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I. INTRODUCTION

Contemporary statistical mechanics [1–3] has made con-
siderable contributions to machine learning [4–7], from
formal models and algorithms (e.g., reinforcement learn-
ing [8, 9]) to implementing thermodynamic systems for
learning tasks [10, 11]. This cross-fertilization reflects
broader recent concerns, though, about emergent organi-
zation in active matter [12], collective intelligence [13], em-
bodiments of biological intelligence [14], and distributed
artificial intelligence. Whether groups of molecules, ani-
mals, or robots, these systems consist of many interacting
components—often referred to generically as “agents” in
the complex adaptive systems and machine learning lit-
eratures [8, 15–18]. These agents glean information from
their environment and use it to take actions, that in turn,
affect the environment. One notable phenomenon is that
these collections can organize into temporal and spatial
behaviors beyond those of the individual agents. Today,
this kind of emergent collective organization is becoming
a concern as machine learning moves ever closer to mas-
sive deployments of adaptive agents on globe-spanning
communication networks.
Characteristically, though, statistical mechanical ap-
proaches to collective thermodynamic functioning and
information processing focus on asymptotic quantities—
such as, say, correlation functions, time- or ensemble-
average rates of work extraction, dissipation, and infor-
mation storage. As such, they give only the barest insight
into the actual, online, and time-dependent operation of
an agent’s internal mechanisms—the underlying informa-
tion heat engines [19–23] that support relevant behavior
and functioning.
The following addresses informational aspects of such real-
time adaptive agents, ultimately referring to the infor-
mation processes that reflect how a stochastic dynamical
system acquires, stores, and internally processes informa-
tion. In effect, these real-time adaptive agents directly
manipulate information available in observations. This
view begins to move away from indirect appeals to frequen-
tist or Bayesian probability for defining and estimating
information, instead to directly operating on inputs that
are innately informative. Fundamental to this is predic-
tion. This informational approach, though, entails several
computational challenges. Fortunately, Ref. [24] gives
explicit and efficient methods for calculating the under-
lying informational measures from a stochastic process’
optimal representation—the ϵ-machine. And so, the con-
ceit in the following is that a cognitive agent implements
computational mechanics to learn internal models of its
environment.

A. Challenge

The following lays out the basic concept of information
processes—stochastic processes that capture what a cogni-

tive agent observes and measures—informationally—from
a stochastic process generated by an environment. It
reviews prerequisites from stochastic processes, ergodic
theory, and information theory.
To emphasize, such agents behave as more than mem-
oryless particles or memoryless input-output mappings.
They process information. In this literal sense the agents
are cognitive—as they observe their environment they,
explicitly or implicitly, make various interpretations of
stimuli—apparent correlation and uncertainty and avail-
able free energy, for example. The latter are expressed as
kinds of information estimated in real-time as an agent
adapts to the time series of incoming stimuli and behaves
accordingly.
To understand the agent’s moment-by-moment operation
we track various quantities estimated during the agent’s
interactions with its environment. Specifically, we moni-
tor the interactions via Shannon’s information atoms [25].
In this setting, then, an agent is a transducer that maps
from a given process (the environment) to one or several
observational stochastic processes—information processes
comprised of time series of instantaneous entropy rate
(apparent randomness), bound information (apparent in-
formation storage), elusive information (apparent hidden
information), and so on.
We show that if the environment being observed is station-
ary then the resulting information processes developed by
the agent are stationary, under certain conditions. These
conditions include observing the environment through a
sliding-window of finite duration or through a function—
a statistic—with limited-range memory. If so, then the
agent’s interpretations of the environment’s behavior are
statistically well-behaved. We also address subtleties of
nonstationarity that arise at early times through tran-
sients during agent-environment synchronization [26] and
through the agent’s employing incorrect internal mod-
els. We give companion results on the ergodicity of such
information processes. We then turn to discuss how in-
formation processes convey meaning to an agent with an
internal model (correct or misleading) of its environment.

B. Overview

The immediately following section provides background,
by drawing parallels and even motivations from prior
results on complex adaptive systems. It then reviews
elementary information theory and Shannon information
measures. These are then adapted to the online tem-
poral setting of a cognitive agent interacting with its
environment—the stochastic process it observes. Cog-
nitive agents are introduced using the structural theory
of information in stochastic processes—computational
mechanics [27].
In short, a cognitive agent builds a minimal optimal
predictor—an ϵ-machine—of its environment. A key point
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Word Length

FIG. 1. Monitoring online thermodynamic performance via
the work rate exp β⟨W θmax

ℓ (y0:ℓ)⟩/ℓ during learning: The in-
formation source is a length ℓ = 100 sample output of a
5-state hidden Markov model (ϵ-machine); extracted from
Fig. 6 in Ref. [28] (used with permission). The work rate
is estimated using 2 memory states. The resulting work-rate
monitoring processes are complicated and dynamic. Indeed,
the engine jumps between different functionings as a “Dud”
(gray)—unable to harvest work; an “Engine” (green)—doing so
successfully; and violating the Second Law (yellow)—negative
entropy fluctuation. The gray dashed line at 1.0 corresponds
to zero work production: β⟨W θ⟩∞ = 0. The orange dashed
line for work production corresponds to correctly estimating
the true model β⟨W θ′

⟩∞. The solid red line at β⟨W θ⟩∞ = ln 2
is the maximum work that can be harvested per bit from a
single sequence.

is that agent behavior and its interpreting the environ-
ment are themselves stochastic processes. Taken alto-
gether, this then gives the foundation for how an agent
attributes meaning to the results of interacting with its en-
vironment. In short, there are two levels of semantics, one
focused on the agent’s uncertainties in predicting the en-
vironment, the other focused on the agent’s informational
interpretations of correlation and structure.

In this way, we develop methods and quantities to monitor
how an agent interprets its interactions with a structured,
stochastic environment. Here, we assume that the envi-
ronment is stationary—its structure and stochasticity are
time independent—and that the agent begins interacting
by employing a given fixed model of the environment’s
stochasticity and structure—its internal model is time-
independent. The agent only observes—it takes no actions
on the environment. For now, these are the main simplifi-
cations. We then outline how the agent can use its internal
model to interpret the environment’s behavior moment-
by-moment. One goal is to show that the resulting infor-
mation processes are statistically well-behaved and so can
form the basis for further—say, downstream—estimation
and interpretation. Sequels relax these assumptions.

II. BACKGROUND

Before delving into technicalities it will be helpful later
on to have in mind a range of example agent-environment
systems—systems in which (i) extracting information
from incoming signals and (ii) interpreting that infor-
mation play a key role in agent behavior and collective
functioning.

A. Collective Information Processes

A paradigmatic agent-environment system is that ob-
served in a collective of flocking animals [29]. The so-
cial behaviors of fish shoaling and schooling and starling
murmurations come immediately to mind [30, 31]. The
animals are the agents that take in information from the
spatial surroundings and, importantly, the nearby ani-
mals. From this they determine their motion. The result
can be the emergence of stunningly, captivating complex
coordinated spatio-temporal patterns.
One of the puzzles is how this complexity emerges from
the given local, but distributed equations of motion. Us-
ing time-dependent, time-delayed mutual information Ref.
[13] showed how a leader-follower relationship between
animals emerges, eventually leading to a single individual
guiding the flock’s collective motion. In this, we see a
real-world example of agents (i) interacting via an envi-
ronment that (ii) effectively use one or several information
processes to control local behaviors from which collective
organization emerges.

B. Information Embedded in Thermodynamic
Systems

While a primary concern here, information is not the
only narrative framing for cognitive agents. For example,
analogous thermodynamic processes describe an agent’s
creation and use of physical resources. Of late, Maxwell’s
demon is the oft-quoted example [32]. In this, agents
are viewed as information heat engines. That is, there
are other closely-related stochastic processes of interest.
In particular, if we are interested in an agent’s adaptive
physical functioning, then a number of thermodynamic-
resource processes capture engine performance.
The processes generated by Ref. [33]’s quantum machines
and Ref. [34] self-correcting information engines come to
mind. To be more concrete about such processes, how-
ever, consider a system that learns and then validates
an information heat engine through environment interac-
tions. Figure 1, excerpted from Ref. [28], shows the time
evolution of an information engine’s work rate W θmax . An
exponential average work rate is plotted for both learning
(purple line) and validation (black line) versus time series
length ℓ. The point is that such agentic signals track
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FIG. 2. Information processes in spin configurations: Motif
entropy-component analysis of the 1D Ising model at two
temperatures T , where hµ is the local entropy density, ρµ

the anticipated information, rµ the ephemeral information,
bµ the bound information, and qµ the enigmatic information.
(J is the nearest-neighbor spin coupling strength and kB is
Boltzmann’s constant.) A segment of a spin configuration with
up spins (white cells) and down spins (black cells) shown in
the bottom row. (Figure 6, Ref. [36], used with permission.)

the agent’s evolution during learning and its functioning
across time. They are stochastic processes—functions of
the engine’s internal, on-going adaptation and operation.
And, they are signals in the design and application of
information engines that are essential to monitor.
Relying on such signals, though, to monitor learning or
online performance, one needs to know whether or not
they are statistically well-behaved processes—signals that
can be used to quantitatively (convergently) characterize
learning and thermodynamic efficiency. Are they station-
ary and ergodic?
Reference [35] illustrates a higher-level of stochastic vari-
ation in an agent’s very thermodynamic functioning. Is it
acting as an engine extracting work from a heat reservoir
or as an information eraser that correlates information?
The several examples here illustrate that there are many
circumstances when time-local instantaneous statistics
and their operational meaning are key to monitoring adap-
tive physical behaviors.

C. Information Processes in Biology

Contrasted to physical systems for which information
often simply stands in for probabilistic properties, in-
formation plays an essential role in the functioning of
life processes [37]. Examples abound. For example, Ref.
[38] argues that bacteria are environmental prediction
engines—their reproduction and survival require them
to take actions based the information that they extract
and store from their surroundings, moment by moment.
More to the point, it identifies instantaneous predictive
information as a key signal—information shared between
an organism’s present phenotype and future environment

FIG. 3. Measurement semantics: The channel consists of
the environment (left) that generates a process (middle)—the
result of a series of observations and interpretations made by
an agent (right).

states. And, it demonstrates that optimal epigenetic
markers are minimal sufficient statistics for evolutionary
prediction—the causal states introduced shortly. Bacteria
in this setting are agents and their surroundings their
environment.
Reference [39] develops a similar analysis of molecular
sensors. In particular, it calls out the role of informa-
tion gleaned by molecular sensors viewed as Markovian
communication channels embedded in biological cell mem-
branes.

D. Organization in Statistical Mechanics

The spatial organization that spontaneously emerges
in one-dimensional and two-dimensional spin systems,
though arising in mere physical systems, presents a sim-
ilar challenge [36]. Figure 2, from there, shows a suite
of information processes as a function of spin location in
lattice configurations. Specifically, it plots the local en-
tropy density hµ, anticipated information ρµ, ephemeral
information rµ, bound information bµ, and enigmatic in-
formation qµ across lattice sites. Reference [36] then goes
on to interpret what these quantities mean in terms of
the underlying physical interactions and emergent spin
patterns. We return to these information signals later on,
as they play a key role.

E. Approach

Looking across these very different complex adaptive sys-
tems reveals common features: (i) framing the overall
system in terms of one or a group of agents and their
interactions with an environment; (ii) the agent’s role
in monitoring the environment by extracting real-time
signals—sequences of various kinds of informational mea-
sure; and (iii) the semantics in those measures—how an
agent uses or interprets such signals. Figure 3 illustrates
the basic measurement channel picture of the environment
and agent—a picture that frames our overall development.
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FIG. 4. Discrete-time, discrete-value stochastic process as
a sequence X τ of indexed random variables {Xt : t ∈ Z}
on the probability space

(
X Z, Σ, µ

)
over event space X with

realizations ω ∈ X Z.

Historically, calculating these informational signals has
been quite theoretically and computationally demanding.
Very recently, though, Ref. [24] showed how to perform
these calculations using practical and efficient algorithms,
progress that stimulates much of the following. Moreover,
the companion Ref. [40] introduces out a thorough-going
information-theoretic framing for deploying the informa-
tion measures we develop in the following.
With this background and these motivations laid out, we
are now ready to turn to our theoretical development.

III. STOCHASTIC PROCESSES

The following briefly summarizes discrete stochastic pro-
cesses, adapting the more general framework of Ref. [41]
to this simpler setting. (For measure-theoretic background
see Refs. [42, 43].)
A (discrete-time, discrete-valued) stochastic process X
consists of a sequence of indexed random variables (RVs)
{Xt}t∈Z defined on a probability space

(
X Z, Σ, µ

)
. (See

Fig. 4.) Xt is the random variable representing a value
x ∈ X observed at time t. X is the RVs’ common state
space or event space—the set of possible observed values or
X’s alphabet. We take it to be a finite set X = {1, . . . , k}.
A process realization ω is a single outcome of the stochas-
tic process. That is, realizations are taken from the sample
space: ω ∈ X Z. This is the collection of a process’ behav-
iors. Σ is the sigma algebra that describes the process’
events—possible subsets of realizations.
The measure µ is defined on measurable subsets A of
realizations:

µ(A) =
∫

ω∈A

dµ(w) . (1)

for A ∈ Σ; that is, measurable subsets of XZ. As we
detail shortly, the measure over bi-infinite realizations
determines the probability of sets of realizations and of
finite sequences via integration over subsets, as in Eq.
(1).
The stochastic process X is generated by cylinder sets:

Ut,w = {X : xt+1, . . . , xt+ℓ = w} ,

where w ∈ X ℓ is a word of length ℓ. For a stationary
process, the word probabilities:

Pr(x1 . . . xℓ) = µ(U0,x1...xℓ
) (2)

are sufficient to uniquely define the measure µ.
That is, indexing is temporal and denoted by the use of
subscripts Z. It is convenient to write a realization of
{Xt}t∈Z as an indexed sequence. For example, we write
Xt = x to say that x ∈ X is the specific value of X at time
t. On occasion, we shorten this to xt. That is, uppercase
(e.g., Xt) indicates the variable and lowercase (e.g., xt) a
realized value.
Blocks of consecutive RVs, called words, are denoted by
Xn:m = {Xt : n < t ≤ m; n, m ∈ Z} with the left index
inclusive and the right exclusive. For example, X0:3 =
X0X1X2. A word may also refer to a particular realization
of a given length, denoted in lowercase. For instance,
one might write x0:3 = x0x1x2 or x0:3 = bac, if (say)
xt ∈ X = {a, b, c}.

