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Abstract

We present a new algorithm for discovering patterns in time series or other sequential data. In

the prior companion work, Part I, we reviewed the underlying theory, detailed the algorithm,

and established its asymptotic reliability and various estimates of its data-size asymptotic rate of

convergence. Here, in Part II, we outline the algorithm’s implementation, illustrate its behavior and

ability to discover even “difficult” patterns, demonstrate its superiority over alternative algorithms,

and discuss its possible applications in the natural sciences and to data mining.

Draft of September 9, 2002

1. Introduction

Motivated in part by the recent explosion in the size of databases, there is an increasing awareness
of the problem of pattern discovery (Crutchfield, 1994): Given data produced by some process, how
can one extract meaningful, predictive patterns from it, without fixing, in advance, the kind of
patterns one looks for? In a companion work, Part I, we explained how computational mechanics
(Crutchfield and Young, 1989, Crutchfield, 1994, Upper, 1997, Feldman and Crutchfield, 1998, Shalizi
and Crutchfield, 2001) provides an answer to this general problem, first by reviewing the underlying
theory and then by introducing a new algorithm—Causal-State Splitting Reconstruction (CSSR)—
that discovers patterns intrinsic to a process. There we demonstrated that CSSR converges to the
true model in the infinite-data limit and established bounds on its convergence rate using techniques
from large-deviation theory.

This sequel complements Part I’s theoretical emphasis with the practical issues of implementa-
tion, evaluation on a range of prototype stochastic processes, and comparison to the closest alterna-
tive approaches that claim to do something like pattern discovery. Naturally, we expect the reader to
be familiar with Part I (Shalizi et al., 2002), especially the vocabulary of computational mechanics
introduced there, its notation, and the basic workings of the CSSR algorithm. Here we demonstrate,
experimentally, how well the CSSR algorithm does at reconstructing the causal architecture from
samples of known processes and how various parameters affect reconstruction accuracy and quality.
We then compare CSSR with other procedures for inferring Markovian structure in time series. Our
conclusion summarizes our results and suggests directions for future applications.

Here we first briefly review the basic concepts and notation from information theory and com-
putational mechanics necessary for understanding, on the one hand, the CSSR algorithm and, on
the other, how to evaluate its performance. Then we review CSSR itself and develop the specific
evaluation measures that we use. At that point, the development turns into a sequence of pattern
discovery tests applied to sources of increasing structural complexity. Finally, we compare CSSR to
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current popular approaches to the same problem, concluding with a few remarks on additional areas
of application.

2. Information Theory

Here we give a synopsis of information theory (Cover and Thomas, 1991), since many of the perfor-
mance measures for the CSSR pattern discovery are most appropriately defined as various measures
of uncertainty and stored information.

For a random variable S taking values in a countable set A, the entropy of S is defined as

H[S] ≡ −Σs∈AP(S = s) log2 P(S = s) . (1)

The entropy is interpreted as the uncertainty in S or as the mean number of yes or no questions
needed to pick out the values of S on repeated trials. H[S] has units of bits of information.

For two variables X (taking values in A) and Y (taking values in B) the joint entropy is

H[X,Y ] ≡ −Σ(x,y)∈(A×b)P(X = x · Y = y) log2 P(X = x · Y = y) . (2)

One defines the conditional entropy of one random variable X on another Y from their joint entropy
as follows

H[X|Y ] ≡ H[X,Y ]−H[Y ] . (3)

This follows directly from the definition of conditional probability, P(X = x|Y = y) ≡ P(X = x·Y =
y)/P(Y = y). The conditional entropy can be interpreted as the remaining uncertainty in X, once
we know Y .

If we have two random variables, X and Y , governed by distributions, P and Q, respectively,
that are defined over the same space A, we may consider the entropy of P relative to Q :

D(X||Y ) = −
∑

s∈A

P (X = s) log
P (X = s)

Q(Y = s)
, (4)

with the understanding that 0 log 0/q = 0 and p log p/0 = ∞. This quantity is also known as the
(Kullback-Leibler) divergence or the information gain. It vanishes when, and only when, the two
distributions are equal. But it is not symmetric and does not satisfy the triangle inequality, and so
D(X||Y ) is not a distance. If Q assigns zero probability to an event that has positive probability
under P , then D(X||Y ) → ∞. In addition to various statistical uses (Kullback, 1968, Cover and
Thomas, 1991), it has a useful interpretation in terms of codes. If P is the true distribution, then
we need an average of HP [X] bits to describe or encode the random variable X. If, however, we
mistakenly think the distribution is Q, we will need HP [X]+D(P ||Q) bits. Relative entropy is thus
the excess description length due to getting the distribution wrong.

The mutual information between X and Y is defined as

I[X;Y ] ≡ H[X]−H[X|Y ] . (5)

In words, the mutual information is the average reduction of uncertainty of one variable due to
knowledge of another. If knowing Y on average makes one more certain about X, then it makes
sense to say that Y carries information about X. Note that I[X;Y ] ≥ 0 and that I[X;Y ] = 0 when
either X and Y are independent (there is no “communication” between X and Y ) or when either
H[X] = 0 or H[Y ] = 0 (there is no information to share). Note also that I[X;Y ] = I[Y ;X].

3. Processes

The data streams we shall consider will be stationary stochastic processes. In this section we
introduce this idea more formally, fix notation, and define a few classes of stochastic process to
which we shall return when developing performance measures.
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The main object of our attention will be a one-dimensional chain

↔

S ≡ . . . S−2S−1S0S1 . . . (6)

of random variables St whose values range over a finite alphabet set A. We assume that the underly-
ing system is described by a shift-invariant measure µ on infinite sequences · · · s−2s−1s0s1s2 · · · ; st ∈
AGray (1990). The measure µ induces a family of distributions, {Pr(st+1, . . . , st+L) : st ∈ A}, where
Pr(st) denotes the probability that at time t the random variable St takes on the particular value
st ∈ A and Pr(st+1, . . . , st+L) denotes the joint probability over blocks of L consecutive symbols.
We assume that the distribution is stationary; Pr(st+1, . . . , st+L) = Pr(s1, . . . , sL).

