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I. INTRODUCTION

Multicomponent systems typically are much more

structurally complex than the collection of their

parts; even infinitely more so. This should be con-

trasted with statistical mixtures—such as arise in

the Gibbs Paradox of thermodynamics [1, Secs. 2-

3] where gases of distinct molecular species exhibit

only a modest entropy increase upon formation due

to the uncertainty in which species one has in hand.

This contrast demonstrates how the ansatz of statis-

tical mixtures misses key aspects of hierarchical or-

ganization. The result, as we show, is an awareness

of a new kind of structural complexity of composite

systems.

The development here focuses on the theoretical

core of this basic phenomenon, arguing that it is, in

fact, quite commonplace. To appreciate this, it will

be helpful to address the motivating issues upfront.

The multicomponent systems of interest are found

in several different domains, including the entropy of

mixing in thermodynamics [2, 3], the change point

problem in statistics [4], the attractor-basin portrait

of a dynamical system [5], Smale’s basic sets [6, 7],
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spatially extended systems with multiple local at-

tractors [8], chaotic crystallography [9, 10], evolu-

tionary dynamics [11], and adaptive and learning

systems with memory.

We introduce the concept of hidden multista-

tionary processes to capture what is common

across these domains—a system comprising multi-

ple locally-competing behaviors and structures. The

basic idea can be appreciated within an experimen-

tal paradigm: multistationarity models repeated ex-

perimental trials in which different initial conditions

lead to statistically distinct behaviors.

In short, one goal is to provide a tractable model

that quantitatively captures what is common among

these domains, while providing an architectural,

high-level view of the state-space organization of be-

haviors. In particular, we would like to analyze how

unpredictable and how structurally complex hidden

multistationary processes are, when given their com-

ponents, whose unpredictability and complexity we

know. Another goal is that the approach be con-

structive, allowing one to quantitatively determine

essential properties and to determine precisely what

gives rise to the emergent global complexity.

The development proceeds as follows. It first re-

views statistical mixtures, briefly recalling stochastic

processes, information theory, structural complexity,

and mixed state processes. It then introduces the

theory and construction of hidden multistationary

processes. This includes a canonical minimal repre-

sentation of hidden multistationary processes and a

method to analyze their ergodic decompositions that

determines how the latter affect information mea-

sures.

The sections following this explore a number of

examples going from the simplest cases and famil-

iar structured stationary component processes to

the Mother of All Processes that subsumes them

all. Taken altogether, these illustrate a new kind

of structural hierarchy and make plain how infi-

nite complexity naturally emerges. The develop-

ment concludes drawing out parallels with related

results and consequences in nonequilibrium thermo-

dynamics and machine learning.

II. BACKGROUND

To get started, we give a minimal summary of

the required background—a summary that assumes

familiarity with computational mechanics [12, 13]

and with information theory for complex systems

[14, 15].

A. Processes

A process, denoted P, is specified by the joint

distribution P(
←−
X t,
−→
X t) over its chain of random

variables . . . X−1X0X1 . . .. We view P as a com-

munication channel with a fixed input distribu-

tion P(
←−
X t): It transmits information from the

past
←−
X t = . . . Xt−3Xt−2Xt−1 to the future

−→
X t =

XtXt+1Xt+2 . . . by storing it in the present. Xt de-

notes the discrete random variable at time t tak-

ing on values x from a discrete alphabet A. And,

Xℓ
t = XtXt+1 . . . Xt+ℓ−1 is the block of ℓ random

variables starting at time t. A particular realiza-

tion is denoted using lowercase: Xℓ
t = xℓ

t ∈ Aℓ.

Often, we simply refer to a particular sequence

w = x0x1 . . . xℓ−1, xi ∈ A, as a word. If we have

a symbol x and a word w, we form a new word by

concatenation: e.g., wx or xw.

B. Information

Given a process, we form the block distributions

{P(Xℓ
t ) : for all t and ℓ} by marginalizing the given

joint distribution:

P(Xℓ
t ) =

∑
{←−x t,

−→x t+ℓ}
P(←−x t,

−→x t+ℓ) .

(We ignore here the measure-theoretic construction

of cylinder sets and their measures; for background

see Ref. [16] and references therein.) A stationary

process is one for which P(Xℓ
t ) = P(Xℓ

0) for all t and

ℓ. For a stationary process, we drop the time index

and thereby have the family of word distributions

P(Xℓ) that completely characterizes the process.

The amount of Shannon information in words is

measured by the block entropy :

H(ℓ) = H[P(Xℓ)] ,

where H[P(Y )] = −∑{y} P(y) log2 P(y) is the Shan-
non entropy of the random variable Y . A process’

information production is given by its entropy rate:

hµ = lim
ℓ→∞

H(ℓ)

ℓ
.

It is often used to measure a process’ degree of un-
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predictability.

At a minimum, a good predictor—denote its ran-

dom variables R̂—must capture all of a process’ ex-

cess entropy E [15]—all of the information shared

between past and future: E = I[
←−
X ;
−→
X ]. Here,

I[Y ;Z] is the mutual information between variables

Y and Z. That is, for a good predictor R̂: E =

I[R̂;
−→
X ].

These quantities are closely related. In particular,

for finitary processes, those with E < ∞, the block

entropy has the linear asymptotic behavior:

H(ℓ) ∝ℓ→∞ E+ hµℓ .

More precisely:

E = lim
ℓ→∞

[H(ℓ)− hµℓ] .

This shows that E controls the convergence of en-

tropy rate estimates hµ(ℓ) = H(ℓ) − H(ℓ − 1). In

fact, for one-dimensional processes, E can also be

defined in terms of entropy convergence:

E =

∞∑
ℓ=1

[hµ(ℓ)− hµ] . (1)

An analogous quantity that controls the block en-

tropy convergence to the linear asymptote is the

transient information:

T =

∞∑
L=0

[E+ hµL−H(L)] .

T measures the average amount of information an

observer must extract in order to know a process’

internal state. (For a review of these and related

informations see Ref. [15].)

C. Structure

We refer to a model of a process—a particular

choice of R̂—as a presentation. Note that building

a model of a process is more demanding than de-

veloping a prediction scheme, since one wishes to

go beyond sequence statistics to express a process’

mechanisms and internal organization.

To do this, we first recall that a process’ commu-

nication channel is determined by the conditional

distributions P(
−→
X t|
←−
X t). Based on this, computa-

tional mechanics introduced an equivalence relation
←−x ∼ϵ

←−x ′ that groups all of a process’ histories which

give rise to the same prediction. The result is a map

ϵ :
←−
X → S from pasts to causal states defined by:

ϵ(←−x ) = {←−x ′ : P(−→X |←−x ) = P(
−→
X |←−x ′)} . (2)

In other words, a process’ causal states are equiva-

lence classes—S = P(
←−
X,
−→
X )/∼ϵ—that partition the

space
←−
X of pasts into sets which are predictively

equivalent. With the causal states in hand, one de-

termines the causal-state to causal-state transitions:

{T (x)
σ,σ′ : x ∈ A, σ, σ′ ∈ S} .

The resulting model M , consisting of the causal

states and transitions, is called the process’

ϵ-machine [17]:

M(P) ≡
{
S, {T (x), x ∈ A}

}
.

Informally, a process is ergodic if its statistics can

be estimated from a single realization that is suf-

ficiently long. If P is ergodic, then M(P)’s recur-

rent causal states are strongly connected and their

asymptotic invariant distribution π = P(S) is unique
and given by π = πT , where T =

∑
x∈A T (x).

As described, an ϵ-machine is obtained from a pro-

cess, but one can also simply define an ϵ-machine and

consider its generated process. We will use both no-

tions in the following, as they are equivalent [18].

But why should one use the ϵ-machine presentation

of a process in the first place?

To summarize, out of all optimally predictive

models R̂ resulting from a partition of the past—

those such that E = I[R̂;
−→
X ]—the ϵ-machine cap-

tures the amount of information that a process

stores—the statistical complexity Cµ ≡ H[P(S)].
The excess entropy E—the information explicitly

observed in sequences—is only a lower bound on the

information Cµ that a process stores [17]: E ≤ Cµ.

