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Markedly increased computational power and data acquisition have led to growing interest in
data-driven inverse dynamics problems. These seek to answer a fundamental question: What can we
learn from time series measurements of a complex dynamical system? For small systems interacting
with external environments, the effective dynamics are inherently stochastic, making it crucial to
properly manage noise in data. Here, we explore this for systems obeying Langevin dynamics and,
using currents, we construct a learning framework for stochastic modeling. Currents have recently
gained increased attention for their role in bounding entropy production (EP) from thermodynamic
uncertainty relations (TURs). We introduce a fundamental relationship between the cumulant
currents there and standard machine-learning loss functions. Using this, we derive loss functions
for several key thermodynamic functions directly from the system dynamics without the (common)
intermediate step of deriving a TUR. These loss functions reproduce results derived both from TURs
and other methods. More significantly, they open a path to discover new loss functions for previously
inaccessible quantities. Notably, this includes access to per-trajectory entropy production, even if
the observed system is driven far from its steady-state. We also consider higher order estimation.
Our method is straightforward and unifies dynamic inference with recent approaches to entropy
production estimation. Taken altogether, this reveals a deep connection between diffusion models
in machine learning and entropy production estimation in stochastic thermodynamics.

Keywords: nonequilibrium thermodynamics, thermodynamic uncertainty relations, thermodynamic func-
tions, entropy production, currents, diffusion models, machine learning

I. INTRODUCTION

Open systems, by their nature, interact with external
environments and so experience fluctuations. In small
systems, the scale of these fluctuations are often apprecia-
bly large when compared to a system’s deterministically-
controlled dynamics and so, it is imperative to study
these fluctuations in nanoscale systems. A straightfor-
ward way to investigate small systems is to integrate out
these interactions—called fast degree dynamics—which
leads to noisy (stochastic) forces. The most famous ex-
ample is Langevin dynamics, originally used to describe
a mesoscopic particle’s behavior at a finite temperature
[1]. Langevin dynamics has also been used to describe
a wide range of stochastic systems from colloid particles
and molecules to living cells [2–4] and even financial mar-
kets [5].

Over the last several decades, Langevin dynamics re-
gained attention in the study of systems far from equi-
librium, forming a new approach to mesoscopic nonequi-
librium physics called stochastic thermodynamics [6].
This approach elevates standard thermodynamic-average
quantities—such as, work, heat, entropy, and the like—
to stochastic quantities with values associated with each
individual microscopic realization [7]. The statistics of
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these quantities can then be computed, recovering tra-
ditional thermodynamic averages, but newly enhanced
with information about higher moments. The most well-
known results are the fluctuation theorems, which express
an unexpected lawfullness and symmetry in fluctuations
[8, 9].

A. Thermodynamic Uncertainty Relations

More recent results in stochastic thermodynam-
ics include the Thermodynamic Uncertainty Relations
(TURs). The original TUR stated an inequality be-
tween the statistics of observable currents and entropy
production—between the sum of heat flow and system
entropy change under Markovian dynamics in a non-
equilibrium steady state (NESS) [10]. Since then, TURs
were generalized to numerous settings, including time-
dependent driven overdamped systems [11–13], quantum
systems [14, 15], systems with feedback control [16], and
underdamped dynamics [17, 18].
TUR inequalities can be saturated for certain systems

in the short-duration regime. Due to this, they can be
used to estimate entropy production, opening up avenues
for data-driven exploration of nonequilibrium physics.
Entropy production, typically challenging to estimate,
can be accessed via current statistics, which are only
available from observed trajectory data. Helpfully, TURs
build a nontrivial bridge between trajectories and cur-
rent statistics [19–27]. In parallel with entropy estima-
tion, there are also methods that learn parameters of the
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FIG. 1: Learning framework: Input data are
discrete-time positions: {x(t), x(t+∆t), x(t+ 2∆t), . . . }
and, for underdamped systems, the estimated velocity
v̂(t) = [x(t+∆t)− x(t)]/∆t is also required. To infer a
local thermodynamic function F at time t—such as
force, local entropy production, and diffusion fields—we
construct first- and second-order loss functions for
training neural networks. First-order estimation relies
on two consecutive data points, while second-order
estimation uses three. Representative first-order loss
functions are summarized in Table I.

Langevin dynamic itself [28–32].

Within the class of overdamped Langevin systems, the
mean of the Stratonovich currents appearing in the TUR
framework is closely connected to the local entropy pro-
duction function. Short-time TURs then reduce to a
Cauchy–Schwarz inequality [13, 23]. This equivalence im-
plies that TUR estimation of the local entropy produc-
tion is mathematically analogous to a learning process
that employs cosine similarity as a loss function.

While TUR methods offer powerful tools for estimating
entropy production, they also prompt several intriguing
questions. First, it is natural to ask whether the cur-
rents can be extended beyond Stratonovich products to
quantify thermodynamic quantities other than entropy
production. Second, cosine-similarity loss functions fo-
cus on vector alignment and may not be suited to regres-
sion tasks aimed at estimating scalar quantities. This
raises another important question: Is it possible to re-
place TUR methods with alternatives more intrinsically
aligned with estimating local thermodynamic functions,
such as employing the mean squared error (MSE) as a
loss function?

Despite their promise, TUR methods also have inher-
ent limitations. First, they are sensitive to the choice
of time-scale. TURs are saturable only when applied to
an infinitesimally-short-time process. To obtain accurate
results, the measurement time separation should be near
the time scale of the system’s dynamics, which is typically
unknown in advance. Due to this, it can be complicated
to apply TUR methods directly to real world data. Sec-
ond, TUR methods assume that the stochastic entropy

production can be written as an antisymmetric current.
Moreover, this is only true when the system is restricted
to NESS. Generically, these methods do not have access
to trajectory-level stochastic entropy production. Due
to this, TURs can only estimate a trajectory’s contribu-
tion to the average entropy production; thereby missing
information on higher moments of entropy production.

B. An Alternative

The following introduces a learning framework that
addresses these challenges by unifying thermodynamic
function estimation with machine learning, demonstrat-
ing that determining average and stochastic entropy pro-
duction, diffusion fields, and forces can be reformulated
as simple optimizations that minimize a correspond-
ing MSE. We derive loss functions directly from the
system dynamics, all the while not requiring the exis-
tence and saturability of a TUR. In the case where the
measurement-time separation does not match the dy-
namic time scale, we go on to show that expanding MSEs
increases accuracy; we call these expanded MSEs higher-
order loss functions (See Fig. 1).

In numerical experiments, we apply our methods to
the nonequilibrium dynamics of a bead-spring model, us-
ing a neural network wθ as universal approximator to
estimate thermodynamic functions. This estimates en-
tropy production at the level of individual trajectories
for systems driven far from the NESS regime, illustrat-
ing that our method still holds for mismatched time-scale
scenarios. Accessing entropy production information on
a per-trajectory level opens the door to novel kinds of
monitoring and measurement device that can detect and
potentially correct for previously-invisible large fluctua-
tions when driving between steady states.

More broadly, by deriving loss functions directly from
system dynamics, the framework is highly versatile and
can be extended to a wide range of thermodynamic func-
tions and systems of interest. For example, we demon-
strate that the same underlying principle and procedure
can be used to construct loss functions for estimating
both force and entropy production and that they apply to
underdamped systems, overdamped systems, and Marko-
vian jump processes alike.

