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Information processing typically occurs via the composition of modular units, such as the universal
logic gates found in discrete computation circuits. The benefit of modular information processing,
in contrast to globally integrated information processing, is that complex computations are more
easily and flexibly implemented via a series of simpler, localized information processing operations
that only control and change local degrees of freedom. We show that, despite these benefits, there
are unavoidable thermodynamic costs to modularity—costs that arise directly from the operation
of localized processing and that go beyond Landauer’s dissipation bound for erasing information.
Localized operations are unable to leverage global correlations, which are a thermodynamic fuel. We
quantify the minimum irretrievable dissipation of modular computations in terms of the difference
between the change in global nonequilibrium free energy, which captures these global correlations,
and the local (marginal) change in nonequilibrium free energy, which bounds modular work pro-
duction. This modularity dissipation is proportional to the amount of additional work required to
perform a computational task modularly, measuring a structural energy cost. It determines the
thermodynamic efficiency of different modular implementations of the same computation, and so
it has immediate consequences for the architecture of physically embedded transducers, known as
information ratchets. Constructively, we show how to circumvent modularity dissipation by design-
ing internal ratchet states that capture the information reservoir’s global correlations and patterns.
Thus, there are routes to thermodynamic efficiency that circumvent globally integrated protocols
and instead reduce modularity dissipation to optimize the architecture of computations composed
of a series of localized operations.
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I. INTRODUCTION

Physically embedded information processing operates

via thermodynamic transformations of the supporting

material substrate. The thermodynamics is best exem-

plified by Landauer’s Principle [1]: erasing a single bit

of stored information at temperature T must be accom-

panied by the dissipation of at least kBT ln 2 amount of

heat into the substrate. While the Landauer cost is only

time-asymptotic and not yet the most significant energy

demand in everyday computations—in our cell phones,

tablets, laptops, and cloud computing—there is a clear

trend and desire to increase thermodynamic efficiency.

Digital technology is expected, for example, to reach the

vicinity of the Landauer cost in the near future [2]. This

seeming inevitability forces us to ask if the Landauer

bound can be achieved for more complex information

processing tasks than writing or erasing a single bit of

information.

In today’s massive computational tasks, in which vast
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arrays of bits are processed in sequence and in parallel,

a task is often broken into modular components to add

flexibility and comprehensibility to hardware and soft-

ware design. This holds far beyond the arenas of to-

day’s digital computing. Rather than tailoring proces-

sors to do only the task specified, there is great benefit in

modularly deploying elementary, but universal functional

components—e.g., NAND, NOR, and perhaps Fredkin

[3] logic gates, biological neurons [4], or similar units ap-

propriate to other domains [5]—that can be linked to-

gether into circuits which perform any functional oper-

ation. This leads naturally to hierarchical design, per-

haps across many organizational levels. In these ways,

the principle of modularity reduces the challenges of de-

signing, monitoring, and diagnosing efficient processing

considerably [6, 7]. Designing each modular component

of a complex computation to be efficient is vastly simpler

than designing and optimizing the whole. Even biological

evolution seems to have commandeered prior innovations,

remapping and reconnecting modular functional units to

form new organizations and new organisms of increasing

survivability [8].

There is, however, a potential thermodynamic cost to

modular information processing. For concreteness, recall
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the stochastic computing paradigm in which an input (a

sequence of symbols) is sampled from a given probabil-

ity distribution and the symbols are correlated to each

other. In this setting, a modularly designed computation

processes only the local component of the input, ignoring

the latter’s global structure. This inherent locality is a

physical control restriction and, thus, can lead to ther-

modynamic inefficiency [9, 10]. Local control in modular

systems necessarily leads to irretrievable loss of global

correlations during computing. Since such correlations

are a thermodynamic resource [11, 12], their loss im-

plies an energy cost—a thermodynamic modularity dis-

sipation.

Employing stochastic thermodynamics and informa-

tion theory, we show how modularity dissipation arises

by deriving an exact expression for dissipation in a

generic localized information processing operation. We

emphasize that this dissipation is above and beyond

the Landauer bound for losses in the operation of sin-

gle logical gates. The mechanism responsible for mod-

ularity dissipation is distinct from that underlying Lan-

dauer’s Principle—state-space contraction due to meso-

scopic control that implements logically irreversible op-

erations. It arises solely from the modular state-space

architecture of complex computations. One immediate

consequence is that the additional dissipation requires

investing additional work to drive computation forward.

The additional work corresponds to the uni-

verse’s entropy production, much like the reduc-

tion in possible entropy extraction for open-loop

feedback control when compared to closed-loop

feedback [13, 14]. In the special case where all

correlations between the local modular compo-

nent and the rest of the system are destroyed,

the reduction in entropy extraction for open-loop

feedback is the same as the additional work dis-

sipated in modular operations. However, open-

loop and closed-loop feedback specify different

computations. This contrasts with our focus

on different structural implementations of the

same computation, meaning the same input-to-

output channel. For a particular computation,

the stochastic thermodynamics of control [15]

provides tools to evaluate the energetic efficiency

of different types of Hamiltonian control: local

modular versus globally integrated.

In general, to minimize work invested in performing

a computation, we must leverage the global correlations

in a system’s environment. Globally integrated compu-

tations can achieve the minimum dissipation by simul-

taneous control of the whole system, manipulating the

joint system-environment Hamiltonian to follow the de-

sired joint distribution. Not only is this level of control

difficult to implement physically, but designing the re-

quired protocol poses a considerable computational chal-

lenge in itself, with so many degrees of freedom and a po-

tentially complex state space. Genetic algorithm meth-

ods have been proposed, though, for approximating the

optimum [16]. Tellingly, they can find unusual solutions

that break conventional symmetries and take advantage

of the correlations between the many different compo-

nents of the entire system [17, 18]. However, as we will

show, it is possible to rationally design local informa-

tion processors that, by accounting for these correlations,

minimized modularity dissipation.

The following shows how to design optimal modular

computational schemes such that useful global correla-

tions are not lost, but stored in the structure of the

computing mechanism. Since the global correlations are

not lost in these optimal schemes, the net processing can

be thermodynamically reversible (dissipationless). Uti-

lizing the tools of information theory and computational

mechanics—Shannon information measures and optimal

hidden Markov generators—we identify the informational

system structures that can mitigate and even nullify the

potential thermodynamic cost of modular computation.

A brief tour of our main results will help orient the

reader. It can even serve as a complete, but approximate

description for the approach and technical details, should

this be sufficient for the reader’s interests.

Section II considers the thermodynamics of a compos-

ite information reservoir [19], in which only a subsys-

tem is amenable to external control. Information reser-

voirs, which do not change energy with state changes, are

relatively new thermodynamic constructs used for infor-

mation storage and manipulation [19]. The composite

information reservoir described in the following gives a

basis for general localized thermodynamic information

processing. We assume that the information reservoir is

coupled to an ideal heat bath, as a source of randomness

and energy—ideal in that it has infinite heat capacity

and no memory of past interactions with the informa-

tion reservoir. Thus, (i) external control of the informa-

tion reservoir yields random Markovian dynamics over

its informational states, as we call them, (ii) heat flows

into the heat bath, and (iii) work investment comes from

the controller. Statistical correlations may exist between

the controlled and uncontrolled subsystems, either due to

initial or boundary conditions or due to an operation’s

history.

To highlight the information-theoretic origin of the dis-

sipation and to minimize the energetic aspects, we as-

sume that the informational states have equal internal

(free) energies. Appealing to stochastic thermodynamics

and information theory, we then show that the minimum

irretrievable modularity dissipation over the duration of
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an operation due to the locality of control is proportional

to the reduction in mutual information between the con-

trolled and uncontrolled subsystems; see Eq. (8). We

deliberately refer to “operation” here instead of “compu-

tation” since the result holds whether the desired task is

interpreted as computation or not. The result holds so

long as free-energy uniformity is satisfied at all times, a

condition natural in computation and other information

processing settings.

Section IV applies this analysis to information en-

gines, an active subfield within the thermodynamics of

computation in which information effectively acts as the

fuel for driving physically embedded information process-

ing [20–24]. The particular implementations of interest—

information ratchets—process an input symbol string by

interacting with each symbol in order, sequentially trans-

forming it into an output symbol string, as shown in

Fig. 3. This kind of information transduction [21, 25]

is information processing in a very general sense: with

properly designed dynamics over an infinite reservoir of

internal states, the devices can implement a universal

Turing machine [26]. Since information engines rely on

localized information processing, reading in and manip-

ulating one symbol at a time in their original design [20],

the measure of irretrievable dissipation applies directly.

The exact expression for their modularity dissipation is

given in Eq. (17).

Sections V and VI specialize information transducers

further to the cases of pattern extractors and pattern

generators. Section V’s pattern extractors use structure

in their environment to produce work and pattern genera-

tors use stored work to create structure from an unstruc-

tured environment. The irreversible relaxation of corre-

lations in information transduction can then be curbed

by intelligently designing these computational processes.

While there are not yet general principles for designing

implementations for arbitrary computations, the measure

of modularity dissipation that we develop shows how to

construct energy-efficient extractors and generators. For

example, efficient extractors consume complex patterns

and turn them into sequences of independent and identi-

cally distributed (IID) symbols.

We show that extractor transducers whose states are

predictive of their inputs are optimal, with zero minimal

modularity dissipation. This makes immediate intuitive

sense since, by design, such transducers can anticipate

the next input and adapt accordingly. This observa-

tion also emphasizes the principle that thermodynamic

agents should requisitely match the structural complex-

ity of their environment to leverage those informational

correlations as a thermodynamic fuel [23]. We illustrate

this result in the case of the Golden Mean pattern in

Fig. 4.

Conversely, Section VI shows that when generat-

ing patterns from unstructured IID inputs, transducers

whose states are retrodictive of their output are most

efficient—i.e., have minimal modularity dissipation. This

is also intuitively appealing in that pattern generation

may be viewed as the time reversal of pattern extrac-

tion. Since predictive transducers are efficient for pat-

tern extraction, retrodictive transducers are expected to

be efficient pattern generators; see Fig. 6. This also al-

lows one to appreciate that pattern generators previously

thought to be asymptotically efficient are actually quite

dissipative [27]. Taken altogether, these results provide

guideposts for designing efficient, modular, and complex

information processors—guideposts that go substantially

beyond Landauer’s Principle for localized processing.

II. GLOBAL VERSUS LOCALIZED

PROCESSING

If a physical system, denote it Z, stores information

as it behaves, it acts as an information reservoir. Then,

a wide range of physically-embedded computational pro-

cesses can be achieved by connecting Z to an ideal heat

bath at temperature T and externally controlling the sys-

tem’s physical parameters, its Hamiltonian. Coupling

with the heat bath allows for physical phase-space com-

pression and expansion, which are necessary for useful

computations and which account for the work invest-

ment and heat dissipation dictated by Landauer’s bound.