The difference χ = Cµ − E, called the crypticity,

measures how the process hides its internal state in-

formation from an observer [19].

A process’ ϵ-machine is its minimal unifilar pre-

sentation. It is unique for the process. Moreover, it

allows a number of the process’ complexity measures

to be directly and efficiently calculated [20]. The lat-

ter include the process’ entropy rate, excess entropy,

statistical complexity, and crypticity. In short, a

process’ ϵ-machine captures all of its informational

and structural properties.
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III. MIXED STATE OPERATOR

Given an ϵ-machine M , its causal states can be

treated as a standard basis {ej} in a vector space.

Then, any distribution µ = P(S) over the states is

a linear combination: µ =
∑

j cjej . Following Ref.

[13], these distributions are called mixed states. For

an k state ϵ-machine, the mixed-state space is a k−1-
dimensional simplex ∆k−1, as the distributions µ ∈
∆k−1 are normalized.

Consider a special subset of mixed states. Define

µ(w) as the distribution over M ’s states induced af-

ter observing sequence w = x0 . . . xℓ−1, M having

started with state distribution π:

µπ(w) ≡ P(Sℓ|Xℓ
0 = w,S0 ∼ π)

=
P(Xℓ

0 = w,Sℓ,S0 ∼ π)

P(Xℓ
0 = w,S0 ∼ π)

=
πT (w)

πT (w)1
, (3)

where 1 is a column vector of 1s and T (w) =

T (xℓ−1) · · ·T (x0). Here, the notation X ∼ P serves

to indicate that random variable X is governed by

distribution P .

The last line gives the mixed-state µπ(w) di-

rectly in terms of the initial state distribution π and

M ’s transition matrices. One interpretation is that

µπ(w) represents an observer’s best guess as to the

process’ causal-state distribution given that it saw

word w and knows both the process’ ϵ-machine and

the initial distribution π.

To determine the set of mixed states allowed by

a process, we simply calculate the set {µπ(w)} of

distinct µπ(w) for all words w ∈ A∗. This is most

directly done by enumerating w in lexicographic or-

der: e.g., for a binary alphabet successively choosing

w ∈ {λ, 0, 1, 00, 01, 10, 11, . . .}. Here, λ is the null

word. As we will see, the mixed-state set can be

finite or infinite.

If we consider the entire set of mixed states, then

we construct a presentation of the process by specify-

ing the transition matrices {T x : µπ(w)→ µπ(wx)}:

P(x, µπ(wx)|µπ(w)) ≡
P(wx|S0 ∼ π)

P(w|S0 ∼ π)

= µπ(w)T
(x)1 .

Note that many words can induce the same mixed

state.

It is useful to define a corresponding operator U

that acts on a machine M , returning its mixed-state

presentation Uπ(M) = {{T x}, {µπ(w)}} under ini-

tial distribution π. The examples to follow shortly

illustrate how mixed states and Uπ(M) are calcu-

lated.

IV. CONSTRUCTING HIDDEN

MULTISTATIONARY PROCESSES

Recall that a hidden multistationary nonergodic

process is one that evolves, across successive realiza-

tions, to statistically distinct long-term behaviors.

We now introduce our model of this by giving a con-

struction procedure. This, in effect, defines what

we mean by multistationary. We then develop sev-

eral basic properties and analyze in detail a series of

example constructions to illustrate them and their

ergodic decompositions.

The main tool used to construct a hidden multi-

stationary process is the mixed-state operator Uπ.
We show that this results in a canonical presenta-

tion of a given set of stationary components. This is

the multistationary process’ ϵ-machine.

Definition 1. A hidden multistationary process

(HMSP) is defined by the presentation determined

via the following procedure.

1. Identify an indexed family of component sta-

tionary ergodic processes {Pi}i∈I . Each is

specified by its ϵ-machine presentation M i =

M(Pi). The ϵ-machines consist only of their

recurrent states Si that, due to ergodicity,

form a single, strongly connected set.

2. Specify the component’s mixture distribution

π—the probability with which each will be vis-

ited (sampled):

πi = P(M i) .

3. Finally, calculate the mixed-state presentation

of the multistationary process:

M = Uπ
(⊔

i∈I
M i

)
,

where we take the nonoverlapping set of the

measure semi-groups [21] specified by the com-

ponent ϵ-machines. In this way, M ’s states

and transitions are determined from the com-
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ponent ϵ-machines and the mixture distribu-

tion π.

M , the result of the construction, determines the

transient portion of a nonergodic ϵ-machine. M ’s

recurrent components are essentially the same as

those (M i’s) of the original component stationary

processes Pi. That is to say, what is new in M is

the set of transient causal states.

Note that this construction is a stochastic analog

of building recognizers for multiregular formal lan-

guages [22].

V. THE MULTISTATIONARY ϵ-MACHINE

With the background and definitions set, we are

ready to explore the properties of multistationary

nonergodic processes. We first establish the struc-

tural properties of their ϵ-machine presentations and

then their informational properties via ergodic de-

compositions of various complexity measures.

Each componentM i =
{
Si, {T (x)

i , x ∈ Ai}
}
, con-

sidered as generating its own process Pi, has a sta-

tionary distribution pi over its states:

pij = P(Sj) , Sj ∈ Si .

We will also write this as a vector over the multi-

stationary process’ recurrent states, when we have a

finite number of components:

π =
[
π1
(
p11 . . . p

1
j1

)
. . . πk

(
pk1 . . . p

k
jk

)]
,

where k = |I| and ji = |Si|. The stationary state

distribution πij for the multistationary process gen-

erated by M is, then:

πij = πi · pij . (4)

Consider the following properties of a multista-

tionary process as just defined.

Lemma 1 (Stationarity). The state distribution πij

is stationary.

Proof. This follows from realizing that the recurrent

portion of M ’s transition matrix is block diagonal.

That is, asymptotically the components are indepen-

dent and, by assumption, the component distribu-

tions are invariant.

Lemma 2 (Unifilarity). The hidden multistationary

process machine M is unifilar.

Lemma 3 (Minimality). The hidden multistation-

ary process machine M is minimal.

Lemma 4 (Uniqueness). The hidden multistation-

ary process machine M is unique.

The relevant definitions and proofs of these closely

follow those given for ϵ-machines generally; see, for

example, Ref. [23]. We leave the proofs for a sequel.

This all noted, these remarks constitute a proof of

the following claim.

Theorem 1. The mixed state operator applied to a

mixture of (finite, ergodic) ϵ-machines produces an

ϵ-machine. That is, the ϵ-machine for the hidden

multistationary process generated by:

M = U
(⊔

i∈I
M i

)

is an ϵ-machine.

Remark: Constructing HMSPs in this way one

could start with other classes of presentation for

the ergodic component processes, such as nonunifilar

presentations—i.e., generic HMMs. However, the re-

sulting M need not be an ϵ-machine. And, as a con-

sequence, one could not directly calculate from such

an M the various complexity measures nor, lacking

minimality, draw structural conclusions about its ar-

chitecture. This is one reason why we choose to spec-

ify the component processes using ϵ-machine presen-

tations. Limiting the current construction to ergodic

components specified by finite-state ϵ-machine pre-

sentations serves to simplify the discussion and high-

light our main results.

However, lifting these various restrictions or gen-

eralizing the previous properties to address them

would be a fruitful effort giving a much broader

characterization of the complexity of multistation-

ary processes.

So, from here on out we assume the ergodic com-

ponents are ϵ-machines and ask what properties hold

for the multistationary processes so constructed. We

build processes consisting of either a finite number

or countably infinite number of components.

VI. ERGODIC DECOMPOSITIONS

Since we are given the component processes

{Pi, i ∈ I}, what can we say about the resulting

multistationary process generated by M? A first
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step develops various kinds of ergodic decomposition

that attempt to predictM ’s properties in terms of its

ergodic components’ properties. The basic question

has a very long history in ergodic and information

theories. The reader is referred to the review given

in Ref. [24]. Our approach here is, on the one hand,

to briefly give a flavor of several ergodic decomposi-

tions and, on the other, compensating for that lack

of rigor, to analyze in detail a number of concrete

examples.

