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Previously, we showed that computational mechanic’s causal states—predictively-equivalent tra-
jectory classes for a stochastic dynamical system—can be cast into a reproducing kernel Hilbert
space. The result is a widely-applicable method that infers causal structure directly from very
different kinds of observations and systems. Here, we expand this method to explicitly introduce the
causal diffusion components it produces. These encode the kernel causal-state estimates as a set of
coordinates in a reduced dimension space. We show how each component extracts predictive features
from data and demonstrate their application on four examples: first, a simple pendulum—an exactly
solvable system; second, a molecular-dynamic trajectory of n-butane—a high-dimensional system
with a well-studied energy landscape; third, the monthly sunspot sequence—the longest-running
available time series of direct observations; and fourth, multi-year observations of an active crop
field—a set of heterogeneous observations of the same ecosystem taken for over a decade. In this
way, we demonstrate that the empirical kernel causal-states algorithm robustly discovers predictive
structures for systems with widely varying dimensionality and stochasticity.

CONTENTS

I. Introduction 1

II. Computational mechanics 2

III. Kernel Hilbert ϵ-machines 4
A. Causal states form a Hilbert space 4
B. Empirical kernel causal state algorithm 5
C. Assigning coordinates to causal states 6

IV. Simulated examples 8
A. The pendulum 8
B. n-Butane molecule 11

V. Real data applications 13
A. Sunspots 13
B. Grignon crop field 15

VI. Conclusion 16

Authors’ contributions 17

Acknowledgments 17

References 17

A. Code and data availability 19

∗ alexandra.jurgens@inria.fr
† nicolas.brodu@inria.fr; corresponding author

B. Metaparameters and kernel construction for
sequences 19
1. Extended notations 19
2. Sitewise comparison 19
3. Kernel aggregation over time 20
4. Kernel aggregation over data sources 21

C. Gap-filling missing data 21
1. Linear interpolation of causal diffusion

coordinates 21
2. Using all valid measurements 21
3. Adjusting the causal diffusion components 22

I. INTRODUCTION

In a broad sense the project of the natural sciences turns
on the desire to uncover hidden structure in physical
systems. But what, precisely, is meant by “hidden struc-
ture”? To be sure, we do not mean the most obvious
form of structural analysis as performed in the engineer-
ing sciences. Rather, we wish to access something more
abstract—a representation of our system that makes ex-
plicit the global patterns of behavior, and/or the patterns
of behavior of distinguishable system components and
the nature of how those components are related and or-
ganized.
Early work in nonlinear dynamical systems developed
the field of attractor reconstruction from data using tech-
niques like delay embeddings [1, 2]. In this kind of struc-
tural analysis we analyze the topology and geometry of
the reconstructed attractor to better understand the dy-
namics of the system under study. For example, a system
may have a set of behaviors (or patterns of behavior)
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it tends towards over time, visualized as trajectories ap-
proaching attracting points or limit cycles in phase space.
Modern dynamical system reconstruction techniques are
descendants of this kind of structural analysis [3, 4].
If we suppose the observed data are the composition of an
observation function, applied to some underlying dynami-
cal system at each instant of time, then we can also study
how the observations change as the action of the under-
lying dynamics. This is the definition of the Koopman
operator, acting on the observation function. Interest-
ingly, this operator is linear, even though the original
dynamical system is not. Given the advantages of linear
algebra, a consequent body of research [5, 6] focuses on
how to best express these operators. Algorithms exist
to estimate them, provably consistently so in the limit
of infinite data [7, 8]. This is generally accomplished by
finding invariant subspaces using spectral decomposition
approximations [9], effectively turning complicated dy-
namics into a simpler linear operations. However, the
price to pay lies in the spectral basis functions, which
become complex objects. These techniques can be ex-
traordinarily powerful and flexible but struggle when it
comes to the interpretability of these discovered latent
spaces, which may be unintuitive. Alternatively, methods
exist to model the non-linear evolution of the dynamical
system. Recovering equations of motion from data is an
ancient topic [10], but which is still active [4, 11–13]. The
methods more closely related to our approach need to
account for a stochastic component [14, 15].
A complementary perspective is offered by information-
theoretic definitions of structure, which strive to describe
systems by formalizing concepts like irreducible informa-
tion and complexity. One such framework is offered by
computational mechanics [16] which casts a system as
a communication channel from its past behavior to its
future behavior. Computational mechanics introduces
the ϵ-machine—a model of a system built from the causal
states, the set of predictively-equivalent distributions over
the future given the past. In this setting, structural anal-
ysis of the system corresponds to describing the nature
of its causal structure—plainly, what is the stochastic
mapping between the system’s past and future? We can
easily construct a system where the answer is none at
all—a coin flip for example. We can also imagine a sys-
tem where every possible past uniquely determines the
future. In general, we assume real systems lie somewhere
in between these extremes.
Recently, computational mechanics was extended to marry
these two styles of structural analysis in a novel way: a
system’s causal states may be consistently and uniquely
embedded as points in a Hilbert space [17]. This allows
us to construct the kernel ϵ-machine, a new geometric
representation of the ϵ-machine wherein the causal states
are points in a Hilbert space and the dynamics of the
ϵ-machine may be represented by a stochastic model of
their evolution. The previous contribution in this se-
ries introduced not only the kernel ϵ-machine but also a
tractable algorithm for estimating empirical kernel causal

states from nearly arbitrary data [18]. The net result
is that computational mechanics was extended to nearly
arbitrary data types, including real data and with min-
imal constraints. The second major result was that we
now have a presentation of the causal states imbued with
not only information-theoretic notions of structure, but
also geometric ones. This facilitates applying new, intu-
itive structural analysis of the causal states, including
manifold learning techniques. This paper applies these
techniques and the empirical kernel causal state algorithm
to real-valued data for the first time.
We note that the principles we outline here, of describing
and predicting the state-space structure of a complex
system, is a well-developed tradition in time-series fore-
casting methods and the study of chaos in dynamical
systems [19] and which is closely related to the subfield
of pattern formation [20–22]. This said, the prediction of
trajectories in state space is a separate topic. Compared
to the methods mentioned above for recovering dynami-
cal systems equations, in our case the consistency of the
evolution in both data and causal states spaces also needs
to be ensured. We address these issues in a sequel.
Section II reviews the necessary aspects of computational
mechanics theory. Section III then reviews the theoretical
construction of kernel causal states, as well as the empiri-
cal kernel causal state algorithm as introduced previously
and the use of a diffusion mapping technique for nonlinear
dimension reduction. Finally, we present the results of
the empirical kernel causal state algorithm applied to
two simulated examples in Section IV and two real data
examples in Section V.

II. COMPUTATIONAL MECHANICS

Traditionally, the basic objects under study in computa-
tional mechanics are conditional distributions over realiza-
tions of stochastic processes. In particular, we generally
are interested in building the ϵ-machine: a stochastic
process’s minimal optimally predictive model [23]. The
states of the ϵ-machine are called the causal states, which
are sets of past observations of a process that induce the
same distribution over futures.
We take a stochastic process P to consist of a τ -indexed
random variable Z defined on the measurable space
(Zτ ,Σ, µ). Specific realizations of random variables are
denoted by use of the lower case and time indexing is done
by the use of subscripts. For example, we write Zt = zt

to say that z ∈ Z is the specific value of Z at time t. The
dynamic of the stochastic process is given by the shift
operator, also called the translation operator, which is an
operator τ : Zτ → Zτ that maps t to t + 1: τzt = zt+1.
It also acts on the measure: (τµ)(E) = µ(τ−1E) for
E ∈ Σ. Temporal blocks of the process are given by
{za<t≤b : a < b; a, b ∈ τ}.
Computational mechanics is primarily concerned with the
prediction of the future of a system given observations
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of its past. To be technical about these terms, we re-
fer to the observation at t = 0 as the present. We call
Zt≤0 the past X and Zt>0 the future Y . Using distinct
symbols for the past and future is both for readability
and to match notation from our previous work [18]. We
assume that the past and future are defined on their own
measurable spaces:

(
Zτ≤0,ΣX , µX

)
and

(
Zτ>0,ΣY , µY

)
,

respectively. A time subscript on a past or future rep-
resents the time at which that past ends or that future
beings, as appropriate. So, a specific realization of the
past at time τ is written xτ = zt≤τ . A corresponding spe-
cific realization of the future is yτ = zt>τ . Thus, at each
time step an instance of the process z splits into paired
instances of a past and a future: z = (xτ , yτ ) ∀ τ ∈ τ .
For the theoretical development of the causal states we
make two assumptions about the stochastic process. We
assume the process P is conditionally stationary, which
is to say that the conditional distribution over futures
given a specific past Pr (Y | X = x) is the same for all
t ∈ Z up to a null-measure set. For this reason we may
drop the time index t when it is unnecessary. Conditional
stationarity is a weaker condition than requiring P be
stationary, which would require τµ = µ. We also typically
assume that the measure is ergodic, which is to say that
all shift-invariant sets I ∈ ZZ are either µ(I) = 1 or
µ(I) = 0. Practically speaking, the empirical kernel
causal state algorithm as described in Section III B and
Section III C may be applied to data even when these
conditions are not met (or unable to be tested for), but
the strict guarantees of convergence of the causal states
may not hold. Since real-world applications are already
working with finite data and other practical limitations,
this is not typically of great concern.
We will, however, enforce two very minor constraints.
First, the temporal indices τ are taken to be the integers Z,
which is to say that the process is discrete-time. Second,
Z is taken to be compact—typically, either a discrete
finite set or a closed interval in R (or a Cartesian product
of a finite number of these, which is sufficient to ensure
that Z is compact by Tychonoff’s theorem). Note that
we do not constrain Z to be real-valued—some or all
data may be symbolic. Indeed, in the classic setting for
computational mechanics [23] Z is a discrete and finite
alphabet, typically using only two symbols {0, 1}, pasts
and futures are semi-infinite strings and the temporal
blocks become words. Loosening of these constraints is
possible even in the theoretical realm [17], although this
will not be discussed here.
The workhorse of computational mechanics is the predic-
tive equivalence relation. By predictive equivalence we
mean that two specific pasts x, x′ correspond to the same
distribution over futures Y . This induces an equivalence
relation ϵ [·] that maps pasts to sets of pasts via:

ϵ [x] =
{
x′ ∈ ZN0 : Pr (Y | X = x′) = Pr (Y | X = x)

}
.