However, the bound is only achievable when the exter-

nal control is precisely designed to harness the changes

in phase space. This may not be possible for modular

computations. The modularity here implies that control

is localized and potentially ignorant of global correlations

in Z. This leads to uncontrolled changes in phase space.

Most computational processes unfold via a sequence of

local operations that update only a portion of the sys-

tem’s informational state. A single step in such a pro-

cess can be conveniently described by breaking the whole

informational system Z into two constituents: the in-

formational states Z int that are controlled and evolving

and the informational states Zstat that are not part of

the local operation on Z int. We call Z int the interact-

ing subsystem and Zstat the stationary subsystem. As

shown in Fig. 1, the dynamic over the joint state space

Z = Z int ⊗ Zstat is the product of the identity over the

stationary subsystem and a Markov channel over the in-

teracting subsystem. We refer to the latter as a local

Markov channel since it only updates the local interact-

ing degrees of freedom. The informational states of the

noninteracting stationary subsystem Zstat are fixed over

the immediate computational task, since this information
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FIG. 1. Local computations operate on only an interacting
subset Z int of the entire information reservoir Z = Z int⊗Zstat

described by random variable Z = Zi⊗Zs. The Markov chan-
nel that describes the global dynamic is the product of a local
operation with the identity operation: Mglobal

(zit,z
s
t)→(zit+τ ,z

s
t+τ )

=

M local
zit→z

i
t+τ

δzst,zst+τ , such that the stationary noninteracting

portion Zs of the information reservoir remains invariant, but
the interacting portion Z i changes.

should be preserved for use in later computational steps.

Such classical computations are described by a global

Markov channel over the joint state space:

Mglobal

zit,z
s
t→zit+τ ,zst+τ

= Pr(Z i
t+τ =zit+τ , Z

s
t+τ =zst+τ |Z i

t=zit, Z
s
t =zst), (1)

where Zt = Z i
t⊗Zs

t and Zt+τ = Z i
t+τ ⊗Zs

t+τ are the ran-

dom variables for the informational state of the joint sys-

tem before and after the computation, with the random

variable Zi describing the Z int subspace and the random

variable Zs the Zstat subspace, respectively. From here

on, we often refer to the random variables Zi and Zs

rather than their state spaces Z int and Zstat when de-

scribing the system. (Lowercase variables denote values

their associated random variables realize.) The righthand

side of Eq. (1) gives the transition probability over the

time interval (t, t + τ) from joint state (zit, z
s
t) to state

(zit+τ , z
s
t+τ ). The fact that Zstat is fixed means that the

global dynamic can be expressed as the product of a lo-

cal Markov computation on Z int with the identity over

Zstat:

Mglobal

(zit,z
s
t)→(zit+τ ,z

s
t+τ )

= M local
zit→zit+τ

δzst,zst+τ , (2)

where the local Markov computation is the conditional

marginal distribution:

M local
zit→zit+τ

= Pr(Z i
t+τ = zit+τ |Z i

t = zit) . (3)

When the processor is in contact with a heat bath at

temperature T , the average entropy production 〈Σt→t+τ 〉
of the universe over the time interval (t, t + τ) can be

expressed in terms of the work done minus the change in

nonequilibrium free energy F neq:

〈Σt→t+τ 〉 =
〈Wt→t+τ 〉 − (F neq

t+τ − F neq
t )

T
.

In turn, the nonequilibrium free energy F neq
t at any time

t can be expressed as the weighted average of the internal

(free) energy Uz of the joint informational states minus

the uncertainty in those states:

F neq
t =

∑
z

Pr(Zt = z)Uz − kBT ln 2 H[Zt] . (4)

Here, H[Z] is the Shannon information of the random

variable Z that realizes the state of the joint system Z
[15]. When the information bearing degrees of freedom

support an information reservoir, we take all states z and

z′ to have the same internal energy Uz = Uz′ . This is the

situation we consider in the following. Under this as-

sumption, the first term on the right of Eq. (4) does not

change even when there is a change in the probability dis-

tribution Pr(Zt = z). The entropy production of the uni-

verse 〈Σt→t+τ 〉 then reduces to the work minus a change

in Shannon information of the information-bearing de-

grees of freedom [15, 28]:

〈Σt→t+τ 〉 =
〈Wt→t+τ 〉

T
+kB ln 2(H[Zt+τ ]−H[Zt]) . (5)

Essentially, this is an expression of a generalized Lan-

dauer Principle: increasing entropy of the universe guar-

antees that work production is bounded by the change in

Shannon entropy of the informational variables [1].

Appendix A describes an isothermal protocol that im-

plements a Markov channel, in this case either Mglobal or

M local. By controlling the energy landscape, we exactly

specify the form of the computation from input to out-

put. Thus, if one is concerned with implementing deter-

ministic logical operations, we can exponentially reduce

any thermal randomness in the computation by making

linear changes in energies. Our work, however, is closer

in spirit to modern random computation [29–31], where

the outcome of a computation is not a deterministic vari-

able but a random one. In the natural (e.g., biological

or molecular) setting, information processing in the pres-

ence of noise and stochasticity is the rule, not the excep-

tion. Rarely are noise-free discrete computation theory

concepts applicable there.

In point of fact, a more general perspective on the

current work would see it as a study of computation

in thermodynamic systems, much in the spirit of com-

putational mechanics itself—the mechanics of computa-
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tion [32]. That is, our approach considers the generation,

storage, dissipation, and transmission of information as a

thermodynamic system evolves. This provides a broader

perspective of which the thermodynamics of computation

forms a major component.

For the particular case of a globally integrated isother-

mal operation, the energy landscape over the whole sys-

tem space Z is controlled simultaneously. This achieves

zero entropy production. And, the globally integrated

work done on the system achieves the theoretical mini-

mum:

〈W global
t→t+τ 〉min = −kBT ln 2(H[Zt+τ ]−H[Zt]) .

The process is reversible since the change in system Shan-

non entropy balances the change in the reservoir’s phys-

ical entropy due to heat dissipation.

Note that we do not assume the initial and final mi-

crostate probabilities before and after a thermodynamic

operation obey equilibrium distributions. Indeed, for any

meaningful computation the system must transition be-

tween nonequilibrium distributions. This is because equi-

librium distributions are uniform distributions, since we

assume the internal energies of the information-bearing

degrees of freedom are uniform. Due to this, we consider

transitions between nonequilibrium, metastable states

with a decay time much longer than the experimental

timescale. This time scale separation is necessary if in-

formation must be stored reliably over long periods of

time.

We achieve reversibility between nonequilibrium

metastable states if the control time-scale is much longer

than that of the metastable states’ internal dynamics,

but much shorter than the time-scale of the global equi-

libration dynamics. This is the regime we consider. Since

the internal energy is uniform, the system cannot store

the work and must dissipate it as heat to the surrounding

environment. This may not hold for a generic modular

operation.

There are two consequences of the locality of con-

trol. First, since Zs is kept fixed—that is, Zs
t = Zs

t+τ—

the change in uncertainty H[Z i
t+τ , Z

s
t+τ ] − H[Z i

t, Z
s
t ]

of the joint information-bearing variables during the

operation—the second term in lefthand side of Eq. (5)—

simplifies to:

H[Zt+τ ]−H[Zt] = H[Z i
t+τ , Z

s
t ]−H[Z i

t, Z
s
t ] . (6)

Second, App. C shows that if the joint system Z is

an information reservoir with control limited to subsys-

tem Zi, then there is no energetic coupling between Zi

and Zs. The lack of energetic coupling to stationary

subsystem Zs implies that the interacting subsystem is

effectively isolated from the stationary subsystem. Thus,

on its own, the interacting subsystem matches the frame-

work for an open driven system described in Ref. [21],

and so the entropy production 〈Σi〉 = 〈W 〉 − ∆F i esti-

mated from the interacting system alone must be non-

negative. In this:

F it =
∑
z∈Zi

Pr(Zit = z)Uz − kBT ln 2 H[Zit ]

is the marginalized estimate of the nonequilibrium free

energy isolated to the interacting system [28]. As a re-

sult, the work investment is bounded by the change in the

marginalized estimate of the nonequilibrium free energy.

This implies, in turn, a generalized Landauer Principle

corresponding to the change in marginal distribution over

Z i, which is determined by the local Markov channel

shown in Eq. (2). In other words, absent control over

the noninteracting subsystem Zs, which remains station-

ary over the local computation on Z i, the work done

〈Wt→t+τ 〉 on Zi is bounded below:

〈Wt→t+τ 〉 ≥ 〈W local
t→t+τ 〉min

= kBT ln 2(H[Z i
t]−H[Z i

t+τ ]) . (7)

This information-theoretic bound on the work is achiev-

able, as described in App. A, by an isothermal process

composed of slow manipulations of the energy landscape

of the interacting subsystem, which evolves the entire sys-

tem between nonequilibrium metastable distributions.

Combining the last two relations with the expression

for entropy production in Eq. (5) gives the modularity

dissipation Σmod, which is the minimum irretrievable dis-

sipation of a modular computation that comes from local

interactions:

〈Σmod
t→t+τ 〉min

kB ln 2
=
〈W local

t→t+τ 〉min

kBT ln 2
+ H[Z i

t+τ , Z
s
t ]−H[Z i

t, Z
s
t ]

= H[Zit ]−H[Zit+τ ] + H[Zit+τ , Z
s
t ]

−H[Zit , Z
s
t ] + (H[Zst ]−H[Zst ])

= I[Z i
t;Z

s
t ]− I[Z i

t+τ ;Zs
t ] , (8)

where I[X;Y ] = H[X] + H[Y ]−H[X,Y ] is the mutual in-

formation between the random variables X and Y . While

this bound on dissipation was established assuming that

the energetically uncoupled and uncontrolled portion Zs

of the system is stationary, it also applies to modular

computations where the uncontrolled system evolves un-

der its own dynamics, independent of control. This fol-

lows from the facts that the uncontrolled system’s evo-

lution can only lead it to dissipate nonequilibrium free

energy, as there is no work done on it, and the uncon-

trolled stationary subsystem can only increase the uni-
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H[Z i
t]

H[Z i
t+⌧ ]H[Zs

t ]

FIG. 2. Information diagram for a local computation: In-
formation atoms of the noninteracting subsystem H[Zs

t ] (red
ellipse), the interacting subsystem before the computation
H[Z i

t] (green circle), and the interacting subsystem after the
computation H[Z i

t+τ ] (blue circle). The initial state of the
interacting subsystem shields the final state from the nonin-
teracting subsystem; graphically the blue and red ellipses only
overlap within the green ellipse. The modularity dissipation
is proportional to the difference between information atoms
I[Z i

t;Z
s
t ] and I[Z i

t+τ ;Zs
t ]. Due to statistical shielding, it sim-

plifies to the information atom I[Z i
t;Z

s
t |Z i

t+τ ], highlighted by
a red dashed outline.

verse’s entropy production, if allowed to change [28]. We

require the uncontrolled system to be stationary Zs as

this puts the strictest bound on dissipation and since an

efficient computation holds elements fixed when they are

not being actively changed.