The word distribution P(Xℓ) forM = U
(
⊔i∈IM i

)
is given by:

P(Xℓ) =
∑
i∈I

πiP(Xℓ|M i) .

That is, for word w:

P(w) =
∑
i∈I

πiPi(w) ,

where Pi(w) denotes the probability that Pi gener-

ates w.

Quantitatively, the HMSP’s block entropy is up-

per bounded by the component block entropies:

H(ℓ) = H
[
P(Xℓ)

]
= H

[∑
i∈I

πiP(Xℓ|M i)

]
≤
∑
i∈I

πiH
[
P(Xℓ|M i)

]
=
∑
i∈I

πiHi(ℓ) ,

where the second-to-last step employs Jensen’s in-

equality [14] and Hi(ℓ) is component Pi’s block en-

tropy.

A more insightful upper bound, though, is devel-

oped by first imagining that the sequences generated

by the ergodic components do not overlap—for ex-

ample, the Pis have disjoint alphabets Ai. Then

we define an indicator function f of the process and

an associated random variable θ: θ = f(Xℓ) = i, if

Xℓ ∈ Aℓ
i . We have:

H
[
Xℓ
]
= H

[
Xℓ, f(Xℓ)

]
= H[θ] +H

[
Xℓ|θ

]
= H[θ] +

∑
i∈I

P(θ = i)H
[
Xℓ|θ = i

]
= H[π] +

∑
i∈I

πiH
[
Xℓ|M i

]
= H[π] +

∑
i∈I

πiHi(ℓ) .

In the general setting, however, the sequences gen-

erated by distinct components can overlap. This

reduces the number of distinct positive-probability

words and so, too, the block entropy. In this way, we

see that the above equality is only an upper bound

on the HMSP’s block entropy:

H(ℓ) ≤ H[π] +
∑
i∈I

πiHi(ℓ) . (5)

This bound highlights the contribution of the mix-

ture entropy H[π]. We return to critique this no-

tion of ergodic decomposition later on. For now, we

draw out several useful consequences of this line of

reasoning, relying on the bound Eq. (5). Elsewhere

we explore tighter informational bounds on decom-

position.

From this, we see that an HMSP’s entropy rate hµ

is simply that of its ergodic components. Assuming

the mixture entropy H[π] is finite, we have:

hµ = lim
ℓ→∞

H(ℓ)

ℓ

≤ lim
ℓ→∞

1

ℓ

{
H[π] +

∑
i∈I

πiHi(ℓ)

}

=
∑
i∈I

πi lim
ℓ→∞

Hi(ℓ)

ℓ

=
∑
i∈I

πihi
µ ,

where we have the component entropy rate hi
µ =

hµ(M
i). Reference [24] originally established this

decomposition.

What is less intuitive, though, are various com-

plexity measures as they apply to HMSPs. As we

will see, unlike the entropy rate, which component

processes are selected and how they relate to one an-

other play key roles. We first consider the ergodic

decomposition for excess entropy, then for the tran-
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sient information, and finally that for the statistical

complexity.

The excess entropy E also has an ergodic decom-

position. In this case, we have:

E = lim
ℓ→∞

(H(ℓ)− hµℓ)

≤ lim
ℓ→∞

(
H[π] +

∑
i∈I

πiHi(ℓ)− ℓ
∑
i∈I

πihi
µ

)

= H[π] +
∑
i∈I

πi

(
lim
ℓ→∞

[
Hi(ℓ)− hi

µℓ
])

= H[π] +
∑
i∈I

πiEi ,

whereEi is the excess entropy for ergodic component

i. The excess entropy decomposition was explored

in Refs. [25, 26].

Combining the entropy rate and excess entropy er-

godic decompositions, we see that the block-entropy

linear asymptotes—Hi(ℓ) ∝ Ei + hi
µℓ—have their

own decomposition:

E+ hµℓ ≤ H[π] +
∑
i∈I

πiEi + ℓ ·
∑
i∈I

πihi
µ

= H[π] +
∑
i∈I

πi
(
Ei + hi

µℓ
)
.

It is a simple additional step to develop the ergodic

decomposition for the transient information:

T =

∞∑
ℓ=0

[E+ hµℓ−H(ℓ)]

≤
∞∑
ℓ=0

[
H[π] +

∑
i∈I

πi
(
Ei + hi

µℓ
)

+ℓ
∑
i∈I

πihi
µ −H[π]−

∑
i∈I

πiHi(ℓ)

]

=

∞∑
ℓ=0

∑
i∈I

πi
[
Ei + hi

µℓ−Hi(ℓ)
]

=
∑
i∈I

πiTi .

Curiously, like the entropy rate decomposition, the

mixture entropy H[π] does not play a role.

The statistical complexity also has an ergodic de-

composition:

Cµ = −
∑
σ∈S

P(σ) log2 P(σ)

= −
∑
i∈I

∑
σi∈Si

P(σi) log2 P(σi)

= −
∑
i∈I

|Si|−1∑
j=0

πij log2 πij

= −
∑
i∈I

|Si|−1∑
j=0

πipij log2 π
ipij

= −
∑
i∈I

πi

|Si|−1∑
j=0

pij
(
log2 π

i + log2 p
i
j

)

= −
∑
i∈I

πi

|Si|−1∑
j=0

pij log2 π
i −
∑
i∈I

πi

|Si|−1∑
j=0

pij log2 p
i
j

= −
∑
i∈I

πi log2 π
i −
∑
i∈I

πiCi
µ

= H[π] +
∑
i∈I

πiCi
µ ,

where Ci
µ are the statistical complexities of the er-

godic components. The decomposition for statisti-

cal complexity was first noted in Ref. [27]. Note

that this decomposition does not rely on assuming

an equality as in Eq. (5).

Finally, the multistationary crypticity χ, which

measures how a process hides state information from

an observer, is also unaffected by the mixture distri-

bution:

χ = Cµ −E

≥ H[π] +
∑
i∈I

πiCi
µ −

(
H[π] +

∑
i∈I

πiEi

)
=
∑
i∈I

πi
(
Ci

µ −Ei
)

=
∑
i∈I

πiχi ,

where χi is the crypticity of component M i. In this,

it is similar to the entropy rate and transient infor-

mation decompositions.
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VII. STRUCTURAL

DECOMPOSITIONS—BEYOND

STATISTICAL

To emphasize, what’s notable in these kinds of

informational decomposition is that, for nonergodic

ϵ-machines, we have, for example:

Cµ >
∑
i∈I

πiCi
µ .

That is, the global structural complexity Cµ of a

multistationary process is strictly greater than that

contained in its components {Ci
µ}. In short, a mul-

tistationary process is at least the sum of its parts.

Indeed, the above inequality leaves out the entropy

of mixing. But this is too facile. As we will see,

multistationary processes are much, much more.

We will see below, taking a more structural per-

spective going beyond the ergodic decompositions,

that the transient causal state structure is key to

a process’ global organization and what sequences

of observations reveal. This leads us to call into

question the interpretation and use of the preceding

kinds of ergodic decomposition.

We now show that the construction procedure

can be used to answer a number of different ques-

tions about multistationary ergodic processes. Sev-

eral questions are illustrated via particular exam-

ples; others via general constructions. The series of

examples is developed incrementally to highlight the

methods and particular results, as much in isolation

as possible.

We first start with processes built from finite-state

ergodic components that lead to a multistationary

process that is itself finite-state. Then we analyze

the case in which finite components lead to a multi-

stationary process with an infinite number of states.

We end with examples built from an infinite num-

ber of finitary ergodic processes. In each case, we

explore the structure of the resulting multistation-

ary process, its complexity measures, and its ergodic

decomposition.

A. Finite Hidden Multistationary Processes

1. A Base Case

A simple but illustrative case is that of two period-

1 component processes: all Heads and all Tails, se-

lected with fair probability: π = (1/2, 1/2).