(1)

If x and x′ are predictively equivalent, they belong to the

set of pasts induced by their equivalence class. These sets
of pasts and their associated distributions over futures
are what we want to find: the elements of the range of
the equivalence mapping are exactly the causal states of
the process. The causal state random variable is denoted
S and its realization is written σ. The set of causal states
of a process is denoted S. (To be more precise, S is the
closure of the set of causal states, where the closure is
taken under convergence in distribution [17].)
The cardinality of S depends on the process under study.
On the one hand—the extreme of utter unpredictability—
a sequence of independent identically-distributed variables
trivially is comprised of a single causal state, because every
past x will induce an identical distribution over futures.
At the opposite extreme of exact predictability, on the
other hand, a discrete period-k process (e.g. abababa . . .
has k = 2) has exactly k causal states. In general, the
structure of S is highly variable: the set may be finite or
infinite, have countable or uncountable cardinality, may
be well-ordered, or fractal.
The ϵ-machine of a process is the causal state set S
together with the transition dynamic over the causal
states induced by the shift operator of the process.
When both S and Z are discrete and finite, the
dynamic over the causal states may be simply ex-
pressed with a set of symbol-labeled transition matrices{
T

(z)
σ,σ′ = Pr (z, σ′ | σ) : σ, σ′ ∈ S, z ∈ Z

}
. When S is fi-

nite, then, the ϵ-machine takes on the familiar form of an
edge-emitting finite-state hidden Markov model.1 When
S is infinite but Z is discrete and finite, the transition
dynamic may described with an iterated function system
[24, 25]. When Z becomes continuous, the process is
hidden semi-Markov [26] and the transition dynamic over
causal states becomes a general inhomogeneous stochastic
difference equation: the probability of state-to-state tran-
sitions depends both on the state before the transition
and the value z ∈ Z inducing the transition.
By construction, the ϵ-machine is the minimal optimally
predictive model of a process. Additionally, ϵ-machines
are used to directly calculate in closed form a wide variety
of relevant information theoretic properties, such as the
Shannon entropy rate and the statistical complexity, a
measure of the process’s complexity [16]. In addition,
being built constructively from conditional distributions
over futures means that ϵ-machines are invariant under
bijective transformations—even nonlinear ones—of the
observation space. That is to say, a physical process
measured under a change of reference frame will still in-
duce the same equivalence classes, making the ϵ-machine
an intrinsic property of P robust to changes in measure-
ment. These advantages make the ϵ-machine theoretically

1 With the additional constraint that the symbol-labeled transitions
are unifilar, which is to say that the current state of the process
σt and the next observed symbol zt+1 uniquely determines the
next state σ′

t+1.
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FIG. 1. Probability distributions over pasts X and conditional
distributions over futures Y can be represented as points in the
reproducing kernel Hilbert spaces HX and HY , respectively.

compelling, but the exactness of the theoretical construc-
tion have made ϵ-machines difficult to work with from an
inference perspective.
The recently developed kernel causal state method [18]
is, to our knowledge, the first causal state inference algo-
rithm that is practicable for nearly arbitrary data. It is
also well-grounded: proof that causal states are always
well defined and empirical observation-based approxima-
tions will converge has been recently been extended to
continuous-valued processes under the mild conditions
listed above [17]. This vastly expands the practicality of
computational mechanics to new classes of processes.

III. KERNEL HILBERT ϵ-MACHINES

Recent work on the topology and geometry within com-
putational mechanics showed that the causal states can
be naturally embedded into a Hilbert space using an
appropriate kernel [17]. This connects computational me-
chanics to the well-studied arena of reproducing kernel
Hilbert spaces (RKHS), setting the stage for the kernel
ϵ-machine (KϵM)—an ϵ-machine representation that al-
lows for tractable analysis of more complex processes than
previously possible [18].
This section first reviews how causal states naturally form
a Hilbert space. It then recounts the algorithm for empir-
ical kernel causal state construction from data. Finally,
it concludes with a walk through the diffusion mapping
algorithm, which finds a low-dimensional embedding of
the empirically estimated kernel causal state set.

A. Causal states form a Hilbert space

Section II defined S as the (closure of the) set of the
causal states of a process. Now, let S be the vector space

of signed measures generated by the closed span of S.
This is the smallest vector space that contains all the
causal states. The dimensionality of S may be much less
than the cardinality of the causal state set S. In general,
for any process generated by a hidden Markov model,
dim S will be finite but S may be uncountably infinite
[17, 25].
The space S is a subspace of the space of probability
measures over half-infinite sequences P

(
ZN)

. By the
Riesz representation theorem, given a symmetric positive-
definite kernel k : ZN × ZN → R, we may embed any
measure µ ∈ P

(
ZN)

into a Hilbert space by writing down
the function:

fµ =
∫

ZN
k (y, ·) dµ (y) , (2)

which belongs to the reproducing kernel Hilbert space
Hk. (The dot notation indicates a free argument so that
k (y, ·) ∈ Hk ∀ y ∈ ZN.) This Hilbert space is generated
by the kernel k and equipped with the inner product
between measures:

⟨fµ, gν⟩k =
∫ ∫

k(y, y′) dµ(y) dν(y′)

=
∫
fµ(y′) dν(y′) . (3)

Since S ⊆ P
(
ZN)

, this allows us to embed the causal
states into a reproducing kernel Hilbert space. Let µϵ[x] be
the conditional measure over the set of pasts ϵ [x] ⊆ ZN0

induced by the equivalence mapping Eq. (1) on an arbi-
trary past x. This conditional measure is well-defined
and approximations from empirical observation will con-
verge in distribution to µϵ[x] for processes meeting the
conditions laid out in Section II [17, 27]. Then the kernel
causal state σk,ϵ[x] is given by:

σk,ϵ[x] =
∫

ZN
k (y, ·) dµϵ[x](y). (4)

When the kernel is characteristic this embedding is unique
[28]. When the kernel is universal, the kernel-induced
inner product norm metrizes convergence in distribution
in the space of measures, which is to say that ∥fµn

−
fµ∥k → 0 implies

∫
fdµn →

∫
fµ for f ∈ C

(
ZZ)

[17,
29]. It has been shown that universal kernels are also
characteristic. In practice, finding a universal kernel
typically means working with kernels derived from a radial
basis function, such as Gaussian kernels.
It should be emphasized that the choice of kernel imposes
a specific geometry onto the kernel causal state set Sk.
This is, in a sense, the entire point, as imbuing the causal
state set with a geometry allows us to tractably work
with the ϵ-machines of systems with causal state sets
too numerous and/or complex to write down explicitly.
However, we wish for this geometry to be in some sense
“natural” or, at the very least, consistent with both the
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topology of convergence in distribution of the causal states
and the product topology of the sequence space ZZ. The
choice of kernel and implications for the imposed geometry
will be further discussed shortly and in greater detail in
Appendix B.

B. Empirical kernel causal state algorithm

In practice, it can be challenging to explicitly build the
equivalence classes ϵ [x] defined in Eq. (1) or to write
down in closed form the conditional measures µϵ[x] for
the vast majority of processes. With this motivation, our
previous paper [18] introduced a method to construct the
empirical kernel causal states of a process given a set of
observations of total length T . These empirical kernel
causal states are guaranteed to converge in distribution to
the kernel causal states in the limit of T → ∞, although
the nature of this convergence may be complicated to
determine [17, 30–32].
We construct not just one but two Hilbert spaces—one
HX over pasts and the other HY over futures. This
requires constructing two kernels—kX and kY , respec-
tively. Kernel evaluations are performed on sequences
(specifically, pasts or futures). To conserve the underlying
product topology of sequence space, the kernel is con-
structed to compare sequences site-wise, with a damping
parameter for indices receding further into the past or
future, respectively. That is to say, when two sequences
match indices sufficiently far into the past (future), those
sequences become arbitrarily close under the Hilbert space
metric.
This introduces two categories of meta-parameter: first,
the specifics of the site-wise comparison; second, those
related to the temporal damping and aggregation over
time. In the first category is the choice of metric (e.g.
Euclidean metric for real-valued data, or the discrete
metric for symbolic data) as well as kernel width or radius.
In the second category we consider the damping method
and strength (e.g., exponential or power law) as well as the
method of aggregating time indices (e.g., kernel products
or kernel sums). We will not go into further depth here on
the nature of these parameters (see Appendix B for more
details) but list them to emphasize that the construction
of the kernel—and thus, imbuing of the causal state set
with a specific geometry—must be done carefully and
with consideration to the underlying system.
Once the kernel is constructed, though, the empirical esti-
mation of the kernel causal states is a relatively straight-
forward four-step algorithm, as depicted in Fig. 2:

1. Assuming that Z is vector-valued and constructed
from D measurements mi: zt =

{
m1

t ,m
2
t , . . . ,m

D
t

}
,

determine an appropriate history length Lp and fu-
ture length Lf . The measurements mi may include
heterogeneous data types, see Section II. Pasts and

1. Build pasts/futures

2. Embed pasts/futures

3. Compute αi coefficients

4. Construct distribution over futures

FIG. 2. The empirical kernel causal state algorithm. Step 1:
Build a library of past sequences xi and future sequences yi

from observed data. Step 2: Construct an appropriate kernel
for pasts kX and a kernel for futures kY . Embed pasts (circles)
and futures (squares) into their respective Hilbert spaces, HX

(blue) and HY (red). Step 3: Calculate the empirical kernel
causal state embedding coefficients αi for a new past x by
comparing x to each embedded past xi. More similar pasts
will have larger embedding coefficients. Step 4: Construct
the distribution over futures for x using the calculated αi to
weight the sum over the associated futures yi.
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futures are the finite-length temporal blocks

xt =
(
zt−Lp+1, . . . , zt−1, zt

)
and (5)

yt =
(
zt+1, zt+2, . . . , zt+Lf

)
, (6)

respectively. We then have N pasts X =
{x1, x2, . . . , xN } and futures Y = {y1, y2, . . . , yN }
where N = T − Lp − Lf + 1.
(Note that we allow Lp ̸= Lf . See Appendix B
for discussion of measurement-dependent history/-
future lengths.)