This is our central result: a thermodynamic cost for

modular operations above and beyond the Landauer

bound for logically irreversible operations. It is an ad-

ditional cost above the bound that arises from a dis-

tinct mechanism beyond Landauer’s mesoscopic state-

space contraction. Differing from Landauer’s Principle,

it arises from a computation’s implementation architec-

ture. Specifically, the minimum entropy production is

proportional to the minimum additional work that must

be done to execute a computation modularly:

〈W local
t→t+τ 〉min − 〈W global

t→t+τ 〉min = T 〈Σmod
t→t+τ 〉min .

Appendix A describes how to achieve this minimum dissi-

pation through isothermal protocols. Due to the bound

set on the work by the local entropy change shown in

Eq. (7), any alternative protocol, perhaps done in fi-

nite time [33] or with unobserved coarse-grained variables

[34], would necessarily require more work to implement.

The following draws out the implications.

Using the fact that the local operation M local ignores

Zs, we see that the joint distribution over all three vari-

ables Z i
t, Z

s
t , and Z i

t+τ can be simplified to:

Pr(Z i
t+τ = zit+τ , Z

i
t = zit, Z

s
t = zst)

= Pr(Z i
t+τ = zit+τ |Z i

t = zit) Pr(Z i
t = zit, Z

s
t = zst) .

Thus, Z i
t shields Z

i
t+τ from Zs

t . A consequence is that the

mutual information between Z i
t+τ and Zs

t conditioned on

Z i
t vanishes. This is shown in Fig. 2 via an information

diagram—a tool that lays out informational interdepen-

dencies between random variables [35] and has been par-

ticularly useful in analyzing temporal information pro-

cessing [36, 37]. Figure 2 also shows that the modular-

ity dissipation, highlighted by a dashed red outline, can

be re-expressed as the mutual information between the

noninteracting stationary system Zs and the interacting

system Z i before the computation that is not shared with

Z i after the computation:

〈Σmod
t→t+τ 〉min =kB ln 2(I[Zit ;Z

s
t ]− I[Zit+τ ;Zst ])

=kB ln 2(I[Zit ;Z
s
t |Zit+τ ] + I[Zit ;Z

s
t ;Zit+τ ]

− I[Zit+τ ;Zst |Zit ]− I[Zit ;Z
s
t ;Zit+τ ])

=kB ln 2 I[Zit ;Z
s
t |Zit+τ ], (9)

where, in the second line, we used the expression for

three-variable mutual information I[X;Y ;Z] = I[X;Y ]−
I[X;Y |Z] and, to get to our final result, we appealed to

the shielding I[Zit+τ ;Zst |Zit ] = 0. This is our second main

result. The conditional mutual information on the right

bounds how much entropy is produced when performing

a local computation. It quantifies the irreversibility of

modular information processing.

III. PRIOR THERMODYNAMICS OF

CORRELATION

The thermodynamics of modularity lets us revisit prior

results in a new light. The cost in Eq. (9) was recognized

in the context of copying and measurement [38] and is

relevant to biological push-pull systems [39]. While, in

principle, the logical operations performed by biological

systems can be performed reversibly if done quasistat-

ically, Ref. [39] showed that these biological processes

have control restrictions that lead to thermodynamic in-

efficiencies. First of all, biochemical systems are often

constrained to hold chemical potentials constant. They

perform logical operations instead by removal of barri-

ers and so dissipate potential sources of work. This is

particularly relevant to decorrelating readouts from sen-

sory receptors, which is a source of thermodynamic dis-

sipation in a biological implementation of Szilard’s En-

gine. Treating the readout as the interacting subsystem

and the receptor as the stationary subsystem, this in-

efficiency is predicted from modularity dissipation. If

the noninteracting stationary subsystem is uniformly dis-

tributed, such that H[Zst ] = log2 |Zs|, and the interact-

ing subsystem is a perfect copy of that system, then

all structure in the information reservoir comes in the
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form of correlations between the subsystems, such that

I[Zit ;Z
s
t ] = H[Zst ]. If we perform a decorrelation opera-

tion, mapping the interacting system to a uniform distri-

bution and decorrelating the two subsystems such that

I[Zit+τ ;Zst ] = 0, we potentially can recover kBT ln 2 H[Zst ]

of work from the system with globally integrated control

and energetic coupling between subsystems. However, if

the control is local, all those correlations are dissipated

in the decorrelation operation, as reflected by the modu-

larity dissipation:

〈Σmod
t→t+τ 〉min = kB ln 2

(
I[Zit ;Z

s
t ]− I[Zit+τ ;Zst ]

)
= kB ln 2 H[Zst ] ,

since energetic coupling is impossible in modular compu-

tations. The modularity dissipation imposes an energetic

cost on thermodynamic systems when they decorrelate

with their environment. The cost applies to a wide vari-

ety of information-processing physical agents, including

Maxwell’s Demon.

Modularity dissipation can be tested experimentally

with implementations of Szilard’s Engine—a two-bit

Maxwell’s Demon. Reference [40] showed that the Szi-

lard Engine can be explicitly implemented by a two-

dimensional system, with one degree of freedom corre-

sponding to its environment (system under study) and

the other corresponding to the demon’s memory. The

step of the engine’s functioning where the demon extracts

work, shown in Fig. 1 of Ref. [40] as the “control” step,

decorrelates the demon with its environment. According

to modularity dissipation, then, the correlations must be

dissipated if the system under study is controlled modu-

larly. Thus, the only way for the demon to extract work

from its environment is to go beyond modular control,

dynamically changing the energetic coupling between its

memory and environment. Controllable bistable thermo-

dynamic systems, such as Bose-Einstein condensates [41],

nanoelectromechanical systems [42], flux qubits [43, 44],

and feedback traps [45] can store information bistably

and so are candidates for experimentally implementing

both the demon and its environment in a Szilard Engine.

We can probe modularity dissipation in experimental

implementations of information reservoirs by comparing

the work generated with local control to the work gen-

erated with globally integrated control. For the feed-

back operation, that decorrelates the system under study

(SUS) and the demon in Szilard’s Engine, the SUS is

the interacting subsystem Zi = ZSUS and the demon’s

memory is fixed so that it is the stationary subsystem

Zs = Zdemon. For this feedback step, modular control

means that the externally controlled Hamiltonian [9] is

the SUS’s Hamiltonian:

Hext(t) = HSUS(t) . (10)

On the one hand, the local version of Landauer’s bound

means that the work invested in the decorrelation step

should be bounded below by 0, since the marginal state

entropy does not change—H[ZSUS
t ] = H[ZSUS

t+τ ]—despite

the global state changing. Thus, with modular control,

Szilard’s engine cannot function as it was designed by

extracting work during its decorrelation/feedback step.

On the other hand, if we use globally integrated control,

where Hext(t) includes coupling terms between the SUS

and the demon, then there are protocols that can extract

the free energy stored in correlations:

∆F neq = kBT ln 2 I[ZSUS
t ;Zdemon

t ]

= kBT ln 2 H[Zdemon
t ] .

The modularity dissipation is the difference between this

work, extracted with globally integrated control, and

that extracted with optimal local control.

The form of modularity dissipation shown in Eq. (8)—

a difference of mutual informations—has arisen before in

a different context and with different meaning [46, 47].

These works show that the unutilized change in free en-

ergy corresponds to dissipated work. In the setting of

data representations, Eq. (8)’s bound is analogous to the

expression for the minimum work required for data rep-

resentation, with Z i
t being the work medium, Z i

t+τ the

work extraction device, and Zs
t the data representation

device [47].

Given this parallel, Ref. [47]’s study of the thermo-

dynamics of prediction in a system driven by an input

signal shows that the irretrievable work dissipation:

β〈Wdiss[Xt → Xt+1]〉 = I[St;Xt]− I[St;Xt+1]

is proportional to the modularity dissipation, if the driv-

ing signal Xt is treated as the interacting subsystem Zit
and the driven system St is treated as the stationary

subsystem Zst . While formally similar, the setup is im-

portantly different from the cost of local modular control

of information processing. Most practically, the frame-

works lead to different results. This is especially clear for

signal transduction.

The next section draws out the implications of Eqs.

(8) and (9) for information transducers–information pro-

cessing architectures in which the processor sequentially

takes one input symbol at a time and performs localized

computation on it, much as a Turing machine operates.

To continue the comparison, these devices respond to an

input signal much as the driven systems discussed in Ref.
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[47]. The irretrievable dissipation the latter derives for

its driven systems can be minimized by ensuring that

the driven system not store any unwarranted information

about the input, beyond that required to predict [47],

meaning that the instantaneous memory Imem = I[St;Xt]

and instantaneous predictive power Ipred = I[St;Xt+1]

are the same. This means that thermodynamic ef-

ficiency is achieved only when the driven system

has no memory H[St] = 0. In this case, the sys-

tem neither stores nor predicts any information

about the input: I[St;Xt] = I[St;Xt+1] = 0. For

structured inputs to an information transducer,

in contrast, we see distinctly different thermody-

namics. This shows that, on the one hand, memo-

ryless systems are thermodynamically inefficient.

Section V demonstrates, on the other hand, the

necessity of predictive memory states for efficient

extractors.

Moreover, the transducer framework allows one to

move beyond the task of prediction. We see results rem-

iniscent of Ref. [47] with pattern generators in Sec. VI,

in that generators are thermodynamically efficient when

they store as little unwarranted information as possi-

ble. However, these devices are retrodicting rather than

predicting—a different task. In short, though the lan-

guage and mathematics of the thermodynamics of modu-

larity seem to parallel that of driven systems, modularity

dissipation more directly speaks to the design of efficient

controllers. By analyzing transducers in Secs. IV-VI as

a concrete and flexible form of input-driven information

processing, we find results that circumvent Ref. [47]’s

interpretation that memoryless driven systems are opti-

mal. More to the point, the results specify the memoryful

mechanism by which the physical information processor

predicts its input.

Various analyses of other information-driven processes

have been developed previously. For example, Ref. [48]

considered a setting in which a system is subject to an ex-

ternal force that depends on the system’s instantaneous

position—the system obeys a modified Second Law of

Thermodynamics [49]. Reference [50] considered a situ-

ation where a chemical force replaces the role of infor-

mation in driving the system out of equilibrium and ex-

tracting work. Reference [51] analyzed how the mutual

information between two spatial degrees of freedom in a

biochemical context acts as a thermodynamic resource.