A. Process Dynamics

Stochastic processes themselves can evolve over time.
When working with these dynamics, we need to refer
to a process relative to a particular time t. To do this we
use superscripts. Denote the process referenced to time
t as Xt = {Xt}t∈Z and that referenced to time t + 1 as
Xt+1 = {Xt+1}t∈Z.
A natural dynamic for a stochastic process is given by the
shift operator : τ : X Z ! X Z that simply advances time
t! t + 1:

(τX)t = Xt+1 .

This describes the shift acting on a process’ individual
RVs. For the shift acting on the entire process we have:

{(τX)t}t∈X = {Xt+1}t∈Z

or, more simply:

τXt = Xt+1 .

The shift also acts on measures over X Z:

(τµ)A = µ(τ−1A) ,

for measurable A ∈ Σ.
A stochastic process paired with the shift operator be-
comes a dynamical system (X Z, Σ, µ, τ). A stochastic
process is stationary if the measure is time-shift invari-
ant: τµ = µ. It is ergodic if, for all shift-invariant sets
τI = I, I ⊂ X Z, either µ(I) = 0 or 1. Said more simply,
an ergodic stochastic process cannot be decomposed into
other ergodic components. (Later on, we return to notions
of stationarity and ergodicity appropriate for information
processes and cognitive agents.)



6

When considering random variables and their probabili-
ties, we continue, as above, to denote random variables by
capital Latin letters and specific realizations by lower case.
For example, Pr(Xt) = {Pr(Xt = x) : x ∈ {1, . . . , k}}
and Pr (X = x) = µ ({x} ∈ X ).

B. Sliding Window Processes

It will be helpful to select a subset of related (time local)
RVs in a process via a function h(·) that gives offsets for
the indices of those RVs:

hr(t) = {t − r, . . . , t − 2, t − 1, 0, t + 1, t + 2, . . . t + r} .

In this way, one extracts a new sliding window stochastic
process (Yt)t∈Z composed of a series of groups of the
original process’ RVs. For example, if r = 1:

Yt = X[h1(t)]

= Xt−1XtXt+1 and
Yt+1 = X[h1(t+1)]

= XtXt+1Xt+2 .

C. An Experiment and Its Realizations

An agent interacts with its environment by performing
an experiment E = {ωi ∈ Σ : i = 1, 2, . . . , M} consisting
of a number M of realizations ωi. The agent prepares
the environment appropriately and initiates an experi-
mental run ωi to generate an arbitrarily long realization
x0:∞ = x0, . . . , x∞, where each is a sequence of individual
observations xt ∈ X . In this way, an experiment is the set
E = {ω1 = x′

0:∞, ω2 = x′′
0:∞, . . . , ωM = x′′′

0:∞} consisting
of all of the data—process realizations—available to an
agent.

D. Stationary

Intuitively, the statistics of a stationary process do not
depend on time.

Definition 1. In a stationary process the measure is
time-shift invariant—τµ = µ—such that:

Pr(Xt:t+ℓ) = Pr(X0:ℓ) ,

for all t ∈ Z, ℓ ∈ Z+.

For a stationary process, the index denoting the present
can nominally be set to any value without altering subse-
quent analysis.

𝒳ℤ
ω

f : 𝒳ℤ → ℝ ℝ

A
f(A)

FIG. 5. Real-valued measurable function of a stochastic pro-
cess: f : X Z ! R.

E. Ergodic

Intuitively, any realization ωi ∈ Σ of an ergodic process
has the same statistical properties as any other realization
ωj ̸=i. More formally, define the ensemble average E[f ] of
a measurable function f : XZ ! R:

E[f ] =
∫

ω∈XZ
f(ω)dµ(ω) .

A function of a sample is often referred to as a statistic.
And so, E[f ] is a statistic of the process samples ωi for
some function f(·).
Compare this to the time average of the function:

⟨f(ω)⟩t = lim
t!∞

1
t

t∑
k=1

f(τk−1ω) ,

for µ-almost every ω ∈ X Z.

Definition 2. An ergodic process consists of realizations
for which time-average statistics equal ensemble averages:

⟨f(ω)⟩t = E[f(ω)] ,

where f(·) is any measurable function and for µ-almost
every ω ∈ X Z.

F. Functions of a Stochastic Process

Recall that if Z is a random variable and f(·) a real-
valued, measurable function, f(Z) is a random variable
with a real-valued event space. Thus, since probability is
such a function of a random variable, Y = Pr(Z) is also
a real-valued random variable with event space Y = [0, 1]
[44]. The following relies on this observation repeatedly.
Helpfully, this observation extends to sequences
. . . X−1X0X1 . . . of random variables that define a stochas-
tic process X = {Xt : t ∈ Z}. The main lesson is that
a function of a stochastic process is a stochastic process.
See App. A which considers real-valued functions f(w)
of realizations: f : XZ ! R.
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X1X2X3X4……X−3X−2X−1X0Process

(Pasts, Futures)

Information Measure

⋯

⋯
⋯

⋯

⋯
⋯

Y0⋯ ⋯
f(Z0)

X t = (Xt)t∈ℤ

Z0 = (X0, X0)

(Yt = ℐ( Z t))t∈ℤ
(rμ(t) = ℐ(Xt |σ+

t , σ−
t ))t∈ℤ

Sliding Window Statistic

rμ(0) = ℐ(X0 |σ+
0 , σ−0 )Ephemeral Information Process

( Z t = hr(X t))t∈ℤ
(f(Zt))t∈ℤ

⋯⋯
(bμ(t) = ℐ(Xt : σ+

t |σ−
t ))t∈ℤ

bμ(0) = ℐ(X0 : σ+
0 |σ−0 )Bound Information Process ⋯⋯

FIG. 6. Sliding window processes: The given stochastic process appears on the top line with the construction of sliding window
processes from it illustrated going line by line. The last lines illustrate the ephemeral information process rµ(t) and the bound
information process bµ(t). Recall that the forward and reverse causal states are functions of the semi-infinite past and futures,
respectively—σ+ = ϵ(↼−

X ) and σ− = ϵ(−⇀
X )—which aggregate RVs are available in the Zt process.

The (push-forward) measure of a function of set A ⊂ X Z

is:

µ(f(A)) = µ(f−1(A)) .

(See Fig. 5.)
We are interested in an agent that observes a process
through a finite-duration window and manipulates that
information at each time. Define a finite range r, real-
valued function f : R2r+1 ! R, r < ∞.

Proposition 1. Applying f to a stochastic process X
gives a new stochastic process Y = {Yt : t ∈ Z}, the
components of which are:

Yt = f
(
X[hr(t)]

)
.

Proof. Y = f(X)’s probability space (Y, ΣY , µY ) =
(RZ, ΣY , µY ). Y ’s event space ΣY is the sigma algebra
over RZ. Y ’s measure µY is given in terms of µX in two
steps: giving the process Yt via a function of RVs in a
window onto X and then determining the measure µY in
terms of µX .
First, consider the sliding window process Z = hr(X),
where hr is a finite-range r, index function as above. That
is, Zt’s event space consists of the real-valued vectors
z = (x0, x1, . . . , x2r+1) ∈ R2r+1. Then the process Z is a
time series of vectors Zt = (Xt−r, . . . , Xt, . . . Xt+r).
And, second, we get Z’s measure µt,z from X’s µX :

µt,z =
∫

ω∈Ut,z

dµX(ω) ,

with the cylinder Ut,z = {X : (xt, xt+1, . . . , x2r+1) =
z} associated with vector z = (z0, z1, . . . , z2r+1). Since
X is stationary we can set t = 0 and work with U0, z;
simplifying notation to µZ and Uz.

Next, we obtain the real-valued process Yt from the vector-
valued process Zt. However, this is simply a component-
wise transformation of the vector series by the real-valued
function f(·): Yt = f(Zt).
Finally, we determine the measure µY for the real-valued
process Yt from the measure µZ for the vector-valued
process Zt. Recall the real-valued function f : R2r+1 ! R
that maps real vectors z to some real value: f(z). To get
Y ’s measure µY in terms of µZ we integrate over the set
of vectors z ∈ f−1(y), that give the real value y:

µY (y) =
∫

z∈f−1(y)
dµZ(z) , (3)

where y = . . . yt−1ytyt+1 . . . ∈ RZ is a realization of Y .
And so, Y = f(Z)’s probability space is (RZ, ΣY , µY ).
Together, these determine Y ’s probability space in terms
of X’s probability space (X , ΣX , µX) establishing that
Y = f ◦h(X) = f(X) is a stochastic process with measure:

µY (y) =
∫

ω∈Ut,z

∫
z∈f−1(y)

dµZ(z)dµX(ω) .

Moreover, if X is stationary and ergodic, so is process Y .
As the following two results establish.

Proposition 2. If X is a stationary process and f is
a finite-range, real-valued function, then Y = f(X) is
stationary.

Proof. We must show that Y is time-shift invariant:
Pr(Yt:t+ℓ) = Pr(Y0:ℓ), for all t ∈ Z. We are given that
X is time-shift invariant: Pr(Xt:t+ℓ) = Pr(X0:ℓ), for all
t, ℓ ∈ Z. And so, the process over its 2r +1 blocks X0:2r+1
is time-shift invariant. Since Y values are direct functions
of these blocks, Y ’s sequences are time-shift invariant and
so Y is stationary.



8

Corollary 1. If X is a stationary process, the probability
process Y = Pr(X) is stationary.

Proof. X’s sequence probabilities Y = Pr(X) are RVs.
X’s stationarity guarantees that a time series of its se-
quence probabilities . . . Yt−1YtYt+1 . . . is time-shift invari-
ant. However, sequence probabilities Yt are obtained from
a finite-range, real-valued function Pr(·). And so, by the
preceding proposition, the stochastic process Y = Pr(X)
is stationary.

Moreover:

Proposition 3. If X is a stationary and ergodic process
and f is a finite-range, real-valued function, then Y =
f(X) is stationary and ergodic.

Proof. (See Ref. [42, Thm. 36.4].) We have process Y =
{(Y )t : t ∈ Z}, with Yt = f (Xt−r, . . . , Xt, . . . , Xt+r). Y
is stationary from the preceding proposition. We must
show that Y is ergodic:

⟨g(Y )⟩t = E[g(ω)] ,

for ω ∈ ΣY and functions g. We are given that this holds
for the original process X:

⟨h(X)⟩t = E[h(x)] ,

for x ∈ XZ and all functions h. Thus, it also holds for
h = f :

⟨f(X)⟩t = E[f(x)]
⟨Y ⟩t = E[ω] ,

and the expectation is taken over all ω ∈ XZ and ΣY =
f(ΣX).

Corollary 2. If X is stationary and ergodic, then the
probability process Pr(X) is stationary and ergodic.

Proof. We are given that X’s sequence probabilities are
time-shift invariant and that it has only a single ergodic
invariant set. Y ’s sequence probabilities are obtained from
X via a finite-range, real-valued function Pr(·). And so,
the preceding proposition shows that the process Pr(X)
is stationary and ergodic.

Figure 6 illustrates the construction of the sliding win-
dow processes from which information processes are con-
structed.

IV. INFORMATIONS AND INFORMATION
PROCESSES

We introduce Shannon’s information measures, informa-
tion diagrams, and information processes, showing how to
use them to describe a variety of informational properties

⇐ Reverse Processes Forward ⇒

Reverse Statistical · · · I
[
σ−

−1
]

I
[
σ−

0
]

I
[
σ−

1
]

· · ·
Complexity · · · C−

µ (−1) C−
µ (0) C−

µ (1) · · ·

Reverse · · · ϵ−(−⇀
X −1) ϵ−(−⇀

X 0) ϵ−(−⇀
X 1) · · ·

Causal Process · · · σ−
−1 σ−

0 σ−
1 · · ·

Futures · · · −⇀
X −1

−⇀
X 0

−⇀
X 1 · · ·

Presents · · · X−1 X0 X1 · · ·
Pasts · · · ↼−

X −1
↼−
X 0

↼−
X 1 · · ·

Forward · · · ϵ+(↼−
X −1) ϵ+(↼−

X 0) ϵ+(↼−
X 1) · · ·

Causal Process · · · σ+
−1 σ+

0 σ+
1 · · ·

Forward Statistical · · · I
[
σ+

−1
]

I
[
σ+

0
]

I
[
σ+

1
]

· · ·
Complexity · · · C+

µ (−1) C+
µ (0) C+

µ (1) · · ·

TABLE I. Information processes: The given stochastic process
appears on the line with Presents. All other lines are informa-
tion processes that derive from it.

of a stochastic process X. Table I provides a roadmap
for the various kinds of stochastic informational processes
the following introduces. The companion, Table II, lists
several information processes that are time symmetric in
the sense that the sets of RVs from which they are formed
is symmetric under t! −t.