Notably, the approach remains effective even in the
partially-observed underdamped setting, where velocity
information is not directly available and must be inferred.
This highlights the method’s flexibility and generality.
By the same token, we expect that it can be used to
find loss functions for other quantities of interest and
other dynamical regimes as well. Table I summarizes the
MSE-based loss functions for estimating force (drift) and
local entropy production across several common stochas-
tic systems.
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Overdamped : wω(x) Underdamped : wω(x, v̂) Discrete : wω(x, y), wω(x)

Force !(x, t) F (x, v, t) log Rxypy/Ryxpx

Force loss E[ 12w2
ω”t → wω”x] E[ 12w2

ω”t → wω”v̂ + 1
4”wω”v̂] E[ 12w2

xynxy → wyxnxy]

Local EP µF (x, t) → Dωx log f(x, t) →εv/m → εT/m2ωv log f(x, v, t) log Rxypy/Ryxpx

Local EP loss E[ 12w2
ω”t → wω ↑”x] E[ 12w2

ω”t → ε
mwωv̂”t + 3

4m”wω”v̂] E[ 12w2
xynxy → wyxnxy]

Temporal score in Stoch. EP ωt log f(x, t) ωt log f(x, v, t) ωt log px

Temporal score loss E[ 12w2
ω”t →”wω] \ E[ 12w2

x”t →”wx]

Di#usion field loss E[ 12w2
ω”t → wω(”x)2] E[ 12w2

ω”t → 3
2wω(”v̂)2] \

TABLE I: MSE-based first-order loss functions for various stochastic systems: a summary of the required data types
and the corresponding loss functions for estimating force, local entropy production, temporal score function, and
diffusion field in (i) overdamped systems (requiring position trajectories x(t)), (ii) underdamped systems (requiring
position trajectories and estimated velocities x(t), v̂(t); see App. E), and (iii) discrete-state systems (requiring
transition counts nxy; see App. F). Temporal score functions are required to calculate stochastic entropy production.
In the underdamped regime, when only position data is available, one cannot estimate stochastic entropy production
and so we leave the temporal score loss entry blank; see App. E 5).

II. CURRENTS AS LOSS FUNCTIONS

Before continuing, several notes about our assumptions
and notation are in order. We explicitly consider only
systems governed by the overdamped Langevin equation:

dx = Φ(x, t)dt+ σ · dW t , (1)

where Φ(x, t) is the drift, dW t is an infinitesimal Weiner
process, and σ is the covariance matrix of the thermal
noise. The corresponding Fokker-Planck equation is [33]:

∂tf(x, t) +∇ · [f(x, t)u(x, t)] = 0 , (2)

where f(x, t) is the probability distribution and u(x, t) =
Φ(x, t)− 1

2σ
2 ·∇ log f(x, t) is the probability velocity (or

local entropy production rate). Here, we assume that
the covariance σ is constant and the diffusion matrix is
D = 1

2σ
2.

While we focus on the overdamped case, we also ad-
dress the underdamped regime as well as Markovian jump
processes. These are found in the Appendices E and F.

While our method generalizes to higher dimensions
without difficulty, we focus on one-dimensional models
in the derivation for simplicity.

Finally, our notation is as follows: E[·] refers to the
theoretical expected value and ⟨·⟩ to the average value
from data; the loss function L without accent refers to
the theoretical value from an infinite amount of data and
the loss function L̂ refers to the empirical value calculated
from a data set D.

A. Lesson from machine learning

In machine learning the unified way to construct a
loss function is very simple. Suppose the data set is
D = {zi}Ni=1, distributed according to f(z). When we
use a model wθ(z) with parameters θ to learn a func-
tion F (z), a common approach is to use a variation of
stochastic gradient descent to minimize the following L2

loss function, the MSE [34]:

LMSE
F (θ) := E [wθ(z)− F (z)]2 . (3)

In practice, one approximates this expectation by aver-
aging over the data set D:

L̂MSE
F (θ,D) =

〈
[wθ(z)− F (z)]2

〉
=

1

N

∑
zi∈D

[wθ(zi)− F (zi)]
2 . (4)

If the ground truth {F (zi)}zi∈D is known, then the prob-
lem becomes one of fine tuning model architecture, opti-
mization parameters, and the like. However, when infer-
ring an unknown F (z), the problem is more challenging

as one cannot compute L̂MSE
F (θ,D) exactly using the data

D and the model wθ(z) alone. Instead, its must be ap-

proximated. Expand L̂MSE
F (θ,D) into three qualitatively

different parts:

L̂MSE
F (θ,D) =

〈
wθ(z)

2
〉
− ⟨2wθ(z)F (z)⟩+

〈
F (z)2

〉
.

(5)

The last term can always be neglected as it is
θ−independent. And so, parameter optimization only af-
fects the first two terms in Eq. (5). This suggests always
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using the equivalent loss function:

LF (θ) := E
[
1

2
w2

θ(z)

]
− E [wθ(z)F (z)] . (6)

The first term depends only on the model. And so, it
can always be calculated easily. However, the second
term requires special attention. Though one cannot know
{F (zi)}zi∈D in advance, all one needs is a quantity that
can be approximated from the data set D whose average
is proportional to wθ(z)F (z). Estimating this correlative
term is the core of our approach.

Let’s specialize to time series data z = (x, t). If we
assume access to a continuous time series and group data
per trajectory, the loss function takes the form of:

LF (θ) = E
[∫

dt
1

2
w2

θ(x, t)

]
− E

[∫
dtwθ(x, t)F (x, t)

]
.

(7)

For real data, with discrete-time trajectories, the inte-
grals become finite sums. If we have N discrete-time
trajectories, each of length n steps, the dataset is given

by D = {xi(a∆t)}n,Na=0,i=1, where xi(a∆t) represents the
position of the i-th trajectory at time step a. Assume
the goal is to learn a time-dependent overdamped drift
F (x, t) = Φ(x, t). Eq. (1) tells us that:

E[wθ(x, t)Φ(x, t)∆t] = E[wθ(x, t)∆x] +O(∆t2) , (8)

where ∆x = x(t + ∆t) − x(t) is the change in position.
For finite data with discrete time steps, we then expect:

⟨wθ(x, t)Φ(x, t)⟩∆t ∼ ⟨wθ(x, t)∆x⟩+O(∆t2) . (9)

Substituting this into Eq. (7) leads to the following
approximate loss function that can be calculated from
the model w(x) and the data D alone:

L̂(1)
Φ =

〈
n−1∑
a=0

[
1

2
wθ(x, a∆t)2∆t− wθ(x, a∆t)∆x(a∆t)

]〉
,

(10)

where ∆x(a∆t) = x((a + 1)∆t) − x(a∆t) for each tra-
jectory at time t. The superscript (1) means the loss
function agrees with the true L up to O(∆t).
This approach has several advantages. First, it sim-

plifies the task of finding the loss function to a simple
question: To estimate F , find a functional that has the
same average as wF (up to a multiplicative constant)
that can be estimated from the data D. Next, it intro-
duces the ability to evaluate and extend the inference
accuracy. That is, for agreement beyond leading order in
∆t, the method is clear: estimate the term in question to
a higher order. Finally, it allows theoretical connections
to previous TUR methods for inference, which we discuss
next.