Drawing out the current results’ implications for these

previous settings must be left for the future.

While we identified the inherent dissipation due to

modular computations, suggesting that globally inte-

grated control leads to more thermodynamically efficient

computations, we see in the transducer context that there

are alternative paths to thermodynamic efficiency. For

example, modularity dissipation can be minimized by

designing a computation such that the modular compo-

nents themselves store the relevant global correlations,

preventing dissipation. Locality and modularity are nat-

ural parts of complex computations, so rather than rely

on the ability to simultaneously control the global en-

ergy landscape, we use modularity dissipation as a struc-

tural guide to design modular computational architec-

tures that are thermodynamically efficient.

Modular design is not the sole province of computa-

tion in silico. Modularity appears in the structure and

function of biological organisms as well [52]. Our results

can be viewed as providing the information-theoretic

and thermodynamic backdrop with which to understand

modular biological functions such as memory [23], self-

correction [24], and pattern formation [53], among others.

IV. INFORMATION TRANSDUCERS:

LOCALIZED PROCESSORS

Information ratchets [21, 54] are thermodynamic im-

plementations of information transducers [25] that se-

quentially transform an input symbol string into an out-

put string. As generalized input-output machines, these

devices have been used as autonomous information en-

gines or erasers [20, 21], refrigerators [55], pattern gener-

ators [27, 53], random number generators [31], and self-

correcting correlation-powered engines [24]. They have

an incredibly wide variety of functionality in turning an

input into an output. The ratchet traverses the input

symbol string (random variables Y0:∞ = Y0Y1Y2....) uni-

directionally, processing each symbol in turn to yield the

output sequence (random variables Y ′0:∞ = Y ′0Y
′
1Y
′
2 ...).

(Here, Ya:b denotes the string of random variables from

a to b, YaYa+1...Yb−2Yb−1, including a but excluding b.)

As shown in Fig. 3, at time t = Nτ the information

reservoir is described by the joint distribution over the

ratchet state XN and the symbol string YN = Y ′0:NYN :∞,

the concatenation of the first N symbols of the output

string and the remaining symbols of the input string.

(This differs slightly from previous treatments [24] in

which only the symbol string is the information reservoir.

The information processing and energetics are the same,

however.) Including the ratchet state in the present

definition of the information reservoir allows us to di-

rectly determine the modularity dissipation of informa-

tion transduction.

Operations from time t = Nτ to t+ τ = (N + 1)τ pre-

serve the state of the current output history Y ′0:N and the

input future, excluding the Nth symbol YN+1:∞, while

changing the Nth input symbol YN to the Nth output

symbol Y ′N and the ratchet from its current state XN
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to its next XN+1. In terms of the previous section, this

means the noninteracting stationary subsystem Zstat is

the entire semi-infinite symbol string without the Nth

symbol:

Zs
t = (YN+1:∞, Y

′
0:N ) . (11)

The ratchet and the Nth symbol constitute the inter-

acting subsystem Z int so that, over the time interval

(t, t+ τ), only two variables change:

Z i
t = (XN , YN ) (12)

and

Z i
t+τ = (XN+1, Y

′
N ) . (13)

Despite the fact that only a small portion of the sys-

tem changes on each time step, the physical device is

able to perform a wide variety of physical and logical op-

erations. Ignoring the probabilistic processing aspects,

Turing showed that a properly designed finite-state trans-

ducer can compute any input-output mapping [56] [57].

Such machines, even those with as few as two internal

states and a sufficiently large symbol alphabet [58] or

with as few as a dozen states but operating on a binary-

symbol strings, are universal in that sense [59].

Information ratchets—physically embedded, proba-

bilistic Turing machines—are able to facilitate energy

transfer between a thermal reservoir at temperature T

and a work reservoir by processing information in sym-

bol strings. In particular, they can function as an eraser

by using work to create structure in the output string

[20, 21] or act as an engine by using the structure in

the input to turn thermal energy into useful work energy

[21]. They are also capable of much more, including de-

tecting, adapting to, and synchronizing to environment

correlations [23, 53] and correcting errors [24].

Information transducers are a novel form of informa-

tion processor from a different perspective, that of com-

munication theory’s channels [25]. They are memoryful

channels that map input stochastic processes to output

processes using internal states which allow them to store

information about the past of both the input and the out-

put. With sufficient hidden states, as just noted from the

view of computation theory, information transducers are

Turing complete and so able to perform any computation

on the information reservoir [60]. Similarly, the physi-

cal steps that implement a transducer as an information

ratchet involve a series of modular local computations.

The ratchet operates by interacting with one symbol at

a time in sequence, as shown in Fig. 3. The Nth symbol,

highlighted in yellow to indicate that it is the interacting

symbol, is changed from the input YN to output Y ′N over

01000101 101110111 ….
input stringoutput string

Thermal 
Reservoir

ZN

Ratchet

Q MassW

XN

YN :1Y 0
0:N

FIG. 3. Information ratchet consists of three interacting
reservoirs—work, heat, and information. The work reservoir
is depicted as gravitational mass suspended by a pulley. The
thermal reservoir keeps the entire system thermalized to tem-
perature T . At time Nτ the information reservoir consists
of (i) a string of symbols YN = Y ′0Y

′
1 . . . Y

′
N−1YNYN+1 . . .,

each cell storing an element from the same alphabet Y and
(ii) the ratchet’s internal state XN . The ratchet moves uni-
directionally along the string, exchanging energy between the
heat and the work reservoirs. The ratchet reads the value
of a single cell (highlighted in yellow) at a given time from
the input string (green, right), interacts with it, and writes a
symbol to the cell in the output string (blue, left) of the in-
formation reservoir. Overall, the ratchet transduces the input
string Y0:∞ = Y0Y1 . . . into an output string Y ′0:∞ = Y ′0Y

′
1 . . ..

(Reprinted from Ref. [21] with permission.)

time interval (Nτ, (N+1)τ). The ratchet and interaction

symbol change together according to the local Markov

channel over the ratchet-symbol state space:

M local
(x,y)→(x′,y′) = Pr(XN+1 =x′, Y ′N =y′|XN =x, YN =y).

This determines how the ratchet transduces inputs to

outputs [21].

Each of these localized operations keeps the remaining

noninteracting symbols in the information reservoir fixed.

If the ratchet only has energetic control of the degrees of

freedom it manipulates, then, as discussed in the previous

section and App. A, the ratchet’s work production in the

Nth time step is bounded by the change in uncertainty

of the ratchet state and interaction symbol:

〈W local
N 〉min =kBT ln 2(H[XN , YN ]−H[XN+1, Y

′
N ]). (14)

This bound has appeared in previous investigations of

information ratchets [20, 61]. Here, we make a key, but

important and compatible observation: If we relax the

condition of local control of energies to allow for global

control of all symbols simultaneously, then it is possible

to extract more work.

That is, foregoing localized operations—abandoning

modularity—allows for (and acknowledges the possibil-

ity of) globally integrated interactions. Then, we can

account for the change in Shannon information of the

information reservoir—the ratchet and the entire symbol

string. This yields a looser upper bound on work produc-
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tion that holds for both modular and globally integrated

information processing. Assuming that all information

reservoir configurations have the same free energies, the

change in the nonequilibrium free energy during one step

of a ratchet’s computation is proportional to the global

change in Shannon entropy:

∆F neq
Nτ→(N+t)τ =kBT ln 2(H[XN ,YN ]−H[XN+1,YN+1]).

Recalling the definition of entropy production 〈Σ〉 =

(〈W 〉 −∆F neq) /T reminds us that for entropy to in-

crease, the minimum work investment must match the

change in free energy:

〈W global
N 〉min

= kBT ln 2(H[XN ,YN ]−H[XN+1,YN+1]) . (15)

This is the work production that can be achieved through

globally integrated isothermal information processing.

And, in turn, it can be used to bound the asymptotic

work production in terms of the entropy rates of the in-

put and output processes [21]:

lim
N→∞

〈WN 〉 ≥ kBT ln 2(hµ − h′µ) , (16)

where the entropy rate hµ is the uncertainty per input

and h′µ is the uncertainty per output [62]. This is known

as the Information Processing Second Law (IPSL) [21].

Reference [23] already showed that this bound is not

necessarily achievable by information ratchets. This is

due to ratchets operating locally. The local bound on

work production of modular implementations in Eq. (14)

is less than or equal to the global bound on integrated

implementations in Eq. (15), since the local bound ig-

nores correlations between the interacting system Z int

and noninteracting elements of the symbol string in Zstat.

Critically, though, if we design the ratchet such that its

states store the relevant correlations in the symbol string,

then we can achieve the global bounds. This was hinted

at in the fact that the gap between the work done by a

ratchet and the global bound can be closed by designing

a ratchet that matches the input process’ structure [24].

However, comparing the two bounds now allows us to be

more precise.

The difference between the two bounds represents the

amount of additional work that could have been per-

formed by a ratchet, if it was not modular and limited to

local interactions. If the computational device is globally

integrated, with full access to all correlations between the

information bearing degrees of freedom, then all of the

nonequilibrium free energy can be converted to work, ze-

roing out the entropy production. Thus, the minimum

entropy production for a modular transducer (or infor-

mation ratchet) at the Nth time step can be expressed

in terms of the difference between Eq. (14) and the en-

tropic bounds in Eq. (15):

〈Σmod
N 〉min

kB ln 2
=
〈W local

N 〉min −∆F neq
Nτ→(N+1)τ

kBT ln 2
(17)

= I[YN+1:∞, Y
′
0:N ;XN , YN ]

− I[YN+1:∞, Y
′
0:N ;XN+1, Y

′
N ]

= I[YN+1:∞, Y
′
0:N ;XN , YN |XN+1, Y

′
N ] .

This can also be derived directly by substituting our in-

teracting variables (XN , YN ) = Z i
t and (XN+1, Y

′
N ) =

Z i
t+τ and stationary variables (YN+1:∞, Y ′0:N ) = Zs into

the expression for the modularity dissipation in Eqs. (8)

and (9) in Sec. II. Even if the energy levels are con-

trolled so slowly that entropic bounds are reached, Eq.

(17) quantifies the amount of lost correlations that can-

not be recovered. And, this leads to the entropy produc-

tion and irreversibility of the transducing ratchet. This

has immediate consequences that limit the most thermo-

dynamically efficient information processors.

