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We show that mixtures comprised of multicomponent systems typically are much more structurally
complex than the sum of their parts; sometimes, infinitely more complex. We contrast this with the
more familiar notion of statistical mixtures, demonstrating how statistical mixtures miss key aspects
of emergent hierarchical organization. This leads us to identify a new kind of structural complexity
inherent in multicomponent systems and to draw out broad consequences for system ergodicity.

Keywords: epsilon-machine, nonergodicity, causal state, multistationary, excess entropy, statistical

complexity, hierarchy, transients

PACS numbers: 02.50.-r 89.70.4-c 05.45.Tp 02.50.Ey 02.50.Ga

CONTENTS
I _Introductionl 1
[ II. Background]| 2
[A. Processes| 2
B Information] 2
[C. Structure 3
[ III. Mixed State Operator] 4
IV. Constructing Hidden Multistationary |
| Processes 4
[ V. The Multistationary e-Machine] )
| VI. Ergodic Decompositions| 5
VII. Structural Decompositions—Beyond |
| DStatisticall 8
IA. Finite Hidden Multistationary |
[ Processed 8
[I._A Base Case 8
(2. Period-1 and Period-2 Process| 8
[3. Isomorphic Golden Means Process| 10
(B. Infinite Statel 12
[ Poriod] [T Com P | 19
[2. Two Biased Coins| 13
[3. Pair of Isomorphic Even Processes| 14
|C. Infinite Components 15
[T. Handbag of Necklaces] 15

* lchaos@ucdavis.edu

2. The Purse Process 17
[3. Mother of All Processes| 18
I Discussionl 19
L IX. Conclusions| 19
| Acknowledgments| 20
[ Referenced 20

I. INTRODUCTION

Multicomponent systems typically are much more
structurally complex than the collection of their
parts; even infinitely more so. This should be con-
trasted with statistical mixtures—such as arise in
the Gibbs Paradox of thermodynamics [I, Secs. 2-
3] where gases of distinct molecular species exhibit
only a modest entropy increase upon formation due
to the uncertainty in which species one has in hand.
This contrast demonstrates how the ansatz of statis-
tical mixtures misses key aspects of hierarchical or-
ganization. The result, as we show, is an awareness
of a new kind of structural complexity of composite
systems.

The development here focuses on the theoretical
core of this basic phenomenon, arguing that it is, in
fact, quite commonplace. To appreciate this, it will
be helpful to address the motivating issues upfront.

The multicomponent systems of interest are found
in several different domains, including the entropy of
mixing in thermodynamics [2], 3], the change point
problem in statistics [4], the attractor-basin portrait
of a dynamical system [5], Smale’s basic sets [6], [7],
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spatially extended systems with multiple local at-
tractors [§], chaotic crystallography [9, [I0], evolu-
tionary dynamics [I1], and adaptive and learning
systems with memory.

We introduce the concept of hidden multista-
tionary processes to capture what is common
across these domains—a system comprising multi-
ple locally-competing behaviors and structures. The
basic idea can be appreciated within an experimen-
tal paradigm: multistationarity models repeated ex-
perimental trials in which different initial conditions
lead to statistically distinct behaviors.

In short, one goal is to provide a tractable model
that quantitatively captures what is common among
these domains, while providing an architectural,
high-level view of the state-space organization of be-
haviors. In particular, we would like to analyze how
unpredictable and how structurally complex hidden
multistationary processes are, when given their com-
ponents, whose unpredictability and complexity we
know. Another goal is that the approach be con-
structive, allowing one to quantitatively determine
essential properties and to determine precisely what
gives rise to the emergent global complexity.

The development proceeds as follows. It first re-
views statistical mixtures, briefly recalling stochastic
processes, information theory, structural complexity,
and mixed state processes. It then introduces the
theory and construction of hidden multistationary
processes. This includes a canonical minimal repre-
sentation of hidden multistationary processes and a
method to analyze their ergodic decompositions that
determines how the latter affect information mea-
sures.

The sections following this explore a number of
examples going from the simplest cases and famil-
iar structured stationary component processes to
the Mother of All Processes that subsumes them
all. Taken altogether, these illustrate a new kind
of structural hierarchy and make plain how infi-
nite complexity naturally emerges. The develop-
ment concludes drawing out parallels with related
results and consequences in nonequilibrium thermo-
dynamics and machine learning.

II. BACKGROUND

To get started, we give a minimal summary of
the required background—a summary that assumes
familiarity with computational mechanics [12), [13]

and with information theory for complex systems
14, [15].

A. Processes

A process, denoted P, is specified by the joint
distribution P(X,, X¢) over its chain of random
variables ... X_1XoX1.... We view P as a com-
munication channel with a fixed input distribu-
tion }P’(yt): It transmits information from _the
past Xy = ... X;_3X;_2X;_1 to the future Yt =
X X141 X¢42 ... by storing it in the present. X; de-
notes the discrete random variable at time t tak-
ing on values x from a discrete alphabet A. And,
Xf = Xy Xiy1... Xiqe—1 is the block of ¢ random
variables starting at time ¢. A particular realiza-
tion is denoted using lowercase: X! = z! € A’
Often, we simply refer to a particular sequence
w = Toxy...Te_1, T; € A, as a word. If we have
a symbol x and a word w, we form a new word by
concatenation: e.g., wx or zTw.

B. Information

Given a process, we form the block distributions
{P(X/) : for all t and ¢} by marginalizing the given
joint distribution:

P(X{) = P(Fs ase)
{Z0. g0}

(We ignore here the measure-theoretic construction
of cylinder sets and their measures; for background
see Ref. [I6] and references therein.) A stationary
process is one for which P(X}) = P(X{) for all ¢ and
{. For a stationary process, we drop the time index
and thereby have the family of word distributions
P(X*) that completely characterizes the process.

The amount of Shannon information in words is
measured by the block entropy:

H(() = H[P(X")] ,

where H[P(Y)] = — 2,1 P(y) log, P(y) is the Shan-
non entropy of the random variable Y. A process’
information production is given by its entropy rate:

huzlim@.
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It is often used to measure a process’ degree of un-



predictability.

At a minimum, a good predictor—denote its ran-
dom variables R—must capture all of a process’ ex-
cess entropy E  [I5]—all of the information shared
between past and future: E = I| ,Y} Here,
I[Y; Z] is the mutual information between variables
Y and Z. That is, for a good predictor R E =
IR X).

These quantities are closely related. In particular,
for finitary processes, those with E < oo, the block
entropy has the linear asymptotic behavior:

H(l) ocpmso0 E+ hyl .
More precisely:

E = lim [H(¢) — h,(] .
£— 00
This shows that E controls the convergence of en-
tropy rate estimates h,(¢) = H({) — H({ —1). In
fact, for one-dimensional processes, E can also be
defined in terms of entropy convergence:

E=[h.(0) b . (1)

=1

An analogous quantity that controls the block en-
tropy convergence to the linear asymptote is the
transient information:

T = i [E+h,L—H(L) .
L=0

T measures the average amount of information an
observer must extract in order to know a process’
internal state. (For a review of these and related
informations see Ref. [15].)

C. Structure

We refer to a model of a process—a particular
choice of R—as a presentation. Note that building
a model of a process is more demanding than de-
veloping a prediction scheme, since one wishes to
go beyond sequence statistics to express a process’
mechanisms and internal organization.