The components observed separately have h0
µ =

h1
µ = 0. But together H(ℓ) = 1, ℓ ≥ 1. In this

way, we see that the HMSP information H(ℓ) of the

mixture is all mixing entropy H(π).

2. Period-1 and Period-2 Process

Define the Periodic Process P ≡ P(p) that repeats

the word w = 0p−11. Let’s construct the simplest

multistationary process consisting of two such com-

ponents:

1. Period-1 Process P(1), which has complexity

measures h1
µ = 0 bits per symbol, C1

µ = 0 bits,

E1 = 0 bits, T1 = 0 bit-symbols, and χ1 = 0

bits.

2. Period-2 Process P(2), which has complexity

measures h1
µ = 0 bits per symbol, C1

µ = 1 bit,

E1 = 1 bit, T1 = 1 bit-symbol, and χ1 = 0

bits.

The Period-1 component has a single recurrent state

A and the Period-2, two recurrent states, label them

B and C. The second step is to specify the mixture

distribution π and we take this to be uniform: π =(
1
2 ,

1
2

)
. That is, P(M1) = 1/2 and P(M2) = 1/2.

And, the final step is to use the mixed-state operator

to construct M = Uπ (P(1)
⊔

P(2)). The resulting

multistationary ϵ-machine is shown in Fig. 1(c).

The recurrent states of the component ϵ-machines

show up as M ’s recurrent states, as claimed. What

is new is the set of two transient states (solid circles).

As a generator of the multistationary process, M be-

gins in its start state (solid circle, with circumscrib-

ing circle) and, then, follows transitions according

to the edge probabilities, emitting the correspond-

ing symbols.

We can understand M ’s structure by calculating

its mixed states µ(w) = (P(A),P(B),P(C)), w ∈ A,
using Eq. (3):

µ(λ) =
[
1
2 ,

1
4 ,

1
4

]
,

µ(0) = [0, 1, 0] = B ,

µ(1) =
[
1
2 , 0,

1
2

]
,

µ(00) = [0, 0, 0] = ∅ ,
µ(01) = [0, 0, 1] = C ,

µ(10) = [0, 1, 0] = B , and

µ(11) = [1, 0, 0] = A .
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A

B C

1|1

1|1

1|0

(a)

(b)

A

B C
1
4 |0

3
4 |1

1
3 |0

2
3 |1

1|1

1|1

1|0

(c)

FIG. 1. The Period-1 and Period-2 Hidden Multista-
tionary Process: (a) Component P(1), (b) Component
P(2), and (c) M = Uπ(P(1)

⊔
P(2)) with π =

(
1
2
, 1
2

)
.

Recurrent causal states are shown as hollow circles and
transient causal states as small solid (black) circles. The
start state sports a double circle. Transitions are labeled
p|x to indicate taking the transition with probability p
and emitting symbol x ∈ A.

In this, on the one hand, µ(λ) is the start state

of the mixed state presentation and its distribution

gives the asymptotic invariant distribution over the

component recurrent states A, B, and C—the state

probabilities before any symbols have been gener-

ated.

On the other hand, if x = 0 is generated, then we

immediately know the process is in component P (2),

since P (1) cannot produce a 0, and, in particular, it

is in a specific state, B. This is reflected in the

transient mixed state µ(0) = [0, 1, 0]. In fact, any

time a valid 0 is generated we know M is in state B.

This is also seen in mixed state µ(10), in which the

last symbol generated is a 0 and we again obtain a

δ-function distribution concentrated on state B.

Now, there are also disallowed transitions and so

disallowed words. This is shown in mixed state

µ(00) = [0, 0, 0] for word w = 00.

More interestingly, though, is the transient mixed

state µ(1) =
[
1
2 , 0,

1
2

]
, which indicates that, having

seen a 1 we know that M cannot be in state B.

However, the best we can say is that it is either

state A (the Period-1 component) or in state C (the

Period-2 component) with fair probability. It is not

FIG. 2. Entropy growth H(ℓ) (top) and entropy con-
vergence hµ(ℓ) (bottom) for the Period-1 and Period-2
HMSP, as function of word length ℓ = 0, . . . , 5.

until we see another symbol that we are guaranteed

to know with certainty in which component M is.

If w = 11, then P is in A. Since we now know the

state with certainty, we say that w = 0 and w = 11

are synchronizing words. In this case, they are the

minimal synchronizing words.

The ergodic decompositions tell us that:

1. hµ = π1h1
µ + π1h2

µ = 0 bit per symbol,

2. E = H(π) + π1E1 + π2E2 = 1+ 0+ 1/2 = 1.5

bits,

3. Cµ = H(π)+π1C1
µ+π2C2

µ = 1+0+1/2 = 1.5

bits,

4. T = π1T1+π1T2 = 0+1/2 = 1/2 bit-symbols,

and

5. χ = π1χ1 + π1χ2 = 0 + 0 = 0 bits.

Let’s check these by directly calculating the entropy

growth H(ℓ) and convergence hµ(ℓ) for M . These

are shown in Fig. 2.

The entropy growth plot (top) leads to an estimate

of E ≈ 1.5 bits, which is predicted by the ergodic

decomposition. Both entropy growth and entropy

convergence (bottom) show that hµ(ℓ) = hµ = 0

after ℓ = 2. And, this too is correctly predicted by

the corresponding entropy rate decomposition.

In fact, for lengths longer than the longest pe-

riod, there are always three distinct sequences—

w ∈ {1111 . . . , 0101 . . . , 1010 . . .}. And so, E ≤
log2 3 ≈ 1.585 bits. This is roughly consistent with

block entropy plots.

Let’s analyze this exactly. One of those sequences

is w = 1n and it occurs with probability 1/2. The
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two other sequences are w = (01)n and w = (10)n

and they are generated equally often by their com-

ponent. But since that component appears only

half the time, they occur in the output sequences

with probability 1/4 each. Thus, E = H[P(w)] =
H[(1/2, 1/4, 1/4)] = 1.5 bits. And, this is what is

seen in the plots.

The HMSP’s statistical complexity is:

Cµ = H [P(S)] (6)

= H [(1/2, 1/4, 1/4)] (7)

= 3/2 bits . (8)

which agrees with the ergodic decomposition.

The ergodic decomposition, however, predicts

T = 1/2 bit-symbols, while the entropy growth plot

shows that, in fact, T ≈ 2.19 bit-symbols. So, the er-

godic decomposition for T is incorrect. In short, we

see that the ergodic decomposition does not prop-

erly account for the state distribution’s relaxation

through the transient mixed states (solid circles) in

M ; Fig. 1(c). That relaxation takes longer than a

single step (as the decomposition assumes) and that

increased relaxation time increases T.

Note that this is one of the simpler examples of the

class of processes that have finite transients. Let’s

consider one that is more complex.

3. Isomorphic Golden Means Process

The No-Repeated-0s Golden Mean Process

(GMP) generates all binary sequences except those

with consecutive 0s. When a 0 is generated then the

probability of a 0 or a 1 is fair. The GMP is an

order-1 Markov process.

Let P1 be the No-Repeated 0s GMP, and let P2 be

the No-Repeated-1s GMP. See Figs. 3(a) and 3(b).

We define a nonergodic mixture P as follows:

P = pP1 + (1− p)P2 ,

with mixture distribution π = (p, 1− p). The prob-

ability of any word w is, then:

P(w) = pP1(w) + (1− p)P2(w) .

Using the mixed-state operator, we construct

M(P)’s transient and recurrent states using this

mixture distribution, finding:

µ(w) =
[
P(A|w) P(B|w) P(C|w) P(D|w)

]
,

µ(λ) =
[
2p
3

p
3

2(1−p)
3

1−p
3

]
,

µ(0) =
[
0 p

2−p
2(1−p)
2−p 0

]
,

µ(1) =
[

2p
1+p 0 0 1−p

1+p

]
,

µ(00) =
[
0 0 1 0

]
= C ,

µ(01) =
[
p 0 0 1− p

]
,

µ(10) =
[
0 p 1− p 0

]
,

µ(11) =
[
1 0 0 0

]
= A ,

µ(001) =
[
0 0 0 1

]
= D , and

µ(110) =
[
0 1 0 0

]
= B .