2. Generate two reproducing Hilbert spaces HX and
HY using two symmetric positive-definite kernels:
kX (x, ·) : X → HX and kY (y, ·) : Y → HY , re-
spectively. We embed each past xi into HX and
future yi into HY with the appropriate kernel:

x̃i,k = kX(xi, ·) ,
ỹi,k = kY (yi, ·) .

This results in N many paired points in each Hilbert
space.

3. Construct the conditional distribution over futures
for a specific past x by determining the relative
similarity of x with each xi and assigning an appro-
priate coefficient αi. One scheme is given by the
regularized estimator from [31]:

α (x) = inv
(
GX + γIN

)
K (x) , (7)

where GX
ij = kX (xi, xj) is the Gram matrix over

past sequences, γ is a small regularization value,
and K (x) is a column vector such that Ki (x) =
kX (x, xi). More elaborate coefficient schemes can
be found in [32].

4. Build the empirical kernel causal state σ̂x using the
coefficients calculated in step 3 [31, Eq. 11]:

σ̂x =
N∑
i

αi (x) kY (yi, ·) . (8)

The distribution over futures is, in effect, a weighted
sum over all previously observed future sequence
embeddings, where the weight schema takes into
account the relative similarity of all other observed
past sequences to the associated past x.

Steps 3 and 4 are repeated for all past sequences x, re-
sulting in a set of empirical kernel causal states Ŝ =
{σ̂x : x ∈ X }. Past sequences that induce the same dis-
tribution over futures will map to the same point in HY

in the limit of infinite data, reproducing the action of the
equivalence class mapping in Eq. (1). Ŝ is not guaranteed
to have any specific geometry beyond lying inside HY .
Algorithm step 3 makes the implicit assumption that sim-
ilar pasts yield similar distributions over future. However,

we wish to impress upon the reader that this does not
induce a continuity assumption in the sequence space. For
example, consider two past trajectories x and x′ on oppo-
site sides of a boundary between basins of attraction. The
embedded points x̃k and x̃′

k may become very close in HX ,
especially with finite-length histories Lp and temporal
damping. However, if both sides of the basin are equiva-
lently well-sampled and kX is adequately discerning, then
the values of each αi will differ slightly for x and x′, with
each past preferring its side of the basin. Assuming kY is
also sufficiently discerning, the difference in coefficients
is then amplified in step 4 so that the x → σk,x mapping
accurately reflects the discontinuity in the data space.
Notice that both kX and kY must be correctly
parametrized to handle discontinuities in the x → σk,x

mapping. This is feasible in principle up to any chosen
resolution provided enough data. An example of a closely
related situation is given in Section IV A. The important
point is that no additional constraint on the structure
of the empirical kernel causal state set Ŝ is imposed by
the algorithm in and of itself. In practice though, the
ability to discriminate fine structures (e.g., fractal bound-
aries) at any given resolution depends on both careful
parametrization and the availability of sufficient data.

C. Assigning coordinates to causal states

Section III B’s algorithm embeds the kernel causal states
using N coefficients αi. The causal states, though, are
a property of the process, defined irrespective of the
number of observations. Ideally, this should be reflected
in the way their empirical estimates are represented. In
particular, when the process is generated by an ordinary
or a stochastic differential equation, whose phase space
is described by M parameters, then each point in that
phase space is its own causal state [18]. For these broad
classes of processes, the true causal state set S thus has
infinite cardinality, but it can be fully indexed by a fixed
number M of parameters, independent of N . An estimate
of M can then be recovered from data [18]. For generic
hidden Markov processes, M can be arbitrarily high [33],
although it is in general finite as noted in Section III A.
When estimating the causal states from measurements of a
physical process, we do not have access to the microstates
and their internal degrees of freedom. Yet, if a small
number of parameters can encode causal states with high
accuracy, even imperfectly, they still hold most of the
predictive power at the data scale at which they are
computed. Our previous work [18] proposed to encode
the empirical kernel causal states via a small number of
coordinates using a diffusion mapping [34].
This method embeds Ŝ into RM using coordinates con-
structed from the eigenspectra of a normalized proximity
matrix on the empirical kernel causal states. This ma-
trix is often called the diffusion operator because when
the underlying data is drawn from a manifold the ma-
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FIG. 3. Relation between the causal diffusion components
ψ—the eigenvectors of the diffusion matrix MSk —and the
coordinates that encode the empirical kernel causal states.

trix approximates the Laplace-Beltrami operator on that
manifold. This connection gives an appealing physical
interpretation to the eigenspectra but it should be em-
phasized that causal states are not guaranteed or even
expected to be drawn from a manifold.
A major advantage of this method is that we can con-
struct the diffusion operator using the same kernel over
futures used to construct the kernel causal states. The
inner product on kernel causal states is given by Eq. (3).
To calculate the inner product on the empirical kernel
causal states we use the embedding coefficients from Sec-
tion III B:

⟨σ̂x, σ̂x′⟩ =
∑

l

∑
m

αl(x)αm(x′)kY (yl, ym) . (9)

With this, we define our kernel causal state proximity
matrix as GSk

ij =
〈
σ̂xi , σ̂xj

〉
. We then normalize GSk to

eliminate the influence of the sampling density, resulting in
a nonsymmetric row-stochastic matrix MSk . (See [34, 35]
for further details.) Intuitively, MSk

ij gives the probability
that a virtual point at σ̂xi would travel to σ̂xj under the
action of purely isotropic diffusion acting with respect to
the proximity set by the kernel inner product.
We note a potential point of confusion here: This is not the
true ϵ-machine dynamic over the causal states referenced
in Section II. Rather, this diffusion is virtual and only
used here as a non-Euclidean measure of the proximity
of the points. This virtual diffusion could, however, be
used as a mathematical foundation with respect to which
to quantify properties of the ϵ-machine dynamic. Indeed,
the diffusion distance is invariant under permutation of
the data indices, hence can only reflect static properties
of Ŝ.
Finally, we perform a spectral decomposition on MSk .
We call the right eigenvectors ψ the causal diffusion com-
ponents.
Note that since MSk is row-stochastic, λ0 = 1 and ψ0 is
constant. We normalize the eigenvectors so that ψ0,i = 1

for all i, and omit it in the definition of the causal diffusion
components. The associated left eigenvector ϕ0 gives the
diffusion-induced density at each sample σ̂xi

.2
We use the coefficients of these eigenvectors as shown in
Fig. 3 to assign coordinates to each σ̂xi

. In this way we
embed the empirical kernel causal state estimates in RM :

σ̂xi |M ≡ (ψ1,i, . . . , ψM,i) . (10)

The diffusion distance is recovered by scaling these coor-
dinates by the corresponding eigenvalues of MSk :

d (σ̂xi |M , σ̂xl
|M ) =

M∑
j=1

λ2
j (ψj,i − ψj,l)2

. (11)

This distance matches that of the virtual diffusion process
corresponding to MSk ; i.e., how “long” it takes to “diffuse”
between two given empirical kernel causal states. This
is not the same as the distance in HY . However, the
relation between both can be inferred by expressing the
spectral decomposition of MSk as that of an operator in
HY . (See also [34].)
Note that we retained only M < N components. This is
justified for the cases in this section’s introduction where
M can be formally inferred. More generally, and for
natural processes especially, we cannot state in advance
how many components are needed to encode the causal
states up to a prescribed accuracy. When a spectral
gap exists we identify M by the eigenvalue decay profile;
see examples in our previous work [18] and in the next
sections. Otherwise, we can set M so that the residual
distance d (σ̂xi

|M , σ̂xi
|N−1), averaged over all samples,

remains below a given threshold.
Intuitively, each added component captures more predic-
tive information—that not previously contained in the
others. This is similar to how principal components pro-
gressively capture variance in a data set, but for predictive
information instead of variance and using a strongly non-
linear transformation of the data. To see this, recall that
eigenvalues 1 ≥ λj ≥ 0 are sorted in decreasing mag-
nitude and that Eq. (11) specifies which proportion of
the distance between the empirical kernel causal states
is captured by each coordinate. However, the empirical
kernel causal states themselves are embeddings of con-
ditional distributions over futures. Hence, refining their
proximity also means, in some sense, refining the ability
to discriminate between their predictions. This notion
aligns with other embeddings of causal states [24, 36], but
with the additional property of ordering the coordinates.
Another interpretation is to recall that the diffusion map
is parametrized to approximate a Laplace operator. In
this perspective, the eigenvectors represent the vibrat-
ing modes of a manifold enclosing the empirical kernel

2 Note that 1 = ϕT
0 ψ0 =

∑
i
ϕ0 with this normalization of ψ0,

matching the density interpretation.



8

FIG. 4. Left: The simple pendulum with angular velocity θ̇ and angle from the vertical θ. Middle: Pendulum trajectories
in the angle and angular velocity

(
θ, θ̇

)
phase space at different energy levels. The dotted line is the separatrix, for which

the total energy E = Esep. The ellipsoid trajectories in the middle represent trajectories with E < Esep and the trajectories
above and below the separatrix have E > Esep. The red and blue trajectories were used as input to the empirical kernel causal
state algorithm. Right: Each resultant color coded set of empirical kernel causal states plotted using their first two diffusion
coordinates. Eigenvalues and spectral gaps are given in Fig. 5.

causal states, with the appropriate eigenvalues associated
to frequencies. Components of the diffusion map with
j > M are then assimilated to high frequency noise that
can be safely discarded. More generally, the connection
between diffusion maps and harmonic analysis has been
well detailed in [37, 38]. This connection opens up the
possibility to compare the empirical kernel causal states
of a process estimated at multiple scales, which we keep
for future work.

Another point of view on choosing M is to imagine the
signals as measurements of some unknown physical pro-
cess we seek to model. It is often not desirable to embed
all observed fluctuations as there may be sensor noise
or additional microscopic phenomena that perturb ob-
servations of the underlying system. In this view, lower
frequency components capture the essence of the dynam-
ics and additional components capture finer and finer
details. The goal is to retain sufficient components to
reflect the system’s physics, but not those of irrelevant
external factors.

