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We show how to design computation protocols that minimize thermodynamic cost while ensuring
correct outcomes using fluctuation response relations (FRR) and machine learning. Unlike current
approaches, our method simultaneously optimizes distributions and protocols, using FRR-derived
gradients and learning iteratively from sampled trajectories. We design protocols for bit erasure
in a double-well potential and translating harmonic traps. The framework extends to both over-
damped and underdamped systems while achieving the theoretically optimal protocol and work

costs comparable to relevant finite-time bounds.
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I. INTRODUCTION

Nowadays, computation—ranging from operating per-
sonal digital devices to training very large-scale machine
learning models—consumes a significant amount of en-
ergy. This raises questions we long to answer: how to
perform computation efficiently and what is the mini-
mal cost of implementing computation? The most well-
known result in this setting is Landauer’s bound that the
minimum energetic cost to erase one bit of information
at temperature T is kg7 log 2, where kg is Boltzmann’s
constant [1]. Though Landauer’s original derivation has
limitations, it was groundbreaking in establishing a deep
connection between computation and thermodynamics.

Since Landauer’s time, we now appreciate that rigor-
ously investigating the energetic costs of computation re-
quires nonequilibrium physics—as all computation takes
place in physical systems operating far from equilibrium.
As a key innovation in this, researchers successfully devel-
oped a stochastic dynamics for thermodynamic resources.
This, in turn, led to stochastic thermodynamics [2] and
established an arena for exploring the thermodynamics
of computation.

Consider a stochastic system S with a time-dependent
energy landscape control parameter a;. Suppose the ini-
tial distribution over S is pg. To implement a computa-
tion we aim to transform the distribution from pg to a
goal distribution prarget Over a time duration 7. We fur-
ther impose a cyclic boundary condition on the control
protocol—ag = a,—to enable information storage and to
support follow-on computations. The question then be-
comes: how to design the time-dependent protocol a; to
transform the distribution from py — Ptarget at minimal
energetic cost.

Two distinct energetic cost optimization approaches
have been studied previously [3-22]. The first is
distribution-oriented: transform an initial distribution
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into a target distribution, without regard to the final en-
ergy landscape. In this, we have the correct distribution
but the potential is not correct. As a result, the infor-
mation after processing is unstable and cannot be used
in the future. The second approach is protocol-oriented:
drive the system from one protocol configuration to an-
other, without considering the resulting final distribu-
tion. However, this is unsuited to computational tasks.
Imposing constraints on both final distribution and final
protocol values can over-constrain the system, leading to
no feasible solution at all.

Unlike previous approaches that only optimize either
distributions or protocols, we introduce a framework in-
tegrating both optimizations. Following Ref. [23] we use
a coarse-grained distribution to store information. In a
computational task, we do not ask the final distribution
in S to be exactly prarget.- Instead, we only require the
coarse-grained distribution at final time p; ., to match
the coarse-grained target distribution Ptarget g ensuring
both a correct coarse-grained distribution and a correct
potential landscape. We show how to design loss func-
tions for different computation tasks and use fluctuation
response relations (FRR) to compute the loss function
gradients. We demonstrate that these loss functions suc-
cessfully drive the distribution toward the target coarse-
grained distribution, all the while achieving work costs
close to Landauer’s bound.

Our framework introduces several advantages: (1)
Leveraging universal fluctuation-response relations, it
can optimize a large family of stochastic systems includ-
ing overdamped and underdamped Langevin dynamics,
Markovian jump processes, and the like. (2) It allows
for highly flexible weighting of target metrics, including
logical error and energetic cost, in the loss function. (3)
Since the learning algorithm optimizes via gradient de-
scent and tracks samples of simulated trajectories, rather
than solving a system of equations, it lends itself to algo-
rithmic implementations which take advantage of mod-
ern machine learning tools that scale to high-dimension
problems.
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II. FLUCTUATION RESPONSE RELATION

We first review the fluctuation-response relation
(FRR) in the setting of overdamped dynamics [24-26].
Consider one-dimensional Langevin dynamics with an ex-
ternal control parameter a:

dx = p®(x,a)dt + odw; ,

where p is the particle mobility, dw; is an infinitesimal
Wiener process, o = v/2ukpT is the standard deviation
of the thermal noise or D = %O’Q is the diffusion constant,
and ®(z,a) = —0,U(x,a) with U(xz, a) being the poten-
tial of the system as a function of the position = and the
control parameter a.