These quantities are useful tools for the analysis of time series; for a detailed review see Crutch-
field and Feldman (2001). We denote a block of L consecutive variables by SL ≡ S1 . . . SL. We
shall follow the convention that a capital letter refers to a random variable, while a lowercase letter
denotes a particular value of that variable. Thus, sL = s1s2 · · · sL, denotes a particular symbol block

of length L. We shall use the term process to refer to the joint distribution Pr(
↔

S ) over the infinite
chain of variables. A process, defined in this way, is what Shannon referred to as an information
source.

The total Shannon entropy of length-L sequences is defined

H(L) ≡ −
∑

sL∈AL

Pr(sL) log2 Pr(s
L) , (7)

where L > 0. The sum is understood to run over all possible blocks of L consecutive symbols. If no
measurements are made, there is nothing about which to be uncertain and, thus, we define H(0) ≡ 0.
H(L) is a non-decreasing function of L, H(L) ≥ H(L−1), and it is concave, H(L) − 2H(L−1) +
H(L−2) ≤ 0.

The source entropy rate hµ is the rate of increase with respect to L of the total Shannon entropy
in the large-L limit:

hµ ≡ lim
L→∞

H(L)

L
, (8)

where µ denotes the measure over infinite sequences that induces the L-block joint distribution
Pr(sL); the units are bits/symbol. The limit in Eq. (8) exists for all stationary measures µ Cover and
Thomas (1991). The entropy rate hµ quantifies the irreducible randomness in sequences produced
by a source: the randomness that remains after the correlations and structures in longer and longer
sequence blocks are taken into account.

As is well known (see, e.g., Ref. Cover and Thomas (1991), the entropy rate may also be written
as:

hµ = lim
L→∞

H[SL|S
L−1] . (9)

That is, hµ is the average uncertainty of the variable SL, given that an arbitrarily large number of
preceding symbols have been seen.

4. Computational Mechanics

The fundamental representation used in computational mechanics for a stochastic process is its ε-
machine , which is the process’s minimal and unique optimal predictor. An ε-machine M consists
of a set of causal states S and a set of causal-state transitions S = {T (s), s ∈ A} (Crutchfield and
Young, 1989, Crutchfield, 1994, Shalizi and Crutchfield, 2001). The causal states are either transient
or recurrent. The recurrent states all lie in a single strongly connected component. There is a unique
start state σ0 ∈ S.
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Given a causal state and the next symbol from the process, only certain successor causal states
are possible. The probability of moving from state σi to state σj on symbol s is

T
(s)
ij ≡ P(

→

S
1

= s,S ′ = σj |S = σi) . (10)

Note that ∑

s∈A

∑

σj∈S

T
(s)
ij =

∑

s∈A

P(
→

S
1

= s|S = σi) = 1 . (11)

The probability of a sequence sL = s0s1 . . . sL−1 is given by starting in σ0 and forming the
telescoping product of transition probabilities along the path selected by the successive symbols in
sL. The probability of sL appearing between any two states is given by the matrix

T sL ≡ T (sL−1)T (sL−2) · · · T (s0) . (12)

And the probability of the process generating sL is simply that of seeing it from the start state:

P(sL|M) = (T sL)0j , (13)

where j denotes the causal state in which sL ends. In this way, an ε-machine compactly gives the
distribution over all sequences.

The amount of historical memory stored by the process is given by the statistical complexity of
its ε-machine :

Cµ = −
∑

σ∈S

P(σ) log2 P(σ) , (14)

where the causal-state probabilities are given by the principal eigenvector, normalized in probability,
of the state-to-state transition matrix. The latter is simply:

S =
∑

s∈A

S(s) . (15)

Note that P(σ) = 0, if σ is a transient state.
The process’s entropy rate hµ is given by the transition uncertainty averaged over it’s ε-machine

’s causal states:
hµ = −

∑
σ ∈ SP(σ)

∑

s∈A

P(σ)T (s)
σ log2 T

(s)
σ . (16)

Note that this direct formula for hµ is only possible due to a key property of ε-machines : they are

deterministic in the sense of automata theory. This is also why we can use the notation T
(s)
σ above

to unambiguously indicate the unique positive transition probability for leaving state σ on symbol
s, if one exists.

A number of other ε-machine properties were reviewed in Part I (Shalizi et al., 2002).

5. Causal-State Splitting Reconstruction

In Part I (Shalizi et al., 2002), we introduced the Causal-State Splitting Reconstruction (CSSR
aka ”scissor”) algorithm that estimates an ε-machine from samples of a process P. It starts out
assuming a simple model for P and elaborates model components (states and transitions) only
when statistically justified by the given data. Specifically, CSSR begins assuming the process is
independent, identically distributed (IID) over the alphabet A. This is equivalent to assuming the
process is structurally simple (Cµ(P) = 0) and is as random as possible (hµ(P) ≤ log2 k). A key
and distinguishing property of CSSR is that it maintains homogeneity of the causal states and
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determinism of the state-to-state transitions as the model is augmented. The result is that at each
stage the estimated model is an ε-machine .

During CSSR’s operation, the number of causal states typically grows and the ε-machine captures
increasingly more of the process’s causal architecture. That is, CSSR converges “from below” to
the process’s true architecture in the sense that Cµ, the amount of structural information captured
in the series of estimated ε-machines , grows from zero to the true value. That it does, in fact,
converge in this limit was establised in Part I (Shalizi et al., 2002).