While previous bounds, such as the IPSL, demon-

strated that information in the symbol string can be used

as a thermodynamic fuel [20, 21]—leveraging structure

in the inputs symbols to turn thermal energy into use-

ful work—they largely ignore the structure of informa-

tion ratchet states XN . The transducer’s hidden states,

which can naturally store information about the past, are

critical to taking advantage of structured inputs. Until

now, we only used informational bounds to predict tran-

sient costs to information processing [27, 53]. With the

expression for the modularity dissipation of information

ratchets in Eq. (17), however, we now have bounds that

apply to the ratchet’s asymptotic functioning. In short,

this provides the key tool for designing thermodynami-

cally efficient transducers. We will now show that it has

immediate implications for pattern generation and pat-

tern extraction.

V. PREDICTIVE EXTRACTORS

A pattern extractor is a transducer that takes in a

structured process Pr(Y0:∞), with correlations among the

symbols, and maps it to a series of independent identi-

cally distributed (IID), uncorrelated output symbols. An

output symbol can be distributed however we wish indi-

vidually, but each must be distributed with an identical

distribution and independently from all others. The re-

sult is that the joint distribution of the output process
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FIG. 4. Multiple ways to transform the Golden Mean Process input, whose ε-machine generator is shown in the far left box,
into a sequence of uncorrelated symbols. The ε-machine is a Mealy hidden Markov model that produces outputs along the
edges, with y : p denoting that the edge emits symbol y and is taken with probability p. (Top row) Ratchet whose internal
states match the ε-machine states and so it is able to minimize dissipation—〈Σext

∞ 〉min = 0—by making transitions such that
the ratchet’s states are synchronized to the ε-machine’s states. The transducer representation to the left shows how the states
remain synchronized: its edges are labeled y′|y : p, which means that if the input was y, then with probability p the edge is
taken and it outputs y′. The joint Markov representation on the right depicts the corresponding physical dynamic over the
joint state space of the ratchet and the interaction symbol. The label p along an edge from the state x⊗ y to x′ ⊗ y′ specifies
the probability of transitioning between those states according to the local Markov channel M local

(x,y)→(x′,y′) = p. (Bottom row)
In contrast to the efficient predictive ratchet, the memoryless ratchet shown is inefficient, since it’s memory cannot store the
predictive information within the input ε-machine, much less synchronize to it.

symbols is the product of the individual marginals:

Pr(Y ′0:∞) =

∞∏
i=0

Pr(Y ′i ) . (18)

If implemented efficiently, this device can use temporal

correlations in the input as a thermodynamic resource to

produce work. The modularity dissipation of an extrac-

tor 〈Σext
N 〉min can be simplified by noting that the output

symbols are uncorrelated with any other variable and,

thus, the Y ′ terms fall out of the mutual information

expression for dissipation in Eq. (17), yielding:

〈Σext
N 〉min

kB ln 2
= I[YN+1:∞;XN , YN ]− I[YN+1:∞;XN+1] .

(19)

Minimizing this irreversibility, as shown in App. B,

leads directly to a fascinating conclusion that relates

thermodynamics to prediction: The states of maximally

thermodynamically efficient extractors are perfect pre-

dictors of the input process. Other work anticipates

the need for predictive agents to leverage tempo-

ral correlations [24, 63] and even discusses memo-

ryful agents that can extract additional work from

temporal correlations by using predictive states of

the input [24, 63, 64]. Our development of mod-

ularity dissipation, however, provides the first proof

of the need for predictive states. Moreover, it can be ap-

plied to any extractor, to determine the dissipation of an

imperfect predictor.

To take full advantage of the temporal structure of an

input process, the ratchet’s states XN must be able to

predict the future of the input YN :∞ from the input past

Y0:N . Thus, the ratchet shields the input past from the

output future such that there is no information shared

between the past and future which is not captured by

the ratchet’s states:

I[YN :∞;Y0:N |XN ] = 0 . (20)

Additionally, transducers cannot anticipate the future of

the inputs beyond their correlations with past inputs [25].
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This means that there is no information shared between

the ratchet and the input future when conditioned on the

input past:

I[YN :∞;XN |Y0:N ] = 0 . (21)

As shown in App. B, Eqs. (20) and (21), which to-

gether are equivalent to the state XN being predictive,

can be used to prove that the modularity dissipation van-

ishes: 〈Σext
N 〉min = 0. Moreover, setting the modularity

dissipation to zero guarantees that the state shields the

past input and the future input from each other, as shown

in Eq. (20). Thus, since Eq. (21) is a given for transduc-

ers, this establishes that the ratchet’s being predictive is

equivalent to zero modularity dissipation and, thus, to

perfect thermodynamic efficiency. The efficiency of pre-

dictive ratchets suggests that predictive generators, such

as the ε-machine [62], are useful in designing efficient in-

formation engines that can leverage temporal structure

in an environment.

Consider, for example, an input string that is struc-

tured according to the Golden Mean Process, which con-

sists of binary strings in which 1’s always occur in iso-

lation, surrounded by 0’s. Figure 4 gives two examples

of ratchets, described by different local Markov channels

M local
(x,y)→(x′,y′), that each map the Golden Mean Process

to a biased coin. The input process’ ε-machine, shown

in left box, provides a template for how to design a ther-

modynamically efficient local Markov channel, since its

states are predictive of the process. The Markov channel

is a transducer [21]:

M
(y′|y)
x→x′ ≡M local

(x,y)→(x′,y′) . (22)

By designing transducer states that stay synchronized to

the states of the input process’ ε-machine, we minimize

the modularity dissipation to zero. For example, the ef-

ficient transducer shown in Fig. 4 has almost the same

topology as the Golden Mean ε-machine, with an added

transition between states C and A corresponding to a

disallowed word in the input. This transducer is able to

harness all structure in the input since it synchronizes to

the input process and so is able to optimally predict the

next input.

The efficient ratchet shown in Fig. 4 (top row) comes

from a general method for constructing an optimal ex-

tractor given the input’s ε-machine. The ε-machine is

represented by a Mealy hidden Markov model (HMM)

[65] with the symbol-labeled state-transition matrices:

T
(y)
s→s′ = Pr(YN = y, SN+1 = s′|SN = s) , (23)

where SN is the random variable for the hidden state

reading the Nth input YN . If we design the ratchet to

have the same state space as the input process’ hidden

state space—X = S—and if we want the IID output to

have bias Pr(YN = 0) = b, then we set the local Markov

channel over the ratchet and interaction symbol to be:

M local
(x,y)→(x′,y′) =

{
b, if T

(y)
x→x′ 6= 0 and y′ = 0

1− b, if T
(y)
x→x′ 6= 0 and y′ = 1 .

This channel, combined with normalized transition

probabilities, does not uniquely specify M local, since

there can be forbidden words in the input that, in turn,

lead to ε-machine causal states which always emit a sin-

gle symbol. This means that there are joint ratchet-

symbol states (x, y) such that M(x,y)→(x′,y′) is uncon-

strained. For these states, we may make any choice of

transition probabilities from (x, y), since this state will

never be reached by the combined dynamics of the in-

put and ratchet. The end result is that, with this design

strategy, we construct a ratchet whose memory stores

all information in the input past that is relevant to the

future, since the ratchet remains synchronized to the in-

put’s causal states.

In this way, the ratchet leverages all temporal order in

the input. This is characteristic of any efficient extractor,

and confirms the thermodynamic principle of requisite

variety [23]. The fact that the ratchet states must syn-

chronize to the ε-machine’s causal states, implies that the

uncertainty in the ratchet’s memory must at least match

the uncertainty in the causal states of the input, which

is its statistical complexity :

H[XN ] ≥ H[SN ] (24)

= Cµ . (25)

Thus, this not only proves the thermodynamic principle

of requisite variety in general, but also refines it to a

principle of requisite complexity—the structure of a ther-

modynamically efficient ratchet must match that of the

environment.

By way of contrast, consider a memoryless transducer,

such as that shown in Fig. 4 (bottom row). It has only

a single state and so cannot store any information about

the input past. As discussed in previous explorations,

ratchets without memory are insensitive to correlations

[23, 24]. This result for stationary input processes is sub-

sumed by the measure of modularity dissipation. Since

there is no uncertainty in XN , the asymptotic dissipation

of memoryless ratchets simplifies to:

〈Σext
∞ 〉min = lim

N→∞
kB ln 2 I[YN+1:∞;YN ]

= kB ln 2 (H1−hµ) ,
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where in the second step we used input stationarity—

every symbol has the same marginal distribution—and

so the same single-symbol uncertainty H1 = H[YN ] =

H[YM ]. Thus, the modularity dissipation of a memory-

less ratchet is proportional to the length-1 redundancy

H1−hµ [62]. This is the amount of additional uncer-

tainty that comes from ignoring temporal correlations.

As Fig. 4 shows, this means that a memoryless ex-

tractor driven by the Golden Mean Process asymptoti-

cally dissipates an average of 〈Σext
∞ 〉min ≈ 0.174kB per

input symbol. This is in stark contrast, for example,

with Ref. [46]’s claim that “unwarranted retention of

past information is fundamentally equivalent to energetic

inefficiency”, since such a memoryless ratchet minimizes

the instantaneous nonpredictive information—the mea-

sure of dissipation in a driven system [46].

Moreover, we can split the states of the predictive

model shown in Fig. 4 to introduce duplicates, that have

the same histories and same future distributions, such

that the states are still predictive of the input. This

larger machine, with duplicate states, is still predictive

and maximally efficient. This is a further conflict with

Ref. [46]. Despite the fact that both of these ratchets

perform the same computational process—converting the

Golden Mean Process into a sequence of IID symbols—

the simpler model requires more energy investment to

function, due to its irreversibility.

VI. RETRODICTIVE GENERATORS

Pattern generators are rather like time-reversed pat-

tern extractors, in that they take in an uncorrelated in-

put process:

Pr(Y0:∞) =
∞∏
i=0

Pr(Yi) , (26)

and turn it into a structured output process Pr(Y0:∞)

that has correlations among the symbols. The modu-

larity dissipation of a generator 〈Σgen
N 〉min can also be

simplified by removing the uncorrelated input symbols:

〈Σgen
N 〉min

kB ln 2
= I[Y ′0:N ;XN ]− I[Y ′0:N ;XN+1Y

′
N ] .

Paralleling extractors, App. B shows that retrodictive

ratchets minimize the modularity dissipation to zero.

Retrodictive generator states carry as little informa-

tion about the output past as possible. Since this ratchet

generates the output, it must carry all the information

shared between the output past and future. Thus, it

shields output past from output future just as a predic-

tive extractor does for the input process:

I[Y ′N :∞;Y ′0:N |XN ] = 0 .

