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Abstract

We present results from experiments in which a genetic algorithm was used to evolve cellular
automata 	CAs
 to perform a particular computational task�one�dimensional density clas�
si�cation We look in detail at the evolutionary mechanisms producing the GA�s behavior
on this task and the impediments faced by the GA In particular� we identify four �epochs of
innovation� in which new CA strategies for solving the problem are discovered by the GA�
describe how these strategies are implemented in CA rule tables� and identify the GA mech�
anisms underlying their discovery The epochs are characterized by a breaking of the task�s
symmetries on the part of the GA The symmetry breaking results in a short�term �tness
gain but ultimately prevents the discovery of the most highly �t strategies We discuss the
extent to which symmetry breaking and other impediments are general phenomena in any
GA search
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�� Introduction

Cellular automata 	CAs
 are spatially�extended discrete dynamical systems whose archi�
tecture has many desirable features for a large class of parallel computations In scienti�c
modeling applications� CAs have been used to simulate� for example� magnetic spin sys�
tems ���� ���� �uid dynamics ���� ���� chemical oscillations ���� ���� crystal growth ���� ����
galaxy formation ����� stellar accretion disks ����� dynamics in cytoskeletal lattices ����� and
the formation of biological patterns 	eg� the intricate fractal patterns seen on mollusk
shells ����� or vertebrate pigment patterns ����
 Common to all these modeling applications
is the belief that CAs can capture essential features of physical systems in which large�
scale behavior arises from the collective e�ect of large numbers of locally interacting simple
components In engineering applications� CAs have been used to perform� among other
things� parallel formal�language recognition ���� ��� and a range of image�processing tasks
���� ��� ��� ��� ��� ��� There are many other potential engineering applications of CAs�
such as forecasting� spatio�temporal noise�reduction� the discovery of coherent structures in
data� texture detection� and so on

The massive parallelism and local connection architecture of CAs� as well as their ca�
pacity for resistance to error and noise� means that hardware implementations have the
potential for extremely fast and reliable computation that is robust to noisy input data and
component failure ���� The standard approach to parallel computation is to split up a
problem into independent modules that are then parceled out to di�erent processors� solved
simultaneously� and the piecewise solutions recombined In contrast� a CA performs com�
putation in a distributed fashion on a spatially�extended lattice CAs suggest new ways of
parallelizing problems that are hard to split up and parcel out Recent work on CAs has
yielded much new insight into the mechanisms by which complex behavior can arise in non�
linear spatially�extended systems with local interactions 	eg� see ���� ��� ��� ���
 However�
little is known about how to harness this complex behavior to perform useful computation�
since in general it is hard to predict� much less design� the behavior of such systems The
study of CA�based information processing is a case of the general problem of harnessing the
computational power of spatially�extended dynamical systems The di�culty of designing
CAs to have desired behavior or to perform a particular task has up to now severely limited
their applications in science and engineering� and for general computation Finding a way
to automate the design of CAs would thus have great signi�cance for a number of �elds

In this paper we describe research on using genetic algorithms 	GAs
 to evolve CAs
to perform computations GAs are search and optimization methods based on ideas from
natural genetics and evolution ���� ��� ��� ��� A GA works on populations of �chromosomes�
that represent candidate solutions to a given problem� applying �genetic� operators such as
�tness�based reproduction� crossover� and mutation to members of the population over a
number of �generations� GAs have become increasingly popular in recent years in machine
learning and other disciplines because of their utility in a range of applications Examples of
application areas include engineering design 	eg� aircraft design ����� circuit design ����� and
engine�turbine design ����
� operations research 	eg� ��� ���
� automatic programming 	eg�
���� ���
� neural�network design 	eg� ��� ��� ��� ��� ��� ���
� robot control 	eg� ���� ��� ���
�
and molecular biology 	eg� DNA sequence assembly ���� and protein�structure prediction
���� ��� ���
 GAs have also been used as scienti�c models of evolutionary processes in
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natural systems Examples include models of economic systems 	eg� ��� ���
� models of the
immune system 	eg� ����
� models of ecological phenomena such as biological arms races�
host�parasite co�evolution� symbiosis� and resource �ow in ecologies 	eg� ��� �� ��� ��� ���
��� ��� ��� ��� ��� ��� ��� ��� ���
� models of phenomena in population genetics such as
the evolution of recombination 	eg� ��� ��� ��� ���
� and models of the interaction between
evolution and learning 	eg� ��� �� �� ��� ��� ��� ��� ��� ��� ���


The goals of our research are� 	�
 to better understand the ways in which CAs can per�
form computations� 	�
 to learn how best to use GAs to evolve computationally useful CAs�
and 	�
 to understand the mechanisms by which evolution�as modeled by a GA�can cre�
ate complex� coordinated global behavior in a system consisting of many locally interacting
simple parts CAs are perhaps the simplest examples of such systems In nature� evolu�
tion has resulted in high levels of computational capability within much more complicated
systems�a preeminent example being the human nervous system

In this paper we analyze the GA�s behavior in evolving one�dimensional CAs to perform
a particular computational task We investigate both the mechanisms underlying the GA�s
performance and the impediments it faces in �nding CAs that achieve high performance
We argue that the results of our analysis are relevant not only to the particular task we have
chosen� but to GA behavior in general

�� CA Review and Terminology

A CA is spatial lattice of N cells� each of which is in one of k states at time t Each cell
follows the same simple rule for updating its state� the cell�s state s at time t� � depends
on its own state and the states of some number of neighboring cells at time t For one�
dimensional CAs� the neighborhood of a cell consists of the cell itself and r neighbors on
either side The number of states k and the radius r are parameters of the CA

The CA starts out with some initial con�guration 	IC
 of cell states� and at each time
step the states of all cells in the lattice are synchronously updated We use the term �state�
to refer to the local state s � the value of a single cell Here we will restrict our attention
to binary 	k � �
 CAs with s � f�� �g The state at site i is denoted by si The term
�con�guration� will refer to the pattern of local states over the entire lattice This is the
CA�s global state� denoted s � s�s� � � � sN�� The density of �s in a con�guration s will be
denoted �	s


The equations of motion � for a CA 	the CA �rule�
 can be expressed as a look�up table
that lists� for each local neighborhood� the update state for the neighborhood�s central cell
A sample rule 	the �majority� rule
 for a one�dimensional �elementary� 	k � �� r � �
 CA
is the following Each possible neighborhood � is given along with the �output bit� s � �	�

to which the central cell is updated

� ��� ��� ��� ��� ��� ��� ��� ���
s � � � � � � � �

In words� this rule says that for each neighborhood of three adjacent cells� the new state
is decided by a majority vote among the three cells At time step t� this look�up table is
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Figure �� Two space�time diagrams for the binary�state Gacs�
Kurdyumov�Levin CA� N � ��� sites are shown evolving� with time
increasing down the page� from two di	erent ICs over ��� time steps�
Here cells with state 
 are white� and cells with state � are black� In
�a�� �� � 
��� and in �b�� �� � 
���� Notice that by the last time
step the CA has converged to a �xed pattern of �a� all 
s and �b� all
�s� In this way the CA has classi�ed the ICs according to whether
�� � ��� or �� � ����

applied to each neighborhood in the current lattice con�guration� respecting the choice of
boundary conditions� to produce the con�guration at t � � The con�guration at time t
will be denoted st � s�t s

�
t � � � s

N��
t � where sit is the local state of site i at time t The CA

equations of motion then specify a spatially�local update of a site�s value as a function of
its neighborhood� sit�� � �	�it
� where �

i
t is the neighborhood pattern about site i at time

t This local update induces a global mapping � that takes a lattice con�guration at t to a
new con�guration at t��� st�� � �	st
 This can also be denoted in terms of the tth iterate
of � as� st�� � �t��	s�


The � value of a binary CA is de�ned as the fraction of �s in the output bits of its rule �
For example� the � value of the majority rule is ��� The � parameter was originally used in
studies of CA behavior ����� but� as we will show� it turns out to be useful in understanding
the GA�s behavior 	There is a simple interpretation of how � is related to a CA�s behavior
� gives the density of �s in the �rst iterate of a random initial con�guration s�� �	s�
 � �


The behavior of a one�dimensional CA is often presented as a �space�time diagram�� a
plot of st over a range of time steps Two examples are given in Figure � These show
the actions of the Gacs�Kurdyumov�Levin 	GKL
 CA ���� on two random ICs� one with
�� � ��� and the other with �� 	 ���  	Here and later on we use the shorthand �� for the
density �	s�
 of an IC
 In both cases� the CA relaxes to a �xed pattern�in one case all �s
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	�	s�
 � �
 and in the other case all �s 	�	s�
 � �
 The GKL CA will be discussed further
below