CSSR consists of three steps that manipulate an estimated ε-machine : Initialize, Homogenize,
and Determinize. Our goal here, though, is to investigate the algorithm’s performance on a range
of different discrete stochastic processes. And so, the internal details are not of direct interest.
Instead, we largely treat CSSR as a black box with various inputs and control parameters that
produces approximate ε-machines . For a given application there are several parameters. The first
characterize the available data. This is assumed to be a discrete-time series sN = s0s1s2 . . . sN−1 of
N samples taken from a discrete, finite alphabet A of k symbols: si ∈ A. Additional parameters
control the behavior of the CSSR algorithm itself. The first is maximum length Lmax of history
sequence that will be taken into account. The second is the significance level δ of the Markovian
null-hypothesis test used for morph-similarity comparison.

Given sN , the empirical sequence distribution, denoted PsN (s
L), is formed by simply counting

the occurrence of words sL. Given an ε-machine M̂ ≡ {Ŝ, Ŝ} estimated from sN , one can form the
empirical ε-machine sequence distribution PM̂(sL). Stated prosaicly, then, starting with a process

sample sN and a choice of Lmax, the goal of CSSR is to estimate an ε-machine M̂ that minimizes
the difference between the true and ε-machine ’s sequence distribution and the true one. For the
latter, as is common practice, one substitutes PsN (s

L).

6. Implementation

Give details on algorithmic implementation, not covered by Part I’s formal and pseudo-
code description.

For reasons of speed and memory, the conditional probability distributions were stored as a parse
tree. We used the Kolmogorov-Smirnov test, modifying slightly the code in Press et al. (1992) and
set the significance level δ = 0.001.

Any other notable implementation details of how tests were constructed? Note
those here.

CSSR is implemented in C++. The source code is at the Computational Mechanics Archive,
http://www.santafe.edu/projects/CompMech/. It was developed and tested on UNIX; in partic-
ular, Sun Solaris 8 and Macintosh OS X.

7. Evaluation Measures

We evaluated CSSR’s performance using a number of statistics: estimated entropy rate, estimated
statistical complexity, empirical (in-sample) prediction error, generalization (out-of-sample) error,
and the equivocation of the true causal states with respect to the inferred states. These are defined
as follows.

First, one error measure for CSSR is the accuracy of the entropy-rate estimate hµ(M̂). It is
worth noting that even when a reconstructed ε-machine is quite inaccurate in other respects, it gives
good estimates of hµ on comparatively little data and with comparatively short histories. These
estimates are certainly better than those based directly on sequence-block statistics. (For more on
the convergence of estimates of hµ, see Young and Crutchfield, 1993, Crutchfield and Feldman, 2001,
Schürmann and Grassberger, 1996, Shaw, 1984, Grassberger, 1988, 1989, Herzel et al., 1994, .)
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Second, we estimate the statistical complexity Cµ(M̂) of the inferred causal states Ŝ. As shown

in Part I, this should converge to the true statistical complexity Cµ. Comparing Ŝ to Cµ, in the
cases where the latter can be calculated, indicates structural errors in the reconstruction, perhaps
in the number of inferred states or transitions.

Third, we measure the empirical sequence error; that is, the error on the training data sN . Recall
that any ε-machine M̂ generates a distribution PM̂(sL) over sequences. One wants to see how far
PM̂(sL) deviates from the empirical sequence distribution PsN (s

L). A convenient measure of this is
the total variational distance between the two distributions, or the variation for short. As above,
this is

dL(PM̂(sL), P̂N ) =
∑

sL∈AL

|PM̂(sL)− P̂N | . (17)

Note that variation is a nondecreasing function of L. Ideally, one would take it over infinite sequences.
This not accessible numerically, so we have used the longest strings available.

Since we are reconstructing known processes, we can calculate the generalization error directly; we
simply find the variation between the inferred sequence distribution PM̂(sL) and the true distribution
P(sL), again computed over sequences of fixed length.

Normally, one thinks of the generalization error as the expected value of the empirical error
on new data, but this is not appropriate here. To see why, suppose the algorithm is completely
successful, so the distribution under the reconstructed ε-machine is exactly the true distribution,
and the generalization error is zero. Then it would be extremely unusual for the empirical error
to be zero — that would happen only if there were no sampling error.1 Similarly, the expected
empirical error on new data is the expectation value of a non-negative quantity, so it cannot be
zero. The discrepancy between the generalization error and the expected empirical error grows with
L (for fixed N), because there are exponentially more strings, but fewer samples per string, and
so the magnitude of the sampling fluctuations grows. This generates a spurious error signal if the
generalization error is defined this way. An alternative is needed.

Since the total variation is a metric, it is tempting to apply the triangle inequality and to say
that

d(P(sL),PM(sL)) ≤ d(P(sL),PsN (s
L)) + d(PsN (s

L),PM(sL)) (18)

and
d(PM(sL),PsN (s

L)) ≤ d(PM(sL),P(sL)) + d(P(sL),PsN (s
L)) , (19)

so that

d(PM(sL),PsN (s
L)) − d(P(sL),PsN (s

L))

≤ d(P(sL),PM(sL))

≤ d(PM(sL),PsN (s
L)) + d(P(sL),PsN (s

L)) . (20)

That is to say, the generalization error d(P(sL),PM(sL)) is equal to the empirical error, plus or minus
the sampling fluctuation. Unfortunately, it is very hard to put reasonable bounds on the sampling
fluctuation, without knowing in advance the process’s structural and statistical characteristics. But
the latter are what CSSR is designed to tell us.

Finally, we measure the equivocation H[S|Ŝ] of the inferred states with respect to the causal
states. This is how uncertain we remain about the true causal state after knowing the inferred state.
Since prescient (maximally predictive) states are all refinements of the causal states (Shalizi et al.,
2002), this quantity must be zero if the inferred states are prescient. In fact, we expect, and see, a
tendency for the equivocation to fall. Naturally, we can only measure this for our present examples
because we know what inferred states are.

Here we need to say a few words about how we will plot these numbers—i.e., versus
L—and how to interrupt the resulting plots.