B. Unification with TUR estimates

We can treat these loss functions as averages of cumu-
lant currents. Starting here, for clarity we suppress the
model’s explicit θ dependence. For a general function,
F (x, t), the theoretical value of the loss function in Eq.
(7) for long trajectory data is:

LF =

∫
dt

∫
dx[

1

2
w(x, t)2 − w(x, t)F (x, t)]f(x, t) (11)

= E[Jw]− E[JF ] , (12)

where Jw = 1/2
∫
Γ
w(x, t)2dt and JF =∫

Γ
w(x, t)F (x, t)dt are two integrals along the tra-

jectory and f(x, t) is the distribution. The function
w that minimizes the L2 norm is the same as that
yielding the minimal expected value difference between
the Jw and JF currents. We refer to these as the
fluctuation current and the correlation current , as
they capture trajectory fluctuations in the weight
function w and its correlation with the target function
F , respectively.
From this perspective, we view the saturating w as the

result of a variational principle. That is, by inspection,
one sees that the variation with respect to w is stationary
only when w(x, t) = F (x, t) with the extreme value be-
ing − 1

2 E[F
2]. While the appearance of this variational

principle is intriguing on its own, perhaps hinting at a
physical intuition behind the method, let’s now compare
this approach to TUR-based estimation.
The primary key to the flexibility of the approach is an

expanded notion of what a “current” can be, defining it as
the product of some arbitrary local weight function with
any other local thermodynamic function. In contrast,
TURs use a more targeted current definition—the Strat-
novich product w(x, t)◦dx. General TURs, which bound
entropy production through the Crámer-Rao inequality,
provide valuable theoretical insights but are typically not
saturable. However, in the short time limit, these TURs
can often be saturated and thus used for estimation [22].
Due to the targeted choice of the Stratonovich product
current, its ensemble average is proportional to E[uw].
In short, the current defined in the TUR can be seen
as a particular example of a correlation current: JF for
F = u. Since the average entropy production is related
to E[u2], the TUR reduces to a statement of the Cauchy-
Schwarz inequality between u and w [13, 27, 35].
In our language, this means employing cosine similar-

ity:

Lcosine
u =

E[w2]E[u2]

E[wu]2
(13)

as the loss function. Cosine similarity saturates un-
der proportionality rather than equality, when w(x, t) =
cu(x, t). However, the constant can be removed after sat-
uration by calculating the ratio E[u2]/E[wu]2. Thus, our
L2 method yields the same result as a TUR estimation
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without going through the intermediate steps of deriving
or choosing a TUR and considering the tightness of the
inequality.

One can imagine, in light of this, a “TUR-based”
method to estimate the drift Φ. Our considerations above
show that to leading order in the timestep, a current de-
fined as w∆x yields an ensemble average of ∆tE[wΦ].
And, this suggests a Cauchy-Schwarz Inequality for short
times along the lines of:

E[Φ2]E[w2] ≥ E[wΦ]2 ∼ E[w∆x]2/∆t2 . (14)

As above, saturation occurs with proportionality between
w and Φ, leading to an analogous cosine similarity loss
function for estimating the drift. And again, the propor-
tionality can be removed post saturation.

There is, however, a subtle difference between L2 and
TUR estimation that is worth pointing out. Given a
weight function w and ground truth F , we have the fol-
lowing inequalities:

E[F 2] ≥ 2E[Fw]− E[w2] (15)

for the L2 norm and:

E[F 2] ≥ E[wF ]2

E[w2]
(16)

for the cosine similarity. A third inequality:

E[wF ]2

E[w2]
≥ 2E[Fw]− E[w2] (17)

suggests that the cosine similarity used in the TUR pro-
vides a better lower bound on E[F 2] compared to the
L2 norm. While this is true given the same w, it is
not a fair and complete comparison when determining
which loss function is superior. In particular, it does
not account for how the training process under these two
loss functions affects the closeness of the weight w to the
ground truth F . With infinite data, the weight functions
w using these two losses converge to the same underly-
ing function F , assuming the optimization is successful
and the model has sufficient capacity. Our primary in-
terest is, then, how quickly and reliably one can train w
to convergence. Likely, this is better achieved using L2

norm-based loss functions, if we look at the overwhelming
majority of machine-learning loss functions for evidence.
L2 loss is largely preferred over cosine similarity for re-
gression tasks both in the literature and in practice.

No matter the chosen loss, the estimation problem is
reduced to the following principle: the extent to which
we can learn the local function F (x, t) from data is
the extent to which we can approximate the average
correlation current E[JF ] from that data. The extent to
which we can do this depends on the dynamics at play
and the data. While this method works for long-time
trajectories when the model w is expressive enough to
capture time dependence, we focus on short-time trajec-
tories and currents to study local function estimation at a

given time. To distinguish the short single-time currents
we use lower case letters:

JF (t+ dt)− JF (t) = jF dt = w(x, t)F (x, t)dt . (18)

C. Loss functions in overdamped dynamics

The last section derived the loss function using the Itô
current for the drift Φ as an illustrative example. The
following derives loss functions for other local quantities
in stochastic thermodynamics. For simplicity of notation,
we show derivations for overdamped dynamics only. We
also derived loss functions for underdamped systems and
Markovian jump processes; the relevant derivations and
loss functions are in Appendices E and F.
The average entropy production, the primary target of

TUR-based estimation, monitors how irreversible a pro-
cess is. The average entropy production rate at time t is
proportional to the expected value of u(x, t)2. To learn
the probability velocity u(x, t), we want to build a loss
function Lu(w) that satisfies u = argminw Lu(w) at time
t. From the previous section, we expect the loss function
with infinite data to be:

Lu = dt

∫
dx[

1

2
w(x)2 − w(x)u(x, t)]f(x, t)

= E[jwdt]− E[judt] . (19)

The problem to solve is straightforward: Estimate the
average u-correlation current from data alone. The in-
finitesimal current expectation value is:

E[judt] = dt

∫
dxf(x, t)w(x)[Φ(x, t)− 1

2

∂xf(x, t)

f(x, t)
σ2]

=

∫
dxf(x, t)[w(x, t)Φ(x, t)dt+

1

2
∂xw(x)σ

2dt]

= E[w(x) · dx] + E[
1

2
∂xw(x)σ

2dt]

= E[w(x) ◦ dx] , (20)

where we integrate by parts from the first line to the sec-
ond and convert between Itô and Stratonovich integrals
in the last line. It is worth noting that one of the relevant
terms takes the same form as the learning score function
used in a reverse diffusion model [36–38]. Moreover, we
see the appearance of a Stratonovich current-based loss
function we mentioned earlier, which (along with several
variants) has been commonly used to estimate the en-
tropy production in previous TUR studies [22–24, 30, 39].
With data D, the corresponding L2−based discretized

loss function from t to t+∆t is, then:

L̂(1)
u =

〈
1

2
w(x)2∆t− 1

2
[w(x) + w(x+∆x)]∆x

〉
, (21)

where ∆x = x(t+∆t) − x(t). Suppose the minimum of

L̂(1)
u is achieved when w(x) = u(1)(x), then the average
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estimated entropy rate is:

Σ̂ =
1

D

〈
u(1)(x)

2
〉

. (22)

With infinite data and an infinitesimal time step dt, this
loss function yields u(1)(x) = u(x). With a finite amount
of discrete-time data, however, we need to keep in mind
that the loss function is only correct up toO(∆t). We will
discuss the difference between u(1)(x) and u(x) shortly
when addressing higher-order inference.

