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A prediction makes a claim about a system’s future given knowledge of its past. A retrodiction
makes a claim about its past given knowledge of its future. We introduce the ambidextrous hidden
Markov chain that does both optimally—the bidirectional machine whose state structure makes
explicit all statistical correlations in a stochastic process. We introduce an informational taxonomy
to profile these correlations via a suite of multivariate information measures. While prior results
laid out the different kinds of information contained in isolated measurements, in addition to being
limited to single measurements the associated informations were challenging to calculate explicitly.
Overcoming these via bidirectional machine states, we expand that analysis to information embedded
across sequential measurements. The result highlights fourteen new interpretable and calculable
information measures that fully characterize a process’ informational structure. Additionally, we
introduce a labeling and indexing scheme that systematizes information-theoretic analyses of highly
complex multivariate systems. Operationalizing this, we provide algorithms to directly calculate all
of these quantities in closed form for finitely-modeled processes.
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I. INTRODUCTION

How much information can be learned from a single mea-
surement? Shannon information theory tells us that, on
average, information learned by observing a single realiza-
tion of a random variable is equivalent to the reduction in
our uncertainty over the outcome. So, more information
is learned from a fair coin flip than from the outcome of
a highly biased one. If the coin flip is one in a sequence,
each successive measurement gives the same amount of
information. That said, for stochastic processes we are
typically not interested solely in the analysis coin flip
sequences. Processes of interest typically have a stochas-
tic component mixed in with structure in the form of
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correlations across time—single observations are far from
independent events.
The puzzle over the question of statistical dependence has
quite a long and illustrious history, going back at least
to the 1700s with Jacob Bernoulli [1] and the 1800s with
Simeon Poisson [2] and Pafnuty Chebyshev [3]. Its more
modern form, though, was initially developed by Andrei
Andreevich Markov [4] at the turn of the 20th century.
These culminated in the weak Law of Large Numbers, the
Central Limit Theorem, and Markov chains—transition
probabilities, irreducibility, and stationarity—to mention
only a few of the concepts we use today in exploring
statistical dependence.
In the 1940s, with the development of information the-
ory Shannon introduced for stationary, discrete-symbol,
discrete-time processes the entropy rate, which quantifies
how much new information we learn upon successive ob-
servations of a process, given knowledge of its infinite past
[5]. Or, to change the question around, how predictable
the new measurement is given knowledge of the past.
This is the amount of intrinsic randomness in each new
measurement, maximized for a coin flip and minimized
by a constant, or periodic, signal.
This said, the full answer to what we can learn from
a single measurement is rather more elaborate than
this. Indeed, a full taxonomy of information rates has
been developed for the information in an isolated mea-
surement [6]. This taxonomy includes five distinct in-
formation measures—conditional entropies and mutual
informations—that fully map out the information con-
tained in a single bit, not only the new information.
The following expands the taxonomy beyond isolated
measurements to the task of prediction itself—statistical
dependence over time. An optimally predictive model of a
stochastic process is one whose error rate is bounded below
by the process’s Shannon entropy rate [7]. When also
constrained to be minimal, the optimally predictive model
is unique and is a hidden Markov chain (HMC) called
the ϵ-machine [8]. The ϵ-machine necessarily captures in
its state structure all information in the process required
for optimal prediction—which is to say, the long-range
historical correlations that impact the future.
There is an equivalent, but complementary task—
retrodiction or making claims about the past given the
present. Although it is well known that the Shannon
entropy rate is time-symmetric for stationary processes,
the tasks of optimal prediction and optimal retrodiction
are not. Prediction and retrodiction generically require
different modeling architectures, even for relatively simple
processes. To characterize the informational structure of
prediction, one needs to consider not only the architecture
of the predictive “forward time” ϵ-machine but also the
architecture of the retrodictive “reverse time” ϵ-machine.
These architectures capture correlations in the process
that impact the present but are not accessible through
isolated measurement.
To this end, the following develops the bidirectional ma-
chine, an ambidextrous hidden Markov chain capable of

simultaneous optimal prediction and retrodiction [9]. We
show that knowledge of the bidirectional machine allows
one to fully characterize a prediction—which we take to
be the observation and all inaccessible but relevant in-
formation in the process—using a taxonomy of fourteen
information quantities. Furthermore, and importantly,
we show that these are exactly calculable in closed form
and do not need to be approximated as the limits of infor-
mation rates, as the previous “anatomy of a bit” analysis
assumed [6].
Given that this setting involves highly multivariate infor-
mation (n-way correlations across arbitrary times), we
first review information theory and introduce a systematic
method for generating the set of “irreducible” informa-
tion atoms for an arbitrary set of random variables. We
then apply this to a single time-step of the bidirectional
machine, generating fourteen informational atoms. These
express the full taxonomy of prediction (and retrodiction).
We then relate them to previously-defined information
measures and give several worked examples for binary
stochastic processes of increasing complexity, along with
the algorithms needed.

II. INFORMATION THEORY

To study and characterize processes and their associated
models we make use of Shannon’s information theory [5, 7],
a widely-used foundational framework that provides tools
to describe how stochastic processes generate, store, and
transmit information. First, though, we deviate from
our development to briefly recall several basic concepts
it requires. The reader familiar with information theory
may be comfortable skipping this section, although the
notation given in Section II C for finding sets of informa-
tion atoms of arbitrary random variables will be useful
later on.

A. Information Measures

Let X be a discrete-valued random variable defined on a
probability space (X , Σ, µ) [10, 11]. We call X the event
space or measurement alphabet of X and take it to be a
finite set. The probability of random variable X taking
value x is determined by the measure µ: Pr (X = x) =
µ ({x} ∈ X ). That is, we denote instances of random
variables by capital Latin letters and specific realizations
by lower case.
The most basic quantity in information theory is the
Shannon entropy—the average amount of information
learned upon a single measurement of a random variable.
(It is, modulo sign, also the amount of uncertainty one
faces when predicting the outcome of the measurement.)
The Shannon entropy H [X] of the random variable X is
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defined:

H [X] = −
∑
x∈X

Pr(X = x) log2 Pr(X = x) . (1)

We can also characterize the relationship between a pair
of jointly-distributed random variables, say, X and Y .
The joint entropy H [X, Y ] is of the same functional form
as Eq. (1), applied to the joint distribution Pr (X, Y ).
This can, in principle, be straightforwardly extended to a
set of N variables X = {Xi | i ∈ (1, . . . , N)}.
The conditional entropy H [X | Y ] gives the additional
information learned from observation of one random vari-
able X given knowledge of another random variable Y .
The conditional entropy is given by:

H [X | Y ] = H [X, Y ] − H [Y ] . (2)

The fundamental measure of information shared between
random variables is the mutual information:

I [X; Y ] =
∑
y∈Y

∑
x∈X

Pr (X = x, Y = y) ×

log2

(
Pr (X = x, Y = y)

Pr (X = x) Pr (Y = y)

)
. (3)

The probabilities of both variables are taken over the joint
probability distribution, while the single probabilities are
taken according to the marginals. The mutual information
can also be written in terms of Shannon entropies and
conditional entropies:

I [X; Y ] = H [X, Y ] − H [X | Y ] − H [Y | X] . (4)

Direct inspection shows that the mutual information be-
tween two variables is symmetric. When X and Y are
statistically independent, the mutual information between
them vanishes.
As with entropy, we may condition the mutual information
on another random variable Z, giving the conditional
mutual information:

I [X; Y | Z] = H [X | Z] + H [Y | Z] − H [X, Y | Z] . (5)

The conditional mutual information is the amount of
information shared by X and Y , given we know the third
Z.
Similar to the joint entropy, the mutual information be-
tween all three variables—also known as the interaction
information or the multivariate mutual information—is
given by the difference between mutual information and
conditional mutual information:

I [X; Y ; Z] = I [X; Y ] − I [X; Y | Z] . (6)

There are two cases worth pointing out here. Two vari-
ables X and Y can have positive mutual information but
be conditionally independent in the presence of Z, in
which case the interaction information is positive. It is

H [X | Y, Z]

H [Y | X,Z]H [Z | X, Y ]

I [X ;Y ;Z]

I [Y ;Z | X ]

I [X
;Z

| Y
]I [

X
;Y

| Z
]

H [X ]

H [Y ] H [Z]

FIG. 1. Information diagram with three random variables,
X, Y , and Z.

also possible, though, for two independent variables to
become correlated in the presence of Z, making the con-
ditional mutual information positive and the interaction
information negative. In other words, conditioning on a
third variable Z can either increase or decrease mutual
information and X and Y variables can appear more or
less dependent given additional data [7]. That is, there
can be conditional independence or conditional depen-
dence between a pair of random variables. Note that the
interaction information is symmetric, so this intuition
holds regardless of the conditioning variable selected.

