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Abstract

Reservoir computers (RCs) and recurrent neural networks (RNNs) can mimic any finite-state au-

tomaton in theory, and some workers demonstrated that this can hold in practice. We test the capability of

generalized linear models, RCs, and Long Short-Term Memory (LSTM) RNN architectures to predict the

stochastic processes generated by a large suite of probabilistic deterministic finite-state automata (PDFA).

PDFAs provide an excellent performance benchmark in that they can be systematically enumerated,

the randomness and correlation structure of their generated processes are exactly known, and their

optimal memory-limited predictors are easily computed. Unsurprisingly, LSTMs outperform RCs, which

outperform generalized linear models. Surprisingly, each of these methods can fall short of the maximal

predictive accuracy by as much as 50% after training and, when optimized, tend to fall short of the

maximal predictive accuracy by ∼ 5%, even though previously available methods achieve maximal

predictive accuracy with orders-of-magnitude less data. Thus, despite the representational universality

of RCs and RNNs, using them can engender a surprising predictive gap for simple stimuli. One concludes

that there is an important and underappreciated role for methods that infer “causal states” or “predictive

state representations”.
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I. INTRODUCTION

Many seminal results established that both reservoir computers (RCs) [1], [2] and recurrent

neural networks (RNNs) [3] can reproduce any dynamical system, when given a sufficient number

of nodes. Further work gave example RNNs that faithfully reproduce finite state automata,

to the point that RNN nodes mimicked the automata states [4], and established bounds on

the required RNN complexity [5]. One would conjecture, then, that Long Short-Term Memory

(LSTM) architectures—an easily trainable RNN variety [6], [7]—should easily learn to predict

the outputs of probabilistic deterministic finite automata (PDFA), also called unifilar hidden

Markov models in information theory. The PDFAs used in the following are simple, in that

their statistical complexity [8] and excess entropy [9], [10] are finite and relatively small. The

following explores PDFAs since optimal predictors of the time series they generate are easily

computed [8], and the tradeoffs between code rate and predictive accuracy (encapsulated by the

predictive rate-distortion function) are easily computed as well [11].

We use predictive rate-distortion functions to calibrate the performance of three time series

predictors: generalized linear models (GLMs) [12], RCs [1], [2], and LSTMs [6]. Unsurprisingly,

LSTMs are generally more accurate and efficient than reservoirs, which are generally more

accurate and efficient than GLMs. Surprisingly, despite the simplicity of the generated stochastic

time series, we find that all tested prediction methods fail to attain maximal predictive accuracy by

as much as 50% and often need higher rates than necessary to attain that predictive performance.

However, existing methods for inferring PDFAs [13] can correctly infer the PDFA and generate

the optimal predictor with orders-of-magnitude less data. This leads us to conclude that prediction

algorithms that first infer causal states [13]–[16] can surpass trained RNNs if the time series

in question has (approximately) finite causal states. (Causal states are sometimes also called

predictive state representations [17].)

II. USING PREDICTIVE RATE-DISTORTION TO EVALUATE TIME SERIES PREDICTION

ALGORITHMS

Many real-world tasks rely on prediction. Given past stock prices, traders try to predict

if a stock price will go up or down, adjusting investment strategies accordingly. Given past

weather, farmers endeavor to predict future temperatures, rainfall, and humidity, adapting crop

and pesticide choices. Manufacturers try to predict which goods will appeal most to consumers,

adjusting raw materials purchases. Self-driving cars must predict the motion of other objects on



IEEE JSAIT INAUGURAL ISSUE 2019 DEEP LEARNING: MATHEMATICAL FOUND’NS APPL’NS TO INFO. SCI. 3

and off the road. And, when it comes to biology, evidence suggests that organisms endeavor to

predict their environment as a key survival strategy [18]–[20].

However, we also care about the cost of communicating a prediction, either to another person

or from one part an organism to another. Channel capacity can be energetically expensive. All

other concerns equal, one is inclined to employ a predictor with a lower transmission rate [21].