Longer words can only lead to one of these mixed

states and so the ϵ-machine is finite. The full mul-

tistationary ϵ-machine is shown in Fig. 3(c), as a

function of the mixture parameter p. We see that

the number of states, including the transients, is fi-

nite for all mixture probabilities.

The transition matrices for M(P)’s recurrent

causal states are:

T 0 =


0 1

2 0 0

0 0 0 0

0 0 1
2 0

0 0 1 0

 and T 1 =


1
2 0 0 0

1 0 0 0

0 0 0 1
2

0 0 0 0

 .

The stationary distribution is defined by the mixture

of the two processes:

π(p) =
(
pπ1 (1− p)π2

)
= 1

3

(
2p p 2(1− p) 1− p

)
,

recalling that π1 = π2 =
(
2/3 1/3

)
.

Using methods from Refs. [12, 13], the excess en-

tropy for each recurrent component is seen to be:

E1 = E2 =
2

3
log2

3

2
+

1

3
log2 3−

2

3

=
2

3
log2

3

4
+

1

3
log2 3

≈ 0.251629 bits.

By the ergodic decomposition theorem, the excess

entropy for the mixture, as a function of p is:

E(p) = pE1 + (1− p)E2 +H(p)

= E1 +H(p) ,
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A B

C D

1
2 |1

1
2 |0

1|1

1
2 |0

1
2 |1

1|0

(a)

(b)

A B

C D

2−p
3 |0

1+p
3 |1

1
2−p |1

1
1+p |0

1−p
2−p |0

p
1+p |1

2−p
2 |0

1+p
2 |1

p
2 |1

1−p
2 |0

1
2 |1

1
2 |0

1|1

1
2 |0

1
2 |1

1|0

(c)

FIG. 3. Two Golden Mean Processes and their non-
ergodic mixture: (a) M1, (b) M2, and (c) M =
Uπ(M

1 ⊔M2) with π = (p, 1− p).

since the two components are isomorphic. For p =

1/2, we expect E ≈ 1.251629 bits.

Again, the component transient information

equals the excess entropy, since the GMP is order-1

Markov. So, the associated ergodic decomposition

gives:

T(p) = pT1 + (1− p)T2

= T1 ,

since the two components are isomorphic. For p =

1/2, we expect T ≈ 0.251629 bits.

Similarly, the statistical complexity of each recur-

rent component is:

C1
µ = C2

µ =
2

3
log2

3

2
+

1

3
log2 3

≈ 0.9182958 bits.

FIG. 4. Entropy growth H(ℓ) (top) and entropy con-
vergence hµ(ℓ) (bottom) for the Two Isomorphic Golden
Means HMSP, as function of word length ℓ = 0, . . . , 16
and mixture parameter p = 1/2.

So, from Eq. (6) the statistical complexity of the

mixture as a function of p is:

Cµ(p) = C1
µ +H(p) . (9)

For p = 1/2, we expect Cµ ≈ 1.9182958 bits.

Let’s check the decompositions by calculating the

associated complexity measures from M ’s entropy

growth and convergence. The latter are shown in

Fig. 4.

The entropy growth plot estimates that E =

1.22258 bits, which is low by 2%. And, the en-

tropy convergence plot shows that the E, calculated

there using Eq. (1) as the area shown, is a bit lower

still: E = 1.21753. Although, due to the slow con-

vergence and the finite number of terms taken in

the approximation these errors are expected. Simi-

larly, the ergodic decomposition of the entropy rate

hµ = 0.811278 bits per symbol shows up correctly

when estimated from P’s entropy growth and con-

vergence. And so, the predictions from the related

ergodic decompositions are consistent.

The entropy growth, however, shows the transient

information is substantially larger (T ≈ 4.29 bit-

symbols) than that predicted from its ergodic de-

composition (T = 0.251629). This discrepancy is

clearly not due to estimation errors. Rather, as

noted above for the P1-P2 mixture, it arises from

the decomposition not accounting for the five tran-

sient causal states of M ; see Fig. 3(c).

Individually, GMPs are subshifts of finite type;

finite Markov order. From the cycles in the tran-
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sient states we see that as components they make

the multistationary process sofic—infinite Markov

order. There are subsets of sequences—specifically

(01)n—for which one never synchronizes.

This means that mixtures of finite-order Markov

chains, even “linear” mixtures that come from in-

dependently running them, are processes that are

not finite Markovian. They require hidden Markov

representations.

B. Infinite State

The preceding examples, chosen to explicitly illus-

trate methods and as harbingers of coming results,

are rather special in that the led to finite-state mul-

tistationary processes. We now turn to more typical

cases, still constructed from finite-state ergodic com-

ponents, that lead to a multistationary process with

an infinite number of states.

1. Period-1 and Fair Coin Process

The next example multistationary process mixes

stochastic and periodic behaviors: We build it out

of a period-1 process and a fair coin. In effect, we

ask how difficult it is to distinguish these two simple,

but extreme processes—one completely predictable,

the other completely unpredictable.

For here and a bit later, define Bernoulli Process

B (p) which is a model of a coin flip with bias prob-

ability p.

The first step, then, is to select the two stationary

components:

1. Period-1 Process P(1): h1
µ = 0 bits per symbol,

C1
µ = 0 bits, E1 = 0 bits, T1 = 0 bit-symbols,

and χ1 = 0 bits. See Fig. 5(a).

2. Fair Coin Process B
(
1
2

)
:, h1

µ = 1 bit per sym-

bol, C1
µ = 0 bits, E1 = 0 bits, T1 = 0 bit-

symbols, and χ1 = 0 bits. See Fig. 5(b).

Though at the two extremes of predictability, these

are structurally trivial processes—Ci
µ = 0.

The second step is to select the mixture distribu-

tion, which we take to be uniform: π =
(
1
2 ,

1
2

)
. And

the third step is to use the mixed-state operator to

construct M = Uπ
(
P(1)

⊔
B
(
1
2

))
. Several of the

mixed states are:

µ(λ) =
[
1
2 ,

1
2

]
,

µ(0) = [0, 1] = B

µ(1) =
[
3
4 ,

1
4

]
,

µ(0A+) = [0, 1] = B ,

µ(1+0) = [0, 1] = B ,

µ(1k) = [1− αk, αk] ,

... , and

µ(1∞) = [1, 0] = A,

where αk = (2k + 1)/2k+1. The resulting ϵ-machine

is shown in Fig. 5(c).

In Fig. 5(c), and so too in the mixed states, we

see our first surprising result for multistationary pro-

cesses. Starting from two structurally trivial pro-

cesses, the multistationary ϵ-machine has a count-

able infinity of transient causal states. Why? If, at

any point, one sees a 0, then we know the process is

in the Fair Coin component, since the other compo-

nent cannot generate a 0. However, it is only after

“seeing” an infinite sequence of 1s that one could de-

termine that the process is in the All-1s component.

In short, the effort required to distinguish between

these two trivial processes is infinite and this is di-

rectly reflected in the infinite set of transient states.

The ergodic decompositions tell us that:

1. hµ = π1h1
µ + π2h2

µ = 0 + 1/2 = 1/2 bit per

symbol,
2. E = H(π)+π1E1+π2E2 = 1+0+0 = 1 bits,
3. Cµ = H(π) + π1C1

µ + π2C2
µ = 1 + 0 + 0 = 1

bits,
4. T = π1T1 + π2T2 = 0 + 0 = 0 bit-symbols,

and
5. χ = π1χ1 + π2χ2 = 0 + 0 = 0 bits.

Note that the ergodic decompositions predict that

the structural complexity measures are driven solely

by the mixture entropy H(π). Both components

contribute nothing: Ei = Ci
µ = 0. Let’s check these

predictions by estimating the quantities from M ’s

entropy growth and convergence, shown in Fig. 6.