An observable (called a cumulant current) J along a
trajectory w = {x:}7_, is defined:

J(w,a) = / f(z,a)-dx + g(x,a)dt ,

where - is the It6 product. For example, the en-
ergetic cost (work) of one trajectory w can be writ-
ten as W(w,a) = [ 0,U(x,a)dt. The expectation
value of J(w,a) over an ensemble of trajectories is then
E[J(w,a)] = Y, Pr(w,a)J(w,a), where Pr(w,a) is the
probability of observing trajectory w under protocol a.
The purpose of an FRR is to monitor how the expecta-
tion of current J changes due to variation in the control
parameters: £-E [J(w,a)]. From the chain rule:

OE [J(w,a)]|=E [0y J(w,a)+J(w, a)d, log Pr(w, a)] (1)

The first term is readily calculated given the form of
J and a specific protocol. The second term, involving
derivatives of the score function, requires special atten-
tion. We can compute this term from trajectory data by
noting that the probability of observing a trajectory w,
using the the Onsager-Machlup action formalism, can be
written as [27]:

Pr(w,a) Nexp{%ig/w[z‘uq)(:c,a)]zdt} . (2)

where N is a trajectory independent constant that plays
no role in 9, log Pr(w, a):

04 log Pr(w, a) = %/u@aq)(x,a)[jc—u@(az,a)]dt. (3)

From the Langevin equation, we recognize that [& —
u®(x,a)ldt = odw;. Thus, plugging the above into Eq.
(1) yields:

OE[J(w,a)] =
E[@aj(w,a)}—&—IE{J(w,a)i / 10, B(z,a) - dws| . (4)

This is the FRR, which relates the thermal noise in the
observed trajectories to the response function. It can also

be derived from the Girsanov theorem [28]. The FRR
allows ready access to the gradient of observables with
respect to control parameters through trajectory simula-
tion.

III. LOSS FUNCTIONS IN COMPUTATIONS

Having introduced the FRR essentials, we now asso-
ciate the observable J with a loss function designed to
be minimal for a desired behavior. From this perspec-
tive, the FRR is a flexible and powerful tool for applying
machine learning methods to noisy physical systems: we
use it to learn control protocols that drive a system to
behave in targeted ways. We now specialize to design loss
functions for computational tasks. To begin, we establish
how information is encoded within a physical system.

Consider a classical continuous n-dimensional system
space S. Encoding binary information requires coarse-
graining S—partitioning its continuous space into dis-
tinct regions that represent discrete-value states. Mathe-
matically, a coarse-graining o is a many-to-one map from
a distribution p over system S to a distribution pz over
an informational space Z. The informational space Z is
a finite-dimension space spanned by binary values; i.e.,
b = {]00000), |00001),...}. After coarse-graining, the
degrees of freedom over this space are called information-
bearing degrees of freedom (IBDs) [1, 23]. To support a
stable information register for n binary digits, we reqire
the original potential in § to have 2" minima {xy,}, each
of which represents n binary digits.

The aim is to design protocols such that the system’s
final distribution f(z,) maps to the correct distribution
PTtarget With minimal energetic cost. To do this, we pri-
oritize achieving the target distribution over IBD, mini-
mizing the work cost simultaneously. This motivates the
loss function:

Eloss(a) =E [alﬁerror(w7 CL) + O‘WW(LU? CL)] ) (5)

where Loor represents an appropriate error measure-
ment in § and a3 and ay are hyperparameters.

Suppose we wish to perform a computation task send-
ing bit value b; to g(b;), where g(-) is the desired compu-
tational function. We ask that in the physical system 5,
all trajectories starting around the minimum =y, repre-
senting b; to end around the minimum x4y, ) representing
g(b). To enforce this, we set:

Lerror = (T — mg(bj))2 , if xg near xp, . (6)
We add higher-order moments E [(z; — z4p,))"] to the
loss function if the L2 norm is insufficient. The error
penalty used in Eq. (6) is not unique. For example, the
sign function sgn(z) could also be used.

Before diving into specific examples, we should discuss
the optimization framework underlying this intuitively-
motivated loss function. The straightforward approach
to achieve energetically-efficient operations that meet an



accuracy threshold is to set an upper bound on error rate
€ and then locate the most energetically-efficient protocol
with error being no greater than e. In optimization this
is the primal problem [29]:

minimize E [W(w, a)] subject to E [Lerror(w,a)] —e < 0.

a

The corresponding Lagrangian dual problem is:

maxi/{nize ir;f (E [W(w,a)] + A(E [Lerror(w,a)] — €)) ,

subject to A > 0.

Suppose the optimal value of the primal problem—the
optimal work cost with error being no greater than e—
is p* and that of the Lagrangian dual problem is d*. If
strong duality holds, these two problems are equivalent
to each other: p* = d*, i.e., for any € we can find a A
such that these two optimizations are equivalent. If we
do not have strong duality, then we simply select a A
to optimize over and get a lower bound on the primal
problem energetic cost d* < p*.