1. The sampling error can vanish only if all the probabilities in the true distribution are rational numbers.
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8. Results on Test Cases

We tested CSSR on a wide range of processes where we can work out the true ε-machine by hand.
Generally, CSSR converges on the true ε-machine “from below” as N and L increase. That is, it errs
by having too few states. If L is too long, relative to N , there is a tendency for the number of states
to “blow up” — spurious distinctions get made in Procedure II (Homogenize), due to undersampling,
and these ramify when Procedure III (Determinize) makes the states future-resolving. If L is not
too large relative to N , however, then the algorithm finds the correct structure quite rapidly, even
for reasonably complex processes and usually stays with the correct structure over some range of L.
This is a helpful indication that CSSR has found the right ε-machine . In every case, the run-time
performance was much better than the worse-case analysis of Part I leads one to expect.

We emphasize that we are testing the algorithm on known processes, where we can work out
the ideal results. Hence the effects of limited data size, history length, parameter choices, process
characteristics, and on on can be studied systematically and stated with some confidence. We
realize that this is not how most authors proceed; rather one often sees new algorithms run on
complicated and poorly understood data sets and comparisons of their performance to those of
rival algorithms. Since the ideal limits of predictors of such data sets are simply unknown, such
testing does not indicate much about the algorithm’s absolute performance. Of course, this is not to
disparage building good predictors of messy real-world data. We simply feel that this methodology
is not particularly useful when checking how well an algorithm works. Thus, here our tests will give
evaluations that indicate absolute performance characteristics of CSSR.

8.1 “Open” Markov Models

We first consider processes where the underlying structure can be obtained directly from the observed
sequence distribution, in the form of normal Markov chains. We start first with IID processes and
then look at several first-order Markov chains. While these are, in a sense, very easy, some learning
procedures, such as Rissanen’s original “context” algorithm (Rissanen, 1983), actually estimate a
number of states for them which diverges logarithmically with N . CSSR does not.

Cite (possibly) the Lempel-Ziv paper on “estimating the order of a Markov chains”.

8.1.1 The IID Case: Avoiding Over-Structuring

Our first example is the simplest stochastic process possible, the fair coin; more exactly, an IID
Bernoulli process with success probability µ = 0.5. CSSR should do exactly nothing, since the
initial ε-machine model is precisely the correct one. We include this case here, however, since it
is not trivial for other reconstruction algorithms to get it right. Many methods for reconstructing
dynamics from time series assume in effect that the underlying model is deterministic, or perhaps
“deterministic to within measurement error”. When confronted with IID noise, these methods
produce more and more complicated deterministic models — in effect, trying to model noise as an
infinite-dimensional dynamical system. [Do we need citations here, or is this point made?
Savit has a bad paper which does just this, quite clearly.] Our results (Figures 1(a0–1(g))
show one advantage of a fundamentally stochastic method: to model coin-tossing, one tosses a coin.
Indeed, since the generalization error is always at most equal to the empirical error, our inferred
model is actually more faithful to the process than the sample is.

Discuss the results contained in the plots.
Introduce and discuss biased coin.
Discuss the results contained in the plots.
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Figure 1: Fair coin reconstructed—CSSR performance measures as a function of sequence length
Lmax: (a) true and estimated statistical complexity Cµ(M̂); (b) true and estimated entropy

rate hµ(M̂); (c) equivocation; (d) empirical error; (e) generalization error; (f) empirical
error scaled by

√
NhµL; and (g) generalization error scaled by

√
NhµL.
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Figure 2: The biased coin—CSSR performance measures as a function of sequence length Lmax:
(a) true and estimated statistical complexity Cµ(M̂); (b) true and estimated entropy rate

hµ(M̂); (c) equivocation; (d) empirical error; (e) generalization error; (f) empirical error
scaled by
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NhµL; and (g) generalization error scaled by

√
NhµL.
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Figure 3: The Noisy Period-Two Process.

8.2 Hidden Markov Models

We now turn to the case of hidden Markov models which have a finite number of causal states. We
consider two in this subsection, each of which illustrates a specific point.

8.2.1 Noisy Period-Two: The Need for Non-Suffix States

Our next example, and the first hidden Markov model, is the so-called “noisy period-two” process,
chosen to illustrate the need for non-suffix states. As we see from Figure 3, there are two states, A
and B, which alternate with each other (hence “period two”). State A always emits a 1, but state
B emits 0s and 1s with equal probability. This corresponds to observing an ordinary period two
process, which is just a Markov chain, through a noisy instrument which sometimes corrupts 0s into
1s.

Consider which histories belong in which state. Clearly, any history ending in 0 belongs to state
A. Thus, any history ending in 01 belongs to B. This in turn implies that histories ending in 010
and 011 belong to A. 010 ends in 0, so it is already accounted for. But 0 is not a suffix of 011, so A
contains at least two suffixes. It is easy to go from this to the realization that A contains an infinite
number of suffixes, as does B. Algorithms that assume a finite number of one-suffix states, such as
context algorithms, are unable to capture the structure of this or any other noisy-periodic process.
CSSR gets the structure very rapidly, however (Figures 4(a)–4(g)).

Discuss the results contained in the plots.
Give true hµ and Cµ.
Give the ε-machines for L = 1, 2, 3, 4.

8.2.2 Three-State Deterministic HMM: The Utility of Determinization

In all our examples so far, every state has had a different length-one morph, so we have only had
to estimate the next-symbol distributions to determine the states. While many modeling methods
implicitly assume this is always the case, it is easy to find examples to the contrary. It might then
seem that we will have to estimate the distribution over futures of some length, and group suffixes
into causal states on the basis of those distributions. Even if we knew how far forward we had to
look, this would increase the amount of data required for a given level of accuracy. Determinization
gives us a way out, since we still only need to estimate the next-symbol distribution.