Rather than considering average entropy production,
we can also estimate the entropy production of each
trajectory—the stochastic entropy production [7]:

σΓ =

∫
Γ

[u(x, t) ◦ dx+ ∂t log f(x, t)dt] . (23)

For a NESS, u(x, t) is sufficient for capturing the stochas-
tic entropy production since the temporal score function
∂t log f vanishes. However, in a non-NESS this term
must be accounted for. Using TURs only, it is simply
not possible to capture the ∂t log fdt current contribu-
tion. Specifically, TURs assume that currents have the
form of

∫
w(x, t) ◦ dx, where w(x, t) is a weight func-

tion. However, we need not make any such assumption.
And, with our framework, we have effectively reduced
the problem to quadrature: To learn the additional con-
tribution temporal score function, approximate:

E[jdt log fdt] = dt

∫
dxf(x, t)w(x)∂t log f(x, t)

= dt

∫
dxw(x)∂tf(x, t)

= dt
d

dt

∫
dxf(x, t)w(x)

= E[w(x)]t+dt − E[w(x)]t , (24)

The corresponding discretized loss function from t to t+
∆t is:

L̂(1)
dt log f =

〈
1
2w(x)

2∆t
〉
− ⟨w(x)⟩t+∆t + ⟨w(x)⟩t

=
〈
1
2w(x)

2∆t− w(x+∆x) + w(x)
〉
. (25)

This loss function allows one to learn non-NESS contri-
butions to the entropy production per-trajectory. We can
also learn the variance of the thermal noise σ2, the loss
function is:

Lσ2 = dt

∫
dx[

1

2
w2 − wσ2]f(x, t) . (26)

Here, we assume the diffusion field is not position-
dependent. Notice that the infinitesimal displacement
dx satisfies (dx)2 ∼ σ2dt. The discretized loss function
is:

L̂(1)
σ2 =

〈
1

2
w2∆t− w(∆x)2

〉
. (27)

from which we can learn σ2. If σ2(x) depends on the
location, we can generalize the scalar weight w in the
loss function in Eq. (27) to a function w(x).

D. Loss functions at higher order

The superscript (1) highlights that the empirical

loss function L̂(1) only considers contributions to or-
der O(∆t). If the data is generated with a time step
of dt ∼ ∆t—matching the measurement interval ∆t—
the first-order inference results are sufficiently accurate.
However, in real data, the measurement interval ∆t may
not coincide with dt. In such cases, expanding the empir-
ical loss functions to higher orders can compensate by in-
creasing the accuracy of inference. Here, we demonstrate
the mechanism of higher-order inference. Appendix B 1
provides a more exhaustive mathematical treatment.
Recall that we extract the drift information from the

average of ∆x:

E(∆x) = Φ(x, t)f(x, t)∆t+O(∆t2) . (28)

With ∆t being sufficiently small, the neural network can
accurately capture the drift function Φ(x, t) with the
O(∆t2) term vanishing.
If ∆t is not small enough, we can correct for the dis-

cretization error. Taking into account the next order:

E(∆x) = Φ(x, t)f(x, t)∆t+ c2(x, t)∆t2 +O(∆t3) ,
(29)

where c2(x, t) is a function of x and t. To remove the ef-
fect from O(∆t2) term, we introduce ∆2x = x(t+2∆t)−
x(t), for which:

E(∆2x) = Φ(x, t)f(x, t)2∆t+ c2(2∆t)2 +O(∆t3) .
(30)

To cancel out the O(∆t2) term, we have:

E
[
2∆x− 1

2∆2x
]
= Φ(x, t)f(x, t)∆t+O(∆t3) ,

leaving only contributions that are O(∆t3) and smaller.
This cancellation is identical to the method used in finite
difference schemes [40]. It motivates us to construct the
higher-order loss function for the drift Φ:

L̂(2)
Φ =

〈
1

2
w(x)2∆t− w(x)(2∆x− 1

2∆2x)

〉
, (31)

which is correct up to O(∆t2).
We can easily construct even higher-order loss func-

tions, though this comes at the cost of requiring more
steps in trajectories. Similarly, other local functions can
be estimated with high orders. Here, we give the second-
order loss functions for probability velocity u, ∂t log f ,
and thermal bath variance σ2:

L̂(2)
u =

〈
1
2w(x)

2∆t− [w(x+∆x) + w(x)]∆x

+ 1
4 [w(x+∆2x) + w(x)]∆2x

〉
(32)

L̂(2)
dt log f =

〈
1
2w(x)

2∆t− 2∆w + 1
2∆2w

〉
(33)

L̂(2)
σ2 =

〈
1
2w

2∆t− w[2(∆x)2 − 1
2 (∆2x)

2]
〉
. (34)
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Derivations and additional details on higher-orders are
found in Appendix B 1.

We will not analyze how measurement error affects
our estimation scheme in detail, as it falls beyond our
main scope. However, accounting for the effects of mea-
surement noise in our framework is straightforward, as
its behavior differs from that of thermal noise. We
can mitigate the impact of measurement noise by in-
corporating longer trajectory data points, just as is the
higher-order inference scheme. We illustrate with the
simple example of learning thermal variance σ2. Sup-
pose that the measurement error (denoted ϵ) is time in-
dependent and has 0 mean and standard deviation σϵ.
Then E[(∆x)2] = σ2∆t+ σ2

ϵ +O(∆t2) and E[(∆2x)
2] =

2σ2∆t + σ2
ϵ + O(∆t2). To eliminate the effect of noise,

we use the difference between E[(∆x)2] and E[(∆2x)
2] to

learn the thermal variance.

III. NUMERICAL RESULTS

Extensive previous efforts investigated overdamped
Langevin dynamics including estimating forces, average
entropy production, and stochastic entropy production
for NESS states [22–24, 30, 39]. In contrast, this section
focuses on stochastic entropy production outside of the
NESS regime—a quantity that is inaccessible using TUR
methods. For this estimation, we use the loss functions
for u and ∂t log f derived in the previous section.