To do this, we first recall that a process’ commu-
nication channel is determined by the conditional
distributions P(X ;| X;). Based on this, computa-
tional mechanics introduced an equivalence relation
T~ 7 that groups all of a process’ histories which

give rise to the same prediction. The result is a map
— & from pasts to causal states defined by:

PX[T) =PX[T)}. (2

In other words, a process’ causal states are equiva-
lence classes—S = P( )/~—that partition the
space of pasts into sets which are predictively
equivalent. With the causal states in hand, one de-
termines the causal-state to causal-state transitions:

6((— {%/ .

{T(z)

o,0’

r €A o0 €8}.

The resulting model M, consisting of the causal
states and transitions, is called the process’
e-machine [17):

M(P) = {s, (T@,z ¢ A}} .

Informally, a process is ergodic if its statistics can
be estimated from a single realization that is suf-
ficiently long. If P is ergodic, then M (P)’s recur-
rent causal states are strongly connected and their
asymptotic invariant distribution 7 = P(S) is unique
and given by 7 = 7T, where T'= > _ . 7@,

As described, an e-machine is obtained from a pro-
cess, but one can also simply define an e-machine and
consider its generated process. We will use both no-
tions in the following, as they are equivalent [18].
But why should one use the e-machine presentation
of a process in the first place?

To summarize, out of all optimally predictive
models R resulting from a partition of the past—
those such that E = I[R; X]—the e-machine cap-
tures the amount of information that a process
stores—the statistical complexity C, = HI[P(S)].
The excess entropy E—the information explicitly
observed in sequences—is only a lower bound on the
information C), that a process stores [I7]: E < C,,.
The difference x = C,, — E, called the crypticity,
measures how the process hides its internal state in-
formation from an observer [19].

A process’ e-machine is its minimal unifilar pre-
sentation. It is unique for the process. Moreover, it
allows a number of the process’ complexity measures
to be directly and efficiently calculated [20]. The lat-
ter include the process’ entropy rate, excess entropy,
statistical complexity, and crypticity. In short, a
process’ e-machine captures all of its informational
and structural properties.



III. MIXED STATE OPERATOR

Given an e-machine M, its causal states can be
treated as a standard basis {e;} in a vector space.
Then, any distribution p = P(S) over the states is
a linear combination: u = Zj cje;. Following Ref.
[13], these distributions are called mized states. For
an k state e-machine, the mixed-state space is a k—1-
dimensional simplex A*~1  as the distributions p €
A*~1 are normalized.

Consider a special subset of mixed states. Define
w(w) as the distribution over M’s states induced af-
ter observing sequence w = zq...xy—1, M having
started with state distribution m:

pr(w) = ]P’(SAXS =w,Sy ~ )
o ]P’(Xg = ’LU7Sg,So ~ 7T)
P(Xg = w,SO ~ 71')
o Tw)

where 1 is a column vector of 1s and T) =
T(@e=1) ... 7o) Here, the notation X ~ P serves
to indicate that random variable X is governed by
distribution P.

The last line gives the mixed-state pr(w) di-
rectly in terms of the initial state distribution 7 and
M’s transition matrices. One interpretation is that
tr(w) represents an observer’s best guess as to the
process’ causal-state distribution given that it saw
word w and knows both the process’ e-machine and
the initial distribution 7.

To determine the set of mixed states allowed by
a process, we simply calculate the set {ur(w)} of
distinct p,(w) for all words w € A*. This is most
directly done by enumerating w in lexicographic or-
der: e.g., for a binary alphabet successively choosing
w € {),0,1,00,01,10,11,...}. Here, A is the null
word. As we will see, the mixed-state set can be
finite or infinite.

If we consider the entire set of mixed states, then
we construct a presentation of the process by specify-
ing the transition matrices {77 : pr(w) — pr(wa)}:

P(wx|Sg ~ )
IP(w|SO ~ 71')
= pr (W) T®1

Pz, pr (w) |1 (w)) =

Note that many words can induce the same mixed
state.
It is useful to define a corresponding operator U

that acts on a machine M, returning its mized-state
presentation Ux(M) = {{T7}, {pt=(w)}} under ini-
tial distribution w. The examples to follow shortly
illustrate how mixed states and U, (M) are calcu-
lated.

IV. CONSTRUCTING HIDDEN
MULTISTATIONARY PROCESSES

Recall that a hidden multistationary nonergodic
process is one that evolves, across successive realiza-
tions, to statistically distinct long-term behaviors.
We now introduce our model of this by giving a con-
struction procedure. This, in effect, defines what
we mean by multistationary. We then develop sev-
eral basic properties and analyze in detail a series of
example constructions to illustrate them and their
ergodic decompositions.

The main tool used to construct a hidden multi-
stationary process is the mixed-state operator U,.
We show that this results in a canonical presenta-
tion of a given set of stationary components. This is
the multistationary process’ e-machine.

Definition 1. A hidden multistationary process
(HMSP) is defined by the presentation determined
via the following procedure.

1. Identify an indexed family of component sta-
tionary ergodic processes {P'};cr. FEach is
specified by its e-machine presentation M =
M(P?). The e-machines consist only of their
recurrent states 8' that, due to ergodicity,
form a single, strongly connected set.

2. Specify the component’s mixture distribution
m—the probability with which each will be vis-
ited (sampled):

7t =P(M?) .

3. Finally, calculate the mixzed-state presentation
of the multistationary process:

M%(UMﬁ,

icl

where we take the monoverlapping set of the
measure semi-groups [21)] specified by the com-
ponent e-machines. In this way, M’s states
and transitions are determined from the com-



ponent e-machines and the mixture distribu-
tion .

M, the result of the construction, determines the
transient portion of a nonergodic e-machine. M’s
recurrent components are essentially the same as
those (M"’s) of the original component stationary
processes P?. That is to say, what is new in M is
the set of transient causal states.

Note that this construction is a stochastic analog
of building recognizers for multiregular formal lan-
guages [22].

V. THE MULTISTATIONARY MACHINE

With the background and definitions set, we are
ready to explore the properties of multistationary
nonergodic processes. We first establish the struc-
tural properties of their e-machine presentations and
then their informational properties via ergodic de-
compositions of various complexity measures.

Each component M? = {Si7 {Ti(m)m € .Ai}}, con-
sidered as generating its own process P?, has a sta-
tionary distribution p* over its states:

We will also write this as a vector over the multi-
stationary process’ recurrent states, when we have a
finite number of components:

m= [t (ph Pt )t (Ph PR

where k = |I| and j; = |S’|. The stationary state
distribution ;; for the multistationary process gen-
erated by M is, then:

mij =7 ph . (4)

Consider the following properties of a multista-
tionary process as just defined.

Lemma 1 (Stationarity). The state distribution m;;
18 stationary.

Proof. This follows from realizing that the recurrent
portion of M ’s transition matriz is block diagonal.
That is, asymptotically the components are indepen-
dent and, by assumption, the component distribu-
tions are invariant.

Lemma 2 (Unifilarity). The hidden multistationary
process machine M is unifilar.

Lemma 3 (Minimality). The hidden multistation-
ary process machine M is minimal.

Lemma 4 (Uniqueness). The hidden multistation-
ary process machine M is unique.

The relevant definitions and proofs of these closely
follow those given for e-machines generally; see, for
example, Ref. [23]. We leave the proofs for a sequel.
This all noted, these remarks constitute a proof of
the following claim.