To illustrate this point, our next example is a three-state hidden Markov model (Figure 5).
Observe that two of the states, A and B, have the same probability of emitting a 1, i.e., they have
the same length-one morph. In the homogenization phase of CSSR, therefore, the histories belonging
to those states are grouped together. In the determinization phase, CSSR separates them, since only
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A 0  |  0.500

B

1  |  0.500 0  |  0.500

C

1  |  0.500

0  |  0.200

1  |  0.800

Figure 5: Three-state deterministic hidden Markov model.

some of them lead to state C. As can be seen from the results (Figures 6(a)–6(g)), CSSR gets the
correct structure on the basis of a fairly short history.

Discuss the results contained in the plots.
Give true hµ and Cµ.
Give the ε-machines for L = 1, 2, 3, 4.

8.3 Measure (Strictly) Sofic Processes

Weiss (1973) defined the class of sofic systems, as all those that can be described using only a finite
number of states. Sofic systems are divided into two classes, depending on how many irreducible
forbidden words (IFWs) they have. IFWs are the smallest words out of which all disallowed sequences
are formed. Processes of finite type have only a finite number; strictly sofic systems have an infinite
number of IFWs. The main and key consequence is that strictly sofic systems cannot be described
by finite-order Markov chains. (There is, however, a sense in which the sequence distribution of
a strictly sofic system is the limit of a sequence of increasingly larger finite-order Markov chains
Weiss (1973).) Sofic processes are sofic systems, but with a measure put on the sequences; roughly
speaking, the associated state-to-state transitions of the sofic system are given probabilities. Thus,
sofic processes have a kind of long-range memory, since occurrences indefinitely far in the past can
affect the distribution of future events.

The following two statements are wrong.
So far, all our examples have been of finite type. (The noisy period-two process, for instance,

has only one irreducible forbidden word 00.) These are generally thought to be easier to learn than
strictly sofic processes, due to their long-range memory, which finite-type processes do not have. Sofic
processes are higher in the computational hierarchy and consequently require more generalization —
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Figure 6: Three-state deterministic hidden Markov model reconstructed—CSSR performance mea-
sures as a function of sequence length Lmax: (a) true and estimated statistical complexity
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√
NhµL; and (g) generalization error

scaled by
√
NhµL.

13



A 0  |  0.500

B

1  |  0.500 1  |  1.000

Figure 7: The even process.

in effect, the learning algorithm has to guess the rule generating the forbidden words. (This fact has
been used as the basis of a definition of complexity Badii and Politi (1997), ?.) However, nothing
in our analysis of convergence depended on the process of being of finite type. We therefore expect
CSSR should learn sofic as well as finite-type processes, and this is indeed the case, as the next two
examples demonstrate.

8.3.1 The Even Process

The even language is defined by the following rule: 1s can appear only in blocks of even length,
separated by blocks of 0s of any length. It can thus be generated by a process with two states,
Figure 7. State A can emit either a 0 or a 1; it returns to itself on 0, and goes to B on 1. State B,
however, must emit a 1 and go to A. State A is the only start and the only stop state. The set of
irreducible forbidden words therefore consists of odd-length blocks of 1s, bound by 0s on both sides:
{012k+10, k = 1, 2, . . .}. To make this a stochastic process, we need to attach probabilities to A’s
transitions; we chose to make them equally probable. There is long-range memory here, since, if the
last symbol was a 1, the distribution of the next symbol depends on whether it was proceeded by an
odd or even number of 1s, and this could lead to dependence on indefinitely remote events. CSSR
picked out the architecture right away (Figures 8(a)–8(g)).

Discuss the results contained in the plots.

8.3.2 The Misiurewicz Process

The logistic map, xt+1 = λxt(xt − 1), 0 ≤ x ≤ 1, 0 ≤ λ ≤ 4, is a continuous-valued, discrete-time
dynamical system, one of the bedrocks of nonlinear dynamics (Devaney, 1992). Depending on the
value of the control parameter λ, it can display periods of all lengths, chaos, etc. It is often convenient
to study the symbolic dynamics of this (and other maps), where, instead of looking directly at x, we
look at which cell of a partition x is in. (This measurement partition should not be confused with

14



0

1

2

3

4

5

6

1 2 3 4 5 6 7 8 9 10

C
om

pl
ex

ity
 (

bi
ts

)

L

Complexity

1e6
1e5
1e4
1e3
1e2
true

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9 10

E
nt

ro
py

 R
at

e 
(b

its
/s

ym
bo

l)

L

Entropy Rate

1e6
1e5
1e4
1e3
1e2
true

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 2 3 4 5 6 7 8 9 10

E
qu

iv
oc

at
io

n 
(b

its
)

L

Equivocation

1e6
1e5
1e4
1e3
1e2

1e-06

1e-05

0.0001

0.001

0.01

0.1

1

1 2 3 4 5 6 7 8 9 10

V
ar

ia
tio

n

L

Even Process: Empirical Variation

1e6
1e5
1e4
1e3
1e2

1e-06

1e-05

0.0001

0.001

0.01

0.1

1

1 2 3 4 5 6 7 8 9 10

V
ar

ia
tio

n

L

Even Process: Empirical Variation

1e6
1e5
1e4
1e3
1e2

0.0001

0.001

0.01

0.1

1

10

1 2 3 4 5 6 7 8 9 10

V
ar

ia
tio

n

L

Generalization Variation

1e6
1e5
1e4
1e3
1e2

0.0001

0.001

0.01

0.1

1

10

100

1 2 3 4 5 6 7 8 9 10

V
ar

ia
tio

n 
* 

(N
hL

)^
0.

5

L

Empirical Variation (Rescaled)

1e6
1e5
1e4
1e3
1e2

0.01

0.1

1

10

100

1 2 3 4 5 6 7 8 9 10

V
ar

ia
tio

n 
* 

(N
hL

)^
0.