B. Information Diagrams

We will now make the relationship between information
quantities defined in the last section and the algebra
of events clear [12]. First, consider only two random
variables X and Y . The set of the associated event spaces
X = {X , Y} induces an algebra F over X closed under
complements, unions, and intersections. F is generated
by the partition:

F =
{

X \ Y, Y \ X , X
⋃

Y, Ω \
(

X
⋃

Y
)}

.

Note that these elements correspond to the unique areas
of an Euler diagram of two overlapping but non-identical
and non-empty sets. The algebra F over X is generated
by unions over F and so has 2|F ] = 24 = 16 elements. We
will discuss the case of arbitrarily many variables in the
next section, but in general for N variables |F | = 2N and
|F| = 22N .
Now, specify a real-valued measure µ∗ for each element
in F such that:
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1. µ∗(X \ Y) = H [X | Y ],
2. µ∗(Y \ X ) = H [Y | X],
3. µ∗(X

⋂
Y) = I [X; Y ],

4. µ∗ (Ω \ (X
⋃

Y)) = µ∗(∅) = 0.

It has been shown that µ∗ exists and corresponds uniquely
to the joint probability measure on X and Y [13]. In other
words, information can be reframed as an additive set
function, revealing that there is no semantic difference
between “types” of information—entropy, mutual informa-
tion, and so on—but rather a single underlying quantity
being referenced. We call the elements of F information
atoms. The elements of F can cannot be decomposed
into a sum of other information atoms and are so called
the irreducible atoms. They circumscribe the range of
possible correlations between random variables.
The correspondence between information and the event
algebra allows us to represent information quantities via
an information diagram—an Euler diagram representing
the informational relationships between variables. The
entropies of some number of random variables—H [X],
H [Y ], H [Z], and so on—are represented by the area con-
tained in their respective circle. A three-variable example
is shown in Fig. 1. When two variables are independent,
their respective circles do not overlap. Conditioning cor-
responds to area subtraction, and shared information to
area intersection.
Information diagrams are useful graphical tools but note
that they may be misleading—µ∗ is a signed measure,
but all nonzero atoms are visually portrayed by the i-
diagram as having positive area. It is also possible for
the informational quantity depicted by an i-diagram to
diverge—for instance, the joint entropy of infinitely many
random variables—such as in the stochastic processes
we will encounter. Furthermore, it is difficult to practi-
cally use i-diagrams beyond five or six random variables
(unless those random variables have helpful relational
structure that limits the size of F). Despite these limita-
tions, i-diagrams remain the tool of choice for visualizing
information-theoretic structure in collections of random
variables.

C. Information in Collections of Variables

Now, we will show how to find F , F , and µ∗

for an arbitrary collection of random variables X =
{X0, X1, . . . , Xk, . . . , XN−1}. To be explicit when tak-
ing functions of sets, we borrow the iterable unpacking
notation common in modern programming languages. So,
we write:

f(∗A) = f (X0, X1, . . . , Xk, . . . , XN−1)

where A = {X0, X1, . . . , Xk, . . . , XN−1}. We also abuse
notation and take all power sets to exclude the empty
set by default; i.e., P(X) = P(X) \ ∅. With this notation

we concisely write down the interaction information for
arbitrary variables as:

I [∗X] =
∑

A∈P(X)

(−1)|A|−1 H [∗A] . (7)

(Compare to Eq. (6), Eq. (5), and Eq. (4).)
The challenge is to construct the set of irreducible infor-
mation atoms for a finite random variable set X of size N .
This set consists of, maximally, N conditional informa-
tions, one multivariate mutual information, 2N − 2 − N
conditional mutual informations, and the empty set.
First, there is the arbitrary conditional entropy, which
breaks down into two entropies:

H [∗A | ∗ (X \ A)] = H [∗X] − H [∗ (X \ A)] , (8)

where A ∈ P(X). Then, the arbitrary conditional mutual
information is:

I [∗A | ∗ (X \ A)] =∑
a∈P(A)

(−1)|a|+1
(

H [∗ (a ∪ X \ A)] − H [∗ (X \ A)]
)

.

(9)

Notice that when |A| = 1, Eq. (9) reduces to Eq. (8)
and when A = X it reduces to Eq. (7). So, we only
need to apply Eq. (9) to each subset A ∈ P(X) find every
irreducible information atom—this is equivalent to finding
µ∗(F ).

D. Labeling Irreducible Information Atoms

Working with information atoms for arbitrarily many
variables very quickly becomes unwieldy due to the expo-
nential growth of the number of atoms. Fortunately, there
is a natural ordering for the set of irreducible information
atoms. The atoms are labeled by indexing the power set
of X with an isomorphism to the binary representation
of numbers from 1 to 2N − 1. We simply indicate the
presence of the Xk variable in a subset by the kth digit
of the binary sequence—1 if the variable is in the joint
distribution and 0 if it is being conditioned on. Recall we
exclude the empty set by default.
Notice that this ordering of binary digits is reversed com-
pared to the typical representation—compare the Lexico-
graphic column in Table I to the Decimal column. This is
due to our primarily working with time-indexed variables
and our choosing (rather arbitrarily) to imagine time flow-
ing from left-to-right. Ordering the lexicographic labels
from left to right allows easily identifying the semantic
meaning of binary strings at a glance.
Given i ∈ [1, . . . , 2N − 1], let Ai be the ith set in P(X).
The associated irreducible information atom is:

αi = I [∗Ai | ∗(X \ Ai)] , (10)
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So, the set of irreducible information atoms for X is given
by:

FX =
{

αi | i ∈ [1, . . . , 2N − 1]
}

. (11)

The explicit listing of F is given for the N = 3 case
by Table I, which also gives the indicial label of each
information atom. This is simply the indices k of the
random variables present in the joint distribution. This
label is shorter than the lexicographic and often easier
to identify at a glance. It is also useful when the index
of the random variable carries relational meaning, as it
will in our specific use case. The associated i-diagram is
depicted in Fig. 1.
This completes our review of basic information theory—a
toolset to initiate a full information-theoretic analysis of
any set of random variables if we so chose. In principle,
one only need construct F as detailed above and then gen-
erate the full set of information atoms F through unions.
In practice—even assuming one already has access to the
full joint probability distribution over all variables, a non-
trivial assumption to say the least—the growth rate of
these sets and the difficulty of mechanistic interpretation
once one begins to consider more than three variables has
historically stymied these approaches. Moreover, the lit-
erature has long debated the semantic meaning of various
information atoms—the negativity of interaction informa-
tion, to pick one example, has been a hotly-debated topic
[14].
We sidestep these concerns to a degree by narrowing
our focus from a totally arbitrary collection of random
variables to a collection of random variables that are
measurements of a stochastic process over time. This
introduces a significant amount of structure into the infor-
mational relationships between the variables, as we will
show in the next section.

III. INFORMATION IN STOCHASTIC
PROCESSES

As noted at the end of Section II C, we are interested
here not in truly arbitrary collections of random variables
but rather stochastic processes, which can be understood
as a sequence of random variables related to each other
through time by a particular dynamic. Specifically, we
investigate the relationship between the informational
quantities of random variable blocks belonging to the
process and to the process dynamic.