A. Self-Informations and Measures

The most basic quantity in information theory is the
self-information—the amount of information learned ob-
serving a single measurement value x of a random variable
Xt [45, 46]:

i [Xt = x] = − log2 Pr(Xt = x) . (4)

On the one hand, if the occurrence of x is certain, an
observer learns no information and i = 0. On the other
hand, if all realizations are equally uncertain Pr(Xt =
x) = 1/k for each x, the observer gains the maximum
amount of information—that is, any one occurrence is
maximally informative and i [Xt = x] = log2 k.
Several comments on notation and terminology are useful
initially. The prefix “self-” connotes a quantity describing
an individual event’s occurrence. This deviates from the
typically-rare use of “self-” in “self-information” as the
mutual information of a random variable with itself, which
is simply its entropy: I[X : X] = H[X] in the notation
of Ref. [46, p. 21]. In addition, here within the theory of
information measures [25], there is only a single quantity
information, denoted I. In this, one has I [X : X] = I [X],
highlighting the redundancy in the conventional use of
distinct symbols H and I. Different kinds of information—
joint, conditional, mutual—are then denoted by the form
of I’s arguments. This leads to the practical consequence
that we use only the single notation I[·] rather than, as
in basic information theory [46], using both H[·] and I[·].
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Processes

Prediction · · · I
[
X−1 | σ+

−1
]
I
[
X0 | σ+

0
]
I
[
X1 | σ+

1
]

· · ·
· · · h+

µ (−1) h+
µ (0) h+

µ (1) · · ·

Predictable · · · I
[
σ+

−1 : σ−
−1
]
I
[
σ+

0 : σ−
0
]
I
[
σ+

1 : σ−
1
]

· · ·
· · · E(−1) E(0) E(1) · · ·

Ephemeral · · · rµ(−1) rµ(0) rµ(1) · · ·

Bound · · · bµ(−1) bµ(0) bµ(1) · · ·

TABLE II. Time Symmetric Information Processes: Derived
from information measures that are symmetric in time.

With reference to self-information, the more familiar quan-
tity from information theory, though, is its ensemble
average—the Shannon entropy I [X] = E[i [Xt]] of the
random variable Xt:

I [Xt] = E[i [Xt]]

= −
∑
x∈X

Pr(Xt = x) log2 Pr(Xt = x) . (5)

This requires being given or knowing ahead of time the
single-symbol average probabilities {Pr(Xt = x), x ∈ X }.
Given a stochastic process, it can also be developed from
measuring the self-information over time:

⟨i [Xt = x]⟩ = lim
T!∞

1
T

T∑
t=0

i [Xt = x] ,

assuming that the process is stationary and ergodic.
And, from this, the ensemble average is:

I [Xt] = −
∑
x∈X

⟨i [X = x]⟩ .

Similarly, there is the relationship between a pair of
jointly-distributed random variables, say, Xt and Xt′ .
To simplify, considered time-delayed RVs where t′ = t + τ .
The joint entropy I [Xt, Xt′ ] (τ) is of the same func-
tional form as Eq. (5), applied to the joint distribution
Pr (Xt, Xt′).
First, we have the joint self-information:

i [Xt = x, Xt′ = x′] (τ) = − log2 Pr(Xt = x, Xt′ = x′) ,
(6)

for x, x′ ∈ X . Second, the ensemble-averaged version:

I [X, X ′] (τ) =

−
∑

x,x′∈X
Pr(Xt = x, Xt′ = x′) log2 Pr(Xt = x, Xt′ = x′) .

(7)

For which we can also implement a time-averaged quan-
tity:

⟨i [Xt = x, Xt′ = x′]⟩(τ) = lim
T!∞

1
T

T∑
t=0

i [Xt = x, Xt′ = x′] ,

From this, the ensemble average is then given:

I [X, X ′] (τ) = −
∑

x,x′∈X
⟨i [Xt = x, Xt′ = x′]⟩(τ) .

Effectively, via sampling, the time average “empirically”
provides an estimate of the joint Pr(Xt = x, Xt′ = x′).
These can be straightforwardly extended, in principle,
from pairs of variables to the multivariate joint entropy
I(X) of a set of N variables X = {Xi | i ∈ (1, . . . , N)}.
(In this, the temporal relationship between the variables
needs to be specified by an appropriate set of indexes;
such as, time delays.)
Finally, the conditional entropy I [Xt | X ′

t] (τ) is of a simi-
lar functional form as above, but applied to the conditional
distribution Pr (Xt|Xt′). It gives the information learned
from observing a random variable Xt at one time given
knowledge of random variable Xt′ at another t′ = t + τ .
We can write this in terms of the joint entropy:

I [Xt | Xt′ ] (τ) = I [Xt, Xt′ ] (τ) − I [Xt′ ] . (8)

First, if we break this down as above, we have the condi-
tional self-information:

i [Xt = x | Xt′ = x′] = − log2 Pr(Xt = x|Xt′ = x′) , (9)

for x, x′ ∈ X . Second, there is the ensemble-averaged
version:

I [X | X ′] (τ) =

−
∑

x,x′∈X
Pr(Xt = x, Xt′ = x′) log2 Pr(Xt = x|Xt′ = x′) .

(10)

For which we can also implement a time-averaged quan-
tity:

⟨i [Xt = x | Xt′ = x′]⟩(τ)

= lim
T!∞

1
T

T∑
t=0

i [Xt = x | Xt′ = x′)] ,

If the stochastic process is stationary and ergodic, then
the ensemble average is given:

I [X | X ′] (τ) = −
∑

x,x′∈X
⟨i [Xt = x | Xt′ = x′)]⟩(τ) .

The information shared between random variables is the
mutual information. The mutual self-information of ob-
serving x and x′ at times t and (delayed) t′, respectively,
is:

i [Xt = x : Xt′ = x′] = log2

(
Pr (Xt = x, Xt′ = x′)

Pr (Xt = x) Pr (Xt′ = x′)

)
.

(11)
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When appropriately ensemble-averaged this recovers the
version familiar from elementary information theory:

I [Xt : Xt′ ] (τ)

=
∑

x′∈X
x∈X

Pr (Xt = x, Xt′ = x′) i [Xt = x : Xt′ = x′] . (12)

And, a time-averaged version is:

⟨i [Xt = x : Xt′+τ = x′]⟩(τ)

= lim
T!∞

1
T

T∑
t=0

i [Xt = x : Xt′ = x′] . (13)

Again, if the stochastic process is stationary and ergodic,
then the time-average and ensemble average are equal.
And, the ensemble average is given:

I [Xt : Xt′ ] (τ) = −
∑

x,x′∈X
⟨i [Xt = x : Xt′+τ = x′]⟩(τ) .

The mutual information I [Xm,n : Xp,q : Xr,s] between
three random-variable blocks—known as the interaction
information or as one of the multivariate mutual informa-
tions—is given by the difference between mutual informa-
tion and conditional mutual information:

I [Xm,n : Xp,q : Xr,s]
= I [Xm,n : Xr,s] − I [Xm,n : Xp,q | Xr,s] . (14)

Tracking three-way interactions in this way between vari-
ables X, Y , and Z, say, brings up two interpretations
worth highlighting here. Two variables X and Y can have
positive mutual information but be conditionally indepen-
dent in the presence of Z, in which case the interaction
information is positive. It is also possible, though, for
two independent variables to become correlated in the
presence of Z, making the conditional mutual information
positive and the interaction information negative.
In other words, conditioning on a third variable Z can
either increase or decrease mutual information and the X
and Y variables can appear more or less dependent given
additional observations [46]. That is, there can be con-
ditional independence or conditional dependence between
a pair of random variables. Note that the interaction
information is symmetric, so these interpretations hold
regardless of the conditioning variable selected.
Finally, note that the self-information functions i(·) above:

1. − log2 Pr(Xt),
2. − log2 Pr(Xt, Xt′),
3. − log2 Pr(Xt|Xt′), and
4. − log2 (Pr(XtXt′)/ Pr(Xt) Pr(Xt′)) .

are used in weighted averages to give ensemble averages.
Their temporal and ensemble averages are equal when
the process in question is stationary and ergodic.

In this, these self-informations lead to distinct and comple-
mentary informational quantities useful in characterizing
a process’ various properties. (This will become apparent
shortly.) And, in the role they play in that averaging, they
are occasionally (suggestively) referred to as “densities”
[47]. This language parallels that found in continuous
random variable theory whose “densities” are integrated
to obtain probability “distributions”.
Note that the second pair of self-informations are linear
functions of the first two:

− log2 Pr(Xt|Xt′) = − log2 Pr(Xt, Xt′) − log2 Pr(Xt)
and:
− log2 (Pr(XtXt′)/ Pr(Xt) Pr(Xt′))

= − log2 Pr(Xt, Xt′) + log2 Pr(Xt) + log2 Pr(Xt′) .

This also holds true [25, Sec. 3] for other Shannon mea-
sures that we develop shortly. And so, in the following we
need only consider the ergodic properties of the marginal
and joint temporal self-informations, due to the linearity
of the conditions for stationarity and ergodicity.
Taken altogether, the preceding simply reviewed quanti-
ties from elementary information theory, while pointing
out how they are developed from time-dependent self-
informations (the “densities”) via ensemble or temporal
averaging. These densities play a key role later when
describing how an agent, interacting in real-time with a
complex environment, generates a time series—a stochas-
tic process of—time-local self-informations.

B. Temporal Information Atoms

One of the most basic operations of a stochastic process is
to create information [48, 49]—measured by the entropy
density (or rate) hµ. Importantly, in most settings there
is more going on than creation. Reference [50] showed
that created information consists of two parts: ephemeral
information rµ is that part of the created information
which the present throws away and the bound information
bµ is that part which the process remembers—that can
affect the future [51]. Said simply, processes both forget
and remember portions of the information created at
each time: hµ = rµ + bµ. This realization led to a more
detailed decomposition and identification of the kinds of
information and transformations with which stochastic
processes operate.
Beyond time series, in the more general circumstance of
a set of RVs, information can be generally decomposed
into a collection of atoms; see Ref. [52]. In the time
series setting, though, the RVs are related by a time shift
and this simplifies understanding the various kinds of
information available in a stochastic process. We refer
to the observation Xt = x at time t as occurring in the
present. We call the semi-infinite sequence X−∞:t the past
at time t, which we also (more frequently) denote with
a left pointing arrow ↼−

X t. Accordingly, the semi-infinite
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sequence Xt+1:∞ is called the future at time t and denoted−⇀
X t. Thus, our strategy for analyzing the information
theory of stochastic processes is primarily concerned with
delineating the relationships between the past, present,
and future. In this, we follow Ref. [24].
Given this strategy, a useful perspective on a
stochastic process is to picture it as a communica-
tion channel transmitting information from the past
↼−
X t−1 = . . . Xt−3, Xt−2, Xt−1 to the future −⇀

X t =
Xt+1, Xt+2, Xt+3 . . . through the medium of the present
Xt. The past and the future are depicted in Fig. 7’s in-
formation diagram as extending to the left and the right,
respectively, to emphasize visualizing the bi-infinite chain
of random variables [24].
One might expect increasing difficulty when moving from
one or several isolated random variables to a stochastic
process of semi-infinite random-variable chains. However
and, at least initially, profiling a process’ information
atoms in terms of its past ↼−

X t, present Xt, and future−⇀
X t requires little more information-theoretic set-up than
that already given; see also Ref. [24].
Given these three random variables in play at each
time t, there is a set of eight quantities—information
atoms. These are shown in information-diagram form in
Fig. 7(left) and are collected in Table III. The related
aggregate measures, including hµ already described, are
also listed. Each is interpreted in more detail shortly.
However, we glossed over a rather important point—that
the information measures listed above are nominally func-
tions over joint distributions of infinite, composite vari-
ables; specifically, semi-infinite pasts and futures come
into play. And, this presents several technical issues to
address.
First, note that the entropy of a sequence of infinitely
many random variables comprising a stationary stochas-
tic process will either diverge or be finite. To see this,
consider the block entropy I [X0:ℓ] as a function of ℓ. It
diverges when the process has positive conditional entropy
I
[
X0 | ↼−

X 1

]
. In contrast, when the conditional entropy

is zero for each measurement, which occurs for periodic
signals, the past and the future are exactly predictable
from any measurement and so I [X0:∞] contains finite
information. These observations apply to when working
with informational quantities over RV blocks.
(Notational reminder: The kind of information—joint,
conditional, or mutual—is conveyed by the arguments
to I [·] . Thus, the quantity first listed in the previous
paragraph is a joint entropy over the length-ℓ RV block
X0:ℓ; whereas the second is a conditional entropy I [X | Y ].
When the vertical bar there is replaced with a colon one
has a mutual information I [X : Y ]. In addition, when we
are only interested in block length, we do not index off of
time t, but set t = 0 which is allowed by stationarity, and
then use ℓ to denote block length for a block located at
any time t.)
Second, we assume that all other information atoms are
finite. To show this, define the excess entropy or the total

Information Atoms
A A I[A|A]{

Xt

} {
↼−
X t,

−⇀
X t

}
rµ(t){

↼−
X t : Xt

} {−⇀
X t

}
b−

µ (t){
↼−
X t : −⇀

X t

} {
Xt

}
σµ(t){

Xt : −⇀
X t

} {
↼−
X t

}
b+

µ (t){
↼−
X t : Xt : −⇀

X t

}
qµ(t)