The stochastic entropy production σΓ of trajectory Γ
is given in Eq. (23). During estimation, one often ig-
nores the term ∂t log f(x, t) since it does not contribute
to the average entropy production for any time evolution.
However, it does contribute to higher-order moments of
the entropy production. For example, in one-dimensional
free diffusion starting with a Gaussian distribution with
variance σ2, the first two moments of the entropy pro-
duction from 0 to t are:

E[Σ] =
1

2
log

2Dt+ σ2

σ2
, (35)

Var(Σ) =
2Dt

2Dt+ σ2
, (36)

whereD is the diffusion constant. If we ignore the ∂t log f
term, the results are:

E[
∫
Γ

u ◦ dx] = 1

2
log

2Dt+ σ2

σ2
, (37)

Var

(∫
Γ

u ◦ dx
)

= log
2Dt+ σ2

σ2
. (38)

As we can see,
∫
Γ
u ◦ dx can be used to compute average

entropy production, but fails to capture its variance.
Let’s explore the new framework for the nonequi-

librium thermodynamics of the bead-spring model—a
commonly-used benchmark for testing entropy produc-
tion estimation methods. The model belongs to the class

of linear models that obey a Langevin equation of the
form:

dx = Axdt+
√
2D · dBt , (39)

where x is an n-dimension state vector, A is an n × n
matrix, and D is a positive diagonal matrix. We consider
five beads at different temperatures connected in series
by setting:

A = µ


−2k k 0 0 0
k −2k k 0 0
0 k −2k k 0
0 0 k −2k k
0 0 0 k −2k

 , (40)

where µ is the mobility of beads and k is the spring
stiffness [41]. We set the diffusion constant matrix to
D = 1

4µkBTdiag{(4Tc, 3Tc+Th, 2Tc+2Th, Tc+3Th, 4Th)}
to model contact with five different thermal baths, whose
temperatures linearly vary from Tc to Th. For our simu-
lations, we set all parameters to 1: µ = k = kB = 1. We
generate 106 trajectories with initial conditions sampled
from a non-NESS distribution and time step ∆t = 10−2.
The initial distribution is Gaussian with mean 0 and co-
variance matrix diag(1, 2, 3, 4, 5). To estimate stochastic
entropy production, we train 2 Multilayer Perceptrons
(MLPs) to learn probability velocity u and ∂t log f , re-
spectively, at each time step. In each training, we allocate
80% of the trajectories to the training set and 20% per-
cent to the validation set. We transfer the MLP param-
eters from the previous time step to initialize the next,
accelerating the training process. More training details
are in Appendix A.
We tested the performance of first- and second-order

loss functions, with results from this experiment shown in
Fig. 2. All estimates were computed from the withheld
validation trajectory set. We first demonstrate the mean
entropy production estimation results allowing for ac-
cess to different numbers of trajectories and time coarse-
grainings. For “coarse step” a, the neural network can

only access the data points {xia∆t}[60/a]i=0 . Figure 2(a)
shows that the usual first-order loss function produces
poor estimation of the average entropy production when
the coarse step a > 10. Whereas the second-order loss
function performs significantly better for all coarse steps
shown.
We illustrate trajectory-level estimation in Fig. 2(b)

by showing 1− R2. The second-order estimation (right)
produces better estimates of stochastic entropy produc-
tion. In Fig. 2(b), we observe nonmonotonic behavior
with coarse step a > 10 using both the first- and the
second-order loss functions. We believe this is caused by
the neural networks’ inability to learn the correct local
thermodynamic functions due to the large coarse step.
Instead, they are converging to functions that are close
to the ground truth because they share trajectory statis-
tics at the coarse grained points. With increasing data,
the models better approximate this other ground truth,
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FIG. 2: Entropy production inference with five beads-spring model. (a) The estimated relative entropy production

Σ̂/Σ as a function of the number of paths using with different coarse steps. The left/right are the relative entropy
results with the first/second order loss functions. (b) The 1−R2 score between trajectory’s theoretical and
estimated stochastic entropy productions as functions of number of paths. The left/right are the results with the
first/second order loss functions. (c) The relative entropy production results at different temperature ratios with
different types of 106 coarse-grained trajectories. (d) The corresponding 1−R2 score between theoretical stochastic
entropy production and estimated entropy production of validating trajectories. (e) Entropy production of six
chosen trajectories from the bead-spring model at the temperature ratio Th/Tc = 2. The theoretical stochastic
entropy productions are computed from the definition: the sum of change in the surprisal and the heat along the
trajectory. The dashed line is the average entropy production as a function of time t. (f) The role of ∂t log f in
stochastic entropy production. The stochastic entropy production (red) and Stratonovich integral of u (blue) along
trajectories are shown. The dashed lines are average entropy production and

∫
D−1 · u ◦ dx.

and so their performance on our ground truth degrades.
Regardless, the second-order loss function provides more
accurate estimation results than first order, even when
applied to high coarse-step data.

Figures 2(c) and 2(d) show testing entropy produc-
tion estimation at different temperature ratios where Tc

is set to be 1. Entropy production of six different tra-
jectories are presented in Figs. 2(e) and 2(f) to show
our training results using non-coarse data. The theo-
retical entropy production is computed from the defi-
nition directly: σΓ = ∆sΓ + D−1 ·

∫
Γ
F ◦ dx and the

estimated entropy production are computed from the in-

tegral: σ̂Γ =
∫
Γ
(−∂t log fdt + D−1u ◦ dx). Our neural

networks accurately capture the stochastic entropy pro-
duction of both low and high entropy production paths.
Recall that the average of ∂t log f is zero, allowing us to
discard this term when estimating the average entropy
production. As shown in Fig. 2(f), this results in the
average of entropy production and u integral coinciding.
However, the ∂t log f is non-negligible at the trajectory
level.

Figure 2(f) shows the discrepancy between the stochas-
tic entropy production and the u integral contribution.
Appendix D presents the results with different initial dis-
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tributions.

IV. DISCUSSION AND CONCLUSION

Data-driven learning problems are now attracting sig-
nificant attention not only in classical systems but quan-
tum systems as well [42, 43]. These promise to greatly
expand our understanding of far-from-equilibrium ther-
modynamics processes.

Here, we introduced a unified framework for learning
local functions in stochastic thermodynamics, applica-
ble even to partially observable systems. We employed
simple MSE as loss functions, approximating these func-
tions using only available trajectory data. Indeed, to
infer the underlying thermodynamic functions in a set-
ting with unobservable degrees of freedom, one must es-
timate loss functions from available data. We demon-
strated the primary importance in this of good estimates
of correlation current : a functional of an observed tra-
jectory that links a candidate model’s behavior to that of
the observable of interest. We also showed how to expand
loss functions appropriately in terms of the measurement
separation ∆t to account for scenarios where the dynam-
ical time scale does not match the measurement time
scale. We demonstrated that this ensures estimating
more accurate representations of the stochastic system.
As a proof of concept we illustrated our method by learn-
ing trajectory-level entropy production for a bead-spring
model driven far out of its steady state. Beyond serving
as an example use case for the new estimation method,
that investigation highlighted the role that ∂t log f plays
in non-NESS stochastic entropy production.