A. Discrete Discrete Processes

We take a stochastic process P to consist of a Z-
indexed random variable X defined on the measure space(
X Z, Σ, µ

)
. This indexing is temporal and is done by the

qµ

σµ

rµ

b+µb−µ

H [X0]

H
[↼−
X

]
H
[−⇀
X
]

X0 X1 X2 · · ·X−1X−2· · ·

FIG. 2. Above: a tape representing a measurements of a
discrete-time stochastic process. Below: information diagram
representing the informational relationships between the fu-
ture, the present X0, and the past measurements of a in a
generic discrete symbol, discrete-time stochastic process. The
i-diagram is labeled with the ephemeral information rµ, the
binding informations bµ, the enigmatic information qµ, and
the elusive information σµ.

use of subscripts. For example, we write Xt = xt to say
that x ∈ X is the specific value of X at time t.
The dynamic of the stochastic process is given by the shift
operator, also called the translation operator, which is an
operator τ : X Z ! X Z that maps t to t+1: τxt = xt+1. It
also acts on the measure: (τµ)(E) = µ(τ−1E) for E ∈ Σ.
This addition extends the measure space to a dynamical
system (X Z, Σ, µ, τ).
Blocks of the process, called words, are denoted by Xa:b =
{Xt : a < t ≤ b; a, b ∈ Z} with the left index inclusive and
the right exclusive. A word could also refer to a particular
realization of a given length. For instance, one might write
X0:3 = X0X1X2 or x0:3 = x0x1x2.
To simplify our mathematical development, we re-
strict to stationary, ergodic processes: those for which
Pr(Xt:t+ℓ) = Pr(X0:ℓ) for all t ∈ Z, ℓ ∈ Z+, and for which
individual realizations obey all of those statistics.
We refer to the observation at t = 0 as the present X0.
We call the infinite sequence X−∞:0 the past, which we
also (more frequently) denote with an arrow pointing
left: ↼−

X . Accordingly, the infinite sequence X1:∞ is called
the future and denoted −⇀

X . Note that due to process
stationarity, the index denoting the present nominally
can be set to any value without altering any subsequent
analysis.
Our strategy for developing the information theoretics of
stochastic processes primarily is concerned with profiling
the relationships between the past, present, and future.
Given this, a useful perspective on processes is to picture
them as an communication channel transmitting informa-
tion from the past ↼−

X = . . . X−3X−2X−1 to the future
−⇀
X = X1X2X3 . . . through the medium of the present
X0. This perspective motivates deviating from three-way
symmetry in our i-diagrams of processes, as in Fig. 2. The
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Label Type Partition Information Atom

Decimal Lexicographic Indicial Joint Dist. Conditioned

i X Y Z k Ai Ai αi

1 1 0 0 0 {X} {Y, Z} H [X | Y, Z]

2 0 1 0 1 {Y } {X, Z} H [Y | X, Z]

3 1 1 0 01 {X, Y } {Z} I [X; Y | Z]

4 0 0 1 2 {Z} {X, Y } H [Z | X, Y ]

5 1 0 1 02 {X, Z} {Y } I [X; Z | Y ]

6 0 1 1 12 {Y, Z} {X} I [Y ; Z | X]

7 1 1 1 012 {X, Y, Z} ∅ I [X; Y ; Z]

TABLE I. The irreducible information atoms for a set of three random variables X = {X, Y, Z}. Compare the list of αi to the
areas of the information diagram depicted in Fig. 1.

past and the future are depicted here as extending to the
left and the right, respectively, to mirror visualizing the
bi-infinite chain of random variables.

B. Process Information Atoms

Although one might expect increasing difficulty when
moving to a dynamical system, on the surface profiling a
process’ information atoms in terms of its past ↼−

X , present
X0, and future −⇀

X requires no more tools than already
developed in Section II A. We need only apply Eq. (11):

FP =
{

H
[↼−

X | X0,
−⇀
X

]
, H

[
X0 | ↼−

X ,
−⇀
X

]
,

I
[↼−

X ; X0 | −⇀
X

]
, H

[−⇀
X | X0,

↼−
X

]
,

I
[↼−

X ; −⇀
X | X0

]
, I

[
X0; −⇀

X | ↼−
X

]
,

I
[↼−

X ; X0; −⇀
X

] }
.

As there are only three (admittedly aggregate) random
variables in play, applying Eq. (11) gives the expected set
of seven quantities. The atoms are shown in information
diagram form in Fig. 2, alongside an infinite length chain
depicting the measurements of the associated process.
The shape of the i-diagram has been distorted from the
symmetrical one in Fig. 1 to emphasize the empirically
known relationships between the variables (i.e., their tem-
poral ordering) but it is worth confirming that each atom
in Fig. 2 is identifiable as one of the atoms depicted in
Fig. 1.
Five out of the seven atoms in FP have been named and
can be explained intuitively [6]:

1. Ephemeral rµ: The information localized to single
measurement of P at one time and not correlated

to its peers:

rµ = H
[
X0 | ↼−

X ,
−⇀
X

]
. (12)

2. Binding bµ: Two equivalent quantities, forward bind-
ing information b+

µ and reverse binding information
b−

µ :

b+
µ = I

[
X0; −⇀

X | ↼−
X

]
and

b−
µ = I

[
X0; ↼−

X | −⇀
X

]
. (13)

For stationary processes we always have b+
µ = b−

µ .
The forward and reverse binding informations can
be interpreted as how correlated any given measure-
ment of a process is with the future and the past,
respectively.

3. Enigmatic qµ: Aptly named, this is the interaction
information between any given measurement of a
process and the infinite past and future:

qµ = I
[
X0; ↼−

X ; −⇀
X

]
. (14)

As this is a multivariate mutual information, it can
be negative.

4. Elusive σµ: The amount of information shared be-
tween the past and future that is not communicated
through the present:

σµ = I
[↼−

X ; −⇀
X | X0

]
. (15)

Note that the µ in these refers to the process measure
defined in Section III A and is historical notation.
The Shannon entropy rate hµ is is not an irreducible
information atom. It is given by hµ = H [X0 | ↼−

X ] =
b+

µ + rµ. As long as the process is finitary, which is to say
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its excess entropy E = I [↼−X ; −⇀
X ] = b+

µ + qµ + σµ is finite,
the atoms above will be finite.
The other two atoms, H [↼−X | X0,

−⇀
X ] and H [−⇀X | X0,

↼−
X ]

are typically infinite, although they scale linearly with
the length (ℓ) of a window stretching into the future and
past:

H
[↼−

X ℓ | X0, X
]

∼ ℓhµ, and

H
[−⇀

X ℓ | X0, X
]

∼ ℓhµ .

IV. OPTIMAL MODELS OF DISCRETE
PROCESSES

Directly working with processes—nominally, infinite sets
of infinite sequences and their probabilities—is cumber-
some. Practically, we do not want to determine entropies
over distributions of infinite pasts and futures. Rather,
we wish to build a minimal (finitely-specified) model that
captures all correlations in stochastic process P relevant
to the present X0, allowing access to a process’ complete
informational profile.

A. Computational Mechanics

The framework of computational mechanics [8] provides
an exact solution to the problem of optimal minimal pre-
dictive modeling in the form of the ϵ-machine—a model
whose states are the classes defined by an equivalence
relation ↼−x ∼ ↼−x ′ that groups all pasts giving rise to the
same prediction. These classes are called the causal states.

Definition 1. A process’ causal states are the members
of the range of the function:

ϵ [↼−x ] =
{

↼−x ′ | Pr
(−⇀

X = −⇀x |↼−X = ↼−x
)

= Pr
(−⇀

X = −⇀x |↼−X = ↼−x ′
)

for all ↼−x ∈ ↼−
X , ↼−x ′ ∈ ↼−

X
}

that maps from pasts to sets of pasts: ϵ : ↼−
X ! S.

The latter is the set of causal states, with corresponding
random variable S and realizations σ.