Theorem 1. The mized state operator applied to a
mixture of (finite, ergodic) e-machines produces an
e-machine. That is, the e-machine for the hidden
multistationary process generated by:

e

iel
is an e-machine.

Remark: Constructing HMSPs in this way one
could start with other classes of presentation for
the ergodic component processes, such as nonunifilar
presentations—i.e., generic HMMs. However, the re-
sulting M need not be an e-machine. And, as a con-
sequence, one could not directly calculate from such
an M the various complexity measures nor, lacking
minimality, draw structural conclusions about its ar-
chitecture. This is one reason why we choose to spec-
ify the component processes using e-machine presen-
tations. Limiting the current construction to ergodic
components specified by finite-state e-machine pre-
sentations serves to simplify the discussion and high-
light our main results.

However, lifting these various restrictions or gen-
eralizing the previous properties to address them
would be a fruitful effort giving a much broader
characterization of the complexity of multistation-
ary processes.

So, from here on out we assume the ergodic com-
ponents are e-machines and ask what properties hold
for the multistationary processes so constructed. We
build processes consisting of either a finite number
or countably infinite number of components.

VI. ERGODIC DECOMPOSITIONS

Since we are given the component processes
{Pi,i € I}, what can we say about the resulting
multistationary process generated by M7 A first



step develops various kinds of ergodic decomposition
that attempt to predict M’s properties in terms of its
ergodic components’ properties. The basic question
has a very long history in ergodic and information
theories. The reader is referred to the review given
in Ref. [24]. Our approach here is, on the one hand,
to briefly give a flavor of several ergodic decomposi-
tions and, on the other, compensating for that lack
of rigor, to analyze in detail a number of concrete
examples.

The word distribution P(X*) for M = U (e M?)
is given by:

P(X") =) x'P(X‘|M) .
i€l

That is, for word w:

P(w) = Z#Pi(w) ,

iel

where P;(w) denotes the probability that P gener-
ates w.

Quantitatively, the HMSP’s block entropy is up-
per bounded by the component block entropies:

H(O) = H [P(X")

=H lz TP(X* |Mi)]
i€l
<y w'H [P(X|MY)]
i€l

= Zﬂ'iHi(f) ,

iel

where the second-to-last step employs Jensen’s in-
equality [I4] and H(¢) is component P%’s block en-
tropy.

A more insightful upper bound, though, is devel-
oped by first imagining that the sequences generated
by the ergodic components do not overlap—for ex-
ample, the P’s have disjoint alphabets A*. Then
we define an indicator function f of the process and
an associated random variable 6: 6 = f(X*) =4, if

X* e AL We have:

H[X'] =H[X" f(xX9]
= H[0) + H [X*|0]
= H[0]+ ) PO =i)H [X*|0 =]

el

= Hn]+> «'H [X'|M']
el

= Hln]+ > «'H'(0) .

el

In the general setting, however, the sequences gen-
erated by distinct components can overlap. This
reduces the number of distinct positive-probability
words and so, too, the block entropy. In this way, we

see that the above equality is only an upper bound
on the HMSP’s block entropy:

H(() < H[x]+ > _w'H(0) . (5)

iel

This bound highlights the contribution of the mix-
ture entropy H[r|. We return to critique this no-
tion of ergodic decomposition later on. For now, we
draw out several useful consequences of this line of
reasoning, relying on the bound Eq. . Elsewhere
we explore tighter informational bounds on decom-
position.

From this, we see that an HMSP’s entropy rate h,
is simply that of its ergodic components. Assuming
the mixture entropy H|[x] is finite, we have:

. H()
fou = Jlim ==
< - g
Jim {H[ﬂ] +;w H (z)}
= 7* lim A'(0)
. l— 00 ¢
i€l
S
el

where we have the component entropy rate h; =
h,(M?). Reference [24] originally established this
decomposition.

What is less intuitive, though, are various com-
plexity measures as they apply to HMSPs. As we
will see, unlike the entropy rate, which component
processes are selected and how they relate to one an-
other play key roles. We first consider the ergodic
decomposition for excess entropy, then for the tran-



sient information, and finally that for the statistical
complexity.

The excess entropy E also has an ergodic decom-
position. In this case, we have:

E= hm (H(£) —
{— 00
< lim ( 7]+ 7 H(0) —EZHhL)
= iel iel

=Hln]+ ) = (Zlggo [H(0) — h;e])

hyl)

where E? is the excess entropy for ergodic component
i. The excess entropy decomposition was explored
in Refs. [25] [26].

Combining the entropy rate and excess entropy er-
godic decompositions, we see that the block-entropy
linear asymptotes—H"({) oc E' + h!(—have their
own decomposition:

E+h<Hlx+Y ©E +£-) w'hl,

iel i€l
[7] + Z 7 (E' + hi L) .
i€l

It is a simple additional step to develop the ergodic
decomposition for the transient information:

T = f: [E + hyl — H(0)]
=0

M

7| + Zﬂi (E' + hzé)
£=0 iel

—&—EZW%Z — H[rx] — Z?TiHi(é)

el i€l
=3 > 7 [E +hil— H(0)]
£=0 iel
= Z s
el

Curiously, like the entropy rate decomposition, the
mixture entropy H|[r] does not play a role.
The statistical complexity also has an ergodic de-

composition:
— Y P(0)log, P(o)
cES
=2 2 Be)log, P(")
iel ogicS?
Is*|-1
= —Z Z mij logy mij
iel  j=0
|s*|—1
== 2 mhlogy
iel  j=0
|s*|-1
:*Z’/T Z log27r +1og2pj)
el 7=0
|87 -1 |87 -1
=X Y o - T Y pjlosar]
i€l 3=0 iel 7=0
=— Z 7' logy Tt — Z WiCL
il iel
7]+ Z WiCZ ,
icl

where CZ are the statistical complexities of the er-
godic components. The decomposition for statisti-
cal complexity was first noted in Ref. [27]. Note
that this decomposition does not rely on assuming
an equality as in Eq. .

Finally, the multistationary crypticity x, which
measures how a process hides state information from
an observer, is also unaffected by the mixture distri-
bution:

x=0C,—E
]+ ZW’C; - (H[w] + ZW1E1>
icl icl
= Z’R’i (CZ — E!
icl
_ Zﬂ_ixi ’
iel

where x? is the crypticity of component M?. In this,
it is similar to the entropy rate and transient infor-
mation decompositions.



VII. STRUCTURAL
DECOMPOSITIONS—BEYOND
STATISTICAL

To emphasize, what’s notable in these kinds of
informational decomposition is that, for nonergodic
e-machines, we have, for example:

Cu> > w'C .

iel

That is, the global structural complexity C, of a
multistationary process is strictly greater than that
contained in its components {C},}. In short, a mul-
tistationary process is at least the sum of its parts.
Indeed, the above inequality leaves out the entropy
of mixing. But this is too facile. As we will see,
multistationary processes are much, much more.

We will see below, taking a more structural per-
spective going beyond the ergodic decompositions,
that the transient causal state structure is key to
a process’ global organization and what sequences
of observations reveal. This leads us to call into
question the interpretation and use of the preceding
kinds of ergodic decomposition.

We now show that the construction procedure
can be used to answer a number of different ques-
tions about multistationary ergodic processes. Sev-
eral questions are illustrated via particular exam-
ples; others via general constructions. The series of
examples is developed incrementally to highlight the
methods and particular results, as much in isolation
as possible.