We briefly place our results in the context of other re-
cent efforts. The most straightforward approach is to
use kernel methods. [41, 44] learn the probability dis-
tribution through kernel methods and estimate the en-
tropy production. These direct methods also require de-
tailed information about the system’s dynamics and suf-
fer from the curse of dimensionality, making them ineffi-
cient or impractical for high-dimensional systems. Re-
garding to force inference, [30, 31] use kernel method
to learn Langevin dynamics. The method require the
prior selection of orthogonal basis functions. Another
large family of entropy production estimation methods
relies on TURs, which use ratios of statistical currents
as loss functions. TURs do not need dynamic informa-
tion. However, TUR methods can only probe average
entropy production. They are blind to non-NESS contri-
butions to the stochastic entropy production. One can
define entropy production via the Kullback–Leibler (KL)
divergence and estimate the forward and backward tra-

jectory probability [24, 25, 45, 46]. At short time dura-
tion, expanding the KL divergence leads to the same loss
functions as those we derived here. Compared to relying
on KL divergence, our method using MSE has smooth
well-behaved derivative behaviors and can be easily gen-
eralized to long time trajectories. Moreover, our method
extends beyond functions that must be written in terms
of a KL divergence. A new method—the variance sum
rule—was proposed recently [47, 48] that estimates NESS
average entropy production from the definition E[F ◦dx],
expressing it in terms of variance of force and positions.
Unfortunately, it only applies to systems in a NESS.
In this work, we also showed how to extend our infer-

ence scheme to higher orders. Previous entropy produc-
tion estimations require well-resolved data (∆t ∼ dt) to
avoid additional terms proportional to ∆t. We showed
that these entropy production estimation schemes break
down around ∆t ∼ 10dt. Our inference method elim-
inates additional contributions from higher-order terms
in ∆t, resulting in a more accurate representation of the
dynamics. A similar strategy has also been used in dif-
fusion models to improve the accuracy and stability of
the reverse diffusion process and to generate high-quality
samples [49].
Let’s close by suggesting several future directions that

are now possible using the new estimation method. First
and foremost, it is important to test our method using
non-steady state experimental data. A good candidate
is the optically-trapped colloidal particle [48]. In the
higher-order inference scheme, the results are less sensi-
tive to the measurement time separation ∆t. Our method
promises to provide more accurate probes of system ir-
reversibility than currently available and will serve as a
basis for detecting fluctuations in entropy production.
Second, it is of interest to explore and test loss functions
for other stochastic systems. Active Brownian systems
come immediately to mind [50, 51]. Another interest-
ing direction would be to develop analogous methods for
open thermodynamic quantum systems. While multiple
TURs have been formulated for open quantum systems
[15, 52–55] adapting our method will provide new probes
for detecting quantum irreversibility.
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F. Monroy, M. Baiesi, and F. Ritort, Variance sum rule
for entropy production, Science 383, 971 (2024).

[48] I. Di Terlizzi, M. Baiesi, and F. Ritort, Variance sum rule:
proofs and solvable models, New J. Phys. 26, 063013
(2024).

[49] C. Lu, Y. Zhou, F. Bao, J. Chen, C. Li, and J. Zhu,
Dpm-solver: A fast ODE solver for diffusion probabilistic
model sampling in around 10 steps, NeurlIPS 35, 5775
(2022).

[50] N. M. Boffi and E. Vanden-Eijnden, Deep learning proba-
bility flows and entropy production rates in active matter,
Proc. Natl. Acad. Sci. USA 121, e2318106121 (2024).

[51] Y. Huang, C. Liu, B. Miao, and X. Zhou, Entropy pro-
duction in non-gaussian active matter: A unified fluc-
tuation theorem and deep learning framework, arXiv
preprint arXiv:2504.06628 (2025).

[52] T. Van Vu and K. Saito, Thermodynamics of precision
in Markovian open quantum dynamics, Phys. Rev. Lett.
128, 140602 (2022).

[53] T. Van Vu and K. Saito, Thermodynamic unification of
optimal transport: Thermodynamic uncertainty relation,
minimum dissipation, and thermodynamic speed limits,
Phys. Rev. X 13, 011013 (2023).

[54] Z. Gong and R. Hamazaki, Bounds in nonequilibrium
quantum dynamics, Int. J. Mod. Phys. B 36, 2230007
(2022).

[55] G. T. Landi, M. J. Kewming, M. T. Mitchison, and
P. P. Potts, Current fluctuations in open quantum sys-
tems: Bridging the gap between quantum continuous
measurements and full counting statistics, PRX Quan-
tum 5, 020201 (2024).

[56] R. E. Spinney and I. J. Ford, Entropy production in full
phase space for continuous stochastic dynamics, Phys.
Rev. E 85, 051113 (2012).

[57] J. N. Pedersen, L. Li, C. Grădinaru, R. H. Austin,
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Appendix A: Neural Net Training

We use Fully Connected Neural Networks (FCNNs)
with ReLU activation functions to learn thermodynamic
local functions. They are trained using the Adam opti-
mizer with the following hyper-parameters: learning rate
10−4, weight decay 10−5, and batch size 4096. To avoid
overfitting, we employ early stopping. We train FCNNs
using the training set and monitor the loss functions on
the validation set at each training epoch. If the loss
computed on the validation set does not decrease to a
new minimum within 5 consecutive epochs, we terminate
training. During training, we load the FCNN parameters
from time step i to the FCNN parameters from time step
i+1 to speed training. We train our FCNNs on an Apple
M1 MacStudio using the pytorch ‘mps’ backend.

Appendix B: Overdamped Entropy Production

The details of our overdamped Brownian particle with
mobility µ in a constant diffusion field—homogeneous
diffusion—are as follows. The corresponding Langevin
dynamic is given by a stochastic differential equation
(SDE):

dx = Φ(x, t)dt+ σ · dW t , (B1)

where 1
2σ

2 = D—the diffusion matrix. The particle
distribution f(x, t) evolution is governed by the Fokker-
Planck equation:

∂tf(x, t) +∇ · [u(x, t)f(x, t)] = 0 , (B2)

where u(x, t) = Φ(x, t)−D ·∇ log f(x, t) is the probabil-
ity current. We first describe the trajectory-dependent
physical quantities in overdamped Langevin dynamics.
For a single trajectory {xt}t=τ

t=0 , the heat flux into the
thermal environment divided by temperature is:

qΓ = D−1 ·
∫
Γ

Φ(x, t) ◦ dx , (B3)

and the surprisal change is:

∆sΓ = − log f(xτ , τ) + log f(x0, 0)

= −
∫
Γ

[∇ log f(x, t) ◦ dx− ∂t log f(x, t)dt] . (B4)

The entropy production for a single trajectory is:

σΓ = qΓ +∆sΓ

=

∫
Γ

{
[D−1 ·Φ(x, t)−∇ log f(x, t)] ◦ dx

−∂t log f(x, t)dt} . (B5)

If the system is in its NESS, ∂t log f(x, t) vanishes and
the trajectory-based entropy production is:

σΓ = D−1 ·
∫
Γ

[Φ(x, t)−D · ∇ log f(x, t)] ◦ dx

= D−1 ·
∫
Γ

u(x, t) ◦ dx . (B6)

1. Discretized Langevin equation and currents

To learn system dynamics from data, we must align
the discrete-time version of the SDE with the discretized
data. The formal solution of the Langevin SDE in one
dimension is:

x∆t = x0 +

∫ ∆t

0

Φ(xs, s)ds+ σW∆t , (B7)

which has the form of Dyson series. We can obtain the
solution to this equation by iteration:

x∆t = x0 +

∫ ∆t

0

Φ

(
x0 +

∫ s

0

Φ(xs′ , s
′)ds′ + σW∆t, s

)
ds

+ σW∆t . (B8)

Up to order O(∆t1):

x∆t = x0 +Φ(x0, 0)∆t+ σW∆t +O(∆t3/2) , (B9)

where the σW∆t is O(∆t1/2). The discretized version of
an Ito current with weight w(x) is:

JI(w) = w(x)∆x

= w(x)(Φ(x, t)∆t+ σW∆t) +O(∆t3/2) (B10)

and E[JI(w)] = E[w(x)Φ(x, t)∆t]+O(∆t2). Here, we use
the fact that terms proportional to ∆t3/2 must include∫
Wtdt or

∫
tdWt both of which have expected value zero,

leaving the contribution starting from O(∆t2). The drift
function Φ(x, t) appears in the Ito current expected value.
To extract the drift function Φ(x, t) at time t, we build
a quadratic loss function:

L(1)
Φ = E[

1

2
w(x)2∆t− w(x)∆x]

= E
[
1

2
w(x)2∆t− w(x)[Φ(x, t)∆t+ σW∆t]

]
+O(∆t2)

= E
[
1

2
[w(x)− Φ(x, t)]2

]
∆t+ E[Φ(x, t)2]∆t+O(∆t2) .

