations
to the rest of the population is discussed in several places in GA literature �e�g�� see ������

As was noted above� most of these impediments are also forces that help the GA in the
initial stages of its search� None are speci�c to the �c 	 ��� task or even to the problem of
evolving CA� Rather� they are general issues in any GA application� and some of them are
relevant to any machinelearning method� In this work our analysis tools have enabled us
to observe some of these forces �e�g�� symmetry breaking� quite clearly� and to study them
carefully� Going beyond this to develop a predictive theory of the tradeo�s these forces
produce in GA e�ciency is one of our longterm objectives�
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�
� Conclusion

As was said in the introduction� the goals of our research are �i� to better understand
the ways in which CAs can perform computations� �ii� to learn how to best use GAs to
evolve computationally useful CAs and �iii� to understand the mechanisms by which GAs
can produce complex and innovative behavior in systems with simple components and local
interactions�

This paper has reported progress on these goals obtained by analyzing in detail a GA
s
behavior on evolving CAs to perform a particular computation� �c 	 ��� density classi�
cation� We analyzed the strategy of the GKL rule for performing this task� and used it as
a benchmark with which to compare the rules evolved by the GA� We have described the
epochs of innovation in each run of the GA and the strategies corresponding to these epochs�
and have understood in detail how these strategies are implemented and how these epochs
manifest themselves in largescale population structures� We then explained the respective
roles of crossover and mutation in the discovery of new strategies and identi�ed several im
pediments for the GA in achieving higher computational capability in CA� Primary among
the impediments is the GA
s breaking of task symmetries in the pursuit of shortterm gains
in �tness� We believe that this type of detailed analysis is essential in order to understand
and improve the GA
s behavior and to develop predictive theories of the tradeo�s among dif
ferent evolutionary forces� The results are relevant to the application of GAs in general� and
they point the way to a more general analysis of the evolutionary forces we have identi�ed�
This work is also a �rst step in developing methods for automatic programming of CAs and
other spatiallydistributed parallel computers� Success in this area should have signi�cance
for the �eld of parallel computation and for nonlinear spatial modeling�
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