We first start with processes built from finite-state
ergodic components that lead to a multistationary
process that is itself finite-state. Then we analyze
the case in which finite components lead to a multi-
stationary process with an infinite number of states.
We end with examples built from an infinite num-
ber of finitary ergodic processes. In each case, we
explore the structure of the resulting multistation-
ary process, its complexity measures, and its ergodic
decomposition.

A. Finite Hidden Multistationary Processes

1. A Base Case

A simple but illustrative case is that of two period-
1 component processes: all Heads and all Tails, se-
lected with fair probability: = = (1/2,1/2).

The components observed separately have hg =
h;, = 0. But together H(¢) = 1, £ > 1. In this
way, we see that the HMSP information H(¢) of the
mixture is all mixing entropy H (7).

2. Period-1 and Period-2 Process

Define the Periodic Process P = P(p) that repeats
the word w = 0P~ '1. Let’s construct the simplest
multistationary process consisting of two such com-
ponents:

1. Period-1 Process P(1), which has complexity
measures hllt = 0 bits per symbol, C& = 0 bits,
E! = 0 bits, T' = 0 bit-symbols, and x' = 0
bits.

2. Period-2 Process P(2), which has complexity
measures hllt = 0 bits per symbol, C’}L =1 bit,
E' = 1 bit, T' = 1 bit-symbol, and x! = 0
bits.

The Period-1 component has a single recurrent state
A and the Period-2, two recurrent states, label them
B and C'. The second step is to specify the mixture
distribution 7 and we take this to be uniform: © =
(1,1). That is, P(M') = 1/2 and P(M?) = 1/2.
And, the final step is to use the mixed-state operator
to construct M = U, (P(1)| |P(2)). The resulting
multistationary e-machine is shown in Fig. c).

The recurrent states of the component e-machines
show up as M’s recurrent states, as claimed. What
is new is the set of two transient states (solid circles).
As a generator of the multistationary process, M be-
gins in its start state (solid circle, with circumscrib-
ing circle) and, then, follows transitions according
to the edge probabilities, emitting the correspond-
ing symbols.

We can understand M'’s structure by calculating
its mixed states u(w) = (P(A),P(B),P(C)), w € A,
using Eq. :

pN) =[5 3.1)

M(O)_ [0717 ]:B ,
u(1) = [5,0,3] ,

©(00) =[0,0,0] =0 ,
n(01) =1[0,0,1] = C',
#(10) =[0,1,0] = B, and
p(11) = [1,0,0] = A .
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FIG. 1. The Period-1 and Period-2 Hidden Multista-
tionary Process: (a) Component P(1), (b) Component
P(2), and (c) M = U-(P(1)|JP(2)) with m = (3,3).
Recurrent causal states are shown as hollow circles and
transient causal states as small solid (black) circles. The
start state sports a double circle. Transitions are labeled
p|z to indicate taking the transition with probability p
and emitting symbol z € A.

In this, on the one hand, u()) is the start state
of the mixed state presentation and its distribution
gives the asymptotic invariant distribution over the
component recurrent states A, B, and C—the state
probabilities before any symbols have been gener-
ated.

On the other hand, if x = 0 is generated, then we
immediately know the process is in component P(2),
since P(1) cannot produce a 0, and, in particular, it
is in a specific state, B. This is reflected in the
transient mixed state p(0) = [0,1,0]. In fact, any
time a valid 0 is generated we know M is in state B.
This is also seen in mixed state p(10), in which the
last symbol generated is a 0 and we again obtain a
d-function distribution concentrated on state B.

Now, there are also disallowed transitions and so
disallowed words. This is shown in mixed state
1(00) = [0,0,0] for word w = 00.

More interestingly, though, is the transient mixed
state p(1) = [%,0, %], which indicates that, having
seen a 1 we know that M cannot be in state B.
However, the best we can say is that it is either
state A (the Period-1 component) or in state C (the
Period-2 component) with fair probability. It is not
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FIG. 2. Entropy growth H(¢) (top) and entropy con-
vergence h,(¢) (bottom) for the Period-1 and Period-2
HMSP, as function of word length £ =10,...,5

until we see another symbol that we are guaranteed
to know with certainty in which component M is.
If w = 11, then P is in A. Since we now know the
state with certainty, we say that w =0 and w = 11
are synchronizing words. In this case, they are the
minimal synchronizing words.

The ergodic decompositions tell us that:

1. h, = Wlht + Wlhi = 0 bit per symbol,
2. E=H(r)+m'E' +m?E2 =1+0+1/2=15

bits,

3.C,=H(m)+7'CL+7*C2 =140+1/2=15
bits,

4. T =T +71T? = 0+1/2 = 1/2 bit-symbols,
and

5 x =7y +7'x% =0+ 0 =0 bits.

Let’s check these by directly calculating the entropy
growth H(¢) and convergence h,(¢) for M. These
are shown in Fig.

The entropy growth plot (top) leads to an estimate
of E = 1.5 bits, which is predicted by the ergodic
decomposition. Both entropy growth and entropy
convergence (bottom) show that h,(¢) = h, =
after ¢ = 2. And, this too is correctly predicted by
the corresponding entropy rate decomposition.

In fact, for lengths longer than the longest pe-
riod, there are always three distinct sequences—
w € {1111...,0101...,1010...}. And so, E <
logy 3 ~ 1.585 bits. This is roughly consistent with
block entropy plots.

Let’s analyze this exactly. One of those sequences
is w = 1™ and it occurs with probability 1/2. The



two other sequences are w = (01)” and w = (10)"
and they are generated equally often by their com-
ponent. But since that component appears only
half the time, they occur in the output sequences
with probability 1/4 each. Thus, E = H[P(w)] =
H[(1/2,1/4,1/4)] = 1.5 bits. And, this is what is
seen in the plots.
The HMSP’s statistical complexity is:

C, = HI[P(S)] (6)
=H[(1/2,1/4,1/4)] (7)
— 3/2 bits . (8)

which agrees with the ergodic decomposition.

The ergodic decomposition, however, predicts
T = 1/2 bit-symbols, while the entropy growth plot
shows that, in fact, T ~ 2.19 bit-symbols. So, the er-
godic decomposition for T is incorrect. In short, we
see that the ergodic decomposition does not prop-
erly account for the state distribution’s relaxation
through the transient mixed states (solid circles) in
M; Fig. (c) That relaxation takes longer than a
single step (as the decomposition assumes) and that
increased relaxation time increases T.

Note that this is one of the simpler examples of the
class of processes that have finite transients. Let’s
consider one that is more complex.

8. Isomorphic Golden Means Process

The No-Repeated-0s Golden Mean Process
(GMP) generates all binary sequences except those
with consecutive 0s. When a 0 is generated then the
probability of a 0 or a 1 is fair. The GMP is an
order-1 Markov process.

Let P! be the No-Repeated 0s GMP, and let P2 be
the No-Repeated-1s GMP. See Figs. [3a) and [3|(b).

We define a nonergodic mixture P as follows:
P=pP' +(1-p)P?,

with mixture distribution 7 = (p,1 — p). The prob-
ability of any word w is, then:

P(w) = pP1(w) + (1 — p) P2 (w) .