(B11)

The minimum is achieved when:

argmin
w

L(1)
Φ = Φ(x, t) +O(∆t1) . (B12)
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In this derivation, we only use the property that the av-
erage behavior of ∆x conditioned on x at time t—the
expectation of Eq. (B9)—is:

E[∆x|x, t] = Φ(x, t)∆t+O(∆t2) . (B13)

To compute the order O(∆t1) term in Eq. (B12), we ex-
pand ∆x beyond O(∆t) using the Ito-Taylor expansion.
Up to O(∆t2):

x∆t − x0 = σW∆t +Φ(x0, 0)∆t+ σ∂xΦ(x0, 0)

∫ ∆t

0

dsWs

+
1

2
∆t2Φ(x0, 0)∂xΦ(x0, 0) +

1

2
∆t2∂tΦ(x0, 0)

+ 1
2σ

2∂xxΦ(x0, 0)

∫ ∆t

0

dsW 2
s +O(∆t5/2) .

(B14)

The average of x(∆t) up to O(∆t2) is:

E[∆x|x, t] = Φ(x, t)∆t

+ 1
2∆t2Φ(x, t)∂xΦ(x, t) +

1

2
∆t2∂tΦ(x, t)

+
1

4
∆t2σ2∂xxΦ(x, t) +O(∆t3) . (B15)

So up to O(∆t1):

argmin
w

L(1)
Φ = Φ(x, t)

+ 1
2∆t

(
Φ(x, t)∂xΦ(x, t) + ∂tΦ(x, t) +

1

2
σ2∂xxΦ(x, t)

)
+O(∆t2) . (B16)

As expected, the loss function L(1)
Φ yields an answer that

deviates from the actual Φ by a term that is at the first
order in ∆t. We can include one more step from trajec-
tories to eliminate this additional contribution, similar
to how one approximates a derivative with a finite differ-
ence. For one step, we have:

E[∆x|x, t] = Φ(x, t)∆t+ C2(x, t)∆t2 +O(∆t3) , (B17)

where C2(x, t) = 1
2Φ(x, t)∂xΦ(x, t) + 1

2∂tΦ(x, t) +
1
4σ

2∂xxΦ(x, t). If we extend the trajectory one step fur-
ther:

E[∆2x|x, t] = Φ(x, t)(2∆t) + C2(x, t)(2∆t)2 +O(∆t3) ,
(B18)

where ∆2x = x(t + 2∆t) − x(t). Using these two con-
ditional probabilities, we eliminate the contribution at
O(∆t2):

1

2

(
4E[∆x|x, t]− E[∆2x|x, t]

)
= Φ(x, t) +O(∆t3) .

(B19)

This leads to the loss function L(2)
Φ :

L(2)
Φ = E[

1

2
w(x)2∆t− w(x)(2∆x− 1

2
∆2x)]

= E[
1

2
w(x)2∆t− w(x)Φ(x, t)∆t] +O(∆t3)

= E
[
1

2
[w(x)− Φ(x, t)]2

]
∆t+ E[Φ(x, t)2]∆t+O(∆t3) .

(B20)

The minimum is achieved when:

argmin
w

L(1)
Φ = Φ(x, t) +O(∆t2) . (B21)

We can also extend this method to further, continually
improving the estimation’s accuracy. Table II gives the
coefficients for higher-order estimation up to O(∆t4).

Accuracy x(t) x(t + ∆t) x(t + 2∆t) x(t + 3∆t) x(t + 4∆t)

O(∆t1) −1 1

O(∆t2) −3/2 2 −1/2

O(∆t3) −11/6 3 −3/2 1/3

O(∆t4) −25/12 4 −3 4/3 −1/4

TABLE II: Loss function coefficients for the drift Φ
inference.

To infer the probability velocity u(x, t), we also de-
rive higher-order loss functions. Consider a Stratonovich
product current with weight w—JII(w) = w ◦∆x:

JII(w) =
1
2 [w(x+∆x) + w(x)]∆x

= w(x)σW∆t + w(x)Φ(x)∆t

+ 1
2∂xw(x)σ

2W 2
∆t +O(∆t3/2) . (B22)

The corresponding expected value is:

E[JII(w)]

= E[w(x)Φ(x, t) +
1

2
∂xw(x)σ

2]∆t+O(∆t2)

= E
[
w(x)[Φ(x, t)− 1

2
∂x log f(x, t)σ

2]

]
∆t+O(∆t2)

= E [w(x)u(x, t)]∆t+O(∆t2) , (B23)

where we integrate by parts from the first line to the
second line and f(x, t) is the probability distribution. To
extract the function u(x, t), the quadratic loss function
is:

L(1)
u = E

[
1
2w

2(x)∆t− 1
2 [w(x+∆x) + w(x)]∆x

]
.

(B24)

Again, this loss function gives the correct answer only up
to first order since we only took the expectation of JII
up to leading order. Once again, to obtain accuracy at
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the next order, we must remove the contribution using
the position at t+ 2∆t:

E[w(x) ◦∆x] = E[w(x)u(x, t)]∆t+ Cu
2 (x, t)∆t2

+O(∆t3)

E[w(x) ◦∆2x] = E[w(x)u(x, t)]2∆t+ Cu
2 (x, t)4∆t2

+O(∆t3) , (B25)

where w(x) ◦ ∆2x = 1/2[w(x + ∆2x) + w(x)]∆2x. To
cancel out Cu

2 (x, t):

2E[w(x) ◦∆x]− 1

2
E[w(x) ◦∆2x]

= E[w(x)u(x, t)]∆t+O(∆t3) . (B26)

And the corresponding loss function is:

L(2)
u = E[

1

2
w(x)2∆t− 2w(x) ◦∆x+

1

2
w(x) ◦∆2x] .

(B27)

While not necessary for inference, we can also calculate
the coefficient Cu

2 (x, t) using a series expansion:

L(1)
u =

〈
1

2
w(x)2∆t− 1

2
[w(x) + w(x+∆x)]∆x

〉
(B28)

=

〈
1

2
w(x)2∆t− w(x)∆x− 1

2
∂xw(x)∆x2

−1

4
∂xxw(x)∆x3 − 1

12
∂xxxw(x)∆x4

〉
+O(∆x5) .

(B29)

To find the O(∆t2) contribution in the above we need to
use Eq. (B14) to find:

E[∆x|x, t] ∼ Φ(x, t)∆t+
1

2
Φ(x, t)∂xΦ(x, t)∆t2

+O(∆t3) ,

E[∆x2|x, t] ∼ σ2∆t+Φ(x, t)2∆t2 + σ2∂xΦ(x, t)∆t2

+O(∆t3) ,

E[∆x3|x, t] ∼ 3σ2Φ(x, t)∆t2 +O(∆t3) , and

E[∆x4|x, t] ∼ σ4∆t2 +O(∆t3) .