Taking the last three sections together, the empirical ker-
nel causal states and the causal diffusion components
define the structural model class of kernel ϵ-machines.
The members of this model class inherit the desirable
properties of their analytical brethren—namely optimal-
ity, minimality, and uniqueness. We explicitly left out
discussing the dynamic over the causal states of kernel
ϵ-machines for our purposes here, as our focus is on report-
ing the successful empirical approximation of the kernel
causal states Sk for a series of examples using both syn-
thetic and real data. We leave to the future the task of
inferring the kernel causal state dynamic for the examples
reported here.

IV. SIMULATED EXAMPLES

This section presents two examples of the empirical kernel
causal state algorithm applied to simulated data. The
first system is the simple pendulum, a low-dimensional
deterministic nonlinear system for which the ϵ-machine
can be solved exactly. We walk through finding the causal
state set and kernel causal state set analytically and
compare these results to the empirical kernel causal states.

Our second simulated example is data from a high-
dimensional molecular dynamics simulation of the n-
butane molecule. We show that the empirical kernel
causal states distinguish between the three well-known
low-energy conformations of the molecule within the first
two causal diffusion components, with finer differences in
molecular positions revealed by considering higher dimen-
sions in the causal diffusion embedding.

A. The pendulum

For a sufficiently simple system, the causal states and
their kernel equivalents can be written down exactly and
compared to the computational results of the empirical
kernel causal state algorithm. We demonstrate this using
a classical pendulum as sketched in Fig. 4 (left). The
pendulum is purely deterministic and so the structure
of the causal state set is especially straightforward. The
purpose here is primarily to introduce notation and build
intuition around working with causal states and kernel
causal states for continuous-valued systems.
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FIG. 5. Eigenvalues and spectral gaps for the simple pendulum empirical kernel causal states. The two conservative cases match
those in Fig. 4 and the dissipative case Fig. 6.

The equation of motion of a pendulum is given by:

d2θ

dt2
= − g

L
sin θ , (12)

where L is the length of the (massless) pendulum rod,
θ is the angle of the pendulum with the vertical, and g
is strength of gravity. We obtain a set of coupled first-
order equations by considering the angular velocity θ̇ as
a separate variable:

dθ

dt
= θ̇

dθ̇

dt
= − g

L
sin θ .

The position of the pendulum at time t relative to an
origin placed at the bottom of the swing is given by the
generalized coordinates:

q1(t) = L sin θ(t)
q2(t) = L (1 − cos θ(t)) .

Despite its simplicity, the system of differential equations
cannot be solved in terms of elementary functions without
the small angle approximation, which reduces the dynam-
ics of the pendulum to simple harmonic motion. However,
the solutions can be computed numerically. A phase por-
trait of pendulum trajectories in

(
θ, θ̇

)
at different total

energy levels is given in Fig. 4 (middle).
There are two modes of behavior: First, a pendulum
without sufficient energy to rotate entirely around the
pivot, in which case the phase portrait is a limit cycle that
grows increasingly elliptical as energy is increased; second,
a pendulum with enough energy to swing all the way
around, in which case the phase portrait is a sinusoidal
curve. These modes are separated by a boundary, called
a separatrix, found at the energy level Esep at which the
pendulum can stand straight up in an unstable equilibrium
at θ = 180◦.
Now, let’s construct the causal state set of an idealized
pendulum that has been swinging for infinite time at
energy level E ̸= Esep. Since there is no stochasticity
in the system, this is simple: each point on the phase

space trajectory corresponds to exactly one causal state.
Let us parameterize the phase space trajectory with a
single coordinate denoted ϕ ∈ [0, 2π). When E ≤ Esep
we use the angle from the positive horizontal axis for this
purpose; when E > Esep we use θ mod 2π. Either way,
each causal state σϕ is labeled by its value of ϕ.
The time indices for which the pendulum will be at exactly
ϕ are given by τϕ = {τ + nT : n ∈ Z}, where τ is the time
it takes the pendulum to travel from its initial condition to
ϕ and T is the period of the oscillation. For our idealized
pendulum, each causal state σϕ is associated with a set of
infinitely many pasts {xτ : τ ∈ τϕ}. Since the pendulum
is deterministic, each past in this set induces not only
the same distribution over futures µϵ[ϕ] as required by the
equivalence relation but also the exact same realization of
the future: the exactly solvable trajectory of the pendulum
for t > τ, τ ∈ τϕ.
So the causal state set S of the simple pendulum has
infinite cardinality but is one dimensional, in the sense
that we can uniquely label each casual state with a single
variable. It should be noted that this analysis does not
depend on the total energy of the pendulum.3

Now let’s construct the kernel causal states. Recalling
that the conditional distributions over futures µϕ are delta
distributions over a single future, we have:

σk,ϕ =
∫

ZN
kY (y, ·) dµϕ(y) = kY (yϕ, ·) .

Following Section III A, the inner product between the
kernel causal states of the pendulum reduces to kernel
evaluations between futures: ⟨σk,ϕ, σk,ϕ′⟩ = kY (yϕ, yϕ′).
If we assume that the kernel is constructed to agree with
the Euclidean distance between positions of the pendulum
in physical space, then kernel causal states corresponding
to nearby points on the pendulum trajectory in phase
space will be close to each other in the kernel Hilbert space.
Furthermore, the kernel causal state set Sk will inherit

3 Except in the case of the unstable equilibrium. For a pendulum
that stands at θ = 180◦ indefinitely, the recurrent causal state
set is a single point.
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the topology of the trajectory in phase space, which is to
say the circle S1.
Let’s compare this to the structure of the empirical kernel
causal state set Ŝ. Consider the empirical kernel causal
states of the pendulum at two different energy levels, as
plotted in Fig. 4 (middle). The first has E < Esep and is
given in blue, the second is given in red and has E > Esep.
In both cases we use the generalized coordinates (q1, q2)
as input to the empirical kernel causal state algorithm and
take Lf = Lp = T so that our past and future sequences
are arrays of shape T × 2:

xt =
([
q1,t−T +1
q2,t−T +1

]
, . . . ,

[
q1,t−1
q2,t−1

]
,

[
q1,t

q2,t1

])
yt =

([
q1,t+1
q2,t+1

]
,

[
q1,t+2
q2,t+2

]
, . . . ,

[
q1,t+T

q2,t+T

])
.

We use a Gaussian kernel with variance 1 for comparing
values in each sequence and a product of such kernels for
both kX and kY .
After the empirical kernel causal states are constructed,
they are each embedded using the diffusion transform
from Section III C. The two cases are plotted using their
respective first two components in Fig. 4 (right) and color
coded to match their respective trajectories in the phase
space plot. Although the empirical kernel causal state sets
are point sets, in the plot the Ŝ sets appear as smooth
ellipsoids. This is due to the density of the sampling of
the pendulum trajectories. If this sampling was reduced,
we would begin to observe gaps between the empirical
kernel causal states, as we do in the real data examples
in Section V.
As is visually apparent, the empirical kernel causal states
σ̂x and the diffusion eigenvectors are identical for both
E > Esep and E < Esep. This is just as expected—as
noted above, in nearly every case the causal states are
not dependent on the pendulum’s energy level, and so the
empirical kernel causal state do not distinguish between
these two cases.
In both cases we require two components (ψ1, ψ2) to em-
bed the empirical kernel causal states. This is because the
diffusion mapping algorithm retains the topology of the
kernel causal states when embedding them in Euclidean
space and S1 is minimally embedded in R2. We indeed
note a spectral gap with the third eigenvalue in Fig. 5.
The difference between the two cases is explained by the
difference in the nature of the trajectories in (q1, q2) space.
Below the separatrix, the points near each extrema of the
pendulum, with q1 < 0 or q1 > 0 but with the same q2,
are also the points where the pendulum has the lowest
velocity. Hence the trajectories, sampled at constant rate,
consist of more points near these top positions than at the
bottom. The kernel bandwidth thus has to be reduced in
order to correctly separate these points, which become
closer and closer as we approach the separatrix. Above
the separatrix, this is not so much of an issue, because the
pendulum never swings back. So, past-future sequences

are similar only to those at the same location along the
full loop.
We also wish to consider the case of the damped simple
pendulum, in which total energy of the system changes
over time. The equation of motion is adjusted to add a
drag term:

d2θ

dt2
= − b

m

dθ

dt
− g

L
sin θ , (13)

where m = 1 is the mass of the pendulum bob and b = 0.1
is the drag coefficient. The trajectory of a pendulum bob
originating at θ0 = − π

2 and zero initial velocity is shown
in

(
θ, θ̇

)
phase space in Fig. 6 (middle).

As in the undamped case, each point in the phase space
trajectory corresponds to exactly one causal state. How-
ever, in this case, each point is only visited once and
corresponds to exactly one time index—except for the
final point at the bottom of the oscillation, which the
pendulum reaches as t → ∞ and then remains at indefi-
nitely.4 We call these transient causal states. However,
the advantage of the empirical kernel causal states algo-
rithm is that because it does not rely on clustering or
frequentist estimation of probability measures, it is just
as capable of constructing the transient causal states, as
we show here.
As is visually clear, the damped pendulum is quasi-
periodic, with the duration of each swing decreasing over
time due to drag. We take the length of the past and
future to be the average quasi-period T as inferred over
the full simulation, so T = Lp = Lf .
The right side of Fig. 6 shows the empirical kernel causal
states of the pendulum plotted using their first two com-
ponents (ψ1, ψ2). Once again, only two components are
necessary to embed the pendulum’s Ŝ (Fig. 5). In this
case we more clearly observe a mild distortion in the em-
pirical kernel causal states as compared to the trajectory
in phase space. This is expected, as the causal states are
independent of the frame of reference of the underlying
system and so the diffusion map algorithm (or indeed, any
dimension reduction algorithm) applied to the empirical
kernel causal states will not return the original system’s
coordinate system in general.
Here we do not discuss the dynamics of the ϵ-machine
or its kernel variant, intentionally, for now, limiting our
scope, which focuses only on the structure of the kernel
causal state set. However, in this case it is unsurprisingly
rather straightforward: the causal states smoothly evolve
along the causal state parameter ϕ. The same holds true
for the kernel causal states. For the empirical kernel
causal states, we could in principle infer the evolution of
σ̂x in terms of the diffusion coordinates using a variety
of algorithms [4, 10–13]. However, we leave this to the
future.