Using the mixed-state operator, we construct

M(P)’s transient and recurrent states using this
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mixture distribution, finding:

pw) = [P(Ajw) P(Blw) P(Clw) P(DJw)]
u) =2 5 2 1)
o) =0 52 22 0]
()= |25 00 2]
1(00)=[0 0 1 0] =C,
p(0)=[p 00 1—-p],
p(10)=1[0p 1-p 0] ,
p(11)=[100 0] =A,
#(001)=1[0 0 0 1] =D, and
p(110)=1[0 1 0 0] =B.

Longer words can only lead to one of these mixed
states and so the e-machine is finite. The full mul-
tistationary e-machine is shown in Fig. c), as a
function of the mixture parameter p. We see that
the number of states, including the transients, is fi-
nite for all mixture probabilities.

The transition matrices for M(P)’s recurrent
causal states are:

0400 2000
0000 1000
T = and T* =
0030 000 3
0010 0000

The stationary distribution is defined by the mixture
of the two processes:

7(p) = (pm p)7?)
%(220 P 2(1—p) 1-p),

recalling that 7! = 2 = (2/3 1/3).
Using methods from Refs. [12] [I3], the excess en-
tropy for each recurrent component is seen to be:

1
g 10g2 3

2 3
E1:E2:§10g2§+

2 3 1
:glog21+§log23

~ 0.251629 bits.

3

By the ergodic decomposition theorem, the excess
entropy for the mixture, as a function of p is:

E(p) = pE' + (1 - p)E* + H(p)
=E' + H(p),
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FIG. 3. Two Golden Mean Processes and their non-

ergodic mixture: (a) M', (b) M?
U (M*| | M?) with 7 = (p,1 — p)

and (¢) M =

since the two components are isomorphic. For p =
1/2, we expect E & 1.251629 bits.

Again, the component transient information
equals the excess entropy, since the GMP is order-1
Markov. So, the associated ergodic decomposition
gives:

T(p) = pT!
=T!

+ (1 —-p)T?

since the two components are isomorphic. For p =
1/2, we expect T =~ 0.251629 bits.

Similarly, the statistical complexity of each recur-
rent component is:

2 3 1
1 _ 2
CM—CH—§IOg2§+§

~ 0.9182958 bits.

logy 3
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FIG. 4. Entropy growth H(¢) (top) and entropy con-
vergence h,(£) (bottom) for the Two Isomorphic Golden
Means HMSP, as function of word length ¢ = 0,...,16
and mixture parameter p = 1/2.

So, from Eq. @ the statistical complexity of the
mixture as a function of p is:

Cu (p) =

For p = 1/2, we expect C,, ~ 1.9182958 bits.

Let’s check the decompositions by calculating the
associated complexity measures from M’s entropy
The latter are shown in

C,+Hp) . (9)

growth and convergence.
Fig. [4

The entropy growth plot estimates that E =
1.22258 bits, which is low by 2%. And, the en-
tropy convergence plot shows that the E, calculated
there using Eq. as the area shown, is a bit lower
still: E = 1.21753. Although, due to the slow con-
vergence and the finite number of terms taken in
the approximation these errors are expected. Simi-
larly, the ergodic decomposition of the entropy rate
h, = 0.811278 bits per symbol shows up correctly
when estimated from P’s entropy growth and con-
vergence. And so, the predictions from the related
ergodic decompositions are consistent.

The entropy growth, however, shows the transient
information is substantially larger (T =~ 4.29 bit-
symbols) than that predicted from its ergodic de-
composition (T = 0.251629). This discrepancy is
clearly not due to estimation errors. Rather, as
noted above for the P1-P2 mixture, it arises from
the decomposition not accounting for the five tran-
sient causal states of M; see Fig. c).

Individually, GMPs are subshifts of finite type;
finite Markov order. From the cycles in the tran-



sient states we see that as components they make
the multistationary process sofic—infinite Markov
order. There are subsets of sequences—specifically
(01)™—for which one never synchronizes.

This means that mixtures of finite-order Markov
chains, even “linear” mixtures that come from in-
dependently running them, are processes that are
not finite Markovian. They require hidden Markov
representations.

B. Infinite State

The preceding examples, chosen to explicitly illus-
trate methods and as harbingers of coming results,
are rather special in that the led to finite-state mul-
tistationary processes. We now turn to more typical
cases, still constructed from finite-state ergodic com-
ponents, that lead to a multistationary process with
an infinite number of states.

1. Period-1 and Fair Coin Process

The next example multistationary process mixes
stochastic and periodic behaviors: We build it out
of a period-1 process and a fair coin. In effect, we
ask how difficult it is to distinguish these two simple,
but extreme processes—one completely predictable,
the other completely unpredictable.

For here and a bit later, define Bernoulli Process
B (p) which is a model of a coin flip with bias prob-
ability p.

The first step, then, is to select the two stationary
components:

1. Period-1 Process P(1): hllt = 0 bits per symbol,
C’}L = 0 bits, E' = 0 bits, T! = 0 bit-symbols,
and x!' = 0 bits. See Fig. a).

2. Fair Coin Process B (%):, hllt = 1 bit per sym-
bol, C}L = 0 bits, E! = 0 bits, T* = 0 bit-
symbols, and x! = 0 bits. See Fig. b).

Though at the two extremes of predictability, these
are structurally trivial processes—C’fl = 0.

The second step is to select the mixture distribu-
tion, which we take to be uniform: © = (%, %) And
the third step is to use the mixed-state operator to
construct M = Ux (P(1)| B (3)). Several of the
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mixed states are:

pN) = [3.3]
n(0) =[0,1] =B
p()=[3.1]
u(OAT) = [0,1] = B,
u(170) = [0,1] = B,
p(1%) = [1 —ap, ai]
, and

where oy, = (2k + 1)/25*1. The resulting e-machine
is shown in Fig. [5f(c).

In Fig. [5fc), and so too in the mixed states, we
see our first surprising result for multistationary pro-
cesses. Starting from two structurally trivial pro-
cesses, the multistationary e-machine has a count-
able infinity of transient causal states. Why? If, at
any point, one sees a 0, then we know the process is
in the Fair Coin component, since the other compo-
nent cannot generate a 0. However, it is only after
“seeing” an infinite sequence of 1s that one could de-
termine that the process is in the All-1s component.
In short, the effort required to distinguish between
these two trivial processes is infinite and this is di-
rectly reflected in the infinite set of transient states.

The ergodic decompositions tell us that:

1. hy = 7'hy, + 7®h? = 0+1/2 = 1/2 bit per
symbol,

2. E= H(m)+mE + 7?E%2 = 1+ 040 = 1 bits,

3.C, =H(m) +7'CL+7°CL =1+04+0=1
bits,

4. T = 7'T! + 72T2 = 0 + 0 = 0 bit-symbols,

and
5. x =7yt + 72x% = 0+ 0 = 0 bits.
Note that the ergodic decompositions predict that
the structural complexity measures are driven solely
by the mixture entropy H(w). Both components
contribute nothing: Ei = C’ZL = 0. Let’s check these
predictions by estimating the quantities from M'’s
entropy growth and convergence, shown in Fig. [6]

The entropy growth plot shows that E = 1 bit,
as predicted by M’s ergodic decomposition. And,
the entropy convergence plot shows that the E, cal-
culated as the area shown, is also the same. Simi-
larly, the ergodic decomposition of the entropy rate
h, = % bits per symbol shows up correctly on the
entropy plots.
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FIG. 5. Period-1 and Fair Coin HMSP: (a) P(1), (b)
B (L), and (¢) M =ty (P(1) | B (1)) with = (L, 1).
The latter is approximated by connecting the Period-
1 component after 8 1s. In fact, the P(1) component

is never reached after any finite sequence. In contrast,

B (%) can be reached quickly and by many sequences.