Composite Information Measures
A A I[A|A] or I[A : A] (*)

{Xt}
{

↼−
X t

}
h+

µ (t) = rµ(t) + b+
µ (t)

{Xt}
{−⇀

X t

}
h−

µ (t) = rµ(t) + b−
µ (t)

{Xt}
{

↼−
X t

}
ρ+

µ (t) = qµ(t) + b−
µ (t) (*)

{Xt}
{−⇀

X t

}
ρ−

µ (t) = qµ(t) + b+
µ (t) (*){

↼−
X t : −⇀

X t

}
E(t) = b+

µ (t) + σµ(t) + qµ(t) (∗)
E(t) = b−

µ (t) + σµ(t) + qµ(t) (*)

TABLE III. (Top) Generator set (temporal information atoms)
I[A|A] for the set of past, present, and future random variables
X =

{
↼−
X t, Xt,

−⇀
X t

}
. Compare the list of I[A|A] to the areas

of the information diagram depicted in Fig. 7(left). (After Ref.
[24].) Note that the forward and reverse entropy rates—h+

µ (t)
and h+

µ (t), respectively—are equal for stationary processes.
(Bottom) Composite information measures h+

µ , h−
µ , and E;

see Refs. [50, 51, 53].

amount of information shared between the past and the
future of the process:

E = I
[↼−

X : −⇀
X
]

, (15)

where in this case the present X0 is taken as the start of
the future −⇀

X . Note that this quantity is equivalent to
the sum of the last three information atoms; see the last
two rows in the Table III.
There is a corresponding instantaneous excess entropy at
each moment:

E(t) = I
[↼−

X t : −⇀
X t

]
, (16)

Note that for stationary, ergodic processes E = ⟨E(t)⟩t—
the temporal average.
And, it has a corresponding self-information:

E(↼⇀
X t) = − log2

(
Pr(↼−

X t,
−⇀
X t)

Pr(↼−
X t) Pr(−⇀

X t)

)
‘

Again, this self-information when setting block delay τ = 0
and time-averaged inside Eq. (12) becomes the familiar
averaged self-excess entropy—the average past-future mu-
tual information Eq. (15).
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ℑ[Xt−1]

ℑ[Xt]

rμ(t)

qμ(t)
b+

μ (t)b−
μ (t)

σμ(t)

hμ(t)

ℑ[Xt+2]
rμ(t + 1)

qμ(t + 1)

b+
μ (t + 1)b−

μ (t + 1)

σμ(t + 1)

hμ(t + 1)
t

Xt + 1τ

I(Xt) I(Xt+1)

I

ℑ[Xt]I

I

I(X )t
(τX)t = Xt + 1

ℑ[Xt+1]IXt

I(X )t+1

FIG. 7. Information processes I[A|A] when shift operator τ (Eq. (3)) acts on stationary, ergodic stochastic process {Xt}t∈Z for
atoms A in Table III. Temporal information diagrams representing how the informational relationships between the stochastic
process indexed at t evolve into those indexed to t + 1: Xt+1 = τ(Xt)—how the future −⇀

X t, the present Xt, and the past ↼−
X t−1

evolve over time to the next future −⇀
X t+2, present Xt+1, and past ↼−

X t. (Left) I-diagram at time t, formally denoted I(↼⇀
X t);

(Right) I-diagram at time t + 1, formally denoted I(↼⇀
X t+1). The i-diagrams are labeled with the time t and t + 1 ephemeral

informations rµ(t) and rµ(t+1), the binding informations b±
µ (t) and b±

µ (t+1), the enigmatic informations qµ(t) and qµ(t+1), the
elusive informations σµ(t) and σµ(t + 1). The Shannon entropy rates hµ(t) = rµ(t) + bµ(t) and hµ(t + 1) = rµ(t + 1) + bµ(t + 1)—
composite information atoms—are outlined with a white-dashed line.

Processes with finite excess entropy E (Eq. (15)) are
called finitary processes. We will assume here that all
processes under consideration are finitary, and therefore
all other information atoms of the process are also finite,
except for the two over semi-infinite pasts and futures.
We can see this by noting the information in the present
Xt must be finite, as it is a single measurement and
is bounded by log2 |X |. So, any information quantity
containing Xt must be finite—all atoms, except semi-
infinite groups, must be less than or equal to the excess
entropy.
Third, each of the finite atomic information quantities
may be expressed as the asymptotic growth rate of a block
information quantity [50]. That is to say, the growth rate
of an information quantity taken over words of length ℓ
as ℓ goes to infinity.
For example, consider the total amount of information
contained in words of length ℓ. As ℓ increases, this block
entropy scales as:

I [X0:ℓ] ∼ E + ℓhµ, as ℓ!∞,

where hµ is the entropy rate and is defined:

hµ = lim
ℓ!∞

I [X0:ℓ]
ℓ

. (17)

In some applications, this form is also referred to as a
density.
It can be shown that this asymptotic quantity is equivalent

to the entropy in the present conditioned on the past:

hµ = lim
ℓ!∞

I [X0 | X−ℓ:0]

= I
[
X0 | ↼−

X
]

. (18)

This expression gives an operational view of the infor-
mation measure—the entropy rate is the amount of new
information learned upon a single new observation of the
process. This also allows us to identify the quantity on
the process i-diagram in Fig. 7(left).
There is also the time-local version:

hµ(t) = I
[
Xt | ↼−

X t

]
and a self-information version:

hµ(t, x) = i
[
Xt = x | ↼−

X t

]
.

The anticipated information ρµ is the complement of
the new information hµ—future information that can be
predicted from the past:

ρµ = I [X0] − hµ (19)

= I
[
X0 : ↼−

X
]

. (20)

And, there is the time-local version:

ρµ(t) = I
[
Xt : ↼−

X t

]
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and a self-information version:

ρµ(t, x) = i
[
Xt = x : ↼−

X t

]
.

Depending on the semi-infinite past or future, the entropy
rate and excess entropy are global measures of the infor-
mation contained in a process. Specifically, hµ is the rate
of information created and E is that portion of created
information communicated from the past to the future.
The entropy rate is useful because of its immediate inter-
pretability. And, also as it can be shown to be equivalent
to the Kolmogorov-Sinai entropy, a dynamical invariant
of the underlying system (environment).

C. General Atoms

We can identify other atomic self-information densities
for the information atoms given in Table III. These have
proved themselves to be useful. We will describe these
quantities and give their self-information versions and
their intuitive meanings here. They play a key role in
interpreting information processing in Sec. VII’s example
processes. The interested reader should consult Ref. [50]
for a deeper discussion.
Ephemeral information rate rµ That information localized
to an isolated variable, but not correlated to its peers.
In other words, the rate can be interpreted as the av-
erage information in a single measurement of a process
undetermined by any temporal correlation:

rµ(t) = I
[
Xt | ↼−

X t,
−⇀
X t

]
.

The self-information version is:

rµ(t, x) = i
[
Xt = x | ↼−

X t,
−⇀
X t

]
.

Binding rate bµ The rate of increase of the total infor-
mation in a block minus the ephemeral entropy. It is also
the rate at which a process stores created information.
There are two equivalent quantities, forward binding rate
b+

µ and reverse binding rate b−
µ . For stationary processes

we always have b+
µ = b−

µ . The forward and reverse bind-
ing rates can be interpreted as how correlated any given
measurement of a process is with the future and the past,
respectively:

b+
µ (t) = I

[
Xt,

−⇀
X t | ↼−

X t

]
and (21)

b−
µ (t) = I

[
Xt,

↼−
X t | −⇀

X t

]
. (22)

The two self-information versions are:

b+
µ (t, x) = i

[
Xt = x,

−⇀
X t | ↼−

X t

]
and

b−
µ (t, x) = i

[
Xt = x,

↼−
X t | −⇀

X t

]
.

Enigmatic rate qµ The interaction information between
any given measurement of a process and the infinite past
and future:

qµ(t) = I
[
Xt;

↼−
X t;

−⇀
X t

]
. (23)

As this is a multivariate mutual information, it can be
negative. The self-information version is:

qµ(t, x) = i
[
Xt = x; ↼−

X t;
−⇀
X t

]
.

Elusive information σµ The amount of information
shared between the past and future that is not commu-
nicated through the present. The elusive information is
also sometimes called state information, as it represents
the amount of information the observer needs to access
beyond measurement to build a predictive model of the
system:

σµ(t) = I
[↼−

X t : −⇀
X t | Xt

]
. (24)

The self-information version is:

σµ(t, x) = i
[↼−

X t,
−⇀
X t | Xt = x

]
.

Interpretations There are a number of useful relation-
ships. Let’s mention just one and recommend the refer-
ences above for fuller discussion.
The ensemble-averaged forward binding information and
ephemeral information taken together are equal to the
ensemble-average entropy rate at each time t:

hµ(t) = rµ(t) + b+
µ (t) .

This decomposes the newly-created information per mea-
surement into a part correlated with the future and a part
only correlated with the current measurement and “for-
gotten” in the next time step. To take one example, bµ(t)
is the instantaneous rate of storing information internally
for use at some future time.
The ensemble-averaged reverse binding information and
enigmatic information taken together equal the ensemble-
average forward anticipation rate at each time t:

ρ+
µ (t) = qµ(t) + b−

µ (t) .

This decomposes the predictable information per mea-
surement into a part correlated with the past and a part
only correlated with the current measurement. Similarly
for:

ρ−
µ (t) = qµ(t) + b+

µ (t) .

These informations are depicted in visual form by the i-
diagram in Fig. 7(left) and explicitly (minus the “endcap”
atoms) in Table III. In principle, it is possible to profile
any process (or environment) using these atoms to give a
full picture of its informational structure.
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D. Dynamic Information Processes

Implicit in detailing the time-dependence of information
atoms is an agent that moment-by-moment interprets
an observation of its environment as containing useless
or useful information—used in predictions, decisions, or
actions. Such time-dependent information measures are
quite common—as Sec. II noted—although perhaps not
always called out as such dynamic quantities.
There are even pitfalls in interpretations. For example,
the transfer entropy [54]—a time-dependent measure of
mutual information within a sliding window, was intro-
duced to detect causal interactions in dynamical systems.
The causation entropy [55], also time dependent, was then
introduced to address several of its weakness in conflating
conditional dependence and independence [56]. Despite
such concerns, these causal-detection measures have come
to be widely used in the empirical sciences for structural
inferences. This, at least, attests to the need for such
statistics.
Taken altogether, though, the foregoing lays out the main
setting in which such time-dependent statistics operate.
With this, it is now time to be more explicit about the
agent and its functioning.
To set this up, though, we must first address the time
evolution of information measures, which has only been
indirectly specified thus far via the shift operator τ of
Eq. (3). Figure 7 makes this explicit by contrasting the
i-diagrams of measures at time t (left) and those at the
next moment t+1 (right)—that is, measures for processes
Xt and Xt+1, respectively.
At time t, we have measures of the past, present, and fu-
ture; viz., I

[↼−
X t−1

]
, I [Xt], and I

[−⇀
X t+1

]
, accompanied

by the atoms b−
µ (t), rµ(t), b+

µ (t), qµ(t), and σµ(t). At the
next time, we have I

[↼−
X t

]
, I [Xt+1], and I

[−⇀
X t+2

]
and

their companions b−
µ (t + 1), rµ(t + 1), b+

µ (t + 1), qµ(t + 1),
and σµ(t + 1).
At each time step, τ transforms the measures at t into
those at time t + 1, with the former typically splitting
and being shared across the latter. One such atomic
transformation is depicted: I

[−⇀
X t+1

]
maps to b−

µ (t + 1),
qµ(t + 1), and σµ(t + 1). That is, the time-t forward block
entropy splits and contributes to the time t + 1 reverse
bound information, enigmatic information, and elusive
information.
Reference [40] provides fuller details and interpretations
in other cases. All in all, though, this gives a view of the
dynamic operation of an information process—extracting,
storing, and processing various kinds of information. Sec-
tion VII gives an even more explicit view of dynamical
information processing in when analyzing the information
process time series generated by several examples.
As we are working in the setting of temporal or pointwise
information measures, a final cautionary remark is in

order. While motivated by elementary information theory
for a given set of random variables, there are important
interpretational differences for information processes.
Concretely, the elementary information theory of two
random variables leads to informations that are positive—
entropy, entropy rate, information gain, mutual informa-
tion, and so on. It is well-known, however, that when
applied to three random variables the mutual information
can become negative. This corresponds to the previously-
mentioned phenomena of conditional dependence versus
conditional independence induced between two random
variables by a third [46, Prob. 2.25]. The key point here
is that a similar deviation from intuitions derived from
elementary information theory occurs for pointwise or
temporal information measures.
To be specific consider the information processes con-
sisting of residual information ρµ(t) and bound in-
formation bµ(t). As conditional mutual informations
they can be negative in the pointwise setting. For
ρµ(t), which is a simple mutual information, negativ-
ity appears when its associated self-information argu-
ment Pr

(↼−
X (t), Xt

)
/ Pr

(↼−
X (t)

)
Pr (Xt) < 1 (or when

Pr
(↼−

X (t), Xt

)
< Pr

(↼−
X (t)

)
Pr (Xt)). This occurs in

the pointwise setting when the two observations—Xt and
↼−
X (t)—occur less often than one would expect if the pro-
cess were independent, identically distributed. Whereas,
ρµ(t) > 0 implies the past and present occur more fre-
quently than one expects if they were independent. Sec-
tion VII provides numerous examples of this and the
negativity of other temporal information measures that
one would, without warning, assume positive. The practi-
cal result is a need to retool intuitions from elementary
information theory when interpreting temporal informa-
tions.