4 As in the Esep case, the recurrent causal state set is a single
point.
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FIG. 6. Left: The pendulum trajectories in the angle and angular velocity
(
θ, θ̇

)
parameter plane colored by time. The gray

sections at the beginning and end are the first Lp-length past and last Lf -length future, respectively, and so do not correspond
to any embedded causal states. The bold segment denotes the Lf -length future for the first embedded history. Right: The
empirical kernel causal states plotted using their first two diffusion coordinates.

FIG. 7. Left: The potential energy of n-butane molecule plotted along the dihedral angle ϕ. The Newman projection for each of
the three low energy conformations is shown below the plot. Middle: The global trajectory of the simulated n-butane molecule
under Brownian motion. The inset shows the local frame of the molecule position used as input to the empirical kernel causal
state algorithm. Only the carbon in the back is mobile in this local frame. Right: The empirical kernel causal state set of the
n-butane molecule, embedded using the first three causal diffusion components. The frame shows the base vectors in R3, scaled
down to fit in the figure. These give the directions along which the values ψj,i are plotted, for j = 1, 2, 3 indicated on the figure
and i each data index. Dots are plotted at the locations of each σ̂xi and lines connect successive samples in time. Nine clusters
are clearly apparent. The average position of each atom in a selection of these clusters is shown, with the free carbon (yellow)
and hydrogens of the fixed methyl group (red, green, and blue) highlighted.

B. n-Butane molecule

Now, let’s move on to a discovery challenge that showcases
how the empirical kernel causal state method applies to
a high-dimensional, stochastic system. The n-butane
molecule H3C−CH2 −CH2 −CH3 consists of four carbon
atoms and ten hydrogens arranged as depicted in Fig. 7.
The energy landscape and conformations of n-butane are
well known and characterized by the dihedral angle ϕ
between the two methyl groups. There are three low-

energy conformations: the antiperiplanar conformation,
for which ϕ = 180◦ and the methyl groups are anti-aligned,
and the two gauche conformations (from left to right,
ϕ = 60◦ and ϕ = −60◦) for which the methyl groups are
staggered. As we will show, the empirical kernel causal
states find these conformations even without taking the
dihedral angle as input to the algorithm.
Molecular dynamics simulators begin with the initial po-
sitions and velocities of a set of atoms and simulate their
motion over time according to the influence of atomic
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interaction forces and possibly external forces (an applied
temperature gradient or magnetic field, for example). The
data set we use is the full time series of the positions of
the fourteen atoms of the n-butane molecule as calculated
by the molecular dynamics simulator AmberTools15. The
n-butane molecule was simulated for an interval of 10 ns
with a step-size of 2 fs. The resulting data was then down-
sampled by a factor of 100, of which we retain a trajectory
of 25 000 data points. See [39] for details, where this data
set was first introduced.
The molecule’s trajectory in physical space is plotted in
Fig. 7 (middle). The Brownian motion of a molecule
at a constant nonzero temperature is typically modeled
with the addition of a stochastic term—i.e., the Wiener
process—rather than explicitly calculating the collisions
with surrounding molecules. As such, this dataset is
intrinsically stochastic, in contrast to the previous ex-
amples of purely deterministic systems. However, the
presence of Brownian motion does pose one complication.
If we analyze the movement of the molecule using the
fixed simulation frame of reference, we will model not
only the relative atomic positions—which determines the
conformation—but also the global position of the molecule,
which is irrelevant to the conformational dynamics.
To factor this this out, we introduce a local frame of
reference internal to the molecule. The middle carbon
bond is used to define one unit vector, see Fig. 7 (middle)
for reference. The second basis vector is formed by the
cross-product of the first with another carbon bond vector,
and the third is computed as the cross-product of the
first two vectors. All atom positions are expressed in
that local basis, rendering our past and future sequences
independent from the global location and orientation of
the molecule in space. Thus, the inputs to the causal-
state embedding algorithm are sequences consisting of
42 dimensional (three spatial coordinates times fourteen
atoms) position data over one time step, for both the past
and future sequences.
The empirical kernel causal states are shown in Fig. 7
(right) using their first three diffusion coordinates. They
are colored according to the the dihedral angle of the
molecule during the past associated with that empirical
kernel causal state (since the history length is one time
step, this is a unique value). The points in the figure are
the empirical kernel causal state locations and the lines
connect σ̂xt

to σ̂xt+1 for all t.

The immediately obvious structure of the Ŝ is nine clearly
identifiable conformational clusters. Recall that in the
limit of identical predictions over futures the kernel causal
states map to the exact same point in Hilbert space and
that the diffusion mapping translates the difference in
the predictions over futures into distance in the diffusion
coordinates space. This means that a tight cluster in the
diffusion coordinates space represents a group of time
indices in the observed trajectory where the predicted
future was very similar. Jumping between these clusters
then represents a significant change in the next predicted

molecular conformation. Typically, we can see that these
transitions occur over one or two time steps.
The nine empirical kernel causal state clusters are ar-
ranged into three super-clusters along ψ2 of three sub-
clusters along ψ3. We depict the position of each atom for
five of these clusters, averaged over their matching time
indices. (The other four clusters follow a similar pattern
and can be reproduced with the provided code.) First
consider only the position of the freely moving carbon
as dictated by the local reference frame. This is the car-
bon highlighted in yellow in the ball-and-stick depictions.
Comparing its position across the super-clusters shows ψ1
separates the gauche and antiperiplanar conformations,
as is also apparent using the coloring scheme. It does not
distinguish between the two gauche conformations—recall
that both gauche conformations have the same poten-
tial energy, as shown in Fig. 7 (left). If we take into
account the second component ψ2, the gauche conforma-
tions are separated. And, this gives us an interpretation
of the superclusters: all three low-energy conformations
are uniquely associated with a supercluster in the em-
pirical kernel causal state set. Together, the first two
components describe the position of the carbon chain.
Now, consider the positions of the hydrogens attached to
the fixed carbon (highlighted in Fig. 7 (right) in red, green,
and blue). These positions do not change when comparing
across the top subcluster of each supercluster. Only by
comparing the subclusters of a single supercluster does
it become clear: the subdivisions in the conformational
superclusters along ψ1 represent changes in the orientation
of the fixed methyl group. The first three components
shown in Fig. 7 do not capture the second methyl group
orientation. This is why the positions of the hydrogen
atoms of that methyl group are not distinguished in the
stick-and-ball plots. Further components (Fig. 8, left)
add subclusters that do distinguish the orientation of
the second methyl group. This preference for tracking
the orientation the fixed carbon methyl group is purely
algorithmic: the orientation of the methyl group attached
to the freely moving carbon atom is washed out, in a sense,
by the more relevant motion of the carbon. This comes
down to the way one defines the local frame and does not
represent a real asymmetry in the chemical importance
of the two methyl groups.
We note that the frame in Fig. 7 (right) could be slightly
rotated to better align ψ2 with the dihedral angle. This
would also give the gauche and antiperiplanar subclusters
the same vertical coordinates. Recall, however, that the
empirical kernel causal state algorithm has no notion of
potential energy, dihedral angle, or methyl group.
In particular, ψ3 separates out the rotation of fixed carbon
methyl group not because there is a physical meaning to its
orientation, but because its orientation probabilistically
influences the future of the entire molecule. As is clear in
Fig. 7 (right), it is possible for the molecule to transition
between methyl group orientations, and it is possible for
the molecule to transition between conformations, but it
is highly improbable for these transitions to happen in
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FIG. 8. Eigenvalues and spectral gaps for the empirical kernel causal states of the butane molecule (Fig. 7), the sunspots (Fig. 9)
and the crop example (Fig. 10).

the same time step. The takeaway is that while structural
analysis of the Ŝ can be very powerful, the interpretation
of the uncovered structures and any possible physical
meaning of the causal diffusion components must be done
in conjunction with discipline knowledge.

Comparing this to the simple pendulum in Section IV A
demonstrates the our method’s ability to handle highly
heterogeneous types of systems. The structure of the n-
butane molecule empirical kernel causal state set is totally
noncyclical and highly stochastic.

Indeed, the empirical kernel causal states naturally or-
ganize into something that looks very much like a finite-
state machine. Modeling this process at a larger time
scale, we could discretize each cluster as distinct “meta”-
causal states, with their own probability distribution of
dwell times and instantaneous transitions to the next
cluster. This would give a continuous-time, discrete-state
ϵ-machine of a renewal process; see [40, 41]. Though out of
present scope, it will be considered in future explorations
of nested causal structure, together with a comparison of
the dwell times in each conformation with the theoretical
distribution for residency in each energy well.

V. REAL DATA APPLICATIONS

This section presents two examples of the kernel causal-
state embedding algorithm applied to real data. The
first is a classic and well-known example in observational
astronomy: the number of sunspots visible on the sun’s
surface each month. We show that the causal diffusion
components discover several known empirical patterns in
the sunspot sequence. The second example is data from
a crop field. This example shows the use of multi-variate
and heterogeneous measurements, some of which exhibit
missing values and low data quality. We show that the
empirical kernel causal states detects changes in crop
species over a decade-long observation period.