However, unlike the predictive states, the output future

shields the retrodictive ratchet state from the output

past:

I[XN ;Y ′0:N |Y ′N :∞] = 0 . (27)

These two conditions mean that XN is retrodictive and

imply that the modularity dissipation vanishes. While we

have not established the equivalence of retrodictiveness

and efficiency for pattern generators, as we have for pre-

dictive pattern extractors, there are easy-to-construct ex-

amples demonstrating that diverging from efficient retro-

dictive implementations leads to modularity dissipation

at every step.

Consider once again the Golden Mean Process. Figure

5 shows that there are alternate ways to generate such

a process from a hidden Markov model. The ε-machine,

shown on the left, is the minimal predictive model, as dis-

cussed earlier. It is unifilar, which means that the current

hidden state S+
N and current output Y ′N uniquely deter-

mine the next hidden state S+
N+1 and that once synchro-

nized to the hidden states one stays synchronized to them

by observing only output symbols. Thus, its states are a

function of past outputs. This is illustrated in Fig. 5 by

the fact that the information atom H[S+
N ] is contained by

the information atom for the output past H[Y ′0:N ].

The other hidden Markov model generator shown in

Fig. 5 (right) is the time reversal of the ε-machine that

generates the reverse process. This is much like the

ε-machine, except that it is retrodictive instead of pre-

dictive. The recurrent states B and C are co-unifilar as

opposed to unifilar. This means that the next hidden

state S−N+1 and the current output Y ′N uniquely deter-

mine the current state S−N . The hidden states of this

minimal retrodictive model are a function of the semi-

infinite future. And, this can be seen from the fact that

the information atom for H[S−N ] is contained by the in-

formation atom for the future H[Y ′N :∞].

These two different hidden Markov generators both

produce the Golden Mean Process, and they provide a

template for constructing ratchets to generate that pro-

cess. For a hidden Markov model described by symbol-

labeled transition matrix {T (y)}, with hidden states in S
as described in Eq. (23), the analogous generative ratchet

has the same states X = S and is described by the joint

Markov local interaction:

M local
(x,y)→(x′,y′) = T

(y′)
x→x′ .

Such a ratchet effectively ignores the IID input process
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FIG. 5. Alternate minimal generators of the Golden Mean
Process: predictive and retrodictive. (Left) The ε-machine
has the minimal set of causal states S+ required to predic-
tively generate the output process. As a result, the uncer-
tainty H[S+

N ] is contained by the uncertainty H[Y ′0:N ] in the
output past. (Right) The time reversal of the reverse-time
ε-machine has the minimal set of states required to retrod-
ictively generate the output. Its states are a function of the
output future. Thus, its uncertainty H[S−N ] is contained by
the output future’s uncertainty H[Y ′N :∞].

and obeys the same informational relationships between

the ratchet states and outputs as the hidden states of

hidden Markov model with its outputs.

Figure 6 shows both the transducer and joint Markov

representation of the minimal predictive generator and

minimal retrodictive generator. The retrodictive gener-

ator is potentially perfectly efficient, since the process’

minimal modularity dissipation vanishes: 〈Σgen
N 〉min = 0

for all N .

However, despite being a standard tool for generating

an output, the predictive ε-machine is necessarily irre-

versible and dissipative. The ε-machine-based ratchet,

as shown in Fig. 6(bottom row), approaches an asymp-

totic dynamic where the current state XN stores more

than it needs to about the output past Y ′0:N in order to

generate the future Y ′N :∞. As a result, it irretrievably

dissipates:

〈Σgen
∞ 〉min = kB ln 2 lim

N→∞
(I[Y ′0:N ;XN ]−I[Y ′0:N ;XN+1, Y

′
N ])

= 2
3kB ln 2

≈ 0.462 kB .

This can be calculated with greater ease by noting

that XN and XN+1 are predictive functions of their

output past. That is, all information in the current

ratchet state is shared with the past I[Y ′0:N ;XN ] =

H[XN ] and all future behavior which is predictable

from the output past is also predictable from the

ratchet state; so I[Y ′0:N ;XN+1, Y
′
N ] = I[XN ;XN+1, Y

′
N ].

These latter can both be calculated directly from

the the ε-machine symbol-labeled transition matrices

T
(yN )
xN→xN+1 = Pr(YN = yN , XN+1 = xN+1|XN = xN ),

which give:

lim
N→∞

Pr(YN = 0, XN+1 = B,XN = B) =
1

3

lim
N→∞

Pr(YN = 1, XN+1 = C,XN = B) =
1

3

lim
N→∞

Pr(YN = 0, XN+1 = B,XN = C) =
1

3
,

and, consequently, we see that:

lim
N→∞

(H[XN ]− I[XN ;XN+1, Y
′
N ])

= lim
N→∞

H[XN |XN+1, Y
′
N ]

= 2/3 .

Thus, with every time step, this predictive ratchet stores

information about its past, but it also erases informa-

tion, dissipating 2/3 of a bit worth of correlations with-

out leveraging them. Those correlations could have been

used to reverse the process if they had been turned into

work. They are used by the retrodictive ratchet, though,

which stores just enough information about its past to

generate the future.

It was previously shown that storing unnecessary in-

formation about the past leads to additional transient

dissipation when generating a pattern [27, 53]. This cost

also arises from implementation. However, our measure

of modularity dissipation shows that there are implemen-

tation costs that persist through time. The two locally-

operating generators of the Golden Mean Process per-

form the same computation, but have different bounds

on their dissipation per time step. Thus, the additional

work investment required to generate the process grows

linearly with time for the ε-machine implementation, but

is zero for the retrodictive implementation.

Moreover, we can consider generators that fall in-

between these extremes using the parametrized HMM

shown in Fig. 7 (top). This HMM, parametrized by z,

produces the Golden Mean Process at all z ∈ [.5, 1], but

the hidden states share less and less information with the

output past as z increases, as shown by Ref. [36]. The

extreme at z = 0.5 corresponds to the minimal predictive

generator, the ε-machine. The other at z = 1 corresponds

to the minimal retrodictive generator, the time reversal

of the reverse-time ε-machine. The graph there plots the

modularity dissipation as a function of z.

The modularity dissipation decreases with z, suggest-

ing that the unnecessary memory of the past leads to

additional dissipation. This echoes the claim that “un-

warranted retention of past information is fundamentally
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FIG. 6. Alternative generators of the Golden Mean Process: (Right) The process’ ε-machine. (Top row) Optimal generator
designed using the topology of the minimal retrodictive generator. It is efficient, since it stores as little information about the
past as possible, while still storing enough to generate the output. (Bottom row) The predictive generator stores far more
information about the past than necessary, since it is based off the predictive ε-machine. As a result, it is far less efficient. It
dissipates at least 2

3
kBT ln 2 extra heat per symbol and requires that much more work energy per symbol emitted.
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FIG. 7. (Top) A parametrized family of HMMs that generate
the Golden Mean Process for z ∈ [.5, 1]. (Middle) As param-
eter z increases, the information stored in the hidden states
about the output past decreases. At z = 0.5 the HMM is
the ε-machine, whose states are a function of the past. At
z = 1.0, the HMM is the time reversal of the reverse-time
ε-machine, whose states are a function of the future. The
modularity dissipation decreases monotonically as z increases
and the hidden states’ memory of the past decreases. (Bot-
tom) Information diagrams corresponding to the end cases
and a middle case. Labeling as in Fig. 5.

equivalent to energetic inefficiency” in the particular con-

text of pattern generation [46]. So, while we have only

proved that retrodictive generators are maximally effi-

cient, this demonstrates that extending beyond that class

can lead to unnecessary dissipation and that there may

be a direct relationship between unnecessary memory and

dissipation.

Taken altogether, we see that the thermodynamic con-

sequences of localized information processing lead to di-

rect principles for efficient information transduction. An-

alyzing the most general case of transducing arbitrary

structured processes into other arbitrary structured pro-

cesses remains a challenge. That said, pattern gener-

ators and pattern extractors have elegantly symmetric

conditions for efficiency that give insight into the range of

possibilities. Pattern generators are effectively the time-

reversal of pattern extractors, which turn structured in-

puts into structureless outputs. As such they are most

efficient when retrodictive, which is the time-reversal of

being predictive. Figure 5 illustrated graphically how

the predictive ε-machine captures past correlations and

stores the necessary information about the past, while

the retrodictive ratchet’s states are analogous, but store

information about the future instead. This may seem

unphysical—as if the ratchet is anticipating the future.

However, since the ratchet generates the output future,
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this anticipation is entirely physical, because the ratchet

controls the future, as opposed to mysteriously predicting

it, as an oracle would.

VII. CONCLUSION

Modularity is a key design theme in physical informa-

tion processing, since it gives the flexibility to stitch to-

gether many elementary logical operations to implement

a much larger computation. Any classical computation

can be composed from local operations on a subset of

information reservoir observables. Modularity is also key

to biological organization, its functioning, and our un-

derstanding of these [5].

However, there is an irretrievable thermodynamic cost,

the modularity dissipation, to this localized computing,

which we quantified in terms of the global entropy pro-

duction. This modularity-induced entropy production is

proportional to the reduction of global correlations be-

tween the local and interacting portion of the informa-

tion reservoir and the fixed, noninteracting portion. This

measure forms the basis for designing thermodynamically

efficient information processing. It is proportional to the

additional work investment required by the modular form

of the computation, beyond the work required by a glob-

ally integrated and reversible computation.

While our main result on modularity dissipation might

be viewed as a cousin of Landauer’s Principle, it is very

different—an essential but complementary principle. To

close, we should remove any lingering confusion on this

score, by contrasting the microscopic mechanisms under-

lying each.

Recall that Landauer’s Principle identifies an in-

escapable dissipation that arises from the collapse of

microscopic state-space volume as the “information-

bearing degrees of freedom” implement erasing a bit of

mesoscopically-stored information. This follows directly

from Liouville’s theorem that guarantees state-space vol-

ume conservation: If the mesoscale operation collapses

state space, then the surrounding environment’s state

space must expand, resulting in a transfer of entropy and

so dissipation.

The thermodynamic costs due to modularity,

in contrast, arise from state-space componentwise

organization—technically, the conditional-independence

structure of the microscopic state space—used to imple-

ment a given information processing operation. Since

modularity removes systemwide correlations, one throws

away a thermodynamic resource.

Thus, there is indeed a parallel between Landauer’s

Principle and modularity dissipation, as they together

identify thermodynamic costs of information processing.

The similarity ends there, though. Modularity dissipa-

tion arises from a completely different mechanism from

Landauer’s—one that is also dissipative and also leads to

irreducible entropy production. This is why modularity

dissipation is a distinct and essential mechanism in a full

accounting of the thermodynamic costs of information

processing. One concludes that Landauer’s Principle is

incomplete, the fuller theory requires both it and modu-

larity dissipation.