5

L

Generalization Variation (Rescaled)

1e6
1e5
1e4
1e3
1e2

Figure 8: The even process reconstructed—CSSR performance measures as a function of sequence
length Lmax: (a) true and estimated statistical complexity Cµ(M̂); (b) true and estimated

entropy rate hµ(M̂); (c) equivocation; (d) empirical error; (e) generalization error; (f)
empirical error scaled by

√
NhµL; and (g) generalization error scaled by

√
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15



A 1  |  0.636

B

0  |  0.364 1  |  0.724
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1  |  0.479

Figure 9: The Misiurewicz process.

the partition of histories which gives us the causal states.) If we chose a simple binary partition,
mapping x < 0.5 to 0, and x ≥ 0.5 to 1, then we have a generating partition, in the sense that
there is a one-to-one correspondence between points x, and the sequence of symbols generated by
its future iterates. We can therefore study the discrete-valued stochastic processes without losing
any information. When λ = 4, we can calculate the invariant distribution P(X) exactly, and find
that the process generated by the logistic map is exactly the fair coin process. (For studies of the
machines embodied in the logistic map at different λ, see Crutchfield and Young, 1989, 1990, .).

More interesting, and more challenging for our algorithm, is the Misiurewicz process, which the
logistic map generates when λ ≈ 3.9277370017867516 (Figure 9; Crutchfield, 1992a). The map is
chaotic, with rather high entropy rate. What is harder for normal methods to cope with, however,
is that the number of irreducible forbidden words of length L grows exponentially with L. This
would seem to tax the learning algorithm even more than the previous example, where the number
of forbidden words grows only polynomially with L, but in fact we work here too (Figures 10(a)–
10(g)).

Discuss the results contained in the plots.
Give true hµ and Cµ.
Give the ε-machines for L = 1, 2, 3, 4.

8.4 A Non-Finite Process: The Simple Nondeterministic Source

While our algorithm assumes the process has only finitely many causal states, this is not always so.
Context-free languages, or even Markov chains on the integers, have countable infinities of states.
Indeed, there are processes which, while they can be represented as finite hidden Markov models,
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Figure 10: The Misiurewicz process reconstructed—CSSR performance measures as a function of
sequence length Lmax: (a) true and estimated statistical complexity Cµ(M̂); (b) true

and estimated entropy rate hµ(M̂); (c) equivocation; (d) empirical error; (e) generaliza-
tion error; (f) empirical error scaled by

√
NhµL; and (g) generalization error scaled by√

NhµL.
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have an infinite number of causal states (Upper, 1997). Now, any finite run of such processes, or
even finite set of runs, could be described with only a finite number states that looked causal. We
would like a pattern-discovery algorithm to produce increasingly large finite approximations to the
infinite state machine, as we give it more data.2 This is precisely what our algorithm does for a case
where we can find the infinite causal state machine analytically.

We have already seen one example of the symbolic dynamics of the logistic map in the Misiurewicz
process in Sec. 8.3.2. There we remarked that the best measurement partition on the continuous
variable x is the one which divides x at 0.5, because it leads to a topological conjugacy between
values of x and infinite sequences of measurement symbols. We also remarked that the invariant
distribution of x can be calculated exactly when λ = 4. Suppose we keep that value of the control
parameter, but use a different, suboptimal measurement partition? Specifically we will use a non-
generating partition, which maps x to 0 if x < x̂, and to 1 if x ≥ x̂, where x̂ is the larger pre-image
of 1/2. The resulting discrete stochastic process can be represented by a hidden Markov model with
two states, as in Figure 11(a). Notice that the states are not deterministic; hence this machine is
called the “simple nondeterministic source,” or SNS.

It is straightforward to work out the causal states on the basis of the HMM presentation (Crutch-
field, 1992b, Upper, 1997); but there are a countable infinity of states (Figure 11(b))! Every 0
encountered takes us back to a resetting state, corresponding in part to the A of Figure 11(a). We
leave A on a 1, and each succeeding 1 takes us further down the chain. The probability of emitting
a 0 in the kth state in the chain is k/2(k + 1). The probability of being in the kth state drops
geometrically with k, and the series for the statistical complexity converges (to ≈ 2.71147 bits).

Clearly, reconstruction with any finite L will fail to capture the complete structure of the SNS.
What is gratifying is that, as we raise L, we get more and more of the states in the chain, and
in general at finite L the inferred machine is visibly a truncation of the full, infinite machine (see

Figures 13(a)–13(f) for ε-machines reconstructed at values of L from 2 to 9). The behavior of Ĉµ
(Figure 12(a)) and the equivocation (Figure 12(c)) reflect this: as we raise L, we split the last state

in the reconstructed chain, raising Ĉµ and lowering the equivocation, though we can never reduce
the latter to zero.

Discuss the results contained in the plots.
General observation: It seems that in some of the statistics (various errors) there is

a nice scaling once the basic achitecture is inferred. Can we develop a theory for this?

9. Selecting Parameters for the Learning Process

There are two parameters for the learning algorithm that must be chosen: the maximum length
Lmax of history to be considered and the significance level δ of the distribution identity test.

When it comes to chosing the history length, there is a tension between chosing Lmax long
enough to capture the process’s structure and chosing Lmax short enough that histories are not
undersampled. As noted in the CSSR convergence proof in Part I, Lmax must be long enough
that every state contains a suffix of length Lmax or less. For example, in the case of a period-P
process, this implies that Lmax ≥ P . It would seem that one should simply use as large an Lmax

as possible. However, as mentioned when discussing the empirical error rate, the longer Lmax is,
the less representative our sample of histories. An easy way to see this is as follows. The entropy

2. Actually, what we really want it to do is to eventually guess that it could get away with a much more compact
description if it “went up” to a higher-level representations — e.g., modeling with a push-down stack instead of
a finite-state process. Such hierarchical ε-machine reconstruction is beyond the scope of this method and this
paper, but see Crutchfield (1994).
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Figure 11: The simple nondeterministic source: (a) its hidden-Markov-model presentation and (b)
its ε-machine . Note that the ε-machine has a countably-infinite series of causal states
leading to the asymptotic state labeled “n” (in grey). Ater Crutchfield (1994).
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Figure 12: The simple nondeterministic source reconstructed—CSSR performance measures as a
function of sequence length Lmax: (a) true and estimated statistical complexity Cµ(M̂);

(b) true and estimated entropy rate hµ(M̂); (c) equivocation; (d) empirical error; (e)
generalization error; (f) empirical error scaled by

√
NhµL; and (g) generalization error

scaled by
√
NhµL.
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(b) L = 2; (c) L = 3; (d) L = 4; (e) L = 5; and (f) L = 9.
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ergodic theorem3 tells us that

1

L
log P(

→

S
L

= sL)→L→infty hµ , (21)

for almost all sL; that is, for those sequences in the process’s typical set. For large L, then, there
are about 2Lhµ strings with substantial probability. This is an exponentially small fraction of all
possible strings AL, but still an exponentially growing number. To get an adequate sample of each
string therefore demands an exponentially growing number of samples.