The causal states partition the space ↼−
X of all pasts into

sets (causal states σ ∈ S) of pasts that are predictively
equivalent. The set of causal states S may be finite,
fractal, or continuous, depending on the properties of the
underlying process [15]. In the following, we focus on
processes with finite causal state sets.
The dynamic over the casual states is inherited from the
shift operator τ on the process. State-to-state transitions
occur on measurement of a new symbol X0 = x, which

qµ

σµ

rµ

b+µb−µ

χ

H [X0]

H
[↼−
X

]
H
[−⇀
X
]

H [S0]

X0 X1 X2 · · ·X−1X−2· · ·

S0 S1 S2 S3 · · ·S−1S−2· · ·

σA

σB σC

0 : p 1 : 1− p

0 : q

1 : 1− q

1 : 1

FIG. 3. (Top) A process’ ϵ-machine as a state-transition
diagram—a stochastic state machine. (Middle) Time indexing
of causal states and measurements represented on an bi-infinite
chain. The arrow depicts the trajectory (random variable se-
quence) through time. (Bottom) Process information diagram
with the casual state S0 at time t = 0; cf. Fig. 2. The causal
state is a function of the infinite past—which is to say its atom
H[S0] in the i-diagram is contained entirely within the past
H[↼−X ]. The model complexity measure χ is shown alongside
the process-defined quantities in Section III B.

is appended to the observed history to give a new his-
tory: ↼−x ! ↼−x x. Therefore, the causal state transition
is ϵ [↼−x ] = σi ! ϵ [↼−x x] = σj and occurs with probability
Pr (X0 = x | S0 = σi). Note that the subscripts on the
realizations σ indicate a specific element of S, while the
subscripts on the random variables X and S indicate time.
Section IV B 3 discusses the temporal indexing of causal
states in more detail.
The causal state set together with this dynamic is the
ϵ-machine Mϵ =

{
S, X ,

{
T (x) : x ∈ X

}}
, where T

(x)
ij =

Pr (σj , x | σi). The ϵ-machine is guaranteed to be opti-
mally predictive because knowledge of what causal state
a process is in at any time is equivalent to knowledge
of the entire past: Pr (−⇀

X | S) = Pr (−⇀
X | ↼−

X ). The
dynamic over causal states is Markovian in that they
render the past and future statistically independent:
Pr (↼−

X ,
−⇀
X | S) = Pr (↼−

X | S) Pr (−⇀
X | S). We call these

properties together causal shielding. ϵ-Machines also have
a property called unifilarity, which means that knowledge
of the current causal state and the next symbol is sufficient
to determine the next state: H [St+1 | Xt, St] = 0.
These properties are visually represented in Fig. 3, where
the information H[S0] contained in causal state S0 is
entirely encapsulated by the information H[↼−X ] in the past
↼−
X . The casual state also must encompass the entirety of
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the excess entropy E = I
[↼−

X ; −⇀
X

]
. These two constraints

result in an i-diagram that contains strictly fewer atoms
than four random variables would maximally allow. In
this case, an i-diagram has a maximum of nine random
variables. This constraint makes i-diagrams a useful tool
to study ϵ-machines beyond the point they would normally
become intractable for sets of random variables.
The ϵ-machine is the minimal model in the sense that
the amount of information stored by the states is smaller
than any other optimal rival model. We quantify this
by taking the Shannon entropy over the causal states
Cµ = H [S], which we call the statistical complexity [8].
The difference between model information and the excess
entropy is called the crypticity [9]:

χ = Cµ − E .

χ is an additional measure of model complexity that
quantifies how much internal-state information is not
directly available through measurement sequences.

B. Directional Computational Mechanics

While computational mechanics is built under the as-
sumption of optimizing over prediction, it can also be
applied to the goal of retrodiction—finding a distribution
over pasts given knowledge of the future. We can think
of this, equivalently, as predicting the reverse process—
the process in a world where time runs in the opposite
direction.

1. Reverse ϵ-Machine

Informationally speaking, the time-reversal of a stationary
process is not particularly interesting. As noted in Sec-
tion III, the forward and reverse binding informations bµ

are equal, and the excess entropy E, the ephemeral infor-
mation rµ, the enigmatic information qµ, and the elusive
information qµ are all time symmetric by definition.
However, it is not generally the case that the predictive
causal states are the same as the retrodictive ones. And
so, for a full analysis of a process’ informational structure
we must consider the directional casual states. This is
their construction is straightforward but requires new
notation. We rename the objects defined in Definition 1
to the forward causal states σ+ ∈ S+ and denote the
equivalence function as ϵ+ [↼−x ]. Similarly, the associated
ϵ-machine will now be called the forward ϵ-machine and
be denoted M+

ϵ . The definitions do not change. In
contrast, we have:

Definition 2. A process’ reverse causal states are the

members of the range of the function:

ϵ− [−⇀x ] =
{

−⇀x ′ | Pr
(↼−

X = ↼−x |−⇀X = −⇀x
)

= Pr
(↼−

X = ↼−x |−⇀X = −⇀x ′
)

for all −⇀x ∈ −⇀
X , −⇀x ′ ∈ −⇀

X
}

that maps from futures to sets of futures. The set of
reverse causal states is denoted S−, with corresponding
random variable S− and realizations σ−.

The reverse ϵ-machine M−
ϵ is defined in the expected way,

running the shift operator τ in reverse time. It is worth
noting that the reverse ϵ-machine is not guaranteed to
be finite when the forward ϵ-machine is finite, and vice
versa. However, the following will consider processes for
which both machines are finite.
As noted above, the statistical complexity Cµ typically
differs in the forward and reverse directions. Accordingly,
we also have directional crypticities with more concise
expressions than those given above:

χ+ = H
[
S+

t | S−
t

]
and (16)

χ− = H
[
S−

t | S+
t

]
. (17)

The crypticities χ+ and χ− have compelling interpreta-
tions. χ+ is the amount of information in the forward
ϵ-machine that is not contained in the excess entropy—
which, recall, is the total amount of information the pro-
cess communicates through time. It may seem odd that
the causal states could contain more information than
this, but consider the classic example of a “nearly”-IID
process. Such a process looks arbitrarily close to random,
and so the amount of information communicated through
time is vanishingly small. However, in fact, there exist
very long-range correlations that can marginally improve
on optimal prediction, which must therefore be stored in
the causal states. Indeed, it is not only possible, but even
typical for processes generated by hidden Markov models
for the excess entropy to be finite while the statistical
complexity and therefore the crypticity, diverge [15].

2. Bidirectional Machine

With both the forward ϵ-machine and the reverse
ϵ-machine in hand, we can consider the bidirectional ma-
chine M±

ϵ , which simultaneously optimally predicts and
retrodicts.

Definition 3. The bidirectional causal states of a process
are the members of the range of the function:

ϵ± [↼⇀x = (↼−x , −⇀x )] =
{

(↼−x ′, −⇀x ′) |↼−x ′ ∈ ϵ+ [↼−x ] and
−⇀x ′ ∈ ϵ− [−⇀x ]

}
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X0 X1 X2 · · ·X−1X−2· · ·

S+
0 S+

1 S+
2 S+

3 · · ·S+
−1S+

−2· · ·

S−
0 S−

1 S−
2 S−

3 · · ·S−
−1S−

−2· · ·

σ+
A

σ+
B σ+

C

0 : p 1 : 1− p

0 : q

1 : 1− q

1 : 1

σ−
a σ−

b

σ−
c σ−

d

1 : 1− pq

0 : pq

1 : 1−p
1−pq

0 : p(1−q)
1−pq

0 : 1

1 : 1

FIG. 4. The forward (Top) and reverse (Bottom) ϵ-machines
of a stochastic process. The time indexing of the causal states
and the emitted measurements are laid out on three parallel
horizontal chains. The variables on the chain are color coded
to match Fig. 5, which depicts the accompanying information
diagram. The arrows depict the path through time in the
forward (Top) and reverse (Bottom) directions, respectively,
cf. Fig. 3.

that maps histories to set of histories. The set of bidirec-
tional causal states is denoted S±, with corresponding
random variable S± and realizations σ±.