Simultaneously optimizing the objectives—high predictive accuracy and low code rate—leads

to predictive rate-distortion [11], [16], [22]. With an eye to making contact with nonpredictive

rate-distortion theory, we summarize the setup of predictive rate-distortion as follows. Semi-

infinite pasts are sent i.i.d. to an encoder, which then produces a prediction or a probability

distribution over possible predictions. The predictive distortion measures how far the estimated

predictions differ from correct predictions. Distortion is often taken, for example, to be the

Kullback-Leibler divergence between the true distribution p(−→x |←−x ) over futures −→x conditioned

on the past ←−x and the distribution p(−→x |r) over futures conditioned on our representation r

[23]. The predictive rate-distortion function R(D) separates the plane of rates and predictive

distortions into regions of achievable and unachievable combinations. A slight variant of the

rate-distortion theorem gives:

R(D) = min
p(~x|r):E[d]≤D

I[
←−
X ;R] , (1)

where I[·; ·] is the mutual information. When the distortion is the Kullback-Leibler divergence,

the predictive rate-distortion function is directly related to the predictive information curve [16],

[22]. Finding representations that lie on the rate-distortion curve motivates slow feature analysis

[24], recovers canonical correlation analysis [25], and identifies the minimal sufficient statistics of

prediction—the causal states [22]. Predictive information curves have even been used to evaluate

the predictive efficiency of salamander retinal neural spiking patterns [26].

Here, however, we adopt the stance that predictive accuracy—the probability that one’s predic-

tion is correct—is more natural than a Kullback-Leibler divergence. Accordingly, we force our

representation r ∈ {0, 1} to be a prediction, and calculate accuracy via the distortion measure:

d(rt, xt+1) = δrt,xt+1 ,

which implies:

E[d] =
∑
←−x t

p(←−x t)
∑

rt=xt+1

p(rt|←−x t)p(xt+1|←−x t) .
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The corresponding predictive rate-accuracy function is almost as in Eq. (1), except with a changed

constraint:

R(A) = min
p(~x|r):E[d]≥A

I[
←−
X ;R]. (2)

This is closer in spirit to the information curve than the rate-distortion function, in that the

achievable region lies below the predictive rate-accuracy function.

III. BACKGROUND

In what follows, we review time-series generation and the widely-used prediction methods we

compare. We first discuss PDFAs and then prediction methods.

A. PDFAs and predictive rate-distortion

We focus on minimal PDFAs—for a given stochastic process that with the smallest number of

states. A PDFA consists of a set S of states σ ∈ S, a set A of emission symbols, and transition

probabilities p(σt+1, xt|σt), where σt, σt+1 ∈ S and xt ∈ A. The “deterministic” descriptor

comes from the fact that p(σt+1|xt, σt) has support on only one state. (This is “determinism” in

the sense of formal language theory [27]—an automaton deterministically recognizes a string—

not in the sense of nonstochastic. It was originally called unifilarity in the information theoretic

analysis of hidden Markov chains [28]. Thus, PDFAs are also known as unifilar hidden Markov

models [8].)

Here, we concern ourselves with minimal and binary-alphabet (A = {0, 1}) PDFAs. In

dynamical systems theory minimal unifilar HMMs (minimal PDFAs) are called ε-machines and

their states σ causal states. Due to the automaton’s determinism, one can uniquely determine

the state from the past symbols with probability 1. Each state is therefore a cluster of pasts that

have the same conditional probability distribution over futures. As a result, all that one needs to

know to optimally predict the future is given by the causal state [8].

For example, the simple two-state PDFA shown in Fig. 1 generates the Even Process: only

an even number of 1’s are seen between two successive 0’s. This leads to a simple prediction

algorithm: find the parity of the number of 1’s since the last 0; if even, we are in state A, so

predict 0 and 1 with equal probability; if odd, we are in state B, so predict 1. There is only

one past for which our prediction algorithm yields no fruit: given the past of all 1s a single

state is never identified. One only knows that the machine is in either state A or B and the best



IEEE JSAIT INAUGURAL ISSUE 2019 DEEP LEARNING: MATHEMATICAL FOUND’NS APPL’NS TO INFO. SCI. 5

A B

1
3 |1

2
3 |0

1|1

Fig. 1. Minimal two-state PDFA that generates the Even Process, so-called since there are always an even number of 1s between

0’s. Arrows indicate allowed transitions, while transition labels p|s indicate the transition (and so too emission) probabilities

p ∈ [0, 1] for the symbol s ∈ A. Given a current state and next symbol, one knows the next state—the deterministic or unifilar

property of this PDFA.

prediction is a mixture of what the states indicate. Even though that past occurs with probability

0, it causes the Even Process to be an infinite-order Markov Process [29]. See Ref. [30] for a

measure-theoretic treatment.