V. COGNITIVE AGENTS

The following introduces a more explicit notion of (i) an
agent interacting with (ii) an environment whose behavior
the agent monitors by making sequential observations,
interpreting the latter to, perhaps, make decisions in the
service of future interactions.
We refer to the sequential measurement and interpreta-
tion as cognition and the observers as cognitive agents.
Granted this invokes a rather literal notion of cognition—
one that falls short of that in animals say. That said,
the goal in the following is to lay out the basic dynam-
ical and informational foundations for cognitive agents
of any stripe. The result of this is to demonstrate how
a cognitive agent is a transducer that maps an input
stream of observations to other informational variables
specified by an agent’s organization and design—those
environmental patterns to which it is sensitive. To do
this, we frame the notion of a cognitive agent in terms
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of computational mechanics—the information theory of
structured stochastic processes.
Moreover, there is a practical motivation. Working with
processes, as we have above—nominally, infinite sets of
infinite sequences and their probabilities—is cumbersome,
at best. Typically, we do not care to estimate informations
over distributions of infinite pasts and futures. Nor are
agents infinitely resourced for doing so.
So, we turn to finitely-specified representations. That is,
we turn to models specified by computational mechan-
ics—called ϵ-machines and ϵ-transducers—which have es-
pecially desirable properties [27, 57] for determining and
estimating information processing, both asymptotic prop-
erties and, as we show now, moment-by-moment, on-
line statistics. Through their optimal representations of
stochastic processes and communication channels, they al-
low us and cognitive agents, for that matter, to work with
finite objects rather than semi-infinite sets and sequences.
Helpfully, this often leads to exact, closed-form expres-
sions for many properties of interest [58]. Again, the
following assumes that a cognitive agent’s internal model,
unless otherwise stated, effectively employs its minimal
optimal predictor—the observed process’ ϵ-machine.

A. Predictive States

We formalize a prediction as a distribution Pr(−⇀
X |↼−x ) over

futures {−⇀
X } with knowledge of a given past ↼−x . We

wish to construct a minimal model that produces optimal
predictions for a stochastic process X. Computational
mechanics [27] solved this problem in the form of the
ϵ-machine—a model whose states are the classes defined
by an equivalence relation ↼−x ∼ ↼−x ′ that groups all pasts
giving rise to the same prediction Pr(−⇀

X |↼−x ). These classes
are called the causal states.
Computational mechanics also provides an analogous so-
lution for optimal predictions of one process, call it X,
about another, call it Y [57]. The minimal, optimal model
for the conditional input-output process or communica-
tion channel—denoted Y |X—is called an ϵ-transducer.
Since the following makes minimal calls on the latter,
here we concentrate on ϵ-machines. Sequels rely more
heavily on transducers.

Definition 3. The causal states of a process are the
members of the range of the function:

ϵ [↼−x ] =
{

↼−x ′ | Pr
(−⇀

X = −⇀x |↼−X = ↼−x
)

= Pr
(−⇀

X = −⇀x |↼−X = ↼−x ′
)

for all ↼−x ∈ ↼−
X , ↼−x ′ ∈ ↼−

X
}

that maps from pasts to sets of pasts. The set of causal
states is denoted S, with corresponding random variable
S and realizations σ ∈ S.

The causal states can be both empirically and measure-
theoretically grounded. First, from the (past,future) pairs
in a realization ↼−x −⇀x construct an empirical conditional
distribution:

P̂x1...xn|x−k+1...x0 =
Cx−k+1...xn

Cx−k+1...x0

, (25)

where Cw is the number of times the word w appears in
the sequence x1 . . . xL. Given sufficient data, it would be
desirable to take pasts of arbitrary length and converge
towards a prediction conditioned on the infinite past:

Px1...xn| −x = lim
k!∞

P̂x1...xn|x−k...x0 (26)

with the infinite sequence  −x = (. . . , x−1, x0) of observa-
tions stretching into the past.
Second, formally, the conditional predictions Px1...xn| −x
for all forecast lengths n together describe a probability
measure over future sequences −!x = (x1, x2, . . . ). In short,
a causal state is a measure over future sequences condi-
tioned on past sequences: Prµ(−⇀

X |↼−X = . . . x−2x−1x0).
We denote it simply P −x .
Reference [41] established a number of useful convergence
and topological properties of ϵ-machine casual states, in-
cluding:

1. In the language of measures, as an agent collects
more observations, P −x converges in distribution,
with respect to the product topology of the space of
sequences XN [41].

2. This also holds for convergence over word distribu-
tions Pr(x1:n).

3. A conditional measure is a ratio of likelihoods, as
in Eq. (25).

4. For all measures µ on X Z and µ-almost every past
↼−
X ∈ X Z, the measures ηℓ[

↼−
X ] defined by:

ηℓ[
↼−
X ](U0,ω) = Pr

µ
(ω|x−ℓ+1 . . . x0)

converge in distribution to the measure ϵ[↼−X ] :
ηℓ[

↼−
X ]! ϵ[↼−X ], as ℓ!∞.

5. ϵ[↼−X ] is the predictive state of ↼−
X and the func-

tion that maps to measures over future sequences—
ϵ[↼−X ]!M(X Z)—is the prediction mapping.

Anticipating future uses, the causal states of an input-
output process—or communication channel—are similarly
defined by equivalence classes of channel input sequences
and output sequences. The corresponding mapping from
an input process to an output process is called the ϵ-
transducer. The following only considers ϵ-machines for
processes, leaving the ϵ-transducer development for chan-
nels to a sequel in which they play a pivotal role.
In this way, causal states partition the space of all pasts
into sets that are predictively equivalent. The causal state
set S may be finite, fractal, or continuous, depending on
X’s properties [59].
The following focuses on processes with finite causal-state
sets: |S| < ∞. Sequels remove this restriction.
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B. Causal-State Processes

Given a stochastic process X, consider a realization:

. . . , x0, x1, x2, . . . .

From this, form the associated time series of semi-infinite
histories:

. . . , ↼−x 0, ↼−x 1, ↼−x 2, . . . ,

where ↼−x t = . . . xt−2, xt−1, xt.
Now, we use causal-state filtering to obtain the causal-
state realization—mapping from a time series of observa-
tions to a process’ causal states:

. . . , ϵ(↼−x 0), ϵ(↼−x 1), ϵ(↼−x 2), . . .

. . . , σ0, σ1, σ2, . . . ;

that is, σt = ϵ(↼−x t).
We define two kinds of causal-state behavior of interest:

• The causal-state process S = {St : t ∈ Z} is the
temporal sequence of causal states St = ϵ[τ t ↼−x ]; and

• Recurrent causal-state process is that series of states
after the agent is synchronized to the environment.

We work with the latter, though sequels lay out several of
the challenges of working with the transient, nonstationary
statistics of the former.

C. ϵ-Machines

The dynamic over the casual states is inherited from the
shift operator τ on the process. State-to-state transitions
occur when observing a new symbol x, which is appended
to the observed history: ↼−x ! ↼−x x. The causal state
transition is therefore from ϵ [↼−x ] = σi ! ϵ [↼−x x] = σj ,
and occurs with probability Pr (x = x | S = σi).
ϵ-Machines are guaranteed to be optimally predictive be-
cause knowledge of what causal state a process is in at
any time is equivalent to knowledge of the entire past:
Pr (−⇀

X | S) = Pr (−⇀
X | ↼−

X ). They are also Markovian in
that they render the past and future statistically indepen-
dent: Pr (↼−

X ,
−⇀
X | S) = Pr (↼−

X | S) Pr (−⇀
X | S). We call

these properties together causal shielding. ϵ-Machines
also have a property called unifilarity, which means that
knowledge of the current causal state and the next symbol
is sufficient to determine the next state. That is to say,
I [St+1 | Xt, St] = 0.

Definition 4. The ϵ-machine Mϵ of a finitary process
consists of:

1. Finite alphabet X of k symbols x ∈ X ;
2. Casual state set S = {σ1, σ2, . . . } that consists

of transient states whose probabilities vanish and
recurrent states σ̃ whose probability converges to a
constant Pr(σ̃) > 0. And;

3. Causal dynamic—set of k (possibly infinite di-
mension) symbol-labeled transition matrices T (x),
x ∈ X : T

(x)
ij = Pr (σj , x | σi).

This defines its own class of optimal representations for a
wide range of stochastic processes. That said, we can draw
several parallels with existing classes of process representa-
tions. The definition here identifies an ϵ-machine as a hid-
den Markov model (HMM). Not all HMMs are ϵ-machines.
However, the ϵ-machines here are. An ϵ-machine may be
graphically shown as an HMM with a directed graph
where the causal states are depicted by vertices and tran-
sitions between them by directed edges labeled with the
symbol emitted on transition followed by the probabil-
ity of transition; e.g., x : Pr (x). The time indexing is
as follows: if at time t, an ϵ-machine is in state St, it
emits symbol xt and transitions forward to the next state
St+1. Notice that due to unifilarity, there is at most one
transition from each causal state per symbol.

D. Agent-Environment Synchronization

Proposition 4. Given the causal state at time t − 1, the
causal state at time t is independent of the causal states
at earlier times t < t − 1.

Proof. See Lemma 6 (ϵ-Machines are Markovian) in Ref.
[27].

That is, the causal-state process is order-1 Markov:

Pr(σt| . . . σt−2σt−1) = Pr(σt|σt−1) .

Markovity induced by the causal states makes it partic-
ularly straightforward to give the recurrent causal-state
process directly in terms of its word distributions:

Pr(σ̃0:n) = (π0)
σ̃0

n∏
t=0

T
σ̃t,σ̃t+1

,

where σ̃t is a recurrent causal state, T is the state-
transition operator, and (π0)

σ̃0
is the initial causal state

distribution. (The tildes identify recurrent states.)
The simplicity of the casual-state process demonstrates
concretely why the causal states are so useful. For one,
the summary they give of the past ↼−

X is sorely needed to
make various potentially-infinite calculations tractable.
Leveraging this, we define agent-environment synchro-
nization when the agent is fully tracking the environment.
First, define a synchronizing word ŵ: Pr(σ̃|ŵ) = 1, for one
σ̃ ∈ S, and where ŵ is one of the words L(X) generated
by the process: ŵ ∈ L(X). The informational definition
of synchronization is that the agent exactly knows the
current state: I [σt | ŵ] = 0.
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E. Agent Operation

There are two principle modes of operation for ϵ-machines:
Recognizing sequences of environment behaviors versus
generating environment control signals:

• Recognition mode: This addresses the question, is a
given word w ∈ X ∗ in the set (or language) recog-
nized by the ϵ-machine? Is w ∈ L(M)?

• Generation mode: The mode concerns what words
w ∈ X ∗ are emitted by an ϵ-machine.

As noted below, these modes of operation come into play
when an agent encounters stimuli disallowed by its internal
model. That is, when it resets its state in response.
Before use, an ϵ-machine must be properly initialized. In
either recognition or generation mode, the procedure to
initialize an ϵ-machine sets the initial causal-state distri-
bution: Set the current state to ϵ-machine’s unique start
state S = σ0 and set the current state distribution πt to
have unity probability on σ0: π0 = (1, 0, 0, . . .).
Given an ϵ-machine, its asymptotic causal-state distribu-
tion π̂ is the left-eigenvector of the causal-state transition
operator T =

∑
x∈X T (x):

π̂ = π̂T ,

normalized in probability:
∑

σ∈S Pr(σ) = 1.
In each mode, the ϵ-machine operates step-by-step, se-
quentially reading the symbols in a word, to accept or
reject the word as follows.

• Acceptance: Reach the input word’s last symbol
while in recurrent causal state σt ∈ S.
Sequentially reading symbols from the input, up-
date the current state to that reached by transition
labeled by xt and update current state distribution:

πt+1(x) = πtT
(x)∑

x πtT (x) .

• Rejection: While reading symbols from the input
the agent encounters a disallowed symbol; that is,
from the current state there is no transition labeled
with that symbol.
Then, reset the current state to the agent’s unique
start state σ0 and reset the current-state distribu-
tion πt to unit probability on the start state σ0:

πt+1 = (1, 0, 0, 0, . . .) .

For generation mode the ϵ-machine operates accord-
ing to a companion emission procedure that simply
follows the allowed transitions emitting the symbols
labeling each.

The probability of generating word w = x0x1 . . . xℓ−1
given start distribution π0 is:

Pr(w) = π0

ℓ−1∏
i=0

T (xi)

= π0T (ω) . (27)

If an ϵ-machine starts with π̂, then π0 = (1, 0, ...). Recall
that the start state corresponds to the asymptotic state
distribution; a condition representing unbiased informa-
tion about the environment’s state.

Proposition 5. If an ϵ-machine used π0 = π̂ to gen-
erate word w, then Pr(w) is w’s asymptotic stationary
probability.

Proof. By elementary Markov chain theory [44].

Definition 5. If M is an ϵ-machine, its output process
X(M) consists of the word distributions given by Eq. (27)
above.

Proposition 6. If starting with π̂, an ϵ-machine’s output
process is stationary.

Proof. Elementary Markov chain theory [44] shows that
word distributions are time-shift invariant.