The bidirectional causal states are a subset of the Carte-
sian product of forward and reverse casual states: S± ⊆
S+ × S−. Our convention in the following is to label
causal states with Latin letters, using upper case for the
forward direction and lower case for the reverse direction:
i.e., S+ = {BC} and S− = {a, b, c, d} as in Fig. 4. The
bidirectional states are labeled by their corresponding
forward and reverse states: i.e., S± = {Aa, Ba, . . . }. See
Fig. 6 for examples.
We primarily use the bidirectional machine in the algo-
rithm that calculates our new informational properties,
as discussed in Section VII.

3. Temporal Indexing of Causal States

For process random variables—e.g., X and S—subscripts
indicate the variable’s time index. While subscripts on
realizations indicate their set index. In other words,
S+

t = σi refers to the forward causal state at time t,
which takes on the value of the ith element of S+. The
ϵ-machine is drawn as a state-transition diagram with
transition probabilities Pr (Xt = x | St, St+1) from St to
St+1 written as x : Pr (x : Pr : direction for the bidirec-
tional machine) on the appropriate transitions.

Figure 4 depicts the forward ϵ-machine (Top) and the
reverse ϵ-machine (Bottom) of a given process. The time-
indexed states of the ϵ-machines are depicted on state
chains . . . S1S2 . . . sandwiching the chain of process mea-
surements . . . X1X2 . . .. Although we index the causal
states with integers, we imagine them as occurring on
“half time steps” in between the measurement time in-
dices. The arrows trace the path through time along the
causal states and observed measurements. Note that in
the forward direction, the causal state at time t emits the
measurement at time t, but in the reverse direction the
causal state at time t is said to emit the measurement at
time t − 1. This offset is a consequence of using integer
indices for the states. The mismatch in the reverse time
direction (rather than the forward direction) is a matter
of convention.
Consider how there are four states that symmetrically
“surround” each measurement. For the present X0, these
states are S+

0 , S−
0 , S+

1 , and S−
1 . The informational re-

lationship the forward and reverse states have with the
measurement they surround is asymmetrical. We might
say that two of the states—S+

1 and S−
0 —have already

“seen” the measurement X0, as it was emitted on the tran-
sition to that state. From the perspective of these states,
X0 is included in the past or future, respectively. We
say that S−

0 and S+
1 are “interior” to the measurement,

drawing on the visual depiction in the i-diagram in Fig. 5,
where these states (kidney bean in shape) are positioned
as closer to the center of the diagram. The other states
S+

0 and S−
1 are then “exterior”—they trail on either end

of the i-diagram due to their access to information furthest
in the past or future, respectively.

V. ATOMIC TAXONOMY

With the causal states in place, we can develop a full
information-theoretic analysis of prediction—that is, pre-
diction and retrodiction.

A. Information Atoms from Causal States

Naively, our new information atom set is formed by simply
adding the four causal states “surrounding” the present
measurement to our random variable set:

Xϵ =
{↼−

X , S+
0 , S−

0 , X0, S+
1 , S−

1 ,
−⇀
X

}
.

However, thanks to causal shielding, we can drop the
infinite past and future, as they are redundant with the
causal states.

1. Casual Shielding

Our secondary purpose of introducing computational me-
chanics was to reap the benefits of the causal shielding
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qµ

σµ

rµ

b+µb−µ

χ+ χ−

H [X0]

H
[↼−
X

]
H
[−⇀
X
]

H
[
S+
0

]
H
[
S−
1

]

H
[
S+
1

]
H
[
S−
0

]

FIG. 5. Information diagram representing all possible positive atoms of a single transition of a bidirectional machine, including
the states at t = 0 and the states at t = 1. The majority of the information atoms theoretically possible go to zero due to the
causal shielding of the causal states. The information atoms defined in Section III B, five of which are no longer irreducible, are
overlaid over their corresponding atoms.

properties of the causal states. By using the ϵ-machines
as our model, we can study all temporal correlations that
impact the present without including the infinite-length
past and future in our informational analysis, as we did
in Section III B. In practice, this means replacing the
conditioning variables according to shielding order.

Given a set of variables X and subsets A, B ∈ X we say
that A shields the set X from B if:

(C ⊥ B | A) , for all C ∈ (X \ B) .

For example, S+
0 shields Xϵ from the past ↼−

X and S−
1

shields Xϵ from the future −⇀
X . This means that wherever

↼−
X appears in an informational quantity, it is possible to
replace the variable with S+

0 with no loss of information
and to replace −⇀

X with S−
1 . So, in fact, our relevant

random variable set is:

Xϵ =
{

S+
0 , S−

0 , X0, S+
1 , S−

1
}

.

Five random variables maximally produces an irreducible
atom set of 25 = 32 atoms, but FM±

ϵ
consists of only

fourteen nonzero irreducible atoms. This reduction is due
to the particular properties of the causal states—namely
unifilarity and causal shielding. The structured nature of
Fig. 5 indicates the influence of these properties, which
we discuss in further depth in Section V B. First, to get
there we introduce the nonzero information atoms of an
optimally modeled process.

2. Anatomy of a Bit Revisited

Ten of our new information atoms are related to the
original five atoms given in Section III B. First, rewrite
those atoms in terms of the causal states, replacing infinite
futures and pasts with the appropriate shielding causal
states:

• rµ = H
[
X0 | S+

0 , S−
1

]
,

• b+
µ = I

[
X0; S−

1 | S+
0

]
,

• b−
µ = I

[
X0; S+

0 | S−
1

]
,

• qµ = I
[
S+

0 ; X0; S−
1

]
, and

• σµ = I
[
S+

0 ; S−
1 | X0

]
.

The increase in number of atoms from five to ten is due
to the “splitting” of the binding informations bµ and the
ephemeral information rµ into transient and persistent
pieces. By transient information we mean information
that will be “forgotten” by the the ϵ-machines within a
single time step, either into the future (for the forward
ϵ-machine) or into the past (for the reverse ϵ-machine).
By persistent information we mean information that is
“stored” in the model, and remains correlated with new
causal states. Figure 5 depicts this by overlaying the
taxonomy of a process’ informational quantities over their
new constituent atoms. The persistent informations are
colored darker in shade. The full list of atoms is given
by Table II, organized by their parent “anatomy of a bit”
quantity.
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Consider first the reverse binding information b−
µ . This

splits into two terms:

b−
µ = I

[
X0; S+

0 ; S−
0 | S+

1
]︸ ︷︷ ︸

transient

+ I
[
X0; S+

0 ; S−
0 ; S+

1 | S−
1

]︸ ︷︷ ︸
persistent

.

The first term is transient binding information in the
forward causal state at t = 0 that is not carried through
to the forward causal state at t = 1. The second term is
called persistent as it is that part of the binding informa-
tion correlated with S+

1 . It therefore influences the future
states of the forward ϵ-machine.
We can do the same analysis with the forward binding
information and the reverse causal states, recalling that
the reverse ϵ-machine runs in reverse time:

b+
µ = I

[
X0; S−

1 ; S+
1 | S−

0
]︸ ︷︷ ︸

transient

+ I
[
X0; S−; S−

0 ; S+
1 | S+

0
]︸ ︷︷ ︸

persistent

.

The second term is persistent reverse binding information
correlated with S−

0 and it, therefore, influences past states
of the reverse ϵ-machine.
Analogously, the ephemeral information splits into four
terms:

rµ =
transient︷ ︸︸ ︷

H
[
X0 | S+

1 , S−
0

]
+ I

[
X0; S−

0 | S+
1

]
+ I

[
X0; S+

1 | S−
0

]
+ I

[
X0; S+

1 ; S−
0 | S+

0 , S−
1

]︸ ︷︷ ︸
persistent

.

It helps to compare the terms above to the atoms of Fig. 5.
The first term is the transient ephemeral information,
which is truly ephemeral in that it remains uncorrelated
with any causal state at any time. The remaining three are
all persistent: the second term is ephemeral information
that is correlated with only the states of the reverse
ϵ-machine, the third term only with states of the forward
ϵ-machine, and the fourth information term is correlated
with both.