Put the other way around, the maximum history length must grow no more than logarithmically
with the number of data samples available. Let us write Lmax(N) for the maximum Lmax we can
use when we have N data points. If the observed process satisfies the weak Bernoulli property,
which random functions of irreducible Markov chains do, Marton and Shields (1994) showed that
Lmax(N) ≤ logN/(hµ + ε), for some positive ε, is a sufficient condition for sequence probability
estimates to converge. One might wonder if cleverness could improve this; but they also showed
that, if Lmax(N) ≥ logN/hµ, probability estimates over Lmax-words do not converge. Applying this
bound requires knowledge of hµ, but note that, if we bound it by log k, we get a more conservative
result, so we will certainly be safe if we do so. Moreover, experience shows that the ε-machine
we estimate typically yields good values of hµ even for very short values of L and even when the
ε-machine is otherwise a poor estimate of the process’s structure.4

Some of the above claims seem wrong for periodic processes. Punt on this or remark?
As to the significance level δ, we have seen in the proof of convergence in Part I that asymptoti-

cally δ does not matter — histories with distinct morphs will be split, histories with the same morph
will be joined — but, in the meanwhile, it does effect the kind of error made. The significance level
is the probability that two samples, drawn from the same distribution, would give at least as large
a value of the test statistic. If this value is small, therefore, we will split only on large values of the
test statistic. Therefore only glaring (as it were) distinctions between empirical distributions will
lead to splits. To become sensitive to very small distinctions between states, we need to turn up the
significance level, at which point we become more likely to split due to fluctuations. By controlling
the significance level, we indicate how much we are willing to risk seeing “structure” (more causal
states or transitions) that is not there. That is, we create states merely due to sampling error, rather
than real differences in conditional probabilities. We found δ = 0.001 to work well, but we were
interested in fairly large L.

I don’t understand this last comment.

10. Comparison with Other Methods

We discuss how our algorithm differs from two rival types of procedure: conventional hidden Markov
model algorithms and variable-length Markov models, originating with Rissanen’s “context” algo-
rithm. A formal comparison between CSSR and prior subtree-merging ε-machine reconstruction
algorithms was given in Part I (Shalizi et al., 2002). All of these procedures, along with the present
algorithm, attempt to find a set of Markovian states that are capable of generating the data. It is
important therefore to be clear on their distinctions and relative merits.

The most important distinction between causal-state algorithms and other algorithms is that the
former attempt to infer the causal states and the latter do not. That is, causal-state algorithms have
a well defined structural goal, with well understood properties — particularly optimal prediction,

3. This is also know as the Shannon-MacMillan-Breiman theorem or as the asymptotic equipartition property, (Cover
and Thomas, 1991) AEP, depending on the field.

4. There is a conjecture (D. Eric Smith, personal communication, 2001) that, if we write hµ(L) for the estimate
of hµ using length L strings, the smallest L sufficient to resolve all the causal states is the smallest L′ such
that hµ(L′) = hµ(L′ + 1) and for all larger L ≥ L′. That is, the shortest adequate L is the one at which the
predictability gain (Crutchfield and Feldman, 2001) becomes zero. While plausible, this is unproven.
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minimality, and the like, as noted in Part I. In short, the ε-machine is how one should represent
patterns in time series; by tying the algorithm to this well developed theory of patterns, we gain an
idea of what the results should be like (Shalizi and Crutchfield, 2001) in ideal settings and so one
has a clear picture of the goals of any modeling or learning process.

10.1 Conventional HMM Algorithms

Standard algorithms for fitting HMMs to data — e.g., the many variations on the expectation-
maximization algorithm— all assume a fixed number of states. Many, in addition, make assumptions
about the process’s architecture — what kinds of states there are, which states emit what symbols,
and what states are connected to what other states. It will be evident by this point that CSSR does
not need to make such assumptions. The causal architecture is inferred from observed behavior,
rather than being guessed at by (human) trial and error. The EM algorithm is a good device when
the correct structure is known; but it does parameter estimation, not pattern discovery.

As an added bonus, the states inferred by our algorithm are always effective and future-resolving.
After seeing only a finite number of symbols, we can determine with certainty what state the process
is in (effectiveness) and thereafter never again become uncertain about the state (future-resolving).
Conventional HMM algorithms do not have this property, which can considerably complicate cali-
bration and leads to higher than necessary prediction errors. (That is, the estimated hµ is larger
than necessary.)

There are some published HMM algorithms that attempt to infer architecture along with tran-
sition probabilities, which either start with a large number of states and merge them (Stolcke and
Omohundro, 1993) or with a small number of states and increase them by duplication (Fujiwara
et al., 1994). In no case known to us does the architecture change in response to anything more
than the distribution for the next symbol, i.e., in our terms, the length-1 morph. And in no case is
there any structural justification for the kinds of states inferred, such as computational mechanics
provides.

Unsworth et al. (2001) propose using a first-order Markov model to produce surrogate data
for testing for deterministic nonlinearity in time series and suggest using a KS test to gauge the
appropriate level of discretization. The overlap between their proposal and CSSR is essentially
confined to an overlap of terminology.