Causal states and ε-machines can be inferred from data in a variety of ways [13], [15], [16],

[31].

The causal states are uniquely useful to calculating predictive rate-distortion curves. Under

weak assumptions, the predictive rate-accuracy function of Sec. II becomes:

R(A) = min
p(r|σ):E[d]≥A

I[S;R]

with:

E[d] =
∑
σt

p(σt)
∑

xt+1=rt

p(rt|σt)p(xt+1|σt) .

See Ref. [11] for the proof. With this substitution—of a finite object (S) for an infinite one (
←−
X )—

the Blahut-Arimoto algorithm can be used to accurately calculate the predictive rate-accuracy

function, in that the algorithm provably converges to the optimal p(r|σ) [32]. The same cannot

be said of the predictive information curve [11], which converges to a local optimum of the

objective function, but may not converge to a global optimum.

In practice, we always augment the predictive rate-accuracy function with the rate and accuracy

of the optimal predictor, which is (as described earlier) straightforwardly derived from the ε-

machine. Simply put, we infer the causal state σt from past data and predict the next symbol to

be argmaxxt+1 p(xt+1|σt).
The following tests the various time series predictors on all of the (uniformly sampled) binary-

alphabet ε-machine topologies [33] with randomly-chosen emission probabilities. Due to the
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super-exponential explosion of the set of topological ε-machines with number of states, we only

look at binary-alphabet machines with four or fewer (causal) states. (There are 1, 338 unique

topologies for four states, but over 106 for six states.) The analysis discards any ε-machine with

zero-rate optimal predictor, which can arise depending on the emission probabilities.

B. Time series methods

We focus on three methods for time series prediction: generalized linear models (GLM),

reservoir computers (RCs), and LSTMs.

The GLM we use predicts xt from a linear combination of the last k symbols xt−k, xt−k+1, ..., xt−1.

More precisely, a GLM models the probability of xt being a 0 via:

pGLM(xt = 0|xt−k, ..., xt−1) =
ewkxt−k+...+w1xt−1+w0

1 + ewkxt−k+...+w1xt−1+w0
. (3)

The model’s estimate of the probability of xt = 1 follows:

pGLM(xt = 1|xt−k, ..., xt−1) =
1

1 + ewkxt−k+...+w1xt−1+w0
. (4)

We use Scikit-learn logistic regression to find the best weights w0, w1, ..., wk. Predictions are

then made via argmaxxt pGLM(xt|xt−k, ..., xt−1).
The RC is more powerful in that it uses logistic regression with features that contain informa-

tion about symbols arbitrarily far into the past. We employ a tanh activation function, so that

the reservoir’s state advances via:

ht+1 = tanh(Wht + vxt + b) (5)

and initialize W, v, b with i.i.d. normally distributed elements. The matrix W is then scaled

so that it is near the “edge of chaos” [34]–[37], where RCs are conjectured to have maximal

memory [38], [39]. We then use logistic regression with ht as features to predict xt:

preservoir(xt = 0|ht) =
ew
>ht+w0

1 + ew>ht+w0
,

preservoir(xt = 1|ht) =
1

1 + ew>ht+w0
.

It is straightforward to devise a weight matrix W and bias b so that preservoir(xt|ht) attains the

restricted linear form of pGLM of Eqs. (3) and (4). That is, RCs are more powerful than GLMs.

We use Scikit-learn logistic regression to find the best weights w0 and w. Note that the weights

W , v, and b are not learned, but held constant; we only train w and w0. Predictions are made

via argmaxxt preservoir(xt|ht).