A. Sunspots

Let’s start with a deceptively simple and well-known
example. One of the longest-running time series of direct
observations without interruptions available is the number
of sunspots. Sunspots have been observed on the sun’s
surface since the advent of the telescope. Sunspots are
temporary dark spots on the Sun’s surface caused by
concentrations of magnetic flux. High-quality monthly
counts are provided by the Sunspot Index and Long-
term Solar Observations (SILSO) databank maintained
by the Royal Observatory of Belgium [42] from 1749 to
the present day, as shown in Fig. 9 (left). Regularizations
are performed to account for differences in measurement
technique over time.
Driven by the Sun’s turbulent convection, the sunspot
sequence is a well-known benchmark in nonlinear time
series analysis and it is known to be very difficult to predict
[43]. Fundamental aspects of how and why the number
of sunspots vary over time—and how those changes are
related to solar physics—are not well-understood to this
day. Our goal is not to build a full predictive model,
but rather to show how the geometry of the embedded
kernel causal states aids in a structural analysis of the
underlying dynamical system.
Sunspots are one experimental observation of the broader
solar magnetic activity cycle. This cycle is also reflected
in the quasi-periodic variation in other solar activity—
such as solar flares and coronal loops and mass ejections.
The physical driver of the magnetic activity cycle is the
Sun’s magnetic field reversing polarity—that is, the Sun’s
north and south magnetic poles swap places.
The beginning of the cycle is called the solar minimum,
and is marked by observation of very few sunspots. Over
time, observed solar activity increases until it peaks at the
solar maximum midway through the cycle. Convention-
ally, solar cycles are numbered from solar cycle 1, which
began in February 1755 and ended in June 1766. At the
time of writing we are in solar cycle 25, which began in
December 2019. A full solar cycle from solar minimum
to solar minimum takes on average eleven years, meaning
it takes roughly twenty two years for the magnetic poles
to return to their original positions. This magnetic field
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FIG. 9. Left: Monthly number of sunspots since 1749. Dates of solar minima and maxima are indicated below the main
plot. The third diffusion component is overlaid on the data in black. Shifting this component by eleven years clarifies that
ψ3 approximately predicts the amplitude of the next solar cycle. Right: The empirical kernel causal states of the sunspot
sequence, embedded using the first causal diffusion components. The indicated frame, dots and lines in the figure have the same
interpretation as in Fig. 7. The color map indicates the solar cycle phase at the time t associated with each σ̂xt . This phase was
computed by linearly interpolating the time between each solar minima and maxima.

periodicity is called the Hale cycle.
(The magnetic fields of celestial bodies, such as stars and
planets, are theorized to be produced by the dynamo
mechanism, which describes the motion of plasma or
molten metals moving within the body’s core. The Earth’s
magnetic field also undergoes polarity reversal. Though,
unlike the Sun’s solar cycle, statistical analysis of the
Earth’s reversals have not revealed any obvious periodicity
[44, 45].)
The solar cycle is the most obvious quasi-periodic cycle in
the sunspot sequence. However, there are other proposed
periodic or quasi-periodic cycles hypothesized to influence
solar activity. The most relevant here is the Gleissberg
cycle. This cycle’s period is said to be on the order of 70
to 100 years and modulates the amplitude of the solar
cycle. There are other noncyclical observed patterns in
the data. The Waldmeier effect states that the length
of an individual solar cycle is inversely proportional to
its amplitude maximum. The puzzling Gnevyshev-Ohl
rule notes that sums of sunspot numbers over odd cycles
are highly correlated with sums over preceding even cy-
cles. The correlation is weaker between sums over even
cycles and their preceding odd cycles. This perhaps sug-
gests a preferential labeling of the Hale cycle. However,
the physical mechanisms behind these patterns are still
unknown.
Let’s examine the results of the empirical kernel causal
state embedding. We set the past and future length Lp =
Lf to be twenty two years—the length of the Hale cycle.
The kernel bandwidth is set as the average amplitude of
a solar cycle. Figure 9 (right) shows the empirical kernel
causal state embedded using the first three components
and colored according to the solar cycle phase. This phase

is estimated from data: after estimating the solar minima
and maxima with a low-pass filter, the approximate phase
of the solar cycle for each data point was computed by
linear interpolation. Each empirical kernel causal state
σ̂xt was then colored according to the phase at time t.
The empirical kernel causal state set Ŝ traces out a cone-
like surface in ψ space or, more fancifully, evokes a tor-
nado. An immediate observation when comparing to the
n-butane example in Fig. 7 is how smooth the time or-
dering is in causal state space. At this scale, we see no
obvious time scale separation, indicating that the distri-
butions over futures change smoothly over time, rather
than exhibit sudden changes.
As is visually obvious from the color mapping, the first
two components ψ1 and ψ2 capture the eleven-year solar
cycle. Each eleven-year cycle traces out a roughly circular
path in this plane and the phase coloration approximately
aligns cycle to cycle. This alignment is not perfect be-
cause the solar cycle is not perfectly periodic. We can
visually identify phase slipping, as we expect for a system
hypothesized to be modulated by multiple, competing,
periodic and quasi-periodic cycles. Yet, Fig. 8 (center)
shows eigenvalues λ1 and λ2 are almost identical, indicat-
ing no particular preference for the phase of that cycle,
unlike the crop example next.
The cycles are further organized along the third dimension
ψ3, here aligned with the vertical. Overlaying ψ3 on the
raw data, as in Fig. 9 (left), shows that the third com-
ponent captures the amplitude modulation of the solar
cycles with a slight offset—in fact, a lag of approximately
eleven years. When ψ3 is plotted with an eleven year
shift, it tracks the amplitude modulation of the solar cy-
cle. This implies that the third component at any given
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time is predicting the amplitude of the next solar cycle,
capturing the patterns described the proposed Gleissberg
cycle. Additionally, an interesting section of the sunspot
sequence is the Dalton minimum, which lasted from about
1790 to 1830 and covers solar cycles 4 through 7. During
this minimum the solar activity was unusually low. In
the empirical kernel causal state set the Dalton minimum
corresponds to the segment of empirical kernel causal
states that traverse through the center of the “cone”, indi-
cating a significant change in solar behavior as compared
to other points in the sunspot series.

B. Grignon crop field

Our final example showcases how the empirical kernel
causal state algorithm handles heterogeneous data with
a system of six different measurements from a crop field
over a period of eleven years. This example also high-
lights how to work with multivariate data with periods
of missing or low-quality measurements. These data are
provided by the Integrated Carbon Observation System
(ICOS), a research collaboration dedicated to producing
standardized, high-quality climate observations to better
understand the carbon cycle and greenhouse gas balance
in Europe and adjacent regions. The collaboration main-
tains over forty atmospheric monitoring sites and over
one hundred ecosystem stations in over a dozen European
countries. These stations are strongly standardized and
all observations are made publicly available by the ICOS
network [46].
The Grignon ecosystem station is located in a nineteen
hectare crop field about forty kilometers west of Paris.
The site is near a cattle farm and exposed to heavy pol-
lution from the Paris metropolitan area, as well as clean
wind from the southwest. The growing practices at the
site are representative of standard arable crop farming in
France, with a rotation of crops including wheat, maize,
and oilseed rape.
The actual measurement device is an eddy covariance flux
tower. Eddy covariance is the standard method used by
ecosystem scientists to monitor gas exchange between the
land (soil and vegetation) and the atmosphere. The flux
tower measures the vertical movement of greenhouse gases
carried by eddies, which over time indicates whether the
ecosystem is acting as a carbon sink or source. The ad-
vantage of the eddy covariance method is that it measures
fluxes directly without disturbing the ecosystem. Flux
towers also can continuously operate for decades, provid-
ing a long-term picture of how an ecosystem is changing
over time.
The tower at the Grignon site makes measurements of
carbon fluxes and meteorological conditions every half
hour. We obtained measurements of air temperature (◦C),
solar influx (incoming shortwave radiation W/m2), vapor
pressure deficit (hPa), precipitation (mm), evapotranspi-
ration (more precisely its proxy latent heat flux W/m2),

and the CO2 flux over the field (net ecosystem exchange
µmol/m2s) for a period covering 2004 to 2015. This six-
dimensional data set was measured daily over a period
eleven years, totaling 4018 data points. These measure-
ments are plotted in Fig. 10 (left), overlaid with the crop
type the field was growing at the time: either mustard
(yellow), maize (blue), cereals (green), Phacelia—a nitro-
gen holder and weed suppressant (pink), and rapeseed
(red). During the study period the Grignon field grew
cereals (wheat, barley, triticale) the most often.
Each measurement source is accompanied by a quality
control flag indicating the validity of the data at that
time. In regions marked as low quality the data may
be irrelevant or missing entirely. This results in gaps in
the time series data in the latent heat flux and the CO2
flux series, highlighted in orange in Fig. 10 (left). We
filled the missing values with the technique outlined in
Appendix C. In brief, this method involves training a
linear model in diffusion coordinates space, constrained
by the valid measurement series, and using the predictions
of that model to fill the gaps. While simple, this method
was effective for our purposes and could be replaced by
more sophisticated gap-filling methods in the future.
Constructing kernels for heterogeneous data is discussed
at length in Appendix B and so we will not go into depth
here. However, we do note that since all measurements
are real valued the underlying metric (Euclidean) was
consistent across each measurement source. The past
and future history lengths of Lf = Lp = 91 days (on
average, three months) were also held constant across
measurement sources. The Gaussian kernels bandwidth
were set individually, as the standard deviation of each
source. The kernels were aggregated using the product
rule with no temporal decay.
Figure 10 (right) presents two views of the empirical
kernel causal states in diffusion components space. The
left subfigure uses ψ3 for the vertical axis, while the right
uses ψ4. Both three-dimensional representations use ψ1
and ψ2, which are also plotted in the plane below. This
projection is thus the same for both subfigures and it is
colored according to the day of year at time t for each
σ̂xt

. In both of the three-dimensional plots, the empirical
kernel causal states are colored according to the crop
being grown at their matching time. That said, it is
important to keep in mind that the σ̂xt

are defined using
the preceding three months and predict the next three
months of field dynamics (Eqs. (5) and (6)).
We can visually identify that the first two components
capture the seasonal cycle. If we compare the phase
alignment in this example to the phase alignment in the
sunspot Ŝ we can see that the alignment is a bit more
consistent, as would be expected for the regularity of
the seasonal cycle compared to the sunspots irregular
11-years cycle. However, the eigenvalues in Fig. 8 (right)
reveal that ψ1 is more informative than ψ2 with respect to
predicting the crop dynamics. One possible interpretation
is that fluctuations in the data sources (temperature, rain,
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FIG. 10. Left: The six measurement sources over a period of 2004 to 2015 taken at the Grignon field site. From top to bottom:
T) Temperature (◦C); S) Solar influx (W/m2); V) Vapor pressure deficit (hPa); P) Precipitation (mm); H) Heat flux (W/m2);
C) CO2(µmol/m2s). Missing or low-quality values that were filled with the gap-filling technique in Appendix C are in orange.
Periods between seedling and cutting/harvesting are also indicated for each culture type. Right: The empirical kernel causal
states embedding on the left subplot is shown using the first three components (ψ1, ψ2, ψ3), and with ψ4 instead of ψ3 on the
right. Trajectories are colored by culture type. Below, their projection on the (ψ1, ψ2) plane is shown for both subplots, colored
by the day of the year.