In this paper we restrict the discussion to one�dimensional CAs with k � � and r � ��
and with spatially periodic boundary conditions� sit � si�Nt  We most often set N to ����
but also look at the behavior of CA on larger N 	up to ���


�� Previous Work

In ���� we reported results of evolving one�dimensional CAs to perform a particular density
classi�cation task� the ��c � ���� task This work was a re�examination of an experiment
performed by Packard ����� meant to test the hypothesis that a GA evolving CA rules to
perform a di�cult computational task will tend to select rules close to conjectured phase
transitions in rule space between ordered and chaotic behavior 	�the edge of chaos�
 In �����
the locations of these phase transitions were claimed to correspond to �critical� � values�
�c In ���� the GA tended to select rules close to these critical values� these results were
interpreted by Packard as supporting the �edge of chaos� hypothesis As reported in �����
however� our similar experiments did not support this hypothesis We also gave a theoretical
argument that the �c � ��� task requires rules with � � ��� rather than the �c values given
in ���� We argued that the results reported in ���� were an artifact of the particular GA
used there rather than due to any intrinsic computational advantage of rules with � � �c�
and concluded that to date there is no direct experimental evidence linking computational
capability with � in cellular automata For a review of these issues and of relations among
computation� dynamics� and cellular automata� see ����

Although the results in ���� were not replicated in our experiments� we did observe several
interesting phenomena in the GA�s behavior In ���� we qualitatively described the �epochs
of innovation� in the GA�s search for successful rules� as well as a breaking of the task�s
symmetries on the part of the GA We interpreted the symmetry�breaking as impeding the
GA�s ability to �nd the best�performing rules We also described the competing pressures
of selection and �combinatorial drift� In this paper we analyze these phenomena in detail
and explain the mechanisms underlying the GA�s behavior and the impediments the GA
encounters

�� The Computational Task

The �c � ��� task is de�ned as follows If �� 	 �c� then the CA is to relax� after a certain
number M of time steps� to a �xed pattern of all �s� otherwise� it is to relax to a �xed
pattern of all �s The desired behavior is unde�ned at �� � �c� this case will be precluded
by using odd N  On a N site lattice then we have

T�c	N�M
 �

���
��
�M 	s�
 � �

N if �	s�
 	 �c
�M 	s�
 � �N if �	s�
 � �c
unde�ned if �	s�
 � �c

���
���s� � f�� �gN

In this notation the �c � ��� task is denoted T��� This task is an example of �useful
computation� in our characterization of the di�erent types of computation in CAs ���� That

�



is� the global mapping �M is interpreted as a program for performing a useful computation�
the IC s� is interpreted as the input to that program� and the CA runs for some speci�ed
number M of time steps or until it reaches one of a set of �goal� patterns� �N or �N  The
�nal pattern is interpreted as the output

The task T��� is interesting for a number of reasons Density classi�cation is closely
related to a number of image�processing tasks� and studying simple versions of such tasks in
one dimension will help in understanding how to use the GA to scale up to more complex
two�dimensional tasks In addition� the task is nontrivial for a small�radius 	r � N
 CA�
since density is a global property of a con�guration� whereas a small�radius CA relies only
on local interactions In other words� the task di�culty derives from the fact that a CA
is speci�ed by � but the useful computation is e�ected by the global map �M  In fact�
the minimum amount of memory for T��� is proportional to log	N
� since the equivalent of
a counter register is required to track the excess of �s in a serial scan of the IC In other
words� the task requires computation which corresponds to the recognition of a non�regular
language Since the �s can be distributed throughout the CA lattice� the CA must transfer
information over large space�time distances 	� N


T��� possesses two symmetries Denoting the task�s global mapping of strings s � f�� �g
N

to classi�cations fLO� HIg by T � these are given as follows

� If an IC s� is spatially reversed on the lattice� T gives the same classi�cation That
is� T 	s
 � T 	Rs
� where the symmetry operator R reverses the order of the bits in s�

� If all the bits in s� are �ipped 	ie� �s are exchanged with �s and �s with �s
� then
T gives the opposite classi�cation That is� T 	s�
 � FT 	Fs�
� where the symmetry
operator F �ips the bits in s� F is its own inverse