Ezample: Overdamped Harmonic Trap Translation
We start with a well-known model for which the opti-
mal protocol can be solved exactly: moving a harmonic
trap from 0 to ay over the time duration 7. The potential
is U(z,t) = (v —ay)?/2, where a; is the center of the har-
monic well and we have full control of a; with boundaries
fixed at ap = 0 and a, = ay. We assume the system is
in equilibrium at ¢t =0 and p = 1.

In addition to minimizing the work, we ask that the
particle end up as close as possible to the final target
position ay. The loss function is taken to be:

Emove(at) = alE [(IT - af)Z] + aWE [W(w? at)] . (7>

Our goal now is to find the control protocol a; that min-
imizes the loss function Love- This can be done analyti-
cally using the method of Lagrange multipliers. (See the
Appendix IV.) In short, the optimal protocol is that a;
is a linear function of time t except at times t = 0 and
t=rT.

For numerical optimization, we parameterize the pro-
tocol values a; by a continuous piecewise-linear func-
tion with 10 parameters that are the break points a =
{a1,...,a10}. Figure 1 shows the training results with
different weights in the loss function.

Ezample: Bit Erasure We now move into the do-
main of optimizing computations by considering single-
bit erasure. Bit erasure is a fundamental computa-
tional task that maps the uniform distribution over
IBD pr, = (1/2,1/2) to a nearly-deterministic state
PTtarget = (6,1 — €). To implement bit erasure, we use a
quartic potential with three parameters a; = {ay, by, ¢t }:

Ul(z,t) = agz® — bix? + co (8)
The parameter boundary conditions are cyclic, with ag =

ar =a, bp =b; =b, co =c; =0, and 2a = b. Parame-
ters a; and b, control equilibrium positions xeq = £b;/2ay
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FIG. 1. Optimal protocol for translating a harmonic

trap: We fix ay = 1 and 7 = 1 and show different

optimal protocols with different weight combinations

after 600 iterations.

and ¢; tilts the potential. With these boundary condi-
tions imposed, the potential U can encode a binary value
as it has two stable equilibrium points z = +1.

The particle is at equilibrium with potential U(z;,0)
at temperature T initially. At time t = 7, all particles
are required to be around z = +1, so we choose the loss
function for the bit-erasure task to be:

Lorasolar) = E [o1 (27 = 1) + awW(w,an)] . (9)

In numerical experiments, we set oy = 1, work weight
aw =01, u=1, kg7 =1, and 7 = 1. Figures 2 and 3
show the numerical optimization results.

In the quasistatic limit, efficient erasure operates as
follows. First, lower the energy barrier; next, tilt the
potential; finally, raise the energy barrier and remove the
tilt. In our optimized finite-time protocol, we see that
lowering the barrier and tilting the potential happen all
at once at t = 0F. The linear potential c;x, used to drive
the particle towards x = +1, dominates after ¢ = 0.33
and U is almost linear in the region of interests (x €
[—1,1]). After ¢t = 0.33, ¢; decreases quickly to around
—30. ¢;- ~ —30 ensures that the potential U(x,t =17)
has minima around x = +1, aligned with the minima at
the fixed boundary conditions. The work cost after 2000
iterations is Wi = (2.942 4+ 0.026)kpT.

To compare our result with other attempts at
bit erasure, we calculate the ratio r = (Wpm —
In2)/(var[xo]/D7) = 2.311 £ 0.027. The ratios of other
bit erasure frameworks [5, 11, 30-34] range from 2.89 to
5.67. (See the detailed table in Ref. [9].) While one can-
not analytically calculate the optimal protocol for this
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FIG. 2. Bit erasure optimization: For each training
iteration, we use 5000 trajectories to compute the
gradient and update parameters. We validate with 10°
trajectories to estimate work cost. Three trajectory
ensembles are selected from a random training. The
plot also includes the upper and lower bounds of the
minimal work cost in finite-time bit erasure under full
control of the potential [9], denoted with a gray
highlight.

setting, we see that the training converges to a work cost
that is close to the upper bound r = 2 for optimal era-
sure under full control of the potential [9]. Given that
our control is limited by our choice of piecewise linear
protocol, the form of the potential, and the closeness of
our distribution at ¢ = 7 to the local equilibrium distri-
bution, the proximity to the work cost for unrestricted
optimal control demonstrates that our learning algorithm
finds truly efficient protocols.