F. Intrinsic Information Processing

There are infinitely many possible optimal predictive
models—if thinking of state-based models, imagine adding
redundant or even useless states. Helpfully, computational
mechanics established that the ϵ-machine is a process’
minimal and unique predictive model in the sense that
the amount of information stored by the causal states is
smaller than (or equal) to any other possible prescient
(equally predictive) rival. We quantify this via the Shan-
non entropy of the causal-state distribution—this is the
statistical complexity: Cµ = I [S] = I [π̂].
With this, there are three basic informational invariants
that describe a stationary process: hµ is a process’ rate of
information creation, Cµ is the amount of history a process
remembers from its past ↼−

X —the historical information
stored in the causal states S; and E is the amount of
that stored information communicated to the future −⇀

X .
Generally, the following refers to an environment’s inher-
ent information if an optimally-predicting agent uses the
environmental process’ ϵ-machine and is synchronized.
If the agent uses a model other than the ϵ-machine, then
the information available is relative to that model and
to being synchronized or not. Hence, this highlights
the distinction between “subjective” self-information—
using any model—and “inherent” self-information—using
the ϵ-machine. Section VI D below illustrates the con-
sequences of an agent using an incorrect environment
model.
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Finally, we generically refer to the time series of temporal
information measures and the causal-state and prediction
processes collectively as information processes. These
are the time series generated during an agent’s online
operation that allow us to monitor and diagnose the
informational processing that it performs while interacting
with an environment.

VI. INTRINSIC SEMANTICS OF
INFORMATION PROCESSES

Generally, one concludes that an ϵ-machine captures the
patterns in a stochastic process [27]. However, focusing on
the global, time-asymptotic view side-steps a key question
that Fig. 3 highlights:

What does a particular measurement mean?

To address this, the following reviews and then applies
the notion introduced some time ago in Ref. [59] of
measurement semantics. This refers to the (informational)
meaning revealed to an agent via measurements of its
environment with respect to its internal model of that
environment.
Said more plainly, we assume an agent has a model in its
“head” that it uses to interpret the incoming sequence of
measurements. The following explores the relationship
between incoming “raw” observations and how an agent
deploys a (good or bad) model of the observed process’
generator to interpret them.
It might use this model to “understand” patterns in the
process or simply may use it to predict future observations.
We start with the latter first.
Two points to clarify first. The following assumes an agent
has a model of its environment. As such, the following
does not discuss how an agent obtains its model. This
certainly brings up important, but for now peripheral,
issues; for example, the issues of statistical estimation,
inference, and overfitting. See, for example, Ref. [60] and
references therein. Beyond inference, though, there are
many competing ways an agent can have a model of its
environment. It can, for example, simply sample a given
model distribution—a topic for a separate development.
In addition, the following assumes the agent uses the
incoming observations and its model to synchronize to
the environment’s state. The way in which it does this
can be quite challenging. It is its own topic; see Ref. [61].

A. Prediction Semantics

One interpretational setting is to use past observations
↼−x t up to time t to predict the future, say, xt+1 or even
the whole future −⇀x t = xt+1, xt+2, . . .. But to what end?
Specifically, even mere prediction begs asking, What is
the meaning of the particular measurement xt+1 ∈ X ?
Harking back to Sec. IV, we have the following.

Definition 6. Given a particular past ↼−x t ∈ ↼−
X , recall

that Shannon defined the amount of self-information an
agent gains in observing x ∈ X to be [45]:

− log2 Pr(Xt = x) . (28)

This is, in short, an agent’s degree of surprise on observing
xt+1. As Shannon formulated it and as noted above, the
degree of surprise is the most basic concept in information
theory. Beyond the intuition motivating self-information,
Ref. [45] did not specify exactly how one obtains the
probability Pr(Xt = x). It is assumed to be available to
an agent ... (or, in Shannon’s setting, available to the
communications channel analyst.)
And so, we must refer to this as the subjective self-
information since, nothing else said, it does not specify
how the probability is determined. (This is in stark con-
trast to the comments at the beginning, which assumed
probabilities were given.) Specifically, any interpretive
model could be used to develop Pr(Xt = x) and the
self-information would change accordingly. The need to
address this issue is now clear. The following assembles
the required components.
We can specialize the above definition of subjective self-
information by constraining the model used, rather than
it being arbitrary. (Again, that arbitrariness led us to
the label “subjective”.) Having identified this relativity,
when using information theory one is chastened to specify
at the outset the model class of process generators with
which one works.
Heeding this, one can then specify a model class, such
as Markov chains or hidden semi-Markov processes, as
appropriate. However, there is still model choice within a
given class and so follow-on informational interpretations
are subjective. Computational mechanics’ introduction
of a process’ ϵ-machine solves this problem, grounding
interpretation in a process’ minimal and unique repre-
sentation that comes from the process itself. Seemingly
simple, this is one of computational mechanics’ broader
contributions as it removes unnecessary subjectivity in
applying information theory to a given stochastic process..
Computational mechanics adopts a companion view of
a communication channel that refines Shannon’s notion
of the channel receiver by making explicit the observing
entity—the agent; in fact, one that is optimally predicting.
In short, for objective or intrinsic information measures,
an agent employs a process’ ϵ-machine as its internal
model.
A key consequence of its optimality is that using the
ϵ-machine as the agent’s internal model grounds much
of information theory that is unspecified or, as noted,
subjective.

Definition 7. Given a stationary process X and
an agent synchronized to it that uses X’s ϵ-machine
M = {X , S, {T

(x)
S!S′ : x ∈ X }, µ0}, the intrinsic self-
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information in observing x is:

− log2 Pr(Xt = x)
= − log2 Pr(↼−x t) Pr (σt !x σt+1|↼−x t) . (29)

Here, the self-probability Pr (σt !x σt+1) is calculated
from the ϵ-machine, as follows: (i) Note the probability
Pr(σt|↼−x t) of being in state σ having observed ↼−x t. Ap-
plying the ϵ(·), this is unity. And, (ii) multiply that by
the (transition) probability T

(x)
S!S′ of taking the x-labeled

transition. That is:

Pr(Xt = x) = Pr(↼−x t)T (xt)
ϵ( ↼−x t)!xS′ (30)

= Pr(↼−x t)T (x)
σt!xS′ . (31)

Note the dependence on the process’ asymptotic invariant
measure µ, implicitly in using Pr(↼−x t).

Again, using the ϵ-machine is a natural choice given that it
is the process’ minimal optimal predictor. And so, follow-
on results inherit a number of desirable properties—such
as, actually describing the given process and facilitating ef-
ficient estimation of informational properties. In addition,
Ref. [27] established that the causal-state process—the
temporal sequence of causal states the agent visits—is
an order-1 Markov process. This greatly simplifies much
technical development since each causal state summarizes
in a single RV σt = ϵ(↼−x t) all of the prediction-relevant
information from the past.
To emphasize, the present setting and the following as-
sume the agent is synchronized to the incoming process—
it knows which causal state (σ above) the process gen-
erator is in. For stochastic processes generated using
finite-memory there are two kinds [61]: (i) exact synchro-
nization in which the agent knows the state after a finite
series of observations and (ii) asymptotic synchronization
where an infinite series of observations is required and the
agent converges (exponentially fast) to synchronization.
Agent-environment synchronization is an important prop-
erty for the results here. A number of consequences arise
when removing the synchronization requirement, espe-
cially when addressing the potentially transient, nonsta-
tionary epoch prior to synchronization. Fortunately, the
conditions of exact and asymptotic synchronization can
be substantially broadened to include processes generated
by path-mergeable HMMs [61].

B. Online Prediction: An Example

The following assumes the agent uses the process’ minimal
optimally-predictive model—the ϵ-machine.
To illustrate the operation of prediction, let’s consider how
an agent sequentially monitors (optimally) observations
in a realization of the Even Process:

t = 0 1 2 3 4 5 6 7 8 9 10 11
st = 0 1 1 1 1 0 1 1 0 1 1 1

Now, at time t = 11, the agent measures s11 = 1. (For
reference, see the Even Process’ ϵ-machine in Fig. 8(d).)
How much information does X11 = 1 convey to the agent?
We apply the self-information conditioned on the preced-
ing eleven observations:

I [s11 | s10 = 1, s9 = 1, . . .] ≈ hµ (32)
≈ 0.585 bits . (33)

This is the degree of the observer’s surprise (unpredictabil-
ity).

C. Measurement Semantics

Crucially, this indicates uncertainty but does not deter-
mine what the event s11 = 1 means to the observer!
We have one event—s11 = 1, but there are two contexts
or interpretive levels in which to interpret it. The first is
how much it is unanticipated—the semantics of prediction.
The second, concurrent setting is how it updates the
agent’s actual anticipation. That is, to what model state
σt does the observation take the observer? The meaning
to the agent comes from a tension between representation
of the same event s11 = 1, but at different levels or
contexts. Here, we have:

1. Level 1 is the data stream and the event is a mea-
surement;

2. Level 2 is the agent and the event updates its model.

With this in mind, we have the following definition of an
agent’s observational semantics.

Definition 8. The degree of meaning of observing x ∈ X :

Θ(x) = − log2 Pr(!x σ) , (34)

where the arrow notation signifies σ ∈ S is the causal
state to which x brings the agent.

Said differently, this broadens our understanding of causal
states—they are contexts of interpretation within which
observed values appear. The set S, thus, is agent’s palette
of semantic interpretations of environment behaviors.
In the preceding example of the Even Process, the state
selected is D which has asymptotic probability Pr(S =
D) = 2/3) and so:

Θ(x11 = 1) = − log2 Pr(σ11 = D)
= − log2(2/3)
≈ 0.58496 bits ,

of semantic information.
Moreover:

Definition 9. The meaning content is the state σ selected
from the palette of anticipations—the model’s state set
S.
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Again, in the preceding example of the Even Process,
x11 = 1 selects state D. And this means that the 1—
compared to other 1s that may be emitted—is the second
1 in the symbol-pairing—0(11)n0—that the Even Process
emits.
And, this highlights the origin of the measurement’s mean-
ing within the set of the agent’s causal states. That is,
the meaning depends on the entire set of interpretive
contexts—within the causal state set S. That is to say
that the interpretive context of an incoming observation
is the causal state the agent is currently in. For one, the
causal state has an associate prediction—its future morph.
For another, the current causal state determines which
next state the agent will move to. Both predicting the
next observation and the next state are interpretations of
what the current observation means to the agent.

D. Meaninglessness

It is important to highlight that this measurement seman-
tics allows for measurements to be meaningless. Here, are
several cases.

1. Given how the ϵ-machine operates—recall the ac-
ceptance and rejection modes described above—one
specifies an initial state distribution. And, under
one operation mode, the ϵ-machine puts all of the
probability on the start state. That is, πt is set to
π0 = (1, 0, 0, 0, . . .). Or, in other words, Pr(σ0) = 1.
And, the symbol observed is x0 = λ. The degree of
meaning, then, is:

Θ(x0 = λ) = − log2 Pr(σ0)
= − log2 1
= 0 .

2. Disallowed transition: Upon seeing a disallowed
symbol, the agent resets its ϵ-machine to the start
state—the state of total ignorance. As just noted,
this means the state, being the start state, has full
probability and so is meaningless. This is intu-
itive: The disallowed transition or forbidden symbol
observed is meaningless. The model has no inter-
pretation to give—nothing to say: Θ = 0.

Thus, by the above, the start state is meaningless. Indeed,
having seen nothing, all futures are possible.
Somewhat glibly, meaningless measurements are (very!)
informative:

− log2 Pr(σt !xt S0) = − log2 0
= ∞ .

A meaningless measurement is informative in the sense
that a zero probability observation is infinitely surprising.

And, moreover, a meaningless measurement implies the
existence of (at least one) zero-probability measurement.
Thus, even if the agent has an incorrect model of a process
there is a semantics of its (likely misleading) interpreta-
tions of the environment behaviors. In such circumstances,
there can be many symbols and transitions that the agent
interprets as disallowed. No matter, the above theory
properly describes the semantics according to the agent.
Section VII E illustrates the circumstance when an agent
uses as its internal model the Even Process ϵ-machine to
(incorrectly) interpret an environment obeying the Golden
Mean Process.
Finally, how this semantic theory applies to hierarchically-
structured processes—such as an environment at the onset
of chaos or the particle interactions in cellular automata
distributed computation—are the subjects of a sequel.

E. Total Semantic Information

It turns that the total amount of semantic information in
a process is related to its information storage.

Theorem 1. A process’ total average semantic informa-
tion is its statistical complexity:

⟨Θ(x)⟩ = Cµ .

Proof:

⟨Θ(x)⟩ =
∑
σ∈S

Pr(σ)Θ(x)

= −
∑

Pr(σ) log2 Pr(σ)
= I [S]
= Cµ .

In other words, the average amount of meaning is the sta-
tistical complexity Cµ. This gives an insightful connection
between a process’ internal structure and the semantics
an observer attributes to observations.
Tables IV, V, VI, and VII present an agent’s informational
and semantic analysis of Sec. VII’s example processes,
respectively.

F. Ergodic Theory Redux

The following establishes that the information processes
generated by a (finitary) agent are well-behaved in the
sense that the information processes resulting from ob-
serving a stationary and ergodic environment are well-
behaved. Note that such properties are an aid to further,
downstream processing that an agent is tasked to perform.
This holds for any class of generated information
process—whether entropy rate or excess entropy or oth-
ers based on the various self-informations or densities



21

(a) (b) (c) (d)

FIG. 8. Example ϵ-machines for: (a) Biased Coin; (b) Period-2; (c) Golden Mean; and (d) Even Processes. Causal states are
circles, with the start state having an inscribed circle. State-to-state transitions are labeled x|p, where x ∈ X is the emitted
symbol and p ∈ [0, 1] is the transition probability.