10.2 Variable-Length Markov Models

While the CSSR algorithm could be described as one which finds a “variable-length Markov model”
in that it estimates the Markovian order of the hidden process, that phrase is the conventional name
for the “context” algorithm of Rissanen and its descendants (Rissanen, 1983, Bühlmann and Wyner,
1999, Willems et al., 1995, Tino and Dorffner, 2001). There are points of similarity between those
algorithms and CSSR. Both work by examining increasingly long histories, splitting off states as
thresholds of error are exceeded and both infer architecture as well as parameters. However, CSSR
has several important advantages over the context approach. First, we use the known properties
of the states we are looking for to guide search. Second, rather than creating states when some
(arbitrary) threshold for, say, divergence is reached, we use well understood statistical tests for
identity of distribution. Third, context algorithms suffer from the following defect. The states they
infer are what one might call suffixal — all states consist of all and only the histories ending in a
particular suffix. For many, many processes, the causal states are not suffixal or, at least, not all of
them are. In these cases, an infinite number of “contexts” are needed to represent a single causal
state.

We briefly alluded to this problem when discussing the noisy period-two process. Recall that it
has two causal states, labeled A and B in Figure 3. Any history terminated by a 0, followed by
an even number of 1s, belongs to state A; and any history terminated by a 0, followed by an odd
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number of 1s, belongs to B. Clearly, therefore, both A and B correspond to an infinite number
of suffix states, since there is no suffix common to all and only the histories belong in either state.
Reflection shows that adding noise to a single transition in any periodic process will have the same
effect. If a context (suffix-tree) algorithm is used to try to learn such processes, the number of states
it will estimate will diverge as a function of the history length. As we have pointed out above and
previously Shalizi and Crutchfield (2001), this leads to blatantly incorrect structural inferences. For
example, though the fair-coin process has a single causal state, context algorithms infer an infinite
number of suffix-states. One practical result is that data-compression methods based on this class
of algorithm “compress” random files into those that are substantially larger than the original.

As a check on these conclusions, we implemented a context algorithm of the Rissanen type. For
fairness, it used the same statistical test as CSSR to decide when to add new contexts. We then ran it
on both the noisy period-two process (Figures 14(a)–14(g)) and the three-state deterministic HMM
(Figures 15(a)–15(g)). In both cases, the context algorithm produces drastically more states than
CSSR. In fact, the number of context-states grows exponentially with Lmax. Moreover, it suffers
badly from over-fitting. [Note to readers: the generalization error plots for TMD are wrong
beyond L = 6; there were so many states the program which did the calculation crashed!
I’ll fix this by the next iteration of the paper. CRS] This is particularly notable in the case
of the three-state deterministic HMM, since it has a perfectly good context-tree representation. The
context algorithm finds this, but rejects it, since it attempts to do better by over-refinement. This is
not a problem if one wants to do lossless data compression of relatively compressible (low entropy-
rate) data source, for which, indeed, context trees can work very well. This failure, however, almost
entirely precludes the use of context methods in prediction.

Discuss the plots. Make direct plot-by-plot comparisons to CSSR plots on NPT
example.

Discuss the plots. Make direct plot-by-plot comparisons to CSSR plots on the TMD
example.

11. Conclusion

11.1 Failure modes

It seems only fair, having just critiqued context methods, to turn the same critical light on CSSR.
How can CSSR not work?

Consider two-biased coins that are randomly switch. The ε-machine for this process consists
of an infinite number of transient causal states and two recurrent causal states. The finite-data
approximations produced by CSSR, though optimal in the sense used here, do not look “like” the two
biased coins ε-machine , since the approximate ε-machines mix the transient (or “synchronization”)
causal states and recurrent causal states.

How to get around this? Answer: Extend CSSR to account for and directly reconstruct a
minimal “nondeterministic” ε-machine using the approach outlined in (Crutchfield, 1994, Upper,
1997). To regain the benefits of determinism, one can systematically convert between deterministic
and nondeterministic ε-machine (Upper, 1997). The resulting algorithms is considerably more
sophisticated and so will be the subject of future presentations elsewhere.

11.2 Applications

Speech, where the use and benefits of HMMs are well established. What would using deterministic
models give in this area?

Potentially, our algorithm could be applied in any domain where HMMs have proved their value
(e.g., bioinformatics (Baldi and Brunak, 1998)), or where there are poorly-understood processes
generating sequential data, in which one wishes to find non-obvious patterns.
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Figure 14: Context-tree reconstruction of noisy period-two process—context-tree performance mea-
sures as a function of sequence length Lmax: (a) true and estimated statistical complexity

Cµ(M̂); (b) true and estimated entropy rate hµ(M̂); (c) equivocation; (d) empirical error;
(e) generalization error; (f) empirical error scaled by

√
NhµL; and (g) generalization

error scaled by
√
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Figure 15: Context-tree reconstruction of three-state deterministic hidden Markov model—Context-
tree performance measures as a function of sequence length Lmax: (a) true and estimated

statistical complexity Cµ(M̂); (b) true and estimated entropy rate hµ(M̂); (c) equivoca-
tion; (d) empirical error; (e) generalization error; [The lines become flat beyond
L = 6 because there were so many states, the program calculating generaliza-
tion error crashed. This will be fixed before the next iteration of the MS.]
(f) empirical error scaled by

√
NhµL; and (g) generalization error scaled by

√
NhµL.
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Synchrony in neural systems [Causl Sync paper].
Emergence of cooperation in MAS [MG paper].

11.3 Summary

In Parts I and II of this work, we presented a new algorithm for pattern discovery in time series.
In short, given samples of a conditionally stationary source, the CSSR algorithm reliably infers the
correct causal model — the ε-machine — of the source. Here in Part II we demonstrated empirically
that CSSR works reliably on both finite-type and strictly sofic processes and reasonably on infinite-
state processes. Moreover, CSSR performs significantly better than conventional HMM algorithmsa
and context-tree methods. Finally, we indicated how to extend the approach to even more complex
processes that these classes.
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