3. Splitting Causal State Information

The prior accounted for the ten information atoms corre-
sponding to process measurements. There are still four
purely causal model information atoms, two of which
are new to this analysis. Recall the forward and reverse
crypticities Eq. (17). For our system, we have:

χ+ = H
[
S+

0 | S−
0

]
χ− = H

[
S−

1 | S+
1

]
.

As already noted by Section IV B, the crypticities are a
type of modeling information—the amount of information
required for the causal states to do optimal prediction

or retrodiction above and beyond the excess entropy. As
with the binding and ephemeral informations, some of
this information is transient and some persistent.
Consider the forward crypticity:

χ+ = H
[
S+

0 | S+
1 , S−

0
]︸ ︷︷ ︸

transient

+ I
[
S+

0 ; S+
1 | S−

0
]︸ ︷︷ ︸

persistent

.

The first term is the transient forward crypticity. This is
modeling information that is “forgotten” after one time
step—necessary for optimal prediction of X0 but not of
X1. The second term is the persistent forward crypticity,
which is correlated with S+

1 and continues to be influential
in prediction of future observations.
The reverse crypticity splits in the same manner:

χ− = H
[
S−

1 | S+
1 , S−

0
]︸ ︷︷ ︸

transient

+ I
[
S−

1 ; S−
0 | S+

1
]︸ ︷︷ ︸

persistent

.

Again, the first term is transient and the second is persis-
tent, although in this direction the difference is whether
the information is correlated with the reverse causal state
S−

0 .

B. Atomic Indicial Structure

As already noted, our informational taxonomy of a predic-
tion results in only fourteen atoms despite a theoretically-
possible set of thirty two. This reduction is a result of
the structural properties of the causal states. These prop-
erties are concisely described using the indicial labeling
described in Section II D. Our convention is to order se-
quences of causal states and measurements starting with
a forward-time causal state and continuing in the order:
S+

t , S−
t , Xt, S+

t+1, S−
t+1, Xt+1, . . . .

This means that in the indicial notation, we have:

S+
t ! k = t

S−
t ! k = t + 1

Xt ! k = t + 2 .

Using the shorthand notation H [k] = H
[
S+

t

]
, we can then

express the structural properties in terms of patterns in
the indexes of the random variables, as follows:

1. Unifilarity: Given a measurement and the causal
state that emitted it, there is no longer any uncer-
tainty in the next state. In the forward and reverse
directions, for k ∈ N, k mod 3 = 0, the disallowed
atoms are given by:

H [k + 3; . . . | k, k + 2, . . .] = 0 and
H [k + 1; . . . | k + 2, k + 4, . . .] = 0 ,

where the dots indicate that the remaining two
variables may be added to either side of the partition.
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Label Type Partition Information Atom

Decimal Lexicographic Indicial Joint Set Conditioned Atom Type
i S+

0 S−
0 X0 S+

1 S−
1 k Ai Ai αi

1 1 0 0 0 0 0
{

S+
0

} {
S−

0 , X0, S+
1 , S−

1
}

H
[
S+

0 | S−
0 , S+

1
]

t. χ+

9 1 0 0 1 0 03
{

S+
0 , S+

1
} {

S−
0 , X0, S−

1
}

I
[
S+

0 ; S+
1 | S−

0
]

p. χ+

7 1 1 1 0 0 012
{

S+
0 , S−

0 , X0
} {

S+
1 , S−

1
}

I
[
S+

0 ; S−
0 ; X0 | S+

1
]

t. b−
µ

15 1 1 1 1 0 0123
{

S+
0 , S−

0 , X0, S+
1

} {
S−

1
}

I
[
S+

0 ; S−
0 ; X0; S+

1 | S−
1

]
p. b−

µ

4 0 0 1 0 0 2 {X0}
{

S+
0 , S−

0 , S+
1 , S−

1
}

H [X0 | S−
0 , S+

1
]

t. rµ

6 0 1 1 0 0 12
{

S−
0 , X0

} {
S+

0 , S+
1 , S−

1
}

I
[
S−

0 ; X0 | S+
0 , S+

1
]

p. r−
µ

12 0 0 1 1 0 23
{

X0, S+
1

} {
S+

0 , S−
0 , S−

1
}

I
[
X0; S+

1 | S−
0 , S−

1
]

p. r+
µ

14 0 1 1 1 0 123
{

S−
0 , X0, S+

1
} {

S+
0 , S−

1
}

I
[
S−

0 ; X0; S+
1 | S+

0 , S−
1

]
p. r±

µ

28 0 0 1 1 1 234
{

X0, S+
1 , S−

1
} {

S+
0 , S−

0
}

I
[
X0; S+

1 ; S−
1 | S−

0
]

t. b+
µ

30 0 1 1 1 1 1234
{

S−
0 , X0, S+

1 , S−
1

} {
S+

0
}

I
[
S−

0 ; X0; S+
1 ; S−

1 | S+
0

]
p. b+

µ

16 0 0 0 0 1 4
{

S−
1

} {
S+

0 , S−
0 , X0, S+

1
}

H
[
S−

1 | S−
0 , S+

1
]

t. χ−

18 0 1 0 0 1 14
{

S−
0 , S−

1
} {

S+
0 , X0, S+

1
}

I
[
S−

0 ; S−
1 | S+

1
]

p. χ−

27 1 1 0 1 1 0134
{

S+
0 , S−

0 , S+
1 , S−

1
}

{X0} I
[
S+

0 ; S−
0 ; S+

1 ; S−
1 | X0] σµ

31 1 1 1 1 1 01234
{

S+
0 , S−

0 , X0, S+
1 , S−

1
}

∅ I
[
S+

0 ; S−
0 ; X0; S+

1 ; S−
1

]
qµ

TABLE II. For a given process, the irreducible, nonzero information atoms for a set of five random variables X ={
S+

0 ; S−
0 ; X0; S+

1 ; S−
1

}
. The decimal, lexicographic, and indicial labels are given in the left side columns, as laid out in

Section II D. The partitioning of the variables is given in the middle two columns, with variables in the left side in the joint
distribution and variables on the right side in the conditioning distribution. On the far right, the corresponding information
atom is written explicitly (with redundant conditioning variables dropped) alongside the “type” of atom in the taxonomic
scheme given in Section III B and whether it is transient (t.) or persistent (p.).

For our analysis of the present, this zeroes out four
atoms in each direction. One of these atoms is
shared, and so there are seven atoms eliminated in
total.

2. Minimal optimal prediction: the forward-time
causal states are strict functions of the past. They
contain no extra information about the future that
is not contained within the past, but as optimal
predictors they capture all of this information, i.e.,
all of the excess entropy. In information-theoretic
terms this means, when conditioning on the future,
the forward causal states cannot share information
with any other variables except other forward causal
states. The same holds in the reverse-time case. For
k, j ∈ N, k mod 3 = 0, the disallowed atoms are

given by:

(i) For j mod 3 ̸= 0 and j > k :
I [k; j; . . . | k + 1, . . .] = 0

(ii) For j mod 3 ̸= 1 and j < k + 4 :
I [k + 4; j; . . . | k + 3, . . .] = 0

This accounts for six variables in each direction.
However, two atoms are the same in each direction
so there are ten atoms eliminated total.

3. Markov shielding: This property does not elimi-
nate any atoms when considering only a single time
step, but it is worth noting. Since the causal states
are Markov order-1, no information may be shared
between measurements that is not also contained
within the states. For k ∈ N, k mod 3 = 0;

I [k + 2; k + 5; . . . | k + 3, k + 4, . . .] = 0 .
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As a final note on indicial ordering, consider the sixth
column in Table II, which lists the informational quantities
discussed. Comparing to the fourth and fifth columns,
which give the partitioning of Xϵ, it is clear that we
are able to write the informational quantities without
necessarily including all variables in the conditioning set.
(This is sometimes also true for the joint distribution, but
we take it as a convention to always explicitly include all
variables in the joint distribution.)