(self-informations) developed above. Given this, we then
develop analogous results for when an agent observes an
ergodic process in its environment.

Proposition 7. If X is stationary, then the prediction
mapping ϵt = ϵ[↼−X t] is a random variable that is station-
ary.

Proof. ϵt is a first-order Markov process [27].

The prediction process Xϵ = {Xt|ϵt : t ∈ Z} is the stochas-
tic process of predictions Pr(−⇀

X |·).

Proposition 8. The prediction process is stationary and
ergodic.

Proof. ϵt is a first-order Markov process [27].

Similarly, the causal-state process is statistically well-
behaved.

Proposition 9. If X is stationary and ergodic, then the
causal state process {St : t ∈ Z} is stationary and ergodic.

Proof. The causal-state process is a finite-range function
of the process. And so, by previous propositions, since
the process is stationary and ergodic, the causal-state
process is stationary and ergodic.

Define the prediction uncertainty process: hµ(t) =
i [xt | ↼−x t]. It is also given by: hµ(t) = i [xt | St]. The
latter expression is often a direct and efficient way to gen-
erate the prediction process, if an ϵ-machine is in hand.

Proposition 10. The prediction uncertainty process is
stationary and ergodic.

Proof. The prediction uncertainty process is a finite-range
function of the process. And so, by previous propositions,
since it is stationary and ergodic.

Define the causal-state uncertainty process: Cµ(t) =
i [σt = ϵ(↼−x t)]. This too is stationary and ergodic if X is:

Proposition 11. The causal-state uncertainty process is
stationary and ergodic.

Proof. The causal-state uncertainty process is a finite-
range function of the process. And so, by previous propo-
sitions, since the latter is stationary and ergodic, it is
too.

Having seen the pattern in the preceding results, we
generalize. Let I(·) be any function defining a temporal
information atom—as those laid out above in Table III.
The preceding observations generalize to establish that
functions—in particular, the self-informations I(X)—of
stationary, ergodic processes are stationary and ergodic.

Proposition 12. Self-information processes I
[
A | A

]
(t)

are stationary and ergodic, if the process is.

Proof. The self-information processes are finite-range func-
tions of the process. And so, by previous propositions,
they stationary and ergodic.

This is all to say that an agent has well-defined and statis-
tically well-behaved informational quantities to work with
in its more sophisticated downstream cognitive processing,
such as further-derived information-theoretic quantities,
in making inferences about them, in quantitatively mon-
itoring its inferences, in identifying fluctuations, and in
decision-making and taking actions on the environment.

VII. EXAMPLE INFORMATION PROCESSES

The following analyzes concrete examples of information
processes produced an agent observing an environment
governed by finite-memory generators: (i) wholly unpre-
dictable, (ii) predictable, (ii) structured, but finite Markov
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Observer’s Analysis of Biased Coin Process
State Measurement x Surprise − log2 Pr(x) [bits] Semantic State σ: Meaning Degree of Meaning Θ(x) [bits]

A λ Not Defined No Measurement 0.0
A 1 0.585 A: Sync 0.0
A 0 1.585 A: Sync 0.0

TABLE IV. Information and Semantic Analysis of the Biased Coin Process, with 1s-bias of Pr(x = 1) = 2/3. Recall Fig. 8(a).
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FIG. 9. Biased Coin Process observed time series realization (top) versus several of its information processes (below): entropy
rate hµ(t), anticipated information rate ρµ(t), ephemeral rate rµ(t), bound information rate bµ(t), and enigmatic information
rate qµ(t). The information process values for the first and last 6 steps are not shown, due to their being estimated using a
window length of 13: 6 steps for the history and for the future words, plus the present (1 step). This holds for all of the following
information process time series.

order, and (iv) structured and infinite Markov order. In
other words, several relatively low-complexity (easy to
explain) environments that range from predictable mem-
oryless to unpredictable infinite-range dependencies—a
suite that illustrates the breadth of basic results of interest.
See Fig. 8 for their state transition diagrams.
Building on these and the general development of infor-
mation processes, the following section establishes that,
whatever its role, an agent has access to and generates
well-behaved information processes—first, such derived
processes are stationary and second they are ergodic.
Tables IV, V, VI, and VII present an agent’s informa-
tional and semantic analysis of the example processes,
respectively. And, Figs. 9, 10, 11, and 12 plot typical
realizations of the examples’ information processes.
References [24, 40] provide fuller informational analyses
for these and other example processes. Here, we simply
focus on aspects related to a cognitive agent’s associated
information processes.

A. Unpredictable: Independent
Identically-Distributed

The paradigm of a random process is the fair (or bi-
ased) coin—one in the family of independent identically

distributed (IID) processes—coins, dies, and the like. Con-
sider the particular case of a process of identical indepen-
dently distributed variables; i.e., a coin flip with probabil-
ity {Pr(H) = p, Pr(T ) = 1 − p} repeated infinitely many
times.
Figure 8(a) gives the ϵ-machine state-transition diagram.
For all processes in the IID family, there is only a
single causal state S = {A}. For the binary alpha-
bet process generated the state-to-state transitions are
given by two 1 × 1 symbol-labeled transition matrices:
{T (0) = (p), T (1) = (1−p)}, p ∈ [0, 1]. The initial measure
over states is also trivial: π0 = {1}. πt is invariant over
time.
Its basic informational quantities are: (i) entropy rate
hµ = 1 bit per time step, (ii) statistical complexity Cµ = 0
bits, and (iii) excess entropy E = 0 bits. All as one would
expect for a fully random, memoryless process.
Each measurement Xt being independent, the mutual
information I [Xt : Xt′ ] = 0 for all t ̸= t′. Therefore,
all information atoms in Fig. 7(left) vanish except for
rµ = hµ = I [Xt] and the infinite amount of information
in the past and future.
Table IV presents an agent’s informational and semantic
analysis of an IID process in terms of the self-information
(transition) surprise − log2(x) and degree of meaning
Θ(x): IID processes are always synchronized and the
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Observer’s Analysis of Period-2 Process
State Measurement x Surprise − log2 Pr(x) [bits] Semantic State σ: Meaning Degree of Meaning Θ(x) [bits]

A λ Not Defined No Measurement 0.0
A 1 1.0 B: Sync 1.0
A 0 1.0 C: Sync 1.0
B 1 ∞ A: Loose sync; reset 0.0
B 0 0.0 C: Deterministic 1 1.0
C 1 0.0 B: Deterministic 0 1.0
C 0 ∞ A: Loose sync; reset 0.0

TABLE V. Information and Semantic Analysis of the Period-2 Process. Recall Fig. 8(b).
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FIG. 10. Period-2 Process observed time series sample versus several of its information processes: entropy rate hµ(t), anticipated
information rate ρµ(t), ephemeral rate rµ(t), bound information rate bµ(t), and enigmatic information rate qµ(t).

semantics is meaningless, as one would expect for a struc-
tureless process.
Finally, there are the Biased Coin’s information processes.
Figure 9 presents a realization and its information pro-
cesses: entropy rate hµ(t), anticipated information rate
ρµ, ephemeral rate rµ, bound information rate bµ(t), and
enigmatic information rate qµ(t). As expected, every suc-
ceeding observation is highly surprising (hµ = 1 bit) and
no information in the future is anticipated (ρµ = 0 bits).
All of the information hµ produced at each time step is
forgotten (rµ ≈ 1) and none is stored (bµ ≈ 0). The fluc-
tuations seen in these latter information processes reflect
their being empirically estimated from a finite time series
of observations (length ℓ = 106 symbols.)

B. Predictable: Period-n

Now consider the other extreme of predictability—a com-
pletely determined period-2 process . . . 010101 . . . . Figure
8(b) presents the ϵ-machine that generates a period-2 bi-
nary process. There is a single transient state A and the
initial distribution is π = {1, 0, 0}. The recurrent states
B and C are equally likely—π = {0, 1/2, 1/2}—which
state distribution is time invariant.

The state transition matrices for the binary generator are:

T (0) =

0 1/2 1/2
0 0 1
0 0 0

 and T (1) =

0 1/2 1/2
0 0 0
0 1 0

 .

All conditional entropies vanish, including the informa-
tion in the past and future, as any single measurement
determines the value of Xt for all time indices. The only
remaining quantity is qµ, which contains all the process
information. In the case of a period-n process, the value
of this atom in bits is exactly log2 n. Table V gives an
agent’s informational and semantic analysis of a period-2
process. When disallowed symbols violate the periodicity,
the ϵ-machine resets to the (meaningless) start state, hav-
ing lost the oscillation’s phase, while the agent is infinitely
surprised that this has occurred.
Finally, there are Period-2’s information processes. Fig-
ure 10 presents a realization and its information pro-
cesses: entropy rate hµ(t), anticipated information rate
ρµ, ephemeral rate rµ, bound information rate bµ(t), and
enigmatic information rate qµ(t). As expected, every suc-
ceeding observation is determined (hµ = 0 bit) and all of
this future information is anticipated (ρµ = 1 bits). Since
no information hµ produced at each time step there is
none to forget (rµ ≈ 0) and none to store stored (bµ ≈ 0).
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FIG. 11. Golden Mean Process observed time series sample versus several of its information processes: entropy rate hµ(t),
anticipated information rate ρµ(t), ephemeral rate rµ(t), bound information rate bµ(t), and enigmatic information rate qµ(t).

Observer’s Analysis of Golden Mean Process
State Measurement x Surprise − log2 Pr(x) [bits] Semantic State σ: Meaning Degree of Meaning Θ(x) [bits]

A λ Not Defined No Measurement 0.0
A 1 0.585 B: Sync 0.585
A 0 1.585 C: Sync 1.585
B 1 1.0 B: Random 1 0.585
B 0 1.0 C: Isolated 0 1.585
C 1 0 B: Deterministic 1 0.585
C 0 ∞ A: Loose sync; Reset 0.0

TABLE VI. Information and Semantic Analysis of the Golden Mean Process. Recall Fig. 8(c).

There is a single bit (qµ = 1 bit) of phase information of
the period-2 cycle.
The extreme examples of utterly random and perfectly
predictable are simple enough to work through, but typi-
cally calculating the information dynamics requires taking
entropies over infinite sequences, which is not practical.
Therefore, we turn to the use of optimal finite models and
the theory of computational mechanics.

C. Finite Markov Order: Golden Mean

As one sees from Ref. [26]’s survey (Fig. 13 there), the
vast majority of structured stochastic processes lie be-
tween the two preceding extremes of predictability. As a
typical example of these intermediate-complexity process
generators consider the Golden Mean Process. See Fig.
8(c) for its ϵ-machine state transition diagram, which
generates all binary sequences except for those with con-
secutive 0s. That is, only the word w = 00 is forbidden;
otherwise the generated realizations are random. It is
easy to see where in the state-transition diagram this
restriction arises: When the ϵ-machine is in state C it
must transition to state B and emit a 1 with probability
1. A simple way to summarize this and so characterize

the Golden Mean Process is to give its list of irreducible
forbidden words F = {00}.
As in the period-2 process, there is a single transient
state A and the initial distribution is π0 = Pr(A, B, C) =
{1, 0, 0}. The state transition matrices for the Golden
Mean Process generator are:

T (0) =

0 0 1/3
0 0 1/2
0 0 0

 and T (1) =

0 2/3 0
0 1/2 0
0 1 0

 .

The recurrent states B and C are visited with probabil-
ities π̂ = {0, 2/3, 1/3}—which state distribution is time
invariant after the first time step.
The informational analysis says the entropy rate is hµ =
2/3 I(1/2) = 2/3 bits per emission. The statistical com-
plexity is Cµ = I(2/3) bits, as is the excess entropy. The
generated Golden Mean process is Markov order 1. For
these see Ref. [50].
Table VI gives an agent’s informational and semantic
analysis of the Golden Mean Process.
And, Fig. 11 presents its information processes: entropy
rate hµ(t), anticipated information rate ρµ, ephemeral
rate rµ, bound information rate bµ(t), and enigmatic
information rate qµ(t).
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As concrete examples of the Golden Mean Process’ infor-
mation processes we examine the prediction and statistical
complexity processes—hµ(t) and Cµ(t). First, we need the
state distribution p(t) as a function of time: this is simply
p(0) = (1, 0, 0) and p(t) = (0, 2/3, 1/3), t = 1, 2, 3, . . .).
From this, we then calculate the time-local quantities from
looking at machine states—out of which set of values this
or that information process will consist of a time series
of samples. That is, for the prediction process we have
uncertainties in state A for first time step: for observing
a 1 hµ(t = 0, x0 = 1) = I(2/3), a 0 hµ(t = 0, x0 = 0) =
I(1/3). For second step; hµ(t = 1, x0:1 = 11) = 1 bit,
hµ(t = 1, x0:1 = 10) = 0 bit. hµ(t = 1, x0:1 = 01) = 0
bit. At this point, having these initial observations, the
agent is synchronized to the environment behavior. And
so, values in the prediction process are samples of these
values, sampled according to the history seen. Then we
have the statistical complexity process: Cµ(t = 0) = 0.
Cµ(t) = I(2/3), t = 1, 2, 3, . . .. This is quite simple.
Finally, there are Golden Mean’s information processes.
Figure 11 presents a realization and its information pro-
cesses: entropy rate hµ(t), anticipated information rate
ρµ, ephemeral rate rµ, bound information rate bµ(t), and
enigmatic information rate qµ(t).
Given that there are no consecutive 0s, if a 0 is observed
there is no uncertainty in the next observation (it must
be a 1). At those times (denote them t), hµ(t) = 0.
Otherwise, (denote those times t′), a fair coin flip is
anticipated: hµ(t′) = 1 bit. At times t′ the bit of created
information is either completely lost (rµ(t′) = 1 bit) or
some of it is stored (bµ(t′) > 0) such that rµ + bµ = hµ.
We notice there are several negative informations—bµ(t),
ρµ, and qµ. As explained at the end of Sec. IV D, negative
informations are to be expected in the setting of temporal
information measures.
Overall, we see how the various information processes
make clear that the Golden Mean Process is a complicated
combination of the two information processing modes of
the Biased Coin and Periodic Processes. There is more
to say, of course. What is missing is a more mechanistic
explanation of how the information quantities are being
stored and processed. This is the burden of a sequel. Here,
our goal was to motivate and then explore information
processes. The next example illustrates the need for this
amply.