We briefly discuss the optimal protocol’s dependence
on the hyperparameter ratio ay /a;. Increasing the ra-
tio u,/ay can lower the work at the cost of higher error
rates. To understand this, consider the following two ref-
erence protocols. In Protocol 1, the potential U(z,t) re-
mains unchanged during [0, 7] so that E [W] ~ 0 but the
error is E [Leppor] ~ 0%+ 3+22.1 = 2. Protocol 2 is a faith-
ful erasure for which E[W] ~ log2 + 2var[zo]/(D7) =
2.69 [9] and E [Leyror] ~ 0. Around o, /ay ~ 0.7, the two
protocols are equally favorable, with Protocol 2 being
more favorable below this value. In Figure 4, starting
from au,/a; = 0.1, we observe a sharp transition from
Protocol 2 to Protocol 1 around 0.47, strongly suggest-
ing a second-order phase transition, which we leave for
detailed future study.

Ezxtension: Underdamped-dynamics  optimization
Let’s turn to explore optimizing underdamped dynam-
ics, a regime that is known to be challenging for existing
methods. Position trajectories are no longer Markovian
in underdamped dynamics and this property can be
exploited to accomplish certain computational tasks
that are unachievable in Markovian position dynamics
(overdamped) without additional hidden states [35],
such as the bit flip [36].
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FIG. 3. Optimal erasure protocol: For each protocol
parameter {a;, b, ¢;}, we use 10 break points for
parameterization. (a) They are initialized to 0. Final
protocol values after training for 2000 iterations. (b)
Potentials U at different times.
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FIG. 4. Error rate and work dependence on the
hyperparameter ratio in erasure: Around o, /a; = 0.47,
we observe a sharp rise in error rate. The inset is error
rate and work versus (ou,/aq — 0.47) in log scale,
indicating a second order phase transition.

Consider one-dimensional underdamped dynamics:
dx = vdt and mdv = —yv — 0, U (x, a)dt + odw, ,

where v is the damping coefficient and the thermal noise
standard deviation is related to the thermal bath temper-
ature T' by o0 = /2ykgT. The dynamics in (x,v) space
is still Markovian. The FRR derived above in Eq. (4)
follows directly from the chain rule and so the consider-
ations above work just as well in underdamped regimes.
To illustrate, we successfully optimize a bit flip in one
dimension. (See Fig. 5 and details in App. IV.)

IV. DISCUSSION AND CONCLUSION

Broadly speaking, we used the Feynman—Kac formula
to transform an optimization using partial differential
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FIG. 5. Bit-flip mean work and error rate. The
potential used is U(z,t) = a;z* — b;z%. The work cost
of our converged protocol is = (0.615 £ 0.070)kpT.

equations to an optimization over trajectories [37]. This
reformulation offered a key advantage: simulating noisy
trajectories is much easier than solving the correspond-
ing equations for the optimal protocol, either numeri-
cally or analytically. This shift, from distributions to
trajectories, has led to many exciting results in contem-
porary nonequilibrium physics [38-75]. Building on this,
we introduced a general framework for designing low-cost
protocols for computational tasks embedded in physical
systems. Given a computational task, we employed a
linear combination of work cost and statistical moments
to construct the loss function and FRRs to compute its
gradient, allowing optimization of the protocol.

Generally, the choice of loss function should depend on
the specific requirements of the task. For example, if the
final distribution p, must be exactly piarget, then a dis-
tribution distance as error penalty is needed; one could
use the KL-divergence E [log (p; /Ptarget)]. However, com-
puting the gradient of the log distribution 9, logp, is
typically challenging. Within the context of computa-
tional tasks, however, we observed that including a lim-
ited number of statistical moments (first and second-
order only) in the loss function is effective for protocol
design.

Of late, FRRs regained attention as studies found that

they can bound the entropy production and dynamical
activity in stochastic systems [25, 76-87]. In line with
this, our method reveals an application of FRRs—they
are a tool to design low-cost protocols for probability-
transform tasks within physical systems. The FRR-based
gradient yields results consistent with back-propagation
and genetic algorithms [13, 20, 88-92]. Perhaps equally
important, the FRR method (i) offers a more-physical in-
terpretation, (ii) requires significantly less memory stor-
age, and (iii) is relatively easy to implement in code;
see [93]. Additionally, the generality of observables J
for which the FRR can provide a gradient means that
our proposed framework extends well beyond informa-
tion processing tasks simply by swapping out the loss
function to encourage any behavior of choice.

The optimization framework presented here offers sev-
eral promising future research directions and applica-
tions, as well. First, it opens low-cost protocol design to
different domains including unconventional computation
[94-98], efficiency in information and nanoscale engines
[99, 100], chemical reactions [101], biophyisical systems
[102], quantum gates [103], and the like. Second, hav-
ing proved-out linear piecewise functions as our learning
model, one future direction is to replace this with neu-
ral networks for enhanced scalability [104]. Third, we
fixed the computation-time duration, but one can also
treat the total computation time 7 as a protocol parame-
ter. Adding this to a loss function will enhance discover-
ing protocols that balance duration along with error and
work cost [105].
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