We are able to do this because our second property, mini-
mal optimal prediction, is equivalent to saying that the
forward (reverse) causal states render future (prior) vari-
ables conditionally independent with respect to all prior
(future) measurements and prior forward (future reverse)
causal states. Figure 5 depicts this property as the for-
ward time causal states covering all space shared between
future variables and the prior measurements and prior
forward causal states.

When writing conditional informational quantities, our
convention is to drop all forward causal states “eclipsed”
by forward causal states further along in the future and
all reverse causal states “eclipsed” by reverse casual states
further in the past. We also drop measurements “eclipsed”
by causal states in either direction. To see the result of
this, compare the Ai column in Table II to the condition-
ing variables in the information quantities listed in the
αi column.

VI. PROCESSES

With our new information quantities established, we now
consider a suite of exactly-solvable taxonomies for example
binary discrete stochastic processes.

A. Independent, Identically-Distributed

The first is the simplest possible: an infinite sequence of
independent, identically-distributed (IID) coin flips. The
ϵ-machines for such a process with a bias of p are given
in the first three rows Fig. 6 (a). In this case, since the
process has no structure or memory, there is only a single
causal state in each direction, which can be identified as
equivalent in the bidirectional machine. Accordingly, all
transitions are self-loops.

With only a single state, the statistical complexity (causal
state or model information) Cµ vanishes, zeroing out all
information in a single measurement except the transient
ephemeral information rµ. If p = 0.5, rµ = 1 bit, as
shown in the bar chart in the bottom row of Fig. 6 (a).
The information in the infinite past and future diverges.

B. Periodic

The second example process is nearly as trivial. An n-
periodic process requires exactly n causal states but has
only deterministic transitions. As such, knowledge of the
current measurement is equivalent to knowledge of the
infinite past and infinite future, as well as the forward
and reverse causal states. Intuitively, we understand then
that the only remaining positive quantity is qµ. This is
the information shared between all model variables. For
an n-periodic process, qµ = log2 n bit.
The n = 3 case is depicted in Fig. 6 (b). Notice that each
of the forward causal states can be uniquely identified
with a reverse causal state and vice versa. We call this
a noncryptic process in both directions. In the bar chart
of information quantities in the bottom row of Fig. 6 (c),
n = 3 and so rµ = 1.58.

C. Even

The Even process is a binary process of sequences of 0s of
any length interspersed with even-length sequences of 1s.
The probability distribution of the length of the sequences
of 0s and 1s are controlled by a single parameter p ∈ (0, 1).
The forward direction ϵ-machine is depicted in Fig. 6 (c).
There are two forward-time casual states {A, B}. The
self-loop on state A occurs with probability p when the
machine is in state A. The topology of the reverse-time
ϵ-machine is identical to the topology of the forward-time
machine and, in fact, the Even process is also noncryptic
in both directions.
Despite the Even process’ apparent simplicity, its predic-
tion taxonomy is surprisingly complex. The process is
infinite-order Markov, which is to say that the probability
of the next symbol depends on the infinite length past
and cannot be exactly extrapolated from any finite-length
history. As such, there is no finite Markov model that gen-
erates the Even process—it can only be finitely modeled
with a hidden Markov model.
As noted, both forward and reverse crypticities vanish.
The ephemeral informations vanish for similar reasons:
since knowledge of the forward states is equivalent to
knowledge of the reverse states, for there to be any positive
ephemeral information the model would need to have two
possible transitions between bidirectional causal states on
a single time step, which it does not.
We are left with two transient binding informations, the
enigmatic information, and the elusive information. The
entropy rate of the Even process is produced entirely
by the choice between the self-loop and the transition
on state Aa. This, exactly, is the transient portion of
the forward binding information: it is not determined by
knowledge of the previous state S−

0 (which again, in this
case is equivalent to S+

0 ). The reverse argument explains
the reverse binding information.
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FIG. 6. Example prediction taxonomies: The forward ϵ-machines (top row), reverse ϵ-machines (second row), bidirectional
ϵ-machines (third row), i-diagrams (fourth row), and exact informational quantities plotted in a bar chart (bottom row) of four
discrete stochastic process: a) an identically independently distributed (IID) sequence of coin flips, b) an n-periodic process, c)
the Even process, d) the Golden Mean process. Recall that our convention is to use uppercase Latin letters for the forward
causal states and lower case Latin letters for the reverse causal states.

The elusive information σµ is positive since the bidirec-
tional causal state is not uniquely determined by the
current measurement—a 1 may indicate the machine has
just transitioned to Aa or Bb. Finally, we have the enig-
matic information qµ, which is negative. In this case the
elusive information is the multivariate mutual information
between S−

0 = S+
0 , X0, and S−

1 = S+
1 . Recall that the

negativity of multivariate mutual information means that
the addition of the third variable (which can be taken
to be any of the three, due to symmetry) increases the
shared information between the other two.
How to understand this? Notice that the Even state
machine ties one symbol to self-loops (0) and one symbol
to transitions (1). This means that knowledge of the
measurement reveals that the temporal ordering of the
states is also a structural relationship, increasing the
shared information.

D. Golden Mean

Finally, consider a binary stochastic process that is su-
perficially quite similar to the Even process, but has a
very different informational structure. The Golden Mean
Process is a binary process that can have sequences of 1’s
of any length, interspersed with only single 0’s. The prob-
ability of a 1s sequence decreases as the length increases,
although the nature of this probability distribution de-
pends on a single parameter p ∈ (0, 1). The ϵ-machines
of this process family is given in Fig. 6 (d). There are two
forward-time causal states and p determines the probabil-
ity split between the self-loop and the state transition on
state A, controlling the probability of seeing a 0 after a
sequence of 1s.

In contrast to the the Even process, the bidirectional
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machine given in Fig. 6 shows that the forward and reverse
causal states are not one and the same nor are they
independent—there are three bidirectional causal states.
The “missing” bidirectional state is Bb, which would
represent the forward machine being in state B and the
reverse machine being in state b simultaneously. This is
impossible as it implies a sequence of two 0s.
Unlike the Even process, the bidirectional machine is
cryptic: even if one knows the current causal state in one
direction, it is possible to be uncertain of the causal state
in the opposite direction. The elusive information σµ van-
ishes because the causal state can always be determined
by a measurement of the present (1s lead to either A or
a, 0s lead to B or b, depending on scan direction).
All other types of information are represented. The en-
tropy rate splits into ephemeral information and forward
binding information. We can intuitively think of this split
as the information produced by the process each time
step—a splitting into a piece that does not explain the
future (ephemeral) and a piece that does (forward bind-
ing). The ephemeral information appears only in its least
ephemeral form, in a sense—we are only uncertain about
the observed symbol if we are also uncertain of the previ-
ous reverse causal state S−

0 and the next forward causal
state S+

1 . This uncertainty occurs when the machine is
in state A, which could transition from Aa ! Aa on a 1
or from Ab ! Ba on a 0. That is only two of the three
possible transitions out of state A, however. The machine
can also transition from Aa ! Ab on a 1. This transition
is informative about the future, in that it determines the
value of S−

1 and so contributes to the forward binding
information. As usual, this logic also applies in reverse
to the reverse binding information.
Finally, we have the enigmatic information, which is pos-
itive for all values of p. To understand this, we recall
our discussion of negative enigmatic information in the
previous example (Section VI C). There the value of the
present symbol improved our ability to guess what kind
of transition the machine was undergoing. In this case,
the opposite intuition holds.

VII. BIDIRECTIONAL ATOM ALGORITHMS

ϵ-Machine informational properties are useful not only
in that they define a suite of interpretable informational
quantities, but also because knowledge of the ϵ-machine al-
lows directly and exactly calculating those quantities [16].
With knowledge of a finitely-specified forward ϵ-machine
of a discrete stochastic process (which can even be in-
ferred from time series data [17]), we can find the reverse
and bidirectional ϵ-machines and from there calculate all
the quantities defined in Section V.
Before describing relevant algorithms, we recall and define
a few preliminary concepts.
A machine M is given by a list of square transition ma-
trices

{
T (x) : x ∈ X

}
where T

(x)
ij = Pr (σj , x | σi). Let

N = |S+| and M = |S−| so that the transition matrices
of the forward ϵ-machine are N × N and the transition
matrices of the reverse ϵ-machine are M × M .