IEEE JSAIT INAUGURAL ISSUE 2019 DEEP LEARNING: MATHEMATICAL FOUND’NS APPL’NS TO INFO. SCI. 7

Finally, we analyze the LSTM’s predictive capabilities. LSTMs are no more powerful than

vanilla RNNs; e.g., those like in Eq. (5). However, they are far more trainable in that it is

possible to achieve good results without extensive hyperparameter tuning [7]. An LSTM has

several hidden states ft, it, ot, ct, and ht that update via the following:

ft = σg(Wfxt + Ufht−1 + bf )

it = σg(Wixt + Uiht−1 + bi)

ot = σg(Woxt + Uoht−1 + bo)

ct = ft � ct−1 + it � σc(Wcxt + Ucht−1 + bc)

ht = ot � ct ,

where σg is the sigmoid function and σc is the hyperbolic tangent. The variable ct is updated

linearly, therefore avoiding issues with vanishing gradients [40]. Meanwhile, the gating function

ft allows us to forget the past selectively. We then predict the probability of xt given the past

using:

pLSTM(xt = 0|ht) =
ew
>ht+w0

1 + ew>ht+w0
,

pLSTM(xt = 1|ht) =
1

1 + ew>ht+w0
. (6)

Weights w and w0 are learned while we estimate parameters Wf , Uf , bf , Wi, Ui, Wo, Uo, bo, Wc,

Uc, and bc to maximize the log-likelihood. Predictions are made via argmaxxt pLSTM(xt|ht).
Predictive accuracy is calculated by comparing the predictions to the actual values of the next

symbol and counting the frequency of correct predictions. The code rate is calculated via the

prediction entropy [21].

IV. RESULTS

Our aim here is to thoroughly and systematically analyze the predictive accuracy and code

rate of our three time series predictors of a large swath of PDFAs. To implement this, we

ran through Ref. [33]’s ε-machine library—binary-alphabet PDFAs with four states or less and

randomly chosen emission probabilities. For each PDFA, we generated a length-5000 time series.

The first half was presented to a predictor and used to train its weights. We then evaluated each

time series predictor based on its predictions for the second half of the time series. Predictive

accuracy and code rate were calculated and compared to the predictive rate-distortion function.
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Note that Bayesian structural inference (BSI) provides a useful comparison [13]. In BSI, we

compute the maximum a posteriori (MAP) estimate of the PDFA generating an observed time

series, and use this MAP estimate to build an optimal predictor of the process. BSI can correctly

infer the PDFA essentially 100% of the time with orders-of-magnitude less data than used to

monitor the three prediction methods tested here. Hence, it achieves optimal predictive accuracy

with minimal rate. Our aim is to test the ability of GLMs, RCs, and RNNs to equal BSI’s

previously-published performance.

The time series predictors used have hyperparameters. A variety of orders (k’s) were used for

the GLMs and reservoirs and LSTMs of different sizes (number of nodes) were tested. Learning

rate and optimizer type, including gradient descent and Adam [41], were also varied for the

LSTM, with little effect on results.

For the most part, we find that all three prediction methods–GLMs, RCs, and LSTMs—learn

to predict the PDFA outputs near-optimally, in that prediction accuracies differ from the optimal

prediction accuracy by an average of roughly 5%. LSTMs outperform RCs, which outperform

GLMs. However, we discovered simple PDFAs that cause the best LSTM to fail by as much as

5%, the best RC to fail by as much as 10%, and the best GLM to fail by as much as 27%.

This leads us to conclude that existing methods for inferring causal states [13], [15], [16],

[31] are useful, despite the historically dominant reliance on RNNs. For example, as previously

mentioned, Bayesian structural inference correctly infers the correct PDFAs almost 100% of the

time, leading to essentially zero prediction error, on training sets that are orders of magnitude

smaller than those used here [13].

A. The difference between theory and practice: the Even and Neven Process

We first analyze two easily-described PDFAs, deriving RNNs that correctly infer causal states

and, therefore, that match the optimal predictor—the ε-machine. We then compare the trained

GLMs, RCs, and LSTMs to the easily-inferred optimal predictors. In theory, RCs and LSTMs

should be able to mimic the derived RNNs, in that it is possible to find weights of an RC and

LSTM that yield nodes that mimic the causal states of the PDFA. In practice, surprisingly, RCs

and LSTMs have some difficulty.