Recurrent causal states are shown as hollow circles and
transient causal states as small solid (black) circles. The
start state sports a double circle. Transitions are labeled
plz to indicate taking the transition with probability p
and emitting symbol x € A.

The entropy growth plot, however, shows the tran-
sient information is quite a bit larger (T & 2.78 bit-
symbols) than that predicted (T = 0) from its er-
godic decomposition.

Also, the informational ergodic decompositions,
while indicating a role for the mixture entropy, miss
entirely the existence of an infinite number of tran-
sient states and the attendant difficulty that con-
fronts an observer trying to detect in which compo-
nent the process is.

2. Two Biased Coins

Slightly increasing the level of sophistication, we
now construct a multistationary process out of fully
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HMSP, as function of word length ¢ =0,...,14.
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(b) iocz)iu

FIG. 7. Two Biased Coins HMSP Components: (a)

B (%) and (b) B (2).

stochastic components: Two biased coins of unequal
(but symmetric) biases B (1) and B (2). See Figs.

[[(a) and (b).
We again take a uniform mixture distribution:

T o= (%,l). The result of constructing M =

2
U (B(2)UB(2)) with m = (3, 1) is shown in Fig.
Sl

<
9.

The mixed state presentation reveals two
countably-infinitely-long chains of transient causal
states. Omne leads to the ergodic component for
B (%) and the other for B (%) In a simple sense
these long transient chains show the mechanism by
which one determines the coin biases. Interest-
ingly, though, at any point statistical fluctuations
can change the apparent bias and drive the state
back up the long chains, heading for the comple-
mentary biased coin.

Consider, as above the h,, E, C,, T, and x er-
godic decompositions. The ergodic decompositions

for excess entropy and statistical complexity give
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U (B (i) LB (%)) with 7 = (%, %) The latter is ap-
proximated by connecting the transient states to B (i)
and B (%) after 30 Os or 30 1s, respectively. In fact,
B (i) and B (%) are never reached after any finite word.

similar results; namely:

H[r] + E(M") + E(M?)
H[r] , and

(] + Cu(M') + Cpu(M?)
(7] .

3

E =

E =
C,=Hr
C,=Hr
That is, the complexities of the multistationary pro-
cess is all in the mixture distribution. Even then,
the mixture entropy, in this case a number upper
bounded by 1, belies the infinite number of tran-
sients and the difficulty of determining in which er-
godic component the process is. Quantitatively, it
seems another measure of the global process com-
plexity and a new decomposition are in order. We
return to this shortly, after examining several more
kinds of multistationary process.

Let’s validate the ergodic decompositions’ predic-
tions vis a vis the process estimates of their various
measures from M’s entropy growth and convergence.
The latter are shown in Fig. [0
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FIG. 9. Entropy growth H(¢) (top) and entropy conver-
gence h,(¢) (bottom) for the Two Biased Coins HMSP,
as function of word length ¢ =0,.. ., 30.

Entropy growth, using the y-intercept method,
shows that E = 1 bit, as predicted by M’s ergodic
decomposition. And, the entropy convergence plot
shows that E, as the area shown, is also the same,
though it takes many terms and so shows slow con-
vergence. The ergodic decomposition of the entropy
rate h, = 0.811278 bits per symbol shows up cor-
rectly on the entropy plots.

The entropy growth, however, shows the tran-
sient information is substantially larger (T =~ 5.95
bit-symbols) than that predicted (T = 0) from its
ergodic decomposition. Again, the mixing entropy
fails to account for the dominating transient causal
state structure.

8. Pair of Isomorphic Even Processes

The Even Process (EP) generates all binary se-
quences such that pairs of 1s occur in blocks of even
length bounded by 0s. Once a 0 is seen, a 0 or a 1
is generated with fair probability. The EP is closely
related to the Golden Mean Process. They have the
same entropy rates and statistical complexities. The
main important difference, despite the close similar-
ity and a simple relabeling of transitions, is that the
EP is described by no finite-order Markov chain. It
is infinite Markov order, though finite state.

To construct a multistationary process the first
step, then, is to select two stationary components.
One component P! will be an EP with even number
of 0s (Fig. b)) and the other P? an EP with
an even number of 1s (Fig. a)). The second



step is to choose mixture distribution: 7w(M?!, M?) =
(1/2,1/2).

Finally, Fig. shows the e-machine for the
HMSP M = U, (M1|_|M2) with 7T(M1,M2) =
(%, %) The e-machine displayed is estimated only
up to words of length 8 and the transitions are set
to give a well-formed e-machine at this approxima-
tion.

There are several observations. First, the HMSP
e-machine is symmetric under 1-0 exchange, as it
should be given this symmetry in the ergodic com-
ponents. Second, and less obviously, there is an in-
finite number of transient causal states. This is due
to the outside paths along 1*° and 0°°. These two
sequences arise from the 2-cycles in the respective
ergodic component recurrent states: pairs of 1s in
M? never synchronize; ditto for pairs of Os in M?2.
And so, in M there are infinitely long sequences that
never reach M?! or M?2.

Third, the HMSP is infinite Markov order. To
see this, note that there are six cycles in the tran-
sient states—these cycles are the signature of infi-
nite Markov order or, what is called “soficity”. The
HMSP is a shift of infinite type [28]. In particular,
there is a two-cycle (00)™ between states 32 and 38
and one (11)" between states 37 and 41. There are
two four-cycles (1100)™ between states, 10, 18, 24,
and 26 and between states 24, 29, 34, and 36; and
two (0011)™ between states 11, 19, 25, and 23 and
between states 25, 30, 35, and 33.

The ergodic decompositions tell us that:

1. hy, = m'h}, +7'h2 = hj, = 2 bit per symbol,
2.E = H(n) + 7' E! + 7°E? = H(n) + E! =
1+ 0.918296 = 1.918296 bits,
3.C, = H(m) + n'C} + 7°C} =
1+ 0.918296 = 1.918296 bits,

4. T = 7'T! + #'T2 = T! = 3.16938 bit-

symbols, and
5. x = wixt + 7tx? = x! = 0 bits.

H(7r)+C}L =

Let’s check these by directly calculating the entropy
growth and convergence for M. These are shown in
Fig. [[2}

Let’s check the decompositions by comparing their
predictions to estimates from M’s entropy growth
and convergence. These functions are shown in Fig.
L2

The entropy growth plot shows that E = 1.847
bits which disagrees by about 4% with the prediction
from the ergodic decomposition (E = 1.918 bits).
And, the entropy convergence plot shows that the
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FIG. 10. Two Even Processes: (a) M', pairs of 1s, with
its two transient causal states and (b) M?, pairs of 0s,
with its two transient causal states.

E = 1.847 bits as the area shown. Although, due
to the slow convergence, the finite number of terms
taken in the numerical approximation, and the finite
number of transient states taken in the approxima-
tion of M, this error is not surprising. Similarly, the
ergodic decomposition of the entropy rate h, = 2/3
bits per symbol shows up correctly on the entropy
plots (h,, ~= 0.6666).