Thus� there are several symmetries in T��� that we expect any high�performance candidate
rule to respect�either locally 	ie� with respect to individual neighborhoods in the rule table
�
 or globally 	ie� with respect to �� the global mapping
� or both

The second symmetry of T��� has an important consequence when interpreted with re�
spect to �� Recall that on exactly half the possible ICs � the low density s� � the desired
behavior is to relax to a �xed point of all �s� and on the other half � the high density s�
� the desired behavior is to relax to a �xed point of all �s This �� symmetry requires that
any rule that performs this task has � � ��� Suppose� for example� a rule that carries out
the T��� task has � 	 ��� This implies that for the majority of neighborhoods �� �	�
 � �
This� in turn� means that there will be some s� with �	s�
 � �c on which the action of
the rule will decrease �	s
 This is the opposite of the desired action If the rule acts to
decrease �	s
� it risks producing an intermediate con�guration st� with �	st�
 	 �c This then
would lead� under the original assumption that the rule carries out the task correctly� to a
�xed point of all �s� misclassifying s� A similar argument holds in the other direction for
� � ��� This informal argument shows that a rule with � �� ��� will misclassify certain ICs
Generally� the further away the rule is from � � ���� the larger the fraction of misclassi�ed
ICs

�� The Strategy of a Hand�Designed CA
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Figure �� Experimental performance of the GKL rule as a function of
�� for the �c � ��� task� Performance plots are given for three lattice
sizes� N � ��� �the size of the lattice used in the GA runs�� ���� and
���� �This �gure di	ers slightly from Figure � in ��
�� since �� density
bins were used there�� Note that the N � ��� and N � ��� curves
are almost indistinguishable�

Does there exist a CA that can perform the �c � ��� task� It is possible that no CA exists
which performs the task perfectly for all N  However� a k � �� r � � rule designed by
Gacs� Kurdyumov� and Levin 	the GKL rule
 ���� appears to perform the task with error
decreasing as N �� ���� 	We are not aware of any proof of this� however
 The observed
classi�cation performance of the GKL rule as a function of �� is given in Figure � for N �
���� ���� and ��� To make this plot� we ran the GKL rule on ��� randomly generated ICs
close to each of �� densities � � ����� ���� The fraction of correct classi�cations was then
plotted at each �� The rule was run either until a �xed point was reached or for a �xed
maximum number of time steps M � �� �N 

Figure � indicates that all the misclassi�cations occur for �� � �c� with the width of the
error region decreasing as N increases At �� � �c� in fact� it appears no better than an
unbiased random classi�cation We found that most errors were a result of relaxing to the
wrong �xed point 	eg� all �s for �� � �c
 For future reference note that on an N � ���
lattice the GKL rule�s performance on �c � ��� classi�cation is � ����� when averaged over
��� ICs uniformly distributed in �� equally�spaced � bins

The GKL rule is instructive for the density�classi�cation task in that it happens to give
a concrete� though approximate� solution to the optimization facing the GA The manner
in which it implements the required computation� its �strategy�� is of equal importance
The rule�s �strategy� here refers to the behavioral elements employed during its temporal
evolution that e�ect the classi�cation

It should be emphasized� however� that the GKL rule was invented not for the purpose
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of performing any particular computational task� but rather as part of studies of reliable
computation and phase transitions in one spatial dimension The goal was to �nd a rule
whose behavior is robust to small errors in the rule�s update of the con�guration Reliable
computation in this context meant the robust storage of a single bit of information in the
presence of arbitrarily small noise A zero or one was encoded as the CA con�guration being
close to an all �s or all �s pattern� respectively In the absence of noise� it has been proved that
the GKL rule has only two attracting patterns� either all �s or all �s ���� Attracting patterns
here are those invariant patterns which� when perturbed a small amount� return to the same
pattern under the noise�free rule Figure � shows that the basins of attraction for the all��
and all�� patterns are not precisely the ICs with �� � ��� or �� 	 ���� respectively If they
did coincide then the GKL rule would exactly implement �c � ����density classi�cation

The GKL rule is given by an equation of motion � that updates the current con�guration
st � s�t � s