CO2, etc) in May or November (the alignment of ψ1)
are more impactful on the future of the system than
fluctuations in February or August (the alignment of ψ2).
Both views on the empirical kernel causal states reveal a
saddle-like geometry in the three-dimensional space. In
the left subplot using ψ3, the low points of the saddle are
roughly aligned with the summer (green) and the winter
(pink), while the high points occur in fall (turquoise) and
spring (yellow). In the ψ4 subplot the saddle is inverted—
the low points of the saddle are aligned with fall and
spring and the high points are aligned with summer and
winter. In late fall and early winter, the field will be bare
for the most of the prediction window (three months) and
as such we see that the empirical kernel causal states are
mapped to a relatively small region in ψ space.
In the other seasons, the predictions made by the empirical
kernel causal states begin to diverge. This divergence
begins to appear as early as February. At least some of
this divergence appears to be related to what pattern
of crops is being grown that year. Most years, the field
grows only a single cereal, but in three years (2005, 2008,
and 2011) the field grows a cover crop in the spring
(mustard in 2005 and 2008, Phacelia in 2011) followed
by maize in the summer and fall. The empirical kernel
causal state associated with these years are mapped away
from the body of the saddle by both ψ3 and ψ4, although
it is easier to see with ψ4 in the right subplot. One
possible explanation for these diverging trajectories is
that, given the same environmental conditions, different
plants produce different responses. This is reflected in

particular in the CO2 and latent heat series.

VI. CONCLUSION

The development here covered a lot of ground—including,
beyond the example applications, reviewing the theory of
computational mechanics (Section II) and its extension to
kernel ϵ-machine introduced in [18]. We then detailed the
empirical kernel causal states algorithm (Section III B), in-
cluding the diffusion map embedding it uses (Section III C)
to produce causal diffusion components. Finally, we gave
four examples of empirical kernel causal states computed
on both simulated and real data, for both deterministic
and highly stochastic systems. We performed prelimi-
nary structural analysis of these results, showing how the
causal diffusion components uncover “hidden” structure.
Three systems were arbitrarily high-dimensional, in the
sense that the number of degrees of freedom of the system
was unknown a priori.
A major advantage of computational mechanics-based
methods is the interpretability the framework provides.
By first transforming the sequences into the kernel causal
states space (Section III B) and then applying manifold-
learning techniques (Section III C), the empirical kernel
causal states algorithm provides a meaningful separation
between the discovery of causal structure and geometric
structure. To the best of our knowledge the ability to
analyze the global geometry of the causal state set in this
way is novel.
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In a sense, for data analysis and modeling purposes, our
causal diffusion components plays a similar role as apply-
ing PCA to time-delayed embeddings. Both exploit the
time dependencies of the signal and perform dimension
reduction. However, our causal diffusion components are
designed to maximize predictability, not variance, and
they do so in a principled way, with sound theoretical
foundations [17, 27].
The causal diffusion components can be intuitively seen
as capturing the most impactful factors driving the sys-
tem dynamics, as can be seen from the various examples
recounted here: recovery of the phase space for the sim-
ple pendulum (Section IV A), of the main energy wells
and the structural conformation of the butane molecule
(Section IV B), of the major components of the solar cycle
(phase, amplitude, Section V A), of the seasonal cycle and
the culture types in a cultivated crop (Section V B).
Finally, we emphasize the potential power of the full ker-
nel ϵ-machine: it is not only able to perform the kind of
structural analysis done here, but also, given sufficient
data for its estimation, the kernel ϵ-machine is theoreti-
cally an optimally predictive model of the system. These
aspects require further development and will be the topic
of a future article in this series.
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Appendix A: Code and data availability

The code for reproducing these examples is freely
available under the MIT license from our project
page: https://team.inria.fr/comcausa/continuous-causal-
states/. Data for the examples is also provided together
with the source code.

Appendix B: Metaparameters and kernel
construction for sequences

There are three categories of metaparameters:
• The specifics of the site-wise comparison, including

kernel choices for each data source;

• The method of kernel aggregation over time, includ-
ing the temporal decay profile; and

• The method of kernel aggregation over data sources,
including potential weighting of the influence of each
data source.

We review these below.

1. Extended notations

Section III B introduced notations for a single sequence
of observations and history lengths that do not depend
on the data source. We recall and extend these notations
to more general cases, matching what is actually handled
by our algorithm:

• We assume that Z is constructed from measure-
ments of D data sources: zt =

{
m1

t ,m
2
t , . . . ,m

D
t

}
.

Each of these has its own data type: vector of real
values, string, graph, and the like.

• For each data source, indexed by d = 1 . . . D, the
pasts are sequences of length Ld

p and the futures are
sequences of length Ld

f . Specifically, they are the
finite length sequences:

xd
t =

(
md

t−Ld
p+1, . . . ,m

d
t−1,m

d
t

)
and

yd
t =

(
md

t+1,m
d
t+2, . . . ,m

d
t+Ld

f

)
• At each time, the pasts and futures are thus defined

as lists of the above:

xt =
(
x1

t , . . . , x
D
t

)
and

yt =
(
y1

t , . . . , y
D
t

)

• The data is organized in K temporal blocks of con-
secutive measurements. In Section III B we con-
sidered only K = 1 block for simplicity, but the
method can exploit measurements from multiple
realizations of the same physical process. Each tem-
poral block consists of Tk consecutive measurements
(zt, . . . , zt+Tk−1).

• With this data organization, have a library of
N =

∑
k

(
Tk − maxD Ld

p − maxD Ld
f + 1

)
pairs

(xi, yi) of pasts X = {x1, . . . , xN } and futures
Y = {y1, . . . , yN }. Each of the i = 1 . . . N pairs
corresponds to a time index in one of the temporal
blocks.

• Some data may be missing or be tagged as low
quality. These are replaced by not-a-number pseudo-
values and possibly gap-filled with the technique
described in Appendix C. Otherwise, each of these
missing data reduces N by at most 2×

(
Ld

p + Ld
f

)
−1

values (consecutive missing data reduce by less than
this amount).

The next subsections describe how to construct the
two symmetric and positive definite reproducing kernels
kX (x, ·) : X → HX and kY (y, ·) : Y → HY , for pasts
and futures respectively. These kernels generate the re-
producing kernel Hilbert spaces HX and HY .

2. Sitewise comparison

As already noted, we do not constrain our measurements
mi to be anything other than drawn from a compact
set. Typically, this is either a finite discrete set or a
closed interval in the reals. This is because a universal
reproducing kernel over a compact set has several desirable
properties, namely that the measure embedding into the
reproducing Hilbert space generated by the kernel given
by Eq. (2) is injective and the norm convergence under
the kernel inner product as defined in Eq. (3) is equivalent
to convergence in distribution over measures [29].
A very large class of universal kernels are those which
are both compactly supported and translation invariant
in Rn [47]. This includes popular kernels such as the
Gaussian and the Laplacian, that both depend only on
the distance between their arguments. Typically, the
distance is also scaled by a kernel width or radius that
sets the characteristic scale. For instance, the Gaussian
kernel is written:

kG (m,m′) = exp
(

−1
2 (∥m−m′∥/ξ)2

)
.

https://team.inria.fr/comcausa/continuous-causal-states/
https://team.inria.fr/comcausa/continuous-causal-states/
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So, it is possible to define a kernel for a particular data
source kd

(
md,m′d)

simply by defining a metric on that
data source d and picking an appropriate bandwidth ξ,
expressed in data units.
The choice of metric is fundamental to the empirical kernel
causal states construction because it sets the underlying
geometry that the kernel uses to embed the causal states,
so it must be done consistently with the nature of the
underlying system. However, we have considerable free-
dom in picking ∥m − m′∥: it only needs to be a metric.
Since metrics have been defined on all kinds of mathemat-
ical structures—strings, graphs, probability distributions,
game theoretic strategies—our ability to build kernels is
extraordinarily broad. In practice, a Euclidean metric is
typically used when the underlying data is drawn from
Rn and a discrete metric is used for symbolic data. In this
paper examples, all the data sources are real numbers and
we use the Euclidean metric together with the Gaussian
kernel.
With these choices fixed, the most important parameter
becomes the kernel bandwidth ξ, as it sets the scale for
comparing two data values. For example, exploring the
effect of temperature variations on the cultures at the
scale of 0.1◦C would make no sense for the crop example
in Section V B. When a natural, characteristic scale exists
from domain knowledge, it should be used to analyze
the physical process operating at that scale. In a data
exploration phase, it is also interesting to sweep through
a range of bandwidths. This could highlight structure
at multiple scales, possibly reflecting separate physical
processes.

3. Kernel aggregation over time

Once kernels have been set to compare values for each
data source, the next step is to combine them across time
to get kernels over sequences.
Fortunately, kernels can be combined easily. Let
kA (a, a′) : A × A → R and kB (b, b′) : B × B → R
be reproducing kernels. Then the following operations
result in a reproducing kernel kC :

• Scalar multiplication by α > 0 : kC (a, a′) =
αkA (a, a′), where C = A.

• Exponentiation by α > 0: kC (a, a′) =
(
kA (a, a′)

)α,
where C = A.

• Kernel multiplication: kC (c, c′) =
kA (a, a′) kB (b, b′), where C = A×B.

• Kernel addition: kC (c, c′) = kA (a, a′) + kB (b, b′),
where C = A×B.