First, we analyze the Even Process shown in Fig. 1. The optimal prediction algorithm is easily

seen by inspection of Fig. 1. When we determine the machine is in state A, we predict a 0 or a

1 with equal probability; if it is in state B, we predict a 1. We determine whether or not it is in
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Fig. 2. Predictive rate–accuracy curve for the Even Process in Fig. 1, along with empirical predictive accuracies and rates of

GLMs, RCs, and LSTMs of various sizes: orders range from 1-10 for GLMs, number of nodes range from 1-61 for RCs, and

number of nodes range from 1-121 for LSTMs. Despite the Even Process’ simplicity, there is a noticeable difference between

the predictors’ performances and the optimal achievable performance.

state A or B by the parity of the number of 1s since the last 0. If odd, it is in state B; if even,

it is in state A. The inferred state is easily encoded by the following RNN:

ht+1 = xt(1− ht) . (7)

If xt is 0, the hidden state of the RNN “resets” to 0; e.g., state A. If xt = 1, then the hidden

state updates by flipping from 0 to 1 or vice versa, mimicking the transitions from A to B and

back. One can show that a one-node LSTM hidden state ht can, with proper weight choices,

mimic the hidden state of Eq. (7). With the correct hidden state inferred, it is straightforward to

find w and w0 such that Eq. (6) yields optimal (and correct) predictions.

As one might then expect, and as Fig. 2 confirms, LSTMs tend to have rates that are close

to the optimal (maximal) rate and predictive accuracies that are only slightly below the optimal

predictive accuracy. RCs and GLMs tend to have higher rates and lower predictive accuracies,

but they are still within ∼ 13% of optimal. As one might also expect, LSTMs and RCs with

additional nodes and GLMs with higher orders (higher k) have higher predictive accuracies than

LSTMs and RCs with fewer nodes and GLMs with lower orders. But viewed another way, given

the simplicity of the stimulus—indeed, given that a one-node LSTM can, in theory, learn the

Even Process—the gap from the predictors’ rates and accuracies to the optimal combinations of

rate and accuracy is surprising. It is also surprising that none of the three predictors’ rates fall

below the maximal optimal rate.



IEEE JSAIT INAUGURAL ISSUE 2019 DEEP LEARNING: MATHEMATICAL FOUND’NS APPL’NS TO INFO. SCI. 10

A

B C

0.76|1

0.62|10.38|0
1|0

0.24|0

0.0 0.1 0.2 0.3 0.4 0.5 0.6

Rate

0.50

0.55

0.60

0.65

0.70

A
cc
u
ra
cy

GLM

Reservoir

LSTM

Fig. 3. Predictive rate-accuracy curve for the Neven Process (PDFA shown at top), along with empirical predictive accuracies

and rates of GLMs, RCs, and LSTMs of various sizes: orders range from 1-10 for GLMs, number of nodes range from 1-61 for

RCs, and number of nodes range from 1-121 for LSTMs. Despite Neven Process’ simplicity, there is a noticeable gap between

the predictor’s performance and the optimal performance achievable.

Figure 3 introduces a similarly-simple three-state PDFA. If a 1 is observed after a 0, we are

certain the machine is in state B; after state B, we know it will transition to state A; and then

the parity of 0s following transition to state A tells us if it is in state A (even) or state B (odd).

This PDFA is a combination of a Noisy Period-2 Process (between states A and B) and an Even

Process (between states A and C).

Given the Neven Process’s simplicity, it is unsurprising that we can concoct an RNN that

can infer the internal state. Let ht = (ht,A, ht,B, ht,C) be the hidden state that is (1, 0, 0) if the

internal state is A, (0, 1, 0) if the internal state is B, and (0, 0, 1) if the internal state is C. By

inspection, we have:

ht+1,A = 1− ht,A

ht+1,B = xtht,A

ht+1,C = (1− xt)ht,A .

One can straightforwardly find weights that lead to pLSTM(xt+1|ht) accurately reflecting the

transmission (emission) probabilities. In other words, in theory a three-node RNN (and an

equivalent three-node LSTM) can learn to predict the Neven process optimally.

However, the Neven Process’ simplicity is belied by the gap between the predictors’ accuracy

and rate and the predictive rate-accuracy curve. The worst predictive accuracy falls short of the

optimal by ∼ 15%, and none of the GLMs, RCs, or LSTMs get closer than ∼ 97% to optimal.
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Fig. 4. Histogram of normalized distances to the predictive rate-accuracy curve for LSTMs (blue), RCs (orange), and GLMs

(green) using 1755 distinct PDFAs.

Furthermore, almost all the rates surpass the maximal optimal predictor rate.