�
t � � � � � s

N��
t as follows

sit�� � �	�it
 �

�
majority�sit� s

i��
t � si��t � if sit � �

majority�sit� s
i��
t � si��t � if sit � �

In words� this rule says that for each neighborhood �i of seven adjacent cells� if the state of
the central cell is �� then its new state is decided by a majority vote among itself� its left
neighbor� and the cell three sites to the left Likewise� if the state of the central cell is ��
then its new state is decided by a majority vote among itself� its right neighbor� and the cell
three sites to the right

By listing the neighborhoods in lexicographic order� increasing from ������� to ��������
the output bits of the GKL rule table can be given by a string C as follows

C � �������������������������������� 	��


��������������������������������

��������������������������������

��������������������������������

This lexicographic ordering is how CA rule tables will be represented as chromosomes to the
GA As expected� the GKL rule�s � value is exactly ���

Locally in space�time the GKL dynamic � does not satisfy the task symmetries individu�
ally Over one time step it does so in a composite way� �	�
 � F 	�	F 	R�
 That is� if the
neighborhood pattern is spatially�reversed and the bits are �ipped� the opposite output bit
results This can be seen in Figure � Roughly speaking� inverting white to black and black
to white and spatially reversing the patterns takes the downward pointing cross�hatched
region in a black sea 	Figure �	b

 to the same in a white sea 	Figure �	a

 This composite
symmetry is more stringent than that required by T��� Moreover� under the lexicographic
ordering of neighborhoods� the composite symmetry imposes constraints on pairs of output
bits that are spread throughout C The functionality of contiguous bits is a feature to which
the GA�s genetic operators can be sensitive

Typical space�time behaviors of the GKL rule for ICs with �� 	 �c and �� � �c were
shown in Figure � It can be seen that� although the patterns eventually converge to �xed
points� there is a transient phase during which a spatial and temporal transfer of information
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Particle Wall Type Velocity
a WB �
b �W �
c W� �
d B� ��
e �B ��
f BW �

Table �� The six particles generated by the GKL CA�

about local regions takes place This local information interacts with other local information
to produce the desired �nal state Very crudely� the GKL rule successively classi�es �local�
densities with a locality range that increases with time In regions where there is some
ambiguity� a �signal� is propagated This is seen either as a checkerboard pattern propagated
in both spatial directions or as a vertical white�to�black boundary These signals indicate
that the classi�cation is to be made at a larger scale Note that regions centered about each
signal locally have � � �c The consequence is that the signal patterns can propagate� since
the density of patterns with � � �c is neither increased nor decreased under the rule

In this way� local information processing at later times classi�es larger patches of the IC
In a simple sense� this summarizes the rule�s �strategy� for performing the computational
task But how is the strategy related to the CA�s dynamical behavior� The overall strategy
can be decomposed into the CA�s intrinsic computational elements� domains� particles� and
particle interactions ���� There are three time�invariant spatially�homogeneous domains� 	i

all white� W � ��� 	ii
 all black� B � ��� and 	iii
 checkerboard�  � 	��
�

S
	��
� The

results in ���� establish that W and B are regular attractors� as de�ned in ���� When the
domains are �ltered out using the methods of ����� one �nds that the domain boundaries
form six particles� the �rst �ve of which are time�invariant These are listed in Table �
The types of interactions between particles are also evident when the space�time diagrams
are �ltered as in ���� There are two annihilative interactions� c � b � 
 and d � e � 

Three of the interactions are reactive� a � d � c� b � a � e� and c � e � a There is one
spontaneous decay� f � d � b At moderate to long times� it is these particle interactions
which perform the local� but �emergent� logic that classi�es successively larger portions of
the IC 	A more complete analysis along these lines will be presented elsewhere
 As will be
seen shortly� dynamical structures like these� and a few others� will be what the GA takes
advantage of in evolving CA to implement the computational task

�� Details of the GA and CAs in Our Experiments

Following Packard ����� we used a form of the GA to evolve one dimensional k � �� r � � CAs
to perform the �c � ��� task The k and r values were chosen to match those of the GKL
rule The GA begins with a population of P randomly generated rules� the �chromosomes��
which are strings containing the rule table output bits Like the bit�string listing of the
GKL rule given above 	equation ��
� the output bits are given in lexicographic order of
neighborhood patterns For k � �� r � � rules� the chromosomes representing rules are of
length ��r�� � ��� The size of the rule space the GA searches is thus �����far too large for
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any kind of exhaustive search