Turing machine-like information ratchets provide a

natural application for this new measure of efficient

information processing, since they process information

in a symbol string through a sequence of local opera-

tions. The modularity dissipation allows us to determine

which implementations are able to achieve the asymp-

totic bound set by the Information Processing Second

Law (IPSL) which, substantially generalizing Landauer’s

bound, says that any type of structure in the input can be

used as a thermodynamic resource and any structure in

the output has a thermodynamic cost. There are many

different ratchet implementations that perform a given

computation, in that they map inputs to outputs in the

same way. However, if we want an implementation to

be thermodynamically efficient, the modularity dissipa-

tion, monitored by the global entropy production, must

be minimized. Conversely, we now appreciate why there

are many implementations that dissipate and are thus

irreversible. This establishes modularity dissipation as a

new thermodynamic cost, due purely to an implementa-

tion’s architecture, that complements Landauer’s bound

on isolated logical operations.

We noted that there are not yet general principles

for designing devices that minimize modularity dissipa-

tion and thus minimize work investment for arbitrary

information transduction. However, for the particular

cases of pattern generation and pattern extraction we

find that there are prescribed classes of ratchets that are

guaranteed to be dissipationless, if operated isothermally.

These devices’ ratchet states are able to store and lever-

age the global correlations among the symbol strings.

This means, in turn, that it is possible to achieve the

reversibility of globally integrated information process-

ing but with modular computational design. Thus, while

modular computation often results in dissipating global

correlations, this inefficiency can be avoided when design-

ing processors using the computational-mechanics tools

outlined here.
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Appendix A: Isothermal Markov Channels

To meet the information-theoretic bounds on work dis-

sipation, we describe an isothermal channel in which we

change system energies in slow steps to manipulate the

distribution over Z’s states. The challenge in this is to

evolve an input distribution Pr(Zt = zt) over the time

interval (t, t+ τ) according to the Markov channel M , so

that the system’s conditional probability at time t+ τ is:

Pr(Zt+τ = zt+τ |Zt = zt) = Mzt→zt+τ .

The Markov channel M specifies the form of the com-

putation, as it probabilistically maps inputs to outputs.

While we need not know the input distribution Pr(Zt =

zt) to implement a computation, this is necessary to de-

sign a thermodynamically efficient computation. Making

this as efficient as possible in a thermal environment at

temperature T means ensuring that the work invested in

the evolution achieves the lower bound:

〈W 〉 ≥ kBT ln 2(H[Zt]−H[Zt+τ ]) .

This expresses the Second Law of Thermodynamics for

the system in contact with a heat bath.

To ensure the appropriate conditional distribution, we

introduce an ancillary system Z ′, which is a copy of

Z, as proposed in Ref. [27]. This is necessary since

continuous-time Markov chains—the probabilistic rate-

equations underlying stochastic thermodynamics—have

restrictions on the logical functions they can implement.

Some logical functions, such as flipping a bit (0 → 1

and 1 → 0) must be implemented with ancillary or hid-

den states [66]. Including an ancillary system that is a

copy of Z, allows implementing any probabilistic channel

Mzt→zt+τ and, thus, any logical operation on Z.

For efficiency, we take τ to be large with respect to

the system’s relaxation time-scale and break the overall

process into three steps that occur over the time intervals

(t, t + τ0), (t + τ0, t + τ1), and (t + τ1, t + τ), where 0 <

τ0 < τ1 < τ .

Our method of manipulating Z and Z ′ is to control

the energy E(t, z, z′) of the joint state z ⊗ z′ ∈ Z ⊗ Z ′
at time t. We also control whether or not probability is

allowed to flow in Z or Z ′. This corresponds to raising

or lowering energy barriers between system states.

At the beginning of the control protocol we choose Z ′

to be in a uniform distribution uncorrelated with Z. This

means the joint distribution can be expressed:

Pr(Zt = zt, Z
′
t = z′t) =

Pr(Zt = zt)

|Z ′| . (A1)

Since we are manipulating an energetically mute infor-

mation reservoir, we also start with the system in a uni-

formly zero-energy state over the joint states of Z and

Z ′:

E(t, z, z′) = 0 . (A2)

While this energy and the distribution change when ex-

ecuting the protocol, we return Z ′ to the independent

uniform distribution and the energy to zero at the end of

the protocol. This means that the starting and ending

distributions are typically out of equilibrium. However,

since we limit the flow between informational states, they

are metastable, and do not relax to the uniform equilib-

rium distribution. In this way, the information reservoir

reliably stores and processes many different nonequilib-

rium states.

The three evolution steps that isothermally implement

the Markov channel M are as follows:

1. Over the time interval (t, t + τ0), continuously

change the energy such that the energy at the end

of the interval E(t+ τ0, z, z
′) obeys the relation:

e−(E(t+τ0,z,z
′)−F (t+τ0))/kBT = Pr(Zt = z)Mz→z′ ,

while allowing state space and probability to flow

in Z ′, but not in Z. Since the protocol is done

slowly, Z ′ follows the Boltzmann distribution and

at time t+ τ0 the distribution over Z ⊗ Z ′ is:

Pr(Zt+τ0 = z, Z ′t+τ0 = z′) = Pr(Zt = z)Mz→z′ .

This yields the conditional distribution of the cur-

rent ancillary variable Z ′t+τ on the initial system

variable Zt:

Pr(Z ′t+τ0 = z′|Zt = z) = Mz→z′ ,

since the system variable Zt remains fixed over

the interval. This protocol effectively applies the

Markov channel M to evolve from Z to Z ′. How-

ever, we want the Markov channel to apply strictly

to Z.

Since the protocol is slow and isothermal, there is

no entropy production and the work flow is simply
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the change in nonequilibrium free energy:

〈W1〉 = ∆F neq

= ∆〈E〉 − T∆S[Z,Z ′]

where S[X] = −kB
∑
x∈X Pr(X = x) ln Pr(X =

x) is the thermodynamic entropy, which is pro-

portional to the Shannon information S[X] =

kB ln 2 H[X]. Since the average initial energy is uni-

formly zero, the change in average energy is the av-

erage energy at time t+τ0. And so, we can express

the work done:

〈W1〉 = 〈E(t+ τ0)〉 − T∆S[Z,Z ′]

= 〈E(t+ τ0)〉
+ kBT ln 2(H[Zt, Z

′
t]−H[Zt+τ0 , Z

′
t+τ0 ]) .

2. Now, swap the states of Z and Z ′ over the time

interval (t+ τ0, t+ τ1). This is logically reversible.

Thus, it can be done without any work investment

over the second time interval:

〈W2〉 = 0 . (A3)

The result is that the energies and probability dis-

tributions are flipped with regard to exchange of

the system Z and ancillary system Z ′:

E(t+ τ1, z, z
′) = E(t+ τ0, z

′, z)

Pr(Zt+τ1 =z, Z ′t+τ1 =z′) = Pr(Zt+τ0 =z′, Z ′t+τ0 =z) .

Most importantly, however, this means that the

conditional probability of the current system vari-

able is given by M :

Pr(Zt+τ1 = z′|Zt = z) = Pr(Z ′t+τ0 = z′|Zt = z)

= Mz→z′ .

The ancillary system must still be reset to a uni-

form and uncorrelated state and the energies must

be reset.

3. Finally, we again hold Z’s state fixed while allowing

Z ′ to change over the time interval (t + τ1, t + τ)

as we change the energy, ending at E(t+ τ, z, z′) =

0. This isothermally brings the joint distribution

to one where the ancillary system is uniform and

independent of Z:

Pr(Zt+τ = z, Z ′t+τ = z′) =
Pr(Zt+τ = z)

|Z ′| . (A4)

Again, the invested work is the change in average

energy plus the change in thermodynamic entropy

of the joint system:

〈W3〉 = 〈∆E〉
+ kBT ln 2(H[Zt+τ1 , Z

′
t+τ1 ]−H[Zt+τ , Z

′
t+τ ])

= −〈E(t+ τ1)〉
+ kBT ln 2(H[Zt+τ1 , Z

′
t+τ1 ]−H[Zt+τ , Z

′
t+τ ]) .

This ends this three-step protocol.

Summing up the work terms, gives the total dissipa-

tion:

〈Wtotal〉 = 〈Wt〉+ 〈W2〉+ 〈W3〉
= kBT ln 2(H[Zt, Z

′
t]−H[Zt+τ0 , Z

′
t+τ0 ])

+ kBT (H[Zt+τ1 , Z
′
t+τ1 ]−H[Zt+τ , Z

′
t+τ ])

+ 〈E(t+ τ0)〉 − 〈E(t+ τ1)〉 .

Recall that the distributions Pr(Zt+τ1 , Z
′
t+τ1) and

Pr(Zt+τ0 , Z
′
t+τ0), as well as E(t + τ0, z, z

′) and E(t +

τ1, z, z
′), are identical under exchange of Z and Z ′, so

H[Zt+τ1 , Z
′
t+τ1 ] = H[Zt+τ0 , Z

′
t+τ0 ] and 〈E(t + τ0)〉 =

〈E(t+τ1)〉. Additionally, we know that both the starting

and ending distributions have a uniform and uncorrelated

ancillary system, so their entropies can be expressed:

H[Zt, Z
′
t] = H[Zt] + log2 |Z ′| (A5)

H[Zt+τ , Z
′
t+τ ] = H[Zt+τ ] + log2 |Z ′| . (A6)

Substituting this in to the above expression for total in-

vested work, we find that we achieve the lower bound

with this protocol:

〈Wtotal〉 = kBT ln 2(H[Zt]−H[Zt+τ ]) . (A7)

Thus, the protocol implements a Markov channel that

achieves the information-theoretic bounds. It is similar

to that described in Ref. [27].

The basic principle underlying the thermodynamic effi-

ciency of this protocol is that when manipulating system

energies to change state space, we choose the energies so

that there is no instantaneous probability flow. That is,

if one interrupts the protocol and holds the energy land-

scape fixed, the distribution will not continue to change.

If it did, this change would correspond to relaxation to

equilibrium, dissipation of nonequilibrium free energy,

and thus an increase in the universe’s entropy. By guid-

ing the distribution via an energy landscape such that

the system remains stationary if the protocol is stopped,

we are able to achieve the information-theoretic bounds

set by the Second Law of thermodynamics in Eq. (A7).

However, there are situations in which it is impossible to

prevent instantaneous flow, even when slowly manipulat-

ing the energies, due to limits of control imposed by the
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system, such as in the case of local control. Then, there

are necessarily inefficiencies that arise from the dissipa-

tion of the distribution evolving out of equilibrium.

Appendix B: Transducer Dissipation

1. Predictive Extractors

For a pattern extractor, being reversible means that

the transducer is predictive of the input process. More

precisely, an extracting transducer that produces zero en-

tropy is equivalent to it being a predictor of its input.