B. Comparing GLMs, RCs, and LSTMs

We now analyze the combined results obtained over all minimal PDFAs up to four states

using two metrics. (Again, recall that they are 1, 338 unique machine topologies.) To compare

across PDFAs, we first normalize the rate and accuracy by the rate and accuracy of the optimal

predictor. Then, we find the distance from the predictor’s rate and accuracy to the predictive

rate-accuracy curve, which is similar in spirit to the metric of Ref. [42] and to the spirit of

Ref. [26]. Note that this metric would have been markedly harder to estimate had we used

nondeterministic probabilistic finite automata; that is, those without determinism (unifiliarity) in

their transition structure [11].

Figure 4 showcases a histogram of the normalized distance to the predictive rate-accuracy

curve, ignoring PDFAs for which the maximal optimal rate is 0 nats. The normalized distance

for all three predictor types tends to be quite small, but even so, we can see differences in the

three predictor types. LSTMs tend to have smaller normalized distances than RCs, and RCs tend

to have smaller normalized distances to the predictive rate-accuracy curve than GLMs.

The same trend holds for the percentage difference between the predictive accuracy and the

maximal predictive accuracy, which we call the normalized predictive distortion. Trained LSTMs

on average have 3.9% predictive distortion; RCs on average have 4.0% predictive distortion; and

GLMs on average have 6.5% predictive distortion. When looking only at optimized LSTMs, RCs,

and GLMs—meaning that the number of nodes or the order is chosen to minimize normalized
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predictive distortion—a few PDFAs still have high normalized predictive distortions of 4.6% for

LSTMs, 9.7% for RCs, and 27.3% for GLMs. Some LSTMs, RCs, and GLMs reach normalized

predictive distortions of as much as 50%.

Unsurprisingly, increasing the GLM order and the number of nodes of the RCs and LSTMs

tends to increase predictive accuracy and decrease the normalized distance.

Our final aim is to understand the PDFA characteristics that cause them to be harder to

predict accurately and/or efficiently. We have two suspects, which are the most natural measures

of process “complexity”. This first is the generated process’ entropy rate hµ, the entropy of the

next symbol conditioned on all previous symbols, which quantifies the intrinsic randomness of

the stimulus. The second is the generated process’ statistical complexity Cµ, the entropy of the

causal states, which quantifies the intrinsic memory in the stimulus. The more random a stimulus,

the harder it would be to predict; imagine having to find the optimal predictor for a biased coin

whose bias is quite close to 1/2. The more memory in a stimulus, the more nodes in a network

or the higher the order of the GLM required, it would seem. We performed a multivariate linear

regression, trying to use hµ and Cµ to predict the minimal normalized predictive distortion and

minimal normalized distance. We find a small and positive correlation for LSTMs, reservoirs,

and GLMs for predicting normalized distance, with an R2 of 0.002, 0.12, and 0.15, respectively.

We find a larger positive correlation for LSTMs, reservoirs, and GLMs for predicting normalized

distortion, with an R2 of 0.09, 0.24, and 0.24, respectively. Interestingly, the performance GLMs

and RCs is impacted by increased randomness and increased memory in the stimulus, while the

LSTMs’ accuracy has little correlation with entropy rate and statistical complexity.

V. CONCLUSION

We have known for a long time that reservoirs and RNNs can reproduce any dynamical

system [1]–[3], and we have explicit examples of RNNs learning to infer the hidden states of a

PDFA when shown the PDFA’s output [4]. We revisited these examples to better understand if the

finding of Ref. [4] is typical. How often do RNNs and RCs learn efficient and accurate predictors

of PDFAs, especially given that BSI can yield an optimal predictor with orders-of-magnitude

less training data?

We conducted a rather comprehensive search, analyzing all 1, 388 randomly-generated PDFAs

with four states or less. For each PDFA, we trained GLMs, RCs, and RNNs of varying orders or

varying numbers of nodes. Larger orders and larger numbers of nodes led to more accurate and
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more efficient predictors. On average, the various time series predictors have ∼ 5% predictive

distortion. In other words, we are apparently better at classifying MNIST digits than sometimes

predicting the output of a simple PDFA. And again, existing algorithms [13] can optimally

predict the output of the PDFAs considered here with orders-of-magnitude less training data.

These findings lead us to conclude that algorithms that explicitly focus on inference of causal

states [13]–[16] have a place in the currently RNN-dominated field of time series prediction.
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