The above relations are not exhaustive (see [48, Section
6.2]) but they are enough to cover the most usual cases.
They also preserve the translation-invariance property,

hence guarantee the universality of the combined kernels
(with our compactness requirement).
Kernels over sequences can be then easily defined by
combining the kernels across time, using schemes such as:

• Geometric weighting scheme:

kY d (
yd

t , ·
)

=
Ld

f∏
τ=1

kd
(
md

t+τ , ·
)ω(τ)

• Arithmetic weighting scheme:

kY d (
yd

t , ·
)

=
Ld

f∑
τ=1

ω (τ) kd
(
md

t+τ , ·
)

where kY d is the kernel over the future sequences Y d of
data source d. The kernel can be further normalized so
that kY d (

yd
t , y

d
t

)
= 1. Similar kernel definitions hold for

the past sequences Xd of each data source.
In these schemes, we call ω (τ) the decay profile. Typi-
cally, we desire a weighting scheme designed such that
observations further away in time have less influence than
the more immediate past/future observations. In practice,
when ∥md −m′d∥ is the Euclidean metric, and when kd

is the Gaussian kernel, then using the product scheme
becomes a natural choice:

kY d (
yd

t , y
′d
t

)
=

Ld
f∏

τ=1
exp

(
− 1

2ξ2 ∥md
t+τ −m′d

t+τ ∥2
)ω(τ)

= exp

− 1
2ξ2

Ld
f∑

τ=1
ω (τ) ∥md

t+τ −m′d
t+τ ∥2


Then, the weighting scheme acts on the distance between
measurements. It can be interpreted as scaling the band-
width ξ by 1/

√
ω (τ) for each τ , hence reducing the sen-

sitivity of the comparisons as ω decays.
Our previous work [18] introduced a power law decay.
Exponential decay was successfully used in a related work
[49], where it was noted to give superior performances
compared to uniform weighting. An appealing avenue is to
tie the weights to the autocorrelation of each data source.
An information-theoretic based method was also proposed
in [17]. Since the only constraint is that the aggregation
of kernels be bounded, there is considerable flexibility
in how one wishes to define ω (τ). Mathematically, we
must introduce some kind weighting scheme on the sums
of kernels acting on infinite sequences that ensures their
convergence [17]. A temporal decay fills this role naturally.
Practically, however, we work with finite sequences and
so a decay profile is not strictly mathematically necessary.
A common misconception is that without a decay the
aggregated kernel is invariant under permutations of the
sequence, and that would make it inappropriate for use
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on time series. While the resulting kernel would indeed be
invariant, this is the expected behavior and not a problem,
even when working with time series. Choosing not to use a
decay profile is, in effect, making the assumption that the
system itself does not experience causality decay (or that
the causality decay is not appreciable within the analyzed
time window), in which case it is perfectly acceptable for
the distance between x1 and x2 to be the same as the
distance between their permuted versions x′

1 and x′
2. This

is not, in itself, a reason to select a causal decay profile
which enhances preferentially certain permutations over
others.
In the examples here, we only use the product scheme with
uniform weighting—that is, without temporal decay. This
choice was made to reduce the number of metaparameters
to set, also to ease comparison between examples.

4. Kernel aggregation over data sources

Once the kernels kY d are constructed for each data source,
the procedure for combining them is similar to the ag-
gregation over time. For example, using the arithmetic
scheme:

kY (yt, ·) =
D∑

d=1
w (d) kY d (

yd
t , ·

)
and similarly for the geometric scheme. The weighting
profile w (d) now sets the influence of each data source in
the final, combined kernel. This may be useful for express-
ing domain knowledge, but otherwise uniform weighting
should be considered. In principle, it would be possible
to use a different weighting scheme for the kernel over
futures kY and for the kernel over pasts kX , which is built
with the same procedure. Again, there is no motivation
to do so without prior knowledge on the data.

Appendix C: Gap-filling missing data

When working with real measurements, there are some-
times sections with missing or invalid data. For our
method, these missing measurements can be quite im-
pactful: because of the way we construct libraries of past
and future sequences, even a single missing (or invalid)
measurement md

t in data source d at time t induces a
gap length of G = ×

(
Ld

p + Ld
f

)
− 1. This because before

the missing measurement, the last future sequence that
can be computed is yd

t−Ld
f

−1 and after the gap, the first
past history that can be computed is xd

t+Ld
p
. Consecutive

missing values, however, only increase G by 1 for each
additional missing value.

1. Linear interpolation of causal diffusion
coordinates

Filling these gaps amounts to predicting the missing val-
ues. As a proof of concept, we train a linear transition
operator T acting on the causal diffusion coordinates:

[ψ1,t+1, . . . , ψM,t+1]⊺ =̂ T [ψ1,t, . . . , ψM,t]⊺ (C1)

T is typically fit by minimizing the least squared error
for Eq. (C1) using all valid time transitions σ̂xt → σ̂xt+1 .
For each data gap of size G, consider the time t for the last
valid empirical kernel causal state σ̂t before this gap. The
next available state is then σ̂t+G+1. With a slight abuse
of notation, remembering that T acts on the diffusion
coordinates, we fill the gaps by applying T both forward:

σ̂f
t+g = T g σ̂t

and backward:

σ̂b
t+g = T g−G−1 σ̂t+G+1

then combining both:

σ̂p
t+g =

(
1 − g

G+ 1

)
σ̂f

t+g + g

G+ 1 σ̂
b
t+g . (C2)

This way, we get predicted states σ̂p
t+g that recover the

valid states before (g = 0) and after (g = G+ 1) the gap
and interpolate between these within the gap (1 ≤ g ≤ G).
Once intermediate states are predicted, we still need to
convert them into predictions in data space, for each data
source. For this gap-filling proof of concept, we also fit
these observation functions Ed as linear maps, using all
valid measurements:

md
t =̂ Ed [ψ1,t, . . . , ψM,t]⊺ .

In other words, each Ed attempts to recover the corre-
sponding data source value from the diffusion coordinates
of the empirical kernel causal state matching that time.
We make predictions for all missing values by applying
these Ed maps to the intermediate states σ̂p

t+g that were
interpolated above.
The linear maps Ed and operator T do not reflect the cor-
rect ϵ-machine dynamic. A full treatment would consider
the possible distribution of intermediate states, given the
observed values before and after the gap, and produce an
ensemble of intermediate trajectories, from which data
samples could be drawn. Still, a linear interpolation and
prediction model is sufficient our purposes here.

2. Using all valid measurements

It is common that only a subset of the data sources have
missing values, such as the latent heat and the CO2 flux
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in the example in Section V B. The other data sources
present valid measurements at the same time indices,
which shall be exploited to refine the gap filling.

Consider the forward computations σ̂f
t+1 = T σ̂t. Af-

ter each application of T , it is possible to apply the
observation functions Ed on the predicted state σ̂f

t+1,
yielding a vector

(
m̂1

t+1, . . . , m̂
D
t+1

)
of D measurement

estimates. For the valid data sources, the measurement
estimates and the actual data should ideally match. Not-
ing V ⊂ {1 . . . D} the set of valid data source indices
at time t+ 1, we implement the following optimization
scheme:

σ̃f
t+1 =argmins

∑
d∈V

w (d)
(
Eds−md

t+1
)2

s.t.
∥∥∥s− σ̂f

t+1

∥∥∥ < ϵ
∥∥∥σ̂f

t+1

∥∥∥ , (C3)

using the CVXPY iterative constrained convex optimizer
with starting point σf

t+1. In other words, we seek a causal
state estimate σ̃f

t+1 maximally consistent with the valid
data

{
md

t+1
}

d∈V
, but not too far from the forward state

estimate σ̂f
t+1 computed with the transition operator T .

This procedure is repeated iteratively G times in the
forward direction: σ̂f

t+g+1 = T σ̃f
t+g is used as a starting

point for optimizing σ̃f
t+g+1 in each of these steps.

The same procedure is applied backward and the fi-
nal predicted states σ̃p

t+g, for all indices g in the gap,
are combined using Eq. (C2). Finally, predicted values
m̂d

t+g = Ed σ̃p
t+g are set for each missing data source d at

each time index t+ g in the gap.

3. Adjusting the causal diffusion components

By construction the predicted states for the gaps respect
the constraint

∥∥∥s− σ̂f
t+g

∥∥∥ < ϵ
∥∥∥σ̂f

t+g

∥∥∥ of Eq. (C3) at each
step of the iterative process, and similarly for the back-
ward pass. Errors may accumulate but, at most, only
proportionally to a fixed number of iterations G. The
predicted state σ̃p

t+g thus remains arbitrarily close to the

σ̂p
t+g of Eq. (C2). These were computed with the lin-

ear transition operator T , itself fit by a linear regression.
Hence, the rank of the original N ×N similarity matrix
GSk

ij =
〈
σ̂xi

, σ̂xj

〉
should not be changed by the addition

of the predicted states. The updated G̃Sk is now a similar-
ity matrix of size (N +G) × (N +G) between all states,
original and produced to fill the gap.
We take the conservative approach to first use only the
gap-filled states for the maxD Ld

p+Ld
f −1 states before and

after the missing values. Using only the backward or the
forward pass, we also fill the sections with partial histories
at the beginning and the end of each of the K temporal
blocks. In other words, the optimization in Eq. (C3) was
done only for time indices that match actual data, with
no missing value, but for which an empirical kernel causal
state could not be estimated due to lack of full histories.
After this first step, the gaps consist only of the time
indices with actually missing data. We recompute the
diffusion transform on the updated G̃Sk . The whole gap-
filling procedure is then repeated in this updated causal
diffusion components space, for filling these much smaller
gaps. As a result, we get state estimates for every of
the original data time indices, using both the original σ̂
embeddings and the predicted σ̃p for partial histories and
missing data.
Figure 11 shows the data for the CO2 flux over the whole
series, together with zooms on gap-filled sections. The
sections labeled “invalid data” (in red) actually correspond
to a quality control flag of 0, meaning these data are not
reliable at all and should be discarded. Hence, the invalid
data in Fig. 11 should not be seen as a target for the
gap-filled data (in green). The valid (blue) data could
also be of low quality at each gap boundary. What is
relevant is that gap-filled data in Fig. 11 look plausible
and could have been measured instead of the invalid red
values. The gap-filled data indeed look like they could
have been measured, even for the first few months of 2004
for which the invalid data is clearly nonsensical.
In this proof of concept for gap-filling, the transition
operator T and the observation functions Ed are linear,
but they could be replaced by full-fledged estimators of the
kernel ϵ-machine dynamics in future works. Compared to
alternative gap-filling techniques, this method presents the
advantage of exploiting all available information coming
from all data sources at all time indices, and consistently
so with the overall system dynamics.
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FIG. 11. CO2 and Latent Heat flux data from the crop example in Section V B. Data in red is marked as invalid and should
not be seen as a target for the gap-filled data (in green). This is especially apparent for the first few months of 2004. Data in
blue could also be of low quality, especially at each gap boundary. The gap-filled sections look plausible and are consistent with
the measurements of all other variables.
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