The mixed-state algorithm, fully elucidated in Ref. [15],
finds the mixed states η of a hidden Markov model M .
Briefly, for a length-ℓ word w generated by M the mixed
state η(w) is an observer’s best guess as to which state
the machine is in after observing w:

η(w) = [Pr (Si | X0:ℓ = w)] (18)

given an initial guess of π—the asymptotic stationary
distribution of the machine: π = πT , where the state
transition matrix is T =

∑
x∈X T (x). The mixed states of

a machine are the set:

H =
{

η(w) : w ∈ X +, Pr(w) > 0
}

. (19)

If the process generated by M has a finite ϵ-machine, the
mixed-state algorithm finds the recurrent causal-state set
by collecting mixed states for an arbitrarily long word.
In general, |H| ! ∞, so we typically set a threshold past
which if the mixed state set continues to grow, we assume
there is no finite representation.

Definition 4. A flipped machine M̃ is a machine where
each transition T

(x)
ij has been replaced with the transition:

T̃
(x)
ji = T

(x)
ij

πj

πi
.

This, in effect, flips the direction of the arrows on each
transition and renormalizing the probability. This will
typically produce a nonunifilar machine.

Definition 5. The forward switching matrix S+ be-
tween the forward and reverse ϵ-machines is defined
S+

ij = Pr(σ+
j |σ−

i ). The reverse switching matrix S− is
similarly defined S−

ij = Pr(σ−
i |σ+

j ).

These pieces allow writing down a simple algorithm for
reversing an ϵ-machine—i.e., constructing the ϵ-machine
in the reverse direction given the forward ϵ-machine.
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Algorithm 1 Reverse ϵ-machine
1: procedure ReverseEM(M+

ϵ )
2: input forward ϵ-machine M+

ϵ .
3: Flip M+

ϵ .
4: Apply the mixed state algorithm to M̃+

ϵ , collecting
the unique mixed states in a set H

M̃+
ϵ

. If this set
converges to a finite set, it consists of the reverse
causal states, given in terms of a distribution over
forward causal states.

5: Stack the mixed states vertically into the forward
switching matrix S+ of shape M × N .

6: Initialize empty list T −.
7: for x in X do
8: Initialize empty M × M matrix T −(x).
9: for i = 1, . . . , M do

10: Calculate probability:

eiT̃ +
(x)

1 .

11: Calculate next state:

eiT̃ +
(x)

eiT̃ +
(x)

1
.

12: Initialize empty list.
13: for j = 1, . . . , N do
14: if next state equals S+ej then
15: Append probability to list.
16: else
17: Append a zero to list.
18: end if
19: end for
20: Replace the ith row of T −(x) with list.
21: end for
22: Append T −(x) to T −.
23: end for
24: return M−

ϵ as list of reverse ϵ-machine transition
matrices T − over symbols x ∈ X .

25: end procedure

If one starts from the reverse ϵ-machine, the forward
ϵ-machine can be constructed in the expected manner.
Indeed, the labeling of the time direction is somewhat
arbitrary absent a physical system.
With the forward and reverse ϵ-machines in hand, it is
straightforward to construct the bidirectional machine
as in Algorithm 2. Since retaining consistent state la-
beling is important, it is highly recommended to use a
data structure capable of containing labeled axes (rows
and columns) and to maintain a distinct convention for
labeling forward and reverse causal states. As already
noted, our convention is to use Latin letters, uppercase
for forward states and lowercase for reverse states. This
is particularly important when constructing the bidirec-
tional machine.
Let A+(x) be the N ×N forward symbol labeled adjacency
matrix of T +(x), which is to say the elements a+

i j are
one when T +(x)

ij > 0, indicating a positive probability of
transition, and zero otherwise.

Algorithm 2 Bidirectional machine
1: procedure BidirectionalMachine(A+, M−

ϵ )
2: input reverse ϵ-machine M−

ϵ .
3: Flip M−

ϵ .
4: Initialize empty list T ±.
5: for x in X do
6: From A+(x) construct the block matrix: a+

11T̃ −
(x)

. . . a+
1N T̃ −

(x)

...
...

a+
N1T̃ −

(x)
. . . a+

NN T̃ −
(x)

 , (20)

inheriting state labels as appropriate.
7: Drop all rows and columns consisting of only

zeroes, leaving a square matrix.
8: Append matrix to list of bidirectional machine

transition matrices T ±.
9: end for

10: return M±
ϵ as list of bidirectional machine transition

matrices T ±.
11: end procedure

As with Algorithm 1, the bidirectional machine can be
constructed in the “reverse direction”, by starting with
A− and M+

ϵ and making the appropriate substitutions.
Regardless, the same bidirectional machine will be con-
structed.

Once the bidirectional machine is in hand, calculating
a process’ prediction taxonomy quantities is conceptu-
ally straightforward, if somewhat subtle with regard to
tracking indices of the states and observations. See Algo-
rithm 3.

Algorithm 3 Informational anatomy
1: procedure InfoAnatomyModel(M±

ϵ )
2: input bidirectional ϵ-machine M±

ϵ .
3: Generate list of nonzero measure partitions, accord-

ing to the indicial rules laid out in Section V B.
4: Calculate the probability of all possible transitions

of the bidirectional machine from an initial distri-
bution over states. Unless otherwise noted, use the
stationary distribution π±.

5: Initialize empty list.
6: for Ai in partition do
7: Apply the information function Eq. (10).
8: Append information value to list.
9: end for

10: return list of information quantities.
11: end procedure

Once again, data structures capable of retaining labeled
axes are recommended, along with a consistent indicial
labeling strategy as laid out in Section V B.
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VIII. CONCLUSION

This concludes our development of the informational tax-
onomy of an optimally predicted and retrodicted process.
There are several few points of interest to highlight.
Step 3 of Algorithm 3 requires choosing a distribution
over the states of the bidirectional machine to determine
the probability of paths through the machine (and, of
observing words of the process). We have not discussed
this aspect of the prediction taxonomy explicitly, im-
plicitly assuming that the process is in the stationary
distribution. However, this is a choice, and a potentially
interesting one—one can calculate the taxonomy of infor-
mation measures for any distribution over the states of
the bidirectional machine, although the canonical compu-
tational mechanics quantities like Cµ are typically defined
in terms of the stationary distribution π [6].
As the ϵ-machines are constrained to be ergodic Markov
chains over the states, any initial distribution will even-
tual converge to the stationary distribution when evolved
by the state transition matrix T . We conjecture this is
true for the bidirectional machine as well, so one can track
the convergence of the prediction taxonomy quantities
by starting the bidirectional machine away from equilib-
rium and allowing it to evolve towards the stationary
distribution.
Another, alternative analysis is to explore the informa-
tional properties of prediction when the machine is con-
strained to a subset of possible observations. The informa-
tional exploration of the ϵ-machine operating away from

the stationary state is an intriguing area of exploration
that has been considered in related work on thermodynam-
ically coupled ϵ-machines [18]. We reserve the discussion
of this avenue for future work.
We also wish to note that this development is closely
related to other fine-grained informational analyses of
stochastic processes. In particular, we are interested
in exploring the relationship between the results here
and partial information decomposition [14]. Reference
[6] showed that analyzing the quantities described in
Section III B with the partial information lattice allows
one to relate enigmatic information qµ to the synergy
and redundancy. We are interested in a similar analysis
with our new, expanded taxonomy, but this is outside the
present scope.
As one may conclude from the indicial rules laid out in
Section V B and Algorithm 3, the procedure for generating
the informational anatomy of a model can be straightfor-
wardly extended beyond a single time step. Indeed, doing
so leads to even more intriguing informational represen-
tations of processes and complexity measures. However,
this extension too is beyond the present scope, but will
be discussed instead in a sequel.
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