Entropy growth, however, shows the transient in-
formation is three times larger (T = 9.77443 bit-
symbols) than that predicted from its ergodic de-
composition (T = 3.16938 bit-symbols). Again, this
discrepancy follows from the mixture entropy miss-
ing the contributions from the (infinite) number of
transient causal states.

C. Infinite Components

We end our selection of example multistationary
processes by constructing several from an infinite
number of finitary ergodic components.

1. Handbag of Necklaces

Fourier analysis of a signal assumes the generating
process consists of (at most) periodic sequences. As
an analog of this assumption in the present setting,
consider the Handbag of Necklaces (HMSP) consist-
ing of ergodic-component stationary processes P(7)
for all periods, « € I = 1,2,3,4,.... That is, if we



FIG. 11. Two Isomorphic Even Process HMSP: M =
Ur (M1 |_]M2) with 7 (MI,MQ) = (%, %) Approxi-
mated with maximum word length of 8. Transient states
are reconnected to mimic the component EP’s transient
states. Specifically, calculating M using word length 8
leaves M’s states 38 — 41 as dangling states—with no
outgoing transitions. Transitions were added by noting
that these states closely approximate the EPs’ two tran-
sient states, seen in Figs. [I0fa) and (b), at sufficiently
large word length.

assume a binary process, the sequences emitted con-
sist of words period-1 a™, period-2 (ab)*, period-3
(bba)™, period-4 (bbba)™, and so on. The HMSP
e-machine is shown in Fig.

Note that there is infinite number of transient
causal states. Overall the HMSP is a highly sym-
metric structure and dominated by the transient
states. From this one can readily read-off how to
synchronize—how to know in which ergodic compo-
nent the process is. For example, to get to compo-
nent M? there are exactly i paths.

Now, consider the mixture measure 7* for the
components. Then, the state probabilities are m;; =
Kn'/j, j=1,...,i, where K = 7, Z;Zl wt/j is
the normalization constant. Note this is the presen-
tations’ stationary invariant distribution.

There is some flexibility in setting the mixture dis-
tribution 7?. There are several criteria for choosing
it for a countable number of states:

L. Normalization: >27%, 370 m; = >0, " =

1. And so, 7" must decay faster than 1/i.
2. Finitary (E < oo) HMSP [I5]: Must have
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FIG. 12. Entropy growth H(¢) (top) and entropy con-
vergence h,(¢) (bottom) for the Two Isomorphic Even
Multistationary Process, as function of word length ¢ =
0,...,28.

Hir] =372, wlog, " < o0.

3. Infinitary (E — oo) HMSP [I5]: Must have
H[n] — oo. See Ref. [29] for another example
process in this family.

Consider the structure of the transitions in the
HMSP’s first row of states. The first transition prob-
ability for seeing an a is:

P(a) = ZP(a|Mi)]P’(M")
=> /i,
i=1

since the probability of seeing an a in the i*" com-
ponent is 1/i. Let p, = P(a). The probability for
the succeeding transition emitting an a is:

P(ala) = P(aa)/P(a)
= '/Tl/pa s

since P(aa) = 7!, These transitions determine those
leaving the top row of states on a b. Note that
P(a"|aa) =1,n=1,2,....

Now, consider the second to the top row of tran-
sitions. First, P(b) = 1 — p,. Then, we have:

P(a|b) = P(ba)/P(b)

_pa_ﬂ-l

17pa
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FIG. 13. The e-machine for HMSP presentation of the
Handbag of Necklaces Process. Chains of probability-1
transitions between causal states are given as strings.

since:

P(ba) = Z P(M*)P(ba|M")

o0
S0,
=2

1
=Pg — T .

Note that P(bab) = P(ba). There is a second path
to M? controlled by the transition:

P(b|a) = P(ab)/P(a)

pa_ﬂ'l

Pa

since P(ab) = P(ab). That is, the appearance of ab
and ba in each component occurs due to the same
conditions.

The ergodic decompositions tell us that:

L hy =32, ©hi, =0, as h,[P(i)] = 0.

2. The excess-entropy ergodic decomposition for
a process with p component periodic processes
with periods 1,...,p is:

p
E=Hr]+ > «'E’ (10)
=1
p .
= Hlr]+ ) n'log,i (11)
i=1
P
=logyp+1/p Yy _logyi, (12)
=2
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FIG. 14. Entropy growth H(¢) (top) and entropy con-
vergence h,(¢) (bottom) for the Handbag of Necklaces
Multistationary Process, as function of word length ¢ =
0,...,30 and up to period p = 15. (Note that the mixed
states were approximated up to Max_Length = 30.)

where the second step follows assuming 7 is
uniform.

3.C, =E.

4. T =" 7T =
and

5. x = 0: This is a bit surprising: No crypticity,
no hidden information.

b, log, i bit-symbols,

These are consistent with directly calculating the
entropy growth for M, as shown in Fig.

2. The Purse Process

The example of two biased coins suggests extend-
ing to an infinite number of biased coins in a purse—
a bag of coins with different biases. As hinted at in
the two-coin case, all of the (infinite) complexity is
in the mixture and mone comes from the compo-
nents.

Moreover, we can chose m to be such that H|[r]
is finite or infinite. Thus, the Purse Process is an
extreme example in which infinite complexity comes
from zero-complexity components. There is prob-
ably no simpler way to say that a multistationary
process is way more than the sum of its (zero com-
plexity) parts.

To get a brief sense of the Purse Process consider
an HMSP consisting of three coins of unequal bias
and compare this to the case of two coins of Sec.
VIIB2| Figure [15| shows the HMSP for two com-
pletely biased coins and one fair coin. Its basic fea-



FIG. 15. The e-machine HMSP presentation of two com-
pletely biased coins and one fair coin—all single-state
e-machines: M = U, (All-1s| JAll-0s| | B (3)) with m =

(5:503):

tures were already encountered above. And, it sug-
gests a notable generalization to which we now turn.

8. Mother of All Processes

Finally, consider upping the complexity ante sub-
stantially. This generalization is to an HMSP con-
sisting of a mixture of all processes. Let’s step
through its construction.

First, recall that every stationary process has a
unique e-machine presentation. That is, e-machines
and stationary processes are in 1-to-1 correspon-
dence. Second, an efficient algorithm exists to list
all e-machines by the number of the recurrent causal
states. Reference [30] shows how to systematically
enumerate the e-machine process library Ly for k-
See Table I there for the list of
binary-alphabet topological e-machines. There are
1,117,768, 214 such 8-state e-machines.

In the current construction consider only topolog-

state e-machines.

ical e-machines for which any branching transitions
are taken with fair probability. We refer to each
process by it’s e-machine’s enumeration number—
we call this the process’ Gédel number.

Second, define the Process Urn (PU) as containing
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the entire library of e-machines. That is, we imag-
ine a HMSP that is the result of reaching into the
Urn, selecting one e-machine, and having it gener-
ate a full realization. The repeatedly sampled PU is
a HMSP—The Mother of All Processes. Certainly,
one of the most nonergodic processes one could work
with.

Definition 2. The Mother of All Processes is:

Mzuﬂ<|_| M) ; (13)

MeLl

with m being a chosen mixture distribution.

To simplify, let’s examine the HMSP whose
components are all one-state and all two-state
e-machines. There are now 10 components—three
1-state components and 7 2-state components.