D. Infinite Markov Order: Even

The fourth example to consider is more complex still.
This is the Even Process, whose ϵ-machine is shown in
Fig. 8(d). Whereas the Golden Mean Process was deter-
mined by finite-length word restrictions, the Even Process
exhibits infinite-range statistical dependencies, despite
being finite state. The Even Process consists of words in
which 1s occur in blocks (pairs) of even length bounded by
0s. The evenness criterion is a statistical dependency of

infinite range. One consequence is that the Even Process
has infinite Markov order. Moreover, its irreducible forbid-
den set is countably infinite: F = {012n+10 : n ∈ Z≥0}.
There are two transient states A and B and the initial
distribution is π0 = {1, 0, 0, 0}. The state transition
matrices for the generator are:

T (0) =

0 0 1/3 0
0 0 1/4 0
0 0 1/2 0
0 0 0 0

 and T (1) =

 0 2/3 0 0
3/4 0 1/4 0
0 0 0 1/2
0 0 0 0

 .

The recurrent states C and D are visited with probabili-
ties π̂ = {0, 0, 2/3, 1/3}—which state distribution is time
invariant after an infinite number of observations.
The informational analysis says the entropy rate is hµ =
2/3 I(1/2) = 2/3 bits per emission. The statistical com-
plexity is Cµ = I(2/3) bits, as is the excess entropy.
These are all the same as for the Golden Mean Process.
Nonetheless, it is clear that the Even Process, being
infinite-Markov is qualitatively different from the Golden
Mean Process. For related analyses see Ref. [50].
To start analyzing the Even Process’ information pro-
cesses, as above, we determine the time-dependent state
distribution p(t) explicitly:

p(t = 0) =
(
1, 0, 0, 0

)
,

p(t = 1) =
(

Pr(S|x0:0 = 0) = (0, 1/3, 0, 0) ,
Pr(S|x0:0 = 1) = (0, 0, 2/3, 0)

)
p(t = 2) =

(
Pr(S|x0:1 = 00) = (0, 0, 1/6, 0) ,

Pr(S|x0:1 = 01) = (0, 0, 0, 1/6) ,
Pr(S|x0:1 = 10) = (0, 0, 1/6, 0) ,
Pr(S|x0:1 = 11) = (1/2, 0, 0, 0)

)
. . . .

This illustrates the transient phase—how the initial state
probabilities begin to settle toward the asymptotic distri-
bution π̂. This relaxation takes infinite time; reflecting
the processes infinite Markov order. And this, in turn,
means that the information processes—such as, hµ(t) and
Cµ(t) also take infinite-time to reach their asymptotic
values.
Table VII presents an agent’s informational and semantic
analysis of the Even Process. It shows, in particular, that
the degree of meaning continues to change during this
relaxation. In fact, the information processes do not reach
their asymptotic behaviors until the agent is synchronized.
And, this only occurs once a 0 is observed—taking the
state to C.
As above, we leave explicitly calculating the companion
information processes as an exercise. Nonetheless, Fig. 12
presents several of its information processes: entropy rate
hµ(t), anticipated information rate ρµ, ephemeral rate rµ,
bound information rate bµ(t), and enigmatic information
rate qµ(t).
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Observer’s Analysis of Even Process
State Measurement x Surprise − log2 Pr(x) [bits] Semantic State σ: Meaning Degree of Meaning Θ(x) [bits]

A λ Not Defined No Measurement 0.0
A 1 0.585 B: Unsync 0.585 . . . ∞
A 0 1.585 C: Sync 1.585 . . . 0.585
B 1 0.415 A: Unsync 0.585 . . . ∞
B 0 1.585 C: Sync 1.585 . . . 0.585
C 1 1 D: Odd #1s 1.585
C 0 1 C: Even #1s 0.585
D 1 0 C: Even #1s 0.585
D 0 ∞ A: Loose sync; Reset 0.0

TABLE VII. Information and Semantic Analysis of the Even Process. Recall Fig. 8(d). (Reproduced with permission from Ref.
[59].)
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FIG. 12. Even Process observed time series sample versus several of its information processes: entropy rate hµ(t), anticipated
information rate ρµ(t), ephemeral rate rµ(t), bound information rate bµ(t), and enigmatic information rate qµ(t).

In one sense, the Even Process is markedly more complex
than the Golden Mean Process as it has infinite-range
statistical properties. Specifically, while the Golden Mean
as a single forbidden word F = 00, the Even Process
has a countable infinity F = {0(11)n0 : n = 1, 2, . . .}.
In practical terms this enhances the complication of the
informational narrative of the information processes given
in Fig. 12.

In short, the Golden Mean’s order-1 Markov order trans-
lates into the ability to track short words to determine
the level of next-symbol unpredictability. Equivalently, in
this case, tracking these short words allows one to know
in which of the Golden Mean’s causal states (B and C)
the process is in at any given time.

This is not so for the Even Process. There are statisti-
cal dependencies of arbitrary length involved in knowing
which state the process is. A quantitative consequence
is the information measures at any given time t are not
simply-interpreted values. However, we can easily extract
interpretations of the Even Process’ information process
values—sometimes exactly, but typically only approxi-
mately. (That is, short of writing down these measures’

closed form expressions using the methods of Ref. [58],
which is the mandate for a sequel.)
Briefly, the easy interpretations are expedited by referring
to the Even Process’ state transition diagram in Fig. 8(d).
First, we consider only asymptotic statistics by ignoring
transient states A and B and concentrating on recurrent
states C and D. Practically, one simply uses a realization
far after the start state.
Notice that when in state C the next observation is a fair
coin flip: hµ(t) = 1 bit. And, when in state D the next
observation is wholly determined (it occurs certainly) to
be a 1. It is the second 1 in the Even Process’ charac-
teristic pairs of 1s. That is, hµ(t) = 0 bit. Due to this
rµ(t) and bµ(t) vanish, as seen in the information process
plot. One can go much further, of course, but that is the
burden of a sequel.
As with the Golden Mean Process, we again see the ex-
pected negative information measures. And, that the
Even Process is a markedly more complex combination
of the two information processing modes—Biased Coin
and Periodic Processes-illustrated by the Golden Mean
Process. Again, a sequel will provide a directly mecha-
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Semantics of the Period-2 Process X as the Golden Mean Process X ′

State Measurement x′ ∆ Surprise log2 (Pr(x)/ Pr(x′)) State σ′: Meaning ∆Θ = log2 (Pr(σ)/ Pr(σ′))
A′ λ 0.0 No Measurement 0
A′ 1 −0.415 = log2 ((1/2)/(2/3)) B′: Sync −0.415 = log2 ((1/2)/(2/3))
A′ 0 0.585 = log2 ((1/2)/(1/3)) C′: Sync 0.585 = log2 ((1/2)/(1/3))
B′ 1 −∞ = log2 ((0)/(1/2)) Never Occurs
B′ 0 1 = log2 ((1)/(1/2)) C′: Isolated 0 1
C′ 1 0 = log2 ((1)/(1)) B′: Deterministic 1 0.585
C′ 0 −∞ = log2 ((0)/(1)) Never Occurs

TABLE VIII. Semantics of Period-2 Process as if the Golden Mean Process. Recall Figs. 8(b) and (c).

Semantics of Even Process X as the Golden Mean Process X ′

State Measurement x′ ∆ Surprise log2 (Pr(x)/ Pr(x′)) State σ′: Meaning ∆Θ = log2 (Pr(σ)/ Pr(σ′))
A′ λ Not Defined No Measurement 0
A′ 1 0 B′: Sync 0
A′ 0 0 C′: Sync 0
B′ 1 0.585 = log2 ((3/4)/(1/2)) B′: Random 1 −0.415 = log2 ((1/2)/(2/3))
B′ 0 −1 = log2 ((1/4)/(1/2)) C′: Isolated 0 0 = log2 ((1/3)/(1/3))
C′ 1 −1 = log2 ((1/2)/(1)) B′: Deterministic 1 0.585
C′ 0 ∞ = log2 ((1/2)/(0)) A′: Loose sync; Reset 0

TABLE IX. Semantics of Even Process as if the Golden Mean Process. Recall Figs. 8(c) and (d).

nistic explanation of how the information measures are
being stored and transformed, making it clearer how the
Even Process is more complex. Again, the proceeding’s
goal was an introduction to and initial exploration of
information processes.

E. Misdirected Semantics

These example analyses all assumed the agent knew what
the process generator was and that the agent came to
be synchronized to the environment state. However, the
semantic theory here applies more generally, to circum-
stances when the agent has an approximate or even in-
correct internal model of its environment.

To be concrete, consider two examples of misinterpre-
tation: An agent uses the Golden Mean ϵ-machine to
interpret the semantics of (i) the Period-2 Process and
(ii) the Even Process. (Recall Figs. 8(b), (c), and (d).)
The analyses are presented in Tables VIII and IX.

We simply track how both processes, starting in their start
state A, produce words up to length 2: ω ∈ {00, 0, 110, 11}.
The Biased Coin recognizes all; the Golden Mean disallows
00.

We use the information gain (or Kullback-Leibler diver-
gence) to give the self-information difference between the
expected next symbol versus actual and information dis-
tance between degree of meanings of interpreted state and
actual state. The first relates to differing expectations
in predicting symbols and transition probabilities—the

surprise ∆:

∆ = log2
Pr(x)
Pr(x′) .

The second concerns the differing interpretations of the
state semantics—∆Θ:

∆Θ = log2
Pr(!x σ)
Pr(!x′ σ′) .

Note that when comparing a process to itself these vanish:
∆ = 0 and ∆Θ = 0.

VIII. CONCLUSION

Many complex adaptive systems consist of an individual
agent or a collection of interacting agents that take in and
process data from their surroundings and then take actions
based on what is gleaned. The preceding addressed only
half of this, What kinds of stochastic process are involved
as an agent monitors its environment? Our goal was to
call out what is common—from an information-theoretic
perspective—across such systems.
In this, we introduced information processes—time series
of various kinds of Shannon information measure that
capture a range of signal types from degrees of unpre-
dictability to degrees of correlation and temporal memory.
As a technical focus, we explored conditions for these
signals’ stationarity and ergodicity. These are properties
that strongly affect what an agent can use statistically
“downstream” to make reliable estimates of environmental
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conditions and make robust decisions and take actions
necessary for functioning.
Simply having well-behaved informational signals in hand,
though, is far from the whole story of agent functioning.
The question immediately arises as to what the signals
mean to an agent and what the agent can do with them.
We addressed the former by reviewing Shannon informa-
tion measures, following on Refs. [50, 51]’s analysis of
structured stochastic processes. This suite of measures has
natural, informational, even functional meanings—they
give an intrinsic semantics of an environment’s behavior,
as an agent experiences it. These statistics—environment
unpredictability, the present’s correlation with the past,
memory required for optimal prediction, and the amount
of hidden internal-state information—embody key kinds
of information that an agent needs in order to properly
operate.
Taken together then, information processes, their ergod-
icity, and their semantics lay a foundation for agentic
information theory. That is, they comprise a first step
to move beyond asymptotic properties to real-time sig-
nals needed for functioning, flourishing complex adaptive
systems.
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Appendix A: Function of a Process is a Process

Proposition. Let {X(t)}t∈Z be a stochastic process on
probability space (Ω, F, P ) and f : R! R be a measur-
able function. Then Y = {Y (t) = f(X(t)), t ∈ Z}, is a
stochastic process.

Proof. First, Y (t) is a random variable for each t ∈ Z.
For any fixed t ∈ Z, Y (t) : Ω! R is defined by Y (t)(ω) =
f(X(t)(ω)). And, for any Borel set B ⊆ R, its turns out
that Y −1(t)(B) ∈ F :

Y −1(B) = {ω ∈ Ω : Y (t)(ω) ∈ B}
= {ω ∈ Ω : f(X(t)(ω)) ∈ B}
= {ω ∈ Ω : X(t)(ω) ∈ B}
= X−1(t)(f−1(B)) .

Since f is measurable, f−1(B) is a Borel set in R.
Since X(t) is a random variable—as {X(t) : t ∈ Z} is a
stochastic process—then X−1(t)(f−1(B)) ∈ F .
Therefore, Y −1(t)(B) ∈ F for every Borel set B. That is,
Y (t) is a random variable.
Second, the collections of RVs forms a stochastic process.
Since Y (t) is a RV for each t ∈ Z, the collection {Y (t) :
t ∈ Z} satisfies the definition of a stochastic process. And,
its finite-dimensional distributions over subsets of indices
and their probabilities are well-defined.
That is, the collection forms a stochastic process since
f ’s measurability guarantees f ◦ X(t) preserves the RV
property for each and all t.
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