The �tness of a rule in the population is calculated by� 	i
 randomly choosing I ICs that
are uniformly distributed over �� � ����� ����� with exactly half with �� 	 �c and half with
�� � �c� 	ii
 running the rule on each IC either until it arrives at a �xed point or for a
maximum ofM time steps� 	iii
 determining whether or not the �nal pattern is correct�ie�
sM � �N with �� 	 �c and sM � �N with �� � �c �� is never exactly �!�� since N is chosen
to be odd The rule�s �tness is the fraction of the I ICs on which the rule produces the
correct �nal pattern

This �tness function was termed �performance �tness� in ���� It di�ers from �propor�
tional �tness� in which the rule is given partial credit equal to the fraction of correct bits in
the �nal pattern The runs using performance �tness produced qualitatively similar results
to those using proportional �tness ����� and in this paper we restrict our attention to the
former We denote the performance��tness function using I ICs by FI 

Our GA works as follows At each generation�

� A new set of I ICs is generated

� FI	�
 is calculated for each rule � in the population

� The population is ranked in order of �tness 	The ranking of rules with equal �tness
is decided at random


� A number E of the highest �tness 	�elite�
 rules is copied without modi�cation to the
next generation

� The remaining P � E rules for the next generation are formed by crossovers between
randomly chosen pairs of elite rules The parent rules are chosen from the elite with
replacement The o�spring from each crossover are each mutated m times

This de�nes one generation of the GA� it is repeated G times for one run of the GA An
experiment consists of a set of runs with identical parameters but di�erent random number
seeds

Our experiments used single�point crossover� which takes two strings� selects a position
at random� and forms two o�spring by exchanging parts of the strings before and after that
position Mutation consists of �ipping a randomly chosen bit in a string

The �tness function FI is an estimate of the true �tness F�N  It is a random variable�
in fact� since the precise value it returns for a given rule depends on the particular set of
I ICs used to test the rule Thus a rule�s �tness can vary stochastically from generation
to generation For this reason� at each generation the entire population� including the elite
rules� is re�evaluated on a new set of ICs

The parameter values in our main experiment were the following 	Subsequent sections
will describe other experiments in which some parameter values were modi�ed
 For each
CA in the population� N � ���� I � ���� with ICs uniformly distributed over �� � ����� �����
half with �� 	 �c and half with �� � �c� and M � ��� Each time a CA was simulated� M
was chosen from a Poisson distribution with mean ��� This mean is the measured maximum
amount of time for the GKL CA to reach an invariant pattern over a large number of ICs on
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lattice size ��� Varying M prevents over�tting of rules to a particular M � see ���� In �����
I was set to ���� but we later found that setting I to ��� did not signi�cantly change the
results of our experiments and greatly reduced the required computation time For the GA
runs the chromosomes in the initial population were uniformly distributed over � � ����� ����
and we set P � ���� E � ��� m � �� and G � ���

In GA parlance� our GA has a �generation gap��the fraction of new strings in the next
generation�of �� E�P � ��� That is� once the population is ordered according to �tness�
the top ��" of the population�the set of elite strings�is copied without modi�cation into
the next generation Since testing a rule on ��� ICs provides only an approximate gauge
of the true �tness� this relatively small generation gap was a good way of making a ��rst
cut� and allowing rules that survive to be tested over more ICs Since a new set of ICs
was produced every generation� rules that were copied without modi�cation were always
retested on this new set If a rule performed well and thus survived over a large number of
generations� then it was likely to be a genuinely better rule than those that were not selected�
since it was tested with a large set of ICs An alternative method would be to test every rule
in each generation on a much larger set of ICs� but this would waste computation time Too
much e�ort� for example� would go into testing very weak rules� which can safely be weeded
out early using our method As in most GA applications� in our GA the �tness�function
evaluation dominates the required computational resources

	� The GA
s Epochs of Innovation

In ���� we qualitatively described a series of �epochs of innovation� that we observed in the
GA runs using the proportional �tness function We de�ned the �onset� of an epoch to be the
generation at which a rule with a signi�cant innovation in strategy was discovered The onset
generation of each epoch corresponded to a marked jump in the best �tness measured in the
population In this section we describe in more detail similar phenomena that we observed
in a set of experiments using F��� that were performed subsequent to those reported in ����
The account of the epochs given here di�ers slightly from�and is more rigorous than�that
given in ���� We will distinguish the onset generation from the �takeover� generation in
which all or almost all of the elite rules implement the epoch�s strategy