As shown earlier in Eq. (19), a reversible extractor sat-

isfies:

I[YN+1:∞;XN+1] = I[YN+1:∞;XNYN ] ,

for all N , since it must be reversible at every step to be

fully reversible. The physical ratchet being predictive of

the input means two things. It means that XN shields

the past Y0:N from the future YN :∞. This is equivalent

to the mutual information between the past and future

vanishing when conditioned on the ratchet state:

I[Y0:N ;YN :∞|XN ] = 0 .

Note that this also implies that any subset of the past or

future is independent of any other subset conditioned on

the ratchet state:

I[Ya:b;Yc:d|XN ] = 0 where b ≤ N and c ≥ N .

The other feature of a predictive transducer is that the

past shields the ratchet state from the future:

I[XN ;YN :∞|Y0:N ] = 0 .

This is guaranteed by the fact that transducers are

nonanticipatory: they cannot predict future inputs out-

side of their correlations with past inputs.

We start by showing that if the ratchet is predictive,

then the entropy production vanishes. It is useful to note

that for transducers, which are nonanticipatory of their

input, being predictive is equivalent to storing as much

information about the future as is predictable from the

past:

I[XN ;YN :∞] = I[Y0:N ;YN :∞] ,

which can be seen by subtracting I[Y0:N ;YN :∞;XN ] from

each side of the immediately preceding expression. Thus,

it is sufficient to show that the mutual information be-

tween the partial input future YN+1:∞ and the joint dis-

I[YN+1:1; XNYN ] = a + b + c + d + e + f

I[YN+1:1; Y0:NYN ] = a + b + d + e + f + g

I[YN+1:1; Y0:NYN ] � I[YN+1:1; XNYN ] = g � c

I[XN ; YN+1:1|Y0:N ] = 0 = b + c

I[XN ; YN :1|Y0:N ] = 0 = b + c + h

I[XN ; YN |Y0:N ] = 0 = b + h

a

b

c
d

e

f

g

h

i

H[YN ]H[XN ]

H[Y0:N ] H[YN+1:1]

FIG. 8. Information diagram for dependencies between the
input past Y0:N , next input YN , current ratchet state XN ,
and input future YN+1:∞, excluding the next input. We label
certain information atoms to help illustrate the algebraic steps
in the associated proof.

tribution of the predictive variable XN and next output

YN is the same as mutual information with the joint vari-

able (Y0:N , YN ) = Y0:N+1 of the past inputs and the next

input:

I[YN+1:∞;XN , YN ] = I[YN+1:∞;Y0:N , YN ] .

To show this for a predictive variable, we use Fig. 8,

which displays the information diagram for all four vari-

ables with the information atoms of interest labeled.

Assuming that XN is predictive zeros out a number of

information atoms, as shown below:

I[XN ;YN , YN+1:∞|Y0:N ] = b+ c+ h = 0

I[XN ;YN |Y0:N ] = b+ h = 0

I[Y0:N ;YN , YN+1:∞|XN ] = i+ f + g = 0

I[Y0:N ;YN |XN ] = i+ f = 0 .

These four equations make it clear that g = c = 0. Thus,

substituting I[YN+1:∞;XN , YN ] = a + b + c + d + e + f

and I[YN+1:∞;Y0:N , YN ] = a+ b+ d+ e+ f + g, we find

that their difference vanishes:

I[YN+1:∞;XN , YN ]− I[YN+1:∞;Y0:N , YN ] = c− g
= 0 .

There is zero dissipation, since XN+1 is also predictive,

meaning I[YN+1:∞;Y0:N , YN ] = I[YN+1:∞;XN+1], so:

〈Σext
N 〉min

kBT ln 2
= I[YN+1:∞;XN , YN ]− I[YN+1:∞;XN+1]

= I[YN+1:∞;XN , YN ]− I[YN+1:∞;Y0:N+1]

= 0 .
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I[Y 0
0:N ; XN+1Y

0
N ] = a + b + c + d + e + f = 0

I[Y 0
0:N ; Y 0

N+1:1Y 0
N ] = a + b + d + e + f + g = 0

I[Y 0
NY 0

0:N ; XN+1|Y 0
N+1:1] = b + c + h = 0

I[Y 0
0:NY 0

N ; Y 0
N+1:1|XN+1] = i + f + g = 0

I[Y 0
N ; Y 0

N+1:1|XN+1] = i + f = 0

I[Y 0
N ; XN+1|Y 0

N+1:1] = b + h = 0

H[Y 0
N+1:1] H[Y 0

0:N ]

H[Y 0
N ]H[XN+1]

a

b

c
d

e

f

g

h

i

FIG. 9. Information shared between the output past Y ′0:N ,
next output Y ′N , next ratchet state XN+1, and output future
Y ′N+1:∞, excluding the next input. Key information atoms
are labeled.

Going the other direction, using zero entropy produc-

tion to prove that XN is predictive for all N is now sim-

ple.

We already showed that I[YN+1:∞;XN , YN ] =

I[YN+1:∞;Y0:N , YN ] if XN is predictive. Combin-

ing with zero entropy production (I[YN+1:∞;XN+1] =

I[YN+1:∞;XN , YN ]) immediately implies that XN+1 is

predictive, since I[YN+1:∞;XN+1] = I[YN+1:∞;Y0:N , YN ]

plus the fact that XN+1 is nonanticipatory is equivalent

to XN+1 being predictive.

With this recursive relation, all that is left to establish

is the base case, that X0 is predictive. Applying zero

entropy production again we find the relation necessary

for prediction:

I[Y1:∞;X1] = I[Y1:∞;X0, Y0]

= I[Y1:∞;Y0] ,

From this, we find the equivalence I[Y1:∞;Y0] =

I[Y1:∞;X0, Y0], since X0 is independent of all inputs, due

to it being nonanticipatory. Thus, zero entropy produc-

tion is equivalent to predictive ratchets for pattern ex-

tractors.

2. Retrodictive Generators

An analogous argument can be made to show the rela-

tionship between retrodiction and zero entropy produc-

tion for pattern generators, which are essentially time

reversed extractors.

Efficient pattern generators must satisfy:

I[Y ′0:N ;XN ] = I[Y ′0:N ;XN+1Y
′
N ] .

The ratchet being retrodictive means that the ratchet

state XN shields the past Y ′0:N from the future Y ′N :∞
and that the future shields the ratchet from the past:

I[Y ′0:N ;Y ′N :∞|XN ] = 0

I[Y ′0:N ;XN |Y ′N :∞] = 0 .

Note that generators necessarily shield past from future

I[Y ′0:N ;Y ′N :∞|XN ] = 0, since all temporal correlations

must be stored in the generator’s states. Thus, for a

generator, being retrodictive is equivalent to:

I[Y ′0:N ;XN ] = I[Y ′0:N ;Y ′N :∞] .

This can be seen by subtracting I[Y ′0:N ;XN ;Y ′N :∞] from

both sides, much as done with the extractor.

First, to show that being retrodictive implies zero min-

imal entropy production, it is sufficient to show that:

I[Y ′0:N ;XN+1, Y
′
N ] = I[Y ′0:N ;Y ′N :∞] ,

since we know that I[Y ′0:N ;XN ] = I[Y ′0:N ;Y ′N :∞]. To do

this, consider the information diagram in Fig. 9. There

we see that the difference between the two mutual infor-

mations of interest reduce to the difference between the

two information atoms:

I[Y ′0:N ;XN+1Y
′
N ]− I[Y ′0:N ;Y ′N :∞] = c− g .

The fact that the ratchet state XN+1 shields the past

Y ′0:N+1 from the future Y ′N+1:∞ and the future shields the

ratchet from the past gives us the following four relations:

I[Y ′0:NY
′
N ;Y ′N+1:∞|XN+1] = i+ f + g = 0

I[Y ′N ;Y ′N+1:∞|XN+1] = i+ f = 0

I[Y ′0:NY
′
N ;XN+1|Y ′N+1:∞] = h+ b+ c = 0

I[Y ′N ;XN+1|Y ′N+1:∞] = h+ b = 0 .

These equations show that that c = g = 0 and thus:

〈Σgen
N 〉min

kBT ln 2
= 0 .

Going the other direction—zero entropy production

implies retrodiction—requires that we use I[Y ′0:N ;XN ] =

I[Y ′0:N ;XN+1, Y
′
N ] to show I[Y ′0:N ;XN ] = I[Y ′0:N ;Y ′N :∞].

If XN+1 is retrodictive, then we can show that XN must

be as well. However, this makes the base case of the

recursion difficult, since there is not yet a reason to con-

clude that X∞ is retrodictive. While we conjecture the

equivalence of optimally retrodictive generators and effi-

cient generators, at this point we can only conclusively

say that retrodictive generators are also efficient.
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Appendix C: Zero Coupling In Local Control

The assumptions that control is limited to the inter-

acting subsystem Zi and that whole system Z is an in-

formation reservoir in its default states imply that there

is zero energetic coupling between the interacting subsys-

tem Zi and the stationary subsystem Zs. Since informa-

tion reservoir states are energetically mute, the energy of

all states is the same Ez = E, for all z ∈ Z. We establish

this using the quantum mechanical framework appear-

ing elsewhere on thermodynamics of control restrictions

[9, 10]. There, a changing Hamiltonian H(t) is broken

into the default Hamiltonian H0 over Z and the exter-

nally controlled Hamiltonian Hext(t), which only affects

the local interacting subsystem:

H(t) = Hext(t) +H0 . (C1)

Note that, while this operator formalism applies to quan-

tum systems, it applies readily to classical systems [67].

In the present case, it is a particularly direct connection,

as we limit our discussion to the basis of states of the

information reservoir {|z〉 : z ∈ Z}.
Local control means our Hamiltonian control over the

joint system Hext(t) is limited to the interacting subsys-

tem and thus commutes with the stationary subsystem.

However, since the joint system is an information reser-

voir at the beginning t = t0 and end t = t0 + τ of the

computation, the result of the Hamiltonian is constant:

H(t0) |z〉 = Ez |z〉 (C2)

= E |z〉 . (C3)

Thus, the Hamiltonian can be expressed in terms of the

identity operator Î:

H(t0) = EÎ . (C4)

And, this means that the default Hamiltonian is given

by:

H0 = EÎ −Hext(t0) . (C5)

Both Î and Hext(t) commute with the stationary subsys-

tem, so the default Hamiltonian H0 does as well. Then,

by extension, the full Hamiltonian H(t) = Hext(t) +H0

commutes with the stationary subsystem. Thus, there

is no energetic coupling between interacting subsystem

and stationary subsystem. One concludes that the inter-

acting system is effectively isolated from the stationary

system, allowing us to consider its behavior using only

its marginal distribution and local estimates of entropy

production.
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