The entropy growth plot shows that E = 1 bit,

as predicted by M ’s ergodic decomposition. And,

the entropy convergence plot shows that the E, cal-

culated as the area shown, is also the same. Simi-

larly, the ergodic decomposition of the entropy rate

hµ = 1
2 bits per symbol shows up correctly on the

entropy plots.
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0.83|1

0.10|0

0.90|1

0.06|0

0.94|1

0.03|0

0.97|1

0.02|0

0.98|1

0.01|0

0.99|1

0.00|0
1.00|1

1
2 |11
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FIG. 5. Period-1 and Fair Coin HMSP: (a) P(1), (b)
B
(
1
2

)
, and (c) M = Uπ

(
P(1)

⊔
B
(
1
2

))
with π =

(
1
2
, 1
2

)
.

The latter is approximated by connecting the Period-
1 component after 8 1s. In fact, the P (1) component
is never reached after any finite sequence. In contrast,
B
(
1
2

)
can be reached quickly and by many sequences.

Recurrent causal states are shown as hollow circles and
transient causal states as small solid (black) circles. The
start state sports a double circle. Transitions are labeled
p|x to indicate taking the transition with probability p
and emitting symbol x ∈ A.

The entropy growth plot, however, shows the tran-

sient information is quite a bit larger (T ≈ 2.78 bit-

symbols) than that predicted (T = 0) from its er-

godic decomposition.

Also, the informational ergodic decompositions,

while indicating a role for the mixture entropy, miss

entirely the existence of an infinite number of tran-

sient states and the attendant difficulty that con-

fronts an observer trying to detect in which compo-

nent the process is.

2. Two Biased Coins

Slightly increasing the level of sophistication, we

now construct a multistationary process out of fully

FIG. 6. Entropy growth H(ℓ) (top) and entropy con-
vergence hµ(ℓ) (bottom) for the Period-1 and Fair Coin
HMSP, as function of word length ℓ = 0, . . . , 14.

A

B

3
4 |1

1
4 |0

1
4 |1

3
4 |0

(a)

(b)

FIG. 7. Two Biased Coins HMSP Components: (a)
B
(
1
4

)
and (b) B

(
3
4

)
.

stochastic components: Two biased coins of unequal

(but symmetric) biases B
(
1
4

)
and B

(
3
4

)
. See Figs.

7(a) and (b).

We again take a uniform mixture distribution:

π =
(
1
2 ,

1
2

)
. The result of constructing M =

Uπ
(
B
(
1
4

)⊔
B
(
3
4

))
with π =

(
1
2 ,

1
2

)
is shown in Fig.

8.

The mixed state presentation reveals two

countably-infinitely-long chains of transient causal

states. One leads to the ergodic component for

B
(
3
4

)
and the other for B

(
1
4

)
. In a simple sense

these long transient chains show the mechanism by

which one determines the coin biases. Interest-

ingly, though, at any point statistical fluctuations

can change the apparent bias and drive the state

back up the long chains, heading for the comple-

mentary biased coin.

Consider, as above the hµ, E, Cµ, T, and χ er-

godic decompositions. The ergodic decompositions

for excess entropy and statistical complexity give
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0.27|0

0.73|10.73|0

0.27|1

0.26|0

0.74|10.74|0

0.26|1

0.25|0

0.75|10.75|0

0.25|1

0.25|00.25|1
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4 |1

3
4 |0

3
4 |1

0|0

1
4 |0

1
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0|1

3
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...
...

FIG. 8. Two Biased Coins HMSP: M =
Uπ

(
B
(
1
4

)⊔
B
(
3
4

))
with π =

(
1
2
, 1
2

)
. The latter is ap-

proximated by connecting the transient states to B
(
1
4

)
and B

(
3
4

)
after 30 0s or 30 1s, respectively. In fact,

B
(
1
4

)
and B

(
3
4

)
are never reached after any finite word.

similar results; namely:

E = H[π] +E(M1) +E(M2)

E = H[π] , and

Cµ = H[π] + Cµ(M
1) + Cµ(M

2)

Cµ = H[π] .

That is, the complexities of the multistationary pro-

cess is all in the mixture distribution. Even then,

the mixture entropy, in this case a number upper

bounded by 1, belies the infinite number of tran-

sients and the difficulty of determining in which er-

godic component the process is. Quantitatively, it

seems another measure of the global process com-

plexity and a new decomposition are in order. We

return to this shortly, after examining several more

kinds of multistationary process.

Let’s validate the ergodic decompositions’ predic-

tions vis a vis the process estimates of their various

measures fromM ’s entropy growth and convergence.

The latter are shown in Fig. 9.

FIG. 9. Entropy growth H(ℓ) (top) and entropy conver-
gence hµ(ℓ) (bottom) for the Two Biased Coins HMSP,
as function of word length ℓ = 0, . . . , 30.

Entropy growth, using the y-intercept method,

shows that E = 1 bit, as predicted by M ’s ergodic

decomposition. And, the entropy convergence plot

shows that E, as the area shown, is also the same,

though it takes many terms and so shows slow con-

vergence. The ergodic decomposition of the entropy

rate hµ = 0.811278 bits per symbol shows up cor-

rectly on the entropy plots.

The entropy growth, however, shows the tran-

sient information is substantially larger (T ≈ 5.95

bit-symbols) than that predicted (T = 0) from its

ergodic decomposition. Again, the mixing entropy

fails to account for the dominating transient causal

state structure.

3. Pair of Isomorphic Even Processes

The Even Process (EP) generates all binary se-

quences such that pairs of 1s occur in blocks of even

length bounded by 0s. Once a 0 is seen, a 0 or a 1

is generated with fair probability. The EP is closely

related to the Golden Mean Process. They have the

same entropy rates and statistical complexities. The

main important difference, despite the close similar-

ity and a simple relabeling of transitions, is that the

EP is described by no finite-order Markov chain. It

is infinite Markov order, though finite state.

To construct a multistationary process the first

step, then, is to select two stationary components.

One component P1 will be an EP with even number

of 0s (Fig. 10(b)) and the other P2 an EP with

an even number of 1s (Fig. 10(a)). The second
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step is to choose mixture distribution: π(M1,M2) =

(1/2, 1/2).

Finally, Fig. 11 shows the ϵ-machine for the

HMSP M = Uπ
(
M1

⊔
M2
)
with π

(
M1,M2

)
=(

1
2 ,

1
2

)
. The ϵ-machine displayed is estimated only

up to words of length 8 and the transitions are set

to give a well-formed ϵ-machine at this approxima-

tion.

There are several observations. First, the HMSP

ϵ-machine is symmetric under 1-0 exchange, as it

should be given this symmetry in the ergodic com-

ponents. Second, and less obviously, there is an in-

finite number of transient causal states. This is due

to the outside paths along 1∞ and 0∞. These two

sequences arise from the 2-cycles in the respective

ergodic component recurrent states: pairs of 1s in

M1 never synchronize; ditto for pairs of 0s in M2.

And so, in M there are infinitely long sequences that

never reach M1 or M2.

Third, the HMSP is infinite Markov order. To

see this, note that there are six cycles in the tran-

sient states—these cycles are the signature of infi-

nite Markov order or, what is called “soficity”. The

HMSP is a shift of infinite type [28]. In particular,

there is a two-cycle (00)+ between states 32 and 38

and one (11)+ between states 37 and 41. There are

two four-cycles (1100)+ between states, 10, 18, 24,

and 26 and between states 24, 29, 34, and 36; and

two (0011)+ between states 11, 19, 25, and 23 and

between states 25, 30, 35, and 33.

The ergodic decompositions tell us that:

1. hµ = π1h1
µ + π1h2

µ = h1
µ = 2

3 bit per symbol,

2. E = H(π) + π1E1 + π2E2 = H(π) + E1 =

1 + 0.918296 = 1.918296 bits,

3. Cµ = H(π) + π1C1
µ + π2C2

µ = H(π) + C1
µ =

1 + 0.918296 = 1.918296 bits,

4. T = π1T1 + π1T2 = T1 = 3.16938 bit-

symbols, and

5. χ = π1χ1 + π1χ2 = χ1 = 0 bits.

Let’s check these by directly calculating the entropy

growth and convergence for M . These are shown in

Fig. 12.

Let’s check the decompositions by comparing their

predictions to estimates from M ’s entropy growth

and convergence. These functions are shown in Fig.