We performed a total of �� runs of the GA with the parameters given above We also
performed �� runs of the GA with no crossover� �� runs of the GA with no crossover and an
initial population clustered close to � � ���� and �� runs of a Monte Carlo search method
Some statistics from these various runs are given in Table � Those given in columns �#�
will be discussed in subsequent sections

Figure � displays the best �tness at each generation for two typical GA runs 	with
crossover
 The best �tnesses found under F��� ranged from ��#�� The standard deviation
of F���� when run ��� times on the same rule� is approximately ��� Naturally� it would be
preferable to use a larger number of ICs to evaluate �tness during the evolution process� but
this is computationally expensive To obtain a truer value for best �tness after each run� we
evaluated each of the best rules at the last generation of each run with ��� randomly chosen
ICs� uniformly distributed over � � ����� ���� This �tness function is denoted F��� Under
F���� all but one of the best �tnesses were between ���� and ���� The standard deviation
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Figure �� Best �tness versus generation for two typical runs� The
onsets of four epochs of innovation�each corresponding to the gener�
ation discovery of a new� �tter strategy�are marked�
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Table �� Fraction of runs reaching Epoch �� fraction of runs used
to compute averages �for �GA� xover� case� two outlyer runs were
ommitted�� mean generations to onset of Epoch � �T��� and mean
length of Epoch � in generations �T� � T�� for those runs reaching
Epoch � by generation �� in four di	erent experiments� Standard
deviations are given in parentheses�

of F���� when run ��� times on the same rule� is approximately ���� Recall that under
F���� the �tness of the GKL rule is ���� Under F���� this is a signi�cantly higher level of
�tness than the level achieved by the GA Therefore� the GA did not succeed in evolving the
GKL rule� or any rule at a similar level of performance Indeed� as we will discuss� the GA
evolved a di�erent set of strategies than ones that might be expected from the GKL rule

The two plots in Figure � have four similar large�scale features� which turn out to cor�
respond to four epochs of innovation As was de�ned in ����� the onset of each epoch
corresponds to the discovery of a new� higher��tness strategy The onset generation of each
new epoch was determined by examining the actual strategies carried out by the elite rules
in each run�ie� the actual space�time dynamics of each rule The onset generations are
indicated in Figures � At generation �� the onset of Epoch �� the best �tness is �� and
remains at that level for several generations Then there is a gradual or sharp rise in best
�tness to F��� � ���� � ���� at to the onset of Epoch � This is followed by a sharp rise to
��� or higher at the onset of Epoch � The sharp rise is followed by a sharp or gradual rise
to �� or higher� corresponding to the onset of Epoch � The �tness then stays relatively
constant� with moderate �uctuations arising from the stochastic nature of F��� These same
large�scale features are seen in the best��tness time histories for almost every run We ex�
amined rules in each run at di�erent stages and� in almost all runs� observed roughly the
same progressions through epochs and similar strategies at each epoch Out of the �� GA
runs performed� �� displayed a best��tness plot similar to those in Figure � The only major
di�erences were the generation of onset of Epoch � 	T�
 and the length of Epoch � 	T�� T��
where T� is the generation of onset of Epoch �
 The mean values of T� and T�� T� over ��
of these runs are given in the �rst column of Table �

Two �outlier� runs were omitted from these averages In these� T� � ��� T� � �� and
T� � ��� T� � �� respectively The best �tnesses in the remaining four runs never went
beyond ��� we assume that if those runs had been allowed to continue� Epochs �#� eventually
would have been reached

The common strategies implemented by the best rules in di�erent epochs are illustrated
by the space�time diagrams in Figures �#� These are discussed in order below

��



0

Time

148

148Site0

(a)

0

Time

148

148Site0

(b)

Figure �� Two spacetime diagrams for an Epoch � rule with � � 
�
��
In �a�� �� � 
��
 and in �b�� �� � 
����

Epoch �� Best rules specialize on low �� or high ��

In Epoch � there are two best�performing strategies� rules that always relax to a �xed point
of all �s and rules that always relax to a �xed point of all �s Figure � illustrates the former
strategy on two ICs with low and high ��� respectively Since exactly half the ICs at each
generation have �� 	 �c and exactly half have �� � �c� each of these strategies is correct on
exactly half the ICs� so each has �tness �� This default behavior is hardly worthy of the
name �strategy�� but these rules perform signi�cantly better than randomly chosen rules�
which classify almost no ICs correctly Since the rules in the initial populations are uniformly
distributed over � � ����� ����� the initial population always contains both very low and very
high � rules� which tend to have this behavior This is why the best �tness in the initial
population is almost always ��

Epoch �� Best rules correctly classify additional �extreme ��

At Epoch �� the GA discovers rules that� while similar in behavior to Epoch � rules� correctly
classify some additional ICs with extreme �� The behavior of one such rule is illustrated
in Figure � Like the rule illustrated in Figure �� this rule is a �low��� specialist� But
unlike the previous rule� it correctly classi�es some very high �� ICs as well In Figure �	a
�
�� 	 �c and the CA quickly relaxes to all �s In Figure �	b
� �� � �c and the CA again
relaxes to all �s 	a misclassi�cation
� but information from high�density blocks in the IC
persist for some time In Figure �	c
� �� � �c and the pattern is correctly classi�ed An
Epoch � rule�s additional correct classi�cations of very high 	or very low
 � ICs yields a
slightly higher �tness� as seen in Figure � On approximately half the runs the GA discovers
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Epoch � low��� specialists and on the other half it discovers Epoch � high��� specialists The
strategies are almost never found together in the same run Rules in Epoch � have �tnesses
ranging from ���� to about ����� depending on how many additional high�density ICs are
classi�ed correctly and on the particular set of ICs being used at a given generation

Epochs � and �� Expanding blocks of �s or �s

Epoch � is characterized by a major innovation discovered by the GA As in Epochs � and
�� there are two opposite strategies in Epoch ��

 Strategy �� Relax to a �xed point of all �s unless there is a su�ciently large block of
adjacent 	or almost adjacent
 �s in the IC If so� expand that block

 Strategy �� Relax to a �xed point of all �s unless there is a su�ciently large block of
adjacent 	or almost adjacent
 �s in the IC If so� expand that block

The meaning of �su�ciently large� varies from rule to rule� and generally ranges from around
� to �� cells 	Note that �su�ciently large� can be larger than the neighborhood size �r�� �
� This can occur via the interaction between adjacent neighborhoods on the lattice
 As
will be seen� in the higher��tness rules� the size of blocks that are expanded is tuned to be
a good predictor of high or low density for N � ���

Epoch � begins with the discovery of such a rule� which typically has �tness F��� � ���
During Epoch �� the GA discovers variants on the original rule and small improvements
to these rules� having the e�ect of raising their �tnesses to F��� � ��� Epoch � begins
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when no additional improvements are made From that time on� the best �tnesses remain
approximately constant� though there is moderately high variation in F��� as seen in Figure �
Two examples of such rules from Epoch � are given in Figures � and � The rule in Figure �
implements Strategy � In �	a
� �� 	 �c� and the CA quickly relaxes to all �s In �	b
�
�� � �c� and there is a su�ciently large block of �s� which the CA expands toward the
right until the con�guration reaches a �xed point of all �s Both ICs are correctly classi�ed
Figure � displays a rule with Strategy � In �	a
� �� 	 �c� and there is a su�ciently large
block of �s which is expanded In �	b
� �� � �c� and the con�guration quickly relaxes to all
�s Again� both ICs are correctly classi�ed

The best rules in Epochs � and � are specialists for low or high ��� but rather than
ignoring the opposite half of the ICs as in Epoch � or only dealing with special extreme
cases as in Epoch �� these rules deal with the other half of the ICs by expanding su�ciently
large blocks of the non�default state In this way they obtain a marked increase in �tness
In e�ect� the strategy of Epochs � and � use the presence or absence of such blocks as local
predictors of the global ��

Typical errors made in Epoch � are illustrated in Figure � In �	a
� an Epoch � rule
expands blocks that are too small� resulting in an incorrect classi�cation for �� 	 �c In
�	b
� another Epoch � rule expands blocks too slowly from an IC with �� � �c� eventually
reaching a �xed point of all �s but not by the maximum allotted number M of iterations
	In the �gure� M � ���� in our experiments� M � ���
 This also results in a failure to
correctly classify within the given time In Figure �	c
� a third Epoch � rule creates a block
not present in s and expands it� resulting in a misclassi�cation for �� � �c Such errors are
largely corrected by Epoch �� though even the best Epoch � rules still misclassify a number
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