There are 17 recurrent causal states altogether
across the ergodic components. However, the many
hundreds of mixed states are no longer usefully pre-
sented in a state-transition diagram, as done up to
this point. Instead, we plot the mixed-states them-
selves as dots in the simplex A'7. This is shown
in Fig. [I6] This is a 2D projection in which the
recurrent states are the vertices of A7 and so ap-
pear on its periphery. The start state, with uniform
probability across the components and not across
the recurrent states, is not in the simplex center.

One notes the concentration of mixed states that
move near to A'7’s vertices, indicating close ap-
proaches to synchronization.

There are a number of notable properties:

1. The simplex vertices correspond to recurrent
causal states.

2. There is an uncountably-infinite number of
transient states. These fill out a complicated
fractal measure within the A'7.

3. All mixed states that are not on vertices are
transient states.

4. While it is clear that M is not exactly synchro-
nizable [31] as it contains infinite Markov-order
components, is it asymptotically synchroniz-
able [32]7 What about the synchronizability
of approximations to it?

There are a number of open questions, as well:

1. What is M'’s statistical complexity dimension
d, [B3]?

2. What is the shortest synchronizing word to go
from the Fair Coin to each other ergodic com-
ponent?



FIG. 16. The e-machine presentation of the Mother of
Al 1-State and 2-State HMSP: M = Us (e, ,, M)

with m = ( . ) The start state is the 17-vector at

10° » 10
( L1 11 1 ) The e-machines for each ergodic

107107107207 *> 20 _ (
component are placed around the periphery, dropping

the transition probabilities which are either 1 or % Their
states are aligned to their associated vertex in A'7. The
Fair Coin is the state at the top—the top-most vertex.
The mixed states are approximated up to word lengths
of £ = 28.

3. How do informational measures grow with
word-length approximation?

VIII. DISCUSSION

In addition to their particular application, the er-
godic decompositions give important insight into ba-
sic questions about what structural complexity is
and how to measure it. A number of previous ef-
forts that address these definitional issues consider
it a key property that complexity be additive over
the components of a system [34]. This is often moti-
vated by a parallel with Boltzmann entropy in ther-
modynamics. And, for that matter, additivity was
also posited as an axiom by Shannon for his measure
of surprise [35].

However, the ergodic decompositions here show
that the manner in which a system’s components
relate to one another—specifically, the mixture
distribution—plays a central role in the process’ or-

19

ganization and contributes to quantitative measures
of global complexity. The foregoing offered a differ-
ent, more structural view that goes beyond the er-
godic decompositions and statistical mixtures. Con-
structively, the transient state structure is key to
a multistationary process’ global organization and
what observations can or cannot reveal.

The lessons here also suggest a skepticism in ap-
plying the ergodic decompositions of Sec. [VIl One
reason is that underlying them is the assumption of
an IID sampling of components, which is not gen-
erally valid. Another is that they completely ignore
how the internal structures of the components inter-
relate with each other. And, as shown, this brings
out wholly new properties that are not part of any
given component nor their sum nor their IID mix-
ture. Indeed, the mixture entropy does not capture
this, except in the most limited of cases.

Constructive responses to this will address the
new kind of hierarchical structure explicitly rep-
resented by the multistationary process’ e-machine
transient causal states and their complicated mea-
sure in A¥. Quantitatively, in contrast to the block
entropy, entropy rate, and excess entropy, we demon-
strated that the transient information is sensitive to
this new kind of complexity in structural mixtures.
It is this additional structure that makes the orga-
nization of multistationary processes way more than
the sum of their parts. As a complementary met-
ric, adapting the statistical complexity dimension d,,
suggests itself [33].

IX. CONCLUSIONS

Let’s close exploring several wider implications for
thermodynamics, on the one hand, and various at-
tempts to introduce “universal modeling” schemes
on the other.

First, we started out highlighting the colloquial-
ism, made familiar by the social movements of the
1960s, that a system is more than the sum of its
parts. Presumably, the social reaction then reflected
an increasing awareness of the impact of technical
systems humans were creating. The preceding devel-
opment explored in which senses this could be true
for truly complex systems—ones consisting many
structured components—more akin the social sub-
systems than mere atoms. And, the various informa-
tional ergodic decompositions bolstered the popular
understanding.



However, in emphasizing structure and analyzing
the concrete process class of hidden multistationary
processes it became abundantly clear—through all
of the examples presented—that composite or het-
erogeneous (to use Gibbs’ word [36]) systems are far
more than the sum of their components. Specifi-
cally, beyond a mere entropic, missing contribution
from increased disorder that arises from the ran-
dom selection of components, composite systems are
markedly more complex. And, they are more struc-
tured according to the relative interplay of the com-
ponents’ internal organization. It is that interplay
which drives the explosive complexity of multicom-
ponent systems.

On this score, the history of composite systems is
perhaps a bit confusing; especially as they arose in
the early foundations of thermodynamics. There is,
for example, Gibbs’ seemingly contradictory state-
ment, as quoted by Jaynes [Il p. 13], that “The
whole is simpler than the sum of its parts”. The
ergodic decompositions seemed to say the opposite.
However, there is not really a confusion here. First,
Gibbs was thinking of the correlations that would
emerge between system components when coupled
together. Here, we intentionally did not couple the
components. Sequels address this. Second, at root,
the issue turns on an ambiguous vocabulary for de-
scribing randomness and structure. Here, at least,
by distinguishing between “randomness” in terms of
Shannon’s notion of the flatness of a probability dis-
tribution and “structure” in terms of statistical com-
plexity, we shed some light on these important and
still evolving issues.

Second, the HMSP construction procedure here
gives a rather direct picture of one kind of hierar-
chical organization in how a stochastic process can
be built from other processes. The constructive pro-
cedure uses the mixed state presentation. And, this
generates a new kind of hierarchy that emerges due
to the diverse combinatorial relationships between
the components’ internal organizations. Other re-
lated hierarchies can be similarly constructed; such
as when using generalized hidden Markov models
[37] as ergodic components.

Third and finally, modern statistical inference has
been treated to a number of formalizations of general
learning that make minimal assumptions. Consider
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for example:

1. Universal Priors [38440]: In the computation-
theoretic approach to modeling and statistical
inference there are attempts to define a most-
general prior over model space. However, these
raise very natural questions, What kind of pro-
cess would generate such a prior? Moreover,
what kinds of difficulties are there in detecting
processes drawn according to such a prior.

2. No Free Lunch Theorem [41]: This framing
makes a number of implicit assumptions about
the measure on the Process Urn simplex. Does
the theorem hold?
structure.

3. Probably Almost Correct Learning [42]: This
“distribution-free” approach is a bold attempt
within machine learning to identify the com-

Not when you consider

putational nature of evolution and learning.
However, is not this the same thing as as-
suming any process is possible? If so, then
it is analogous to assuming the Mother of
All Processes. That is, rather than being
“distribution-free” the assumption underlying
PAC learning is “distribution-full”.

In light of these, The Mother of All Processes
suggests a construction for such assumption-free or
minimal-assumption modeling. In this, one is sam-
pling from the space of all processes and exploits
the e-machine representation to be specific about
probability, on the one hand, and structure, on the
other. The realization resulting from this was that
the preceding development was able to demonstrate
that transient-state structure made explicit the chal-
lenges in detecting component processes and that
this was captured informationally via the transient
information.
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