12.

The entropy growth plot shows that E = 1.847

bits which disagrees by about 4% with the prediction

from the ergodic decomposition (E = 1.918 bits).

And, the entropy convergence plot shows that the
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FIG. 10. Two Even Processes: (a) M1, pairs of 1s, with
its two transient causal states and (b) M2, pairs of 0s,
with its two transient causal states.

E = 1.847 bits as the area shown. Although, due

to the slow convergence, the finite number of terms

taken in the numerical approximation, and the finite

number of transient states taken in the approxima-

tion of M , this error is not surprising. Similarly, the

ergodic decomposition of the entropy rate hµ = 2/3

bits per symbol shows up correctly on the entropy

plots (hµ ≈= 0.6666).

Entropy growth, however, shows the transient in-

formation is three times larger (T ≈ 9.77443 bit-

symbols) than that predicted from its ergodic de-

composition (T = 3.16938 bit-symbols). Again, this

discrepancy follows from the mixture entropy miss-

ing the contributions from the (infinite) number of

transient causal states.

C. Infinite Components

We end our selection of example multistationary

processes by constructing several from an infinite

number of finitary ergodic components.

1. Handbag of Necklaces

Fourier analysis of a signal assumes the generating

process consists of (at most) periodic sequences. As

an analog of this assumption in the present setting,

consider the Handbag of Necklaces (HMSP) consist-

ing of ergodic-component stationary processes P (i)

for all periods, i ∈ I = 1, 2, 3, 4, . . .. That is, if we
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FIG. 11. Two Isomorphic Even Process HMSP: M =
Uπ

(
M1 ⊔M2

)
with π

(
M1,M2

)
=

(
1
2
, 1
2

)
. Approxi-

mated with maximum word length of 8. Transient states
are reconnected to mimic the component EP’s transient
states. Specifically, calculating M using word length 8
leaves M ’s states 38 − 41 as dangling states—with no
outgoing transitions. Transitions were added by noting
that these states closely approximate the EPs’ two tran-
sient states, seen in Figs. 10(a) and (b), at sufficiently
large word length.

assume a binary process, the sequences emitted con-

sist of words period-1 a+, period-2 (ab)+, period-3

(bba)+, period-4 (bbba)+, and so on. The HMSP

ϵ-machine is shown in Fig. 13.

Note that there is infinite number of transient

causal states. Overall the HMSP is a highly sym-

metric structure and dominated by the transient

states. From this one can readily read-off how to

synchronize—how to know in which ergodic compo-

nent the process is. For example, to get to compo-

nent M i there are exactly i paths.

Now, consider the mixture measure πi for the

components. Then, the state probabilities are πij =

Kπi/j, j = 1, . . . , i, where K =
∑∞

i=1

∑i
j=1 π

i/j is

the normalization constant. Note this is the presen-

tations’ stationary invariant distribution.

There is some flexibility in setting the mixture dis-

tribution πi. There are several criteria for choosing

it for a countable number of states:

1. Normalization:
∑∞

i=1

∑i
j=1 πij =

∑∞
i=1 π

i =

1. And so, πi must decay faster than 1/i.
2. Finitary (E < ∞) HMSP [15]: Must have

FIG. 12. Entropy growth H(ℓ) (top) and entropy con-
vergence hµ(ℓ) (bottom) for the Two Isomorphic Even
Multistationary Process, as function of word length ℓ =
0, . . . , 28.

H[π] =
∑∞

i=1 π
i log2 π

i <∞.

3. Infinitary (E → ∞) HMSP [15]: Must have

H[π]→∞. See Ref. [29] for another example

process in this family.

Consider the structure of the transitions in the

HMSP’s first row of states. The first transition prob-

ability for seeing an a is:

P(a) =
∞∑
i=1

P(a|M i)P(M i)

=

∞∑
i=1

πi/i ,

since the probability of seeing an a in the ith com-

ponent is 1/i. Let pa = P(a). The probability for

the succeeding transition emitting an a is:

P(a|a) = P(aa)/P(a)
= π1/pa ,

since P(aa) = π1. These transitions determine those

leaving the top row of states on a b. Note that

P(an|aa) = 1, n = 1, 2, . . ..

Now, consider the second to the top row of tran-

sitions. First, P(b) = 1− pa. Then, we have:

P(a|b) = P(ba)/P(b)

=
pa − π1

1− pa
.
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FIG. 13. The ϵ-machine for HMSP presentation of the
Handbag of Necklaces Process. Chains of probability-1
transitions between causal states are given as strings.

since:

P(ba) =
∞∑
i=2

P(M i)P(ba|M i)

=

∞∑
i=2

πi/i

= pa − π1 .

Note that P(bab) = P(ba). There is a second path

to M2 controlled by the transition:

P(b|a) = P(ab)/P(a)

=
pa − π1

pa
.

since P(ab) = P(ab). That is, the appearance of ab

and ba in each component occurs due to the same

conditions.

The ergodic decompositions tell us that:

1. hµ =
∑∞

i=1 π
ihi

µ = 0, as hµ[P (i)] = 0.

2. The excess-entropy ergodic decomposition for

a process with p component periodic processes

with periods 1, . . . , p is:

E = H[π] +

p∑
i=1

πiEi (10)

= H[π] +

p∑
i=1

πi log2 i (11)

= log2 p+ 1/p

p∑
i=2

log2 i , (12)

FIG. 14. Entropy growth H(ℓ) (top) and entropy con-
vergence hµ(ℓ) (bottom) for the Handbag of Necklaces
Multistationary Process, as function of word length ℓ =
0, . . . , 30 and up to period p = 15. (Note that the mixed
states were approximated up to Max Length = 30.)

where the second step follows assuming πi is

uniform.

3. Cµ = E.

4. T =
∑p

i=1 π
iTi =

∑p
i=2 π

i log2 i bit-symbols,

and

5. χ = 0: This is a bit surprising: No crypticity,

no hidden information.

These are consistent with directly calculating the

entropy growth for M , as shown in Fig. 14.

2. The Purse Process

The example of two biased coins suggests extend-

ing to an infinite number of biased coins in a purse—

a bag of coins with different biases. As hinted at in

the two-coin case, all of the (infinite) complexity is

in the mixture and none comes from the compo-

nents.

Moreover, we can chose π to be such that H[π]

is finite or infinite. Thus, the Purse Process is an

extreme example in which infinite complexity comes

from zero-complexity components. There is prob-

ably no simpler way to say that a multistationary

process is way more than the sum of its (zero com-

plexity) parts.

To get a brief sense of the Purse Process consider

an HMSP consisting of three coins of unequal bias

and compare this to the case of two coins of Sec.

VIIB 2. Figure 15 shows the HMSP for two com-

pletely biased coins and one fair coin. Its basic fea-
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FIG. 15. The ϵ-machine HMSP presentation of two com-
pletely biased coins and one fair coin—all single-state
ϵ-machines: M = Uπ

(
All-1s

⊔
All-0s

⊔
B
(
1
2

))
with π =(

1
3
, 1
3
, 1
3

)
.

tures were already encountered above. And, it sug-

gests a notable generalization to which we now turn.

3. Mother of All Processes

Finally, consider upping the complexity ante sub-

stantially. This generalization is to an HMSP con-

sisting of a mixture of all processes. Let’s step

through its construction.

First, recall that every stationary process has a

unique ϵ-machine presentation. That is, ϵ-machines

and stationary processes are in 1-to-1 correspon-

dence. Second, an efficient algorithm exists to list

all ϵ-machines by the number of the recurrent causal

states. Reference [30] shows how to systematically

enumerate the ϵ-machine process library Lk for k-

state ϵ-machines. See Table I there for the list of

binary-alphabet topological ϵ-machines. There are

1, 117, 768, 214 such 8-state ϵ-machines.

In the current construction consider only topolog-

ical ϵ-machines for which any branching transitions

are taken with fair probability. We refer to each

process by it’s ϵ-machine’s enumeration number—

we call this the process’ Gödel number.

Second, define the Process Urn (PU) as containing

the entire library of ϵ-machines. That is, we imag-

ine a HMSP that is the result of reaching into the

Urn, selecting one ϵ-machine, and having it gener-

ate a full realization. The repeatedly sampled PU is

a HMSP—The Mother of All Processes. Certainly,

one of the most nonergodic processes one could work

with.

Definition 2. The Mother of All Processes is:

M = Uπ
( ⊔

M∈L
M

)
, (13)

with π being a chosen mixture distribution.

To simplify, let’s examine the HMSP whose

components are all one-state and all two-state

ϵ-machines. There are now 10 components—three

1-state components and 7 2-state components.

There are 17 recurrent causal states altogether

across the ergodic components. However, the many

hundreds of mixed states are no longer usefully pre-

sented in a state-transition diagram, as done up to

this point. Instead, we plot the mixed-states them-

selves as dots in the simplex ∆17. This is shown

in Fig. 16. This is a 2D projection in which the

recurrent states are the vertices of ∆17 and so ap-

pear on its periphery. The start state, with uniform

probability across the components and not across

the recurrent states, is not in the simplex center.

One notes the concentration of mixed states that

move near to ∆17’s vertices, indicating close ap-

proaches to synchronization.

There are a number of notable properties:

1. The simplex vertices correspond to recurrent

causal states.
2. There is an uncountably-infinite number of

transient states. These fill out a complicated

fractal measure within the ∆17.
3. All mixed states that are not on vertices are

transient states.
4. While it is clear that M is not exactly synchro-

nizable [31] as it contains infinite Markov-order

components, is it asymptotically synchroniz-

able [32]? What about the synchronizability

of approximations to it?

There are a number of open questions, as well:

1. What is M ’s statistical complexity dimension

dµ [33]?
2. What is the shortest synchronizing word to go

from the Fair Coin to each other ergodic com-

ponent?
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FIG. 16. The ϵ-machine presentation of the Mother of

All 1-State and 2-State HMSP: M = Uπ

(⊔
M∈L{1,2}

M
)

with π =
(

1
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, . . . , 1
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)
. The start state is the 17-vector at(

1
10
, 1
10
, 1
10
, 1
20
, . . . , 1

20

)
. The ϵ-machines for each ergodic

component are placed around the periphery, dropping
the transition probabilities which are either 1 or 1

2
. Their

states are aligned to their associated vertex in ∆17. The
Fair Coin is the state at the top—the top-most vertex.
The mixed states are approximated up to word lengths
of ℓ = 28.

3. How do informational measures grow with

word-length approximation?

VIII. DISCUSSION

In addition to their particular application, the er-

godic decompositions give important insight into ba-

sic questions about what structural complexity is

and how to measure it. A number of previous ef-

forts that address these definitional issues consider

it a key property that complexity be additive over

the components of a system [34]. This is often moti-

vated by a parallel with Boltzmann entropy in ther-

modynamics. And, for that matter, additivity was

also posited as an axiom by Shannon for his measure

of surprise [35].

However, the ergodic decompositions here show

that the manner in which a system’s components

relate to one another—specifically, the mixture

distribution—plays a central role in the process’ or-

ganization and contributes to quantitative measures

of global complexity. The foregoing offered a differ-

ent, more structural view that goes beyond the er-

godic decompositions and statistical mixtures. Con-

structively, the transient state structure is key to

a multistationary process’ global organization and

what observations can or cannot reveal.

The lessons here also suggest a skepticism in ap-

plying the ergodic decompositions of Sec. VI. One

reason is that underlying them is the assumption of

an IID sampling of components, which is not gen-

erally valid. Another is that they completely ignore

how the internal structures of the components inter-

relate with each other. And, as shown, this brings

out wholly new properties that are not part of any

given component nor their sum nor their IID mix-

ture. Indeed, the mixture entropy does not capture

this, except in the most limited of cases.

Constructive responses to this will address the

new kind of hierarchical structure explicitly rep-

resented by the multistationary process’ ϵ-machine

transient causal states and their complicated mea-

sure in ∆k. Quantitatively, in contrast to the block

entropy, entropy rate, and excess entropy, we demon-

strated that the transient information is sensitive to

this new kind of complexity in structural mixtures.

It is this additional structure that makes the orga-

nization of multistationary processes way more than

the sum of their parts. As a complementary met-

ric, adapting the statistical complexity dimension dµ
suggests itself [33].

IX. CONCLUSIONS

Let’s close exploring several wider implications for

thermodynamics, on the one hand, and various at-

tempts to introduce “universal modeling” schemes

on the other.

First, we started out highlighting the colloquial-

ism, made familiar by the social movements of the

1960s, that a system is more than the sum of its

parts. Presumably, the social reaction then reflected

an increasing awareness of the impact of technical

systems humans were creating. The preceding devel-

opment explored in which senses this could be true

for truly complex systems—ones consisting many

structured components—more akin the social sub-

systems than mere atoms. And, the various informa-

tional ergodic decompositions bolstered the popular

understanding.
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However, in emphasizing structure and analyzing

the concrete process class of hidden multistationary

processes it became abundantly clear—through all

of the examples presented—that composite or het-

erogeneous (to use Gibbs’ word [36]) systems are far

more than the sum of their components. Specifi-

cally, beyond a mere entropic, missing contribution

from increased disorder that arises from the ran-

dom selection of components, composite systems are

markedly more complex. And, they are more struc-

tured according to the relative interplay of the com-

ponents’ internal organization. It is that interplay

which drives the explosive complexity of multicom-

ponent systems.

On this score, the history of composite systems is

perhaps a bit confusing; especially as they arose in

the early foundations of thermodynamics. There is,

for example, Gibbs’ seemingly contradictory state-

ment, as quoted by Jaynes [1, p. 13], that “The

whole is simpler than the sum of its parts”. The

ergodic decompositions seemed to say the opposite.

However, there is not really a confusion here. First,

Gibbs was thinking of the correlations that would

emerge between system components when coupled

together. Here, we intentionally did not couple the

components. Sequels address this. Second, at root,

the issue turns on an ambiguous vocabulary for de-

scribing randomness and structure. Here, at least,

by distinguishing between “randomness” in terms of

Shannon’s notion of the flatness of a probability dis-

tribution and “structure” in terms of statistical com-

plexity, we shed some light on these important and

still evolving issues.

Second, the HMSP construction procedure here

gives a rather direct picture of one kind of hierar-

chical organization in how a stochastic process can

be built from other processes. The constructive pro-

cedure uses the mixed state presentation. And, this

generates a new kind of hierarchy that emerges due

to the diverse combinatorial relationships between

the components’ internal organizations. Other re-

lated hierarchies can be similarly constructed; such

as when using generalized hidden Markov models

[37] as ergodic components.

Third and finally, modern statistical inference has

been treated to a number of formalizations of general

learning that make minimal assumptions. Consider

for example:

1. Universal Priors [38–40]: In the computation-

theoretic approach to modeling and statistical

inference there are attempts to define a most-
general prior over model space. However, these

raise very natural questions, What kind of pro-

cess would generate such a prior? Moreover,

what kinds of difficulties are there in detecting

processes drawn according to such a prior.

2. No Free Lunch Theorem [41]: This framing

makes a number of implicit assumptions about

the measure on the Process Urn simplex. Does

the theorem hold? Not when you consider

structure.

3. Probably Almost Correct Learning [42]: This

“distribution-free” approach is a bold attempt

within machine learning to identify the com-

putational nature of evolution and learning.

However, is not this the same thing as as-

suming any process is possible? If so, then

it is analogous to assuming the Mother of

All Processes. That is, rather than being

“distribution-free” the assumption underlying

PAC learning is “distribution-full”.

In light of these, The Mother of All Processes

suggests a construction for such assumption-free or

minimal-assumption modeling. In this, one is sam-

pling from the space of all processes and exploits

the ϵ-machine representation to be specific about

probability, on the one hand, and structure, on the

other. The realization resulting from this was that

the preceding development was able to demonstrate

that transient-state structure made explicit the chal-

lenges in detecting component processes and that

this was captured informationally via the transient

information.
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