Substitution of these terms into the expansion yields the
following coefficient for the O(∆t2) term:

Cu
2 (x, t) =

1

2
∂xw(x)[Φ(x, t)

2 + σ2∂xΦ(x, t)]

+
1

4
∂xxw(x)[3σ

2Φ(x, t)] +
1

12
∂xxxw(x)σ

4 .

Appendix C: Models and simulation details

The following discusses a specific class of overdamped
Langevin systems—linear models. Their Langevin equa-
tions have the form of:

z = A · zdt+
√
2D · dW t , (C1)

where z ∈ Rn is the state vector, A ∈ Rn×n is a ma-
trix that defines the deterministic part of the Langevin
dynamics, D, a positive diagonal matrix, is the diffusion
constant matrix, and dW t ∈ Rn is an n−dimensional
infinitesimal Wiener process.
The bead-spring model, in both underdamped and

overdamped regimes, falls within the class of linear mod-
els. One of their notable properties is that if the initial
probability distribution is Gaussian, it remains Gaussian
throughout the evolution.
To see this, suppose the state vector at time t, z(t)

obeys Gaussian distribution, i.e., z(t) ∼ N (µ(t),Σ(t))
where µ(t) and Σ(t) are the mean vector and the covari-
ance matrix at time t, respectively. The state vector z
at time t+dt is z(t+dt) = (1+Adt) ·z+

√
2D ·dW t(t).

We see that z(t + dt) also obeys Gaussian distribution
using the following facts:

1. If X is a multivariate normal random variable and
A is a constant matrix, then A ·X is a multivariate
normal random variable; and

2. If X1 and X2 are independent multivariate normal
random variables, their sum X1+X2 is also a mul-
tivariate normal random variable.

Thus, to solve any linear model initialized from a Gaus-
sian, we only need to solve how µ and Σ evolve with time
t. To solve µ, we take average of Eq. (C1):

dµ = A · µdt , (C2)

which is simply a set of linear ordinary differential equa-
tions. The solution can be written as:

µ(t) = exp (At) · µ(0) . (C3)

For the covariance matrix Σ = E[(z−µ)(z⊤ −µ⊤)], the
infinitesimal change is:

Σ(t+ dt)− Σ(t)

= E[(z − µ+ dz − dµ)(z⊤ − µ⊤ + dz⊤ − dµ⊤)]

− E[(z − µ)(z⊤ − µ⊤)]

= E[(z − µ)(dz⊤ − dµ⊤)] + E[(dz − dµ)(z⊤ − µ⊤)]

+ E[dzdz⊤]

= E[(z − µ)(z⊤ − µ⊤) ·A⊤]dt

+ E[A · (z − µ)(z⊤ − µ⊤)]dt+ 2Ddt .

This yields the time derivative of the covariance matrix:

d

dt
Σ = Σ ·A⊤ +A · Σ+ 2D . (C4)

The stable distribution can be found by solving equa-
tions:

Σ ·A⊤ +A · Σ+ 2D = 0 . (C5)

In the simulation, we generate timesteps using Eu-
ler–Maruyama method according to Eq. (C1). The dt
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is set to be 0.01. We set three different initial distribu-
tions x(t = 0) ∼ N (0,Σ1), x(t = 0) ∼ N (0,Σ2) and
x(t = 0) ∼ N (0,ΣNESS) where:

Σ1 = diag(1, 2, 3, 4, 5), (C6)

Σ2 =


5 2 1 −1 1

2 8 −1 1 −2

1 −1 9 −2 1

−1 1 −2 7 −1

1 −2 1 −1 8

 , and (C7)

ΣNESS =


1823
1980

833
990

1361
1980

959
1980

1
4

833
990

58
33

2819
1980 1 1021

1980
1361
1980

2819
1980

9
4

3121
1980

1609
1980

959
1980 1 3121

1980
74
33

1147
990

1
4

1021
1980

1609
1980

1147
990

3127
1980

 . (C8)

ΣNESS is the NESS covariant matrix at Th/Tc = 2.

Appendix D: Different initial distributions

The main text presented the stochastic entropy pro-
duction results for the five-bead spring system where the
initial distribution is Gaussian with a diagonal covari-
ance matrix. This section illustrates more results with
different initial distributions.

We first consider an initial Gaussian distribution that
has nonzero off-diagonal terms in the covariance matrix.
The results are showen in Figs. 3 and 4. With the ini-
tial distribution Σ2, we see nonmonotonic behavior in
the curves with coarse-step exceeding 4 with the second-
order loss function. R2 in this case is less tolerant of the
coarse step. For the NESS, unlike the estimation with
non-NESS data, we find that NESS data with different
coarse steps leads to similar average entropy-production
estimation results. And, the second -rder estimation re-
sults are close to the first order. In term of R2, the
coarse-grained data produces even better results.

Appendix E: Underdamped Systems

After focusing on overdamped systems, we now turn
to underdamped.

1. Dynamics

Consider a one-dimensional underdamped dynamic
governed by:

dx = vdt

mdv = F (x, v, t)dt+ σdWt

= −γvdt+ f(x, t)dt+ σdWt , (E1)

where m and γ are the particle mass and damping co-
efficient, F (x, v, t) is the total force, including the linear
damping force, and f(x, t) is an external force indepen-
dent of velocity v. The variance of the thermal noise σ2

satisfies the fluctuation dissipation relation: 1
2σ

2 = γT ,
where T is the temperature. The corresponding proba-
bility distribution f(x, v, t) evolution is governed by the
Klein-Kramers equation:

∂tf(x, v, t) + v∂xf(x, v, t) + ∂v[f(x, v, t)uv] = 0 , (E2)

where uv = 1
m [F (x, v, t)− γT

m ∂v log f(x, v, t)] is the prob-
ability velocity along the direction of v.
Before discussing estimation of underdamped dynam-

ics, we define several stochastic integrals in the Itô con-
vention. These are important when addressing the ap-
proximation order we expect:

I(n)w =

∫ t+n∆t

t

dWs = Wn∆t ∼ N (0, n∆t) (E3)

I
(n)
0w =

∫ t+n∆t

t

ds

∫ s

t

dWs′ =

∫ n∆t

0

Wsds

∼ N (0,
1

3
(n∆t)3) (E4)

I
(n)
00 =

∫ t+n∆t

t

ds

∫ s

t

ds′ =
1

2
(n∆t)2 . (E5)

Also of importance are sevefral ensemble averages of the

products of I
(n)
0w given by: ⟨I(n)0w I

(m)
0w ⟩ = ∆t3fnm, where

f11 = 1/3, f12 = 5/6, and f22 = 8/3.
Let’s first learn the force F (x, v, t) in the dynamics of

Eq. (E1)—the analog to learning the drift Φ for over-
damped systems. According to the method laid out in
the main body, inspecting Eq. (E1) leads to expecting
the loss function for learning the force:

LF (x, v) = E[−w(x, v)F (x, v, t)dt+
1

2
w2(x, v)dt]. (E6)

With the corresponding first-order discrete version as:

L(1)
F (x, v) = E[−w(x, v)∆v +

1

2
w2(x, v)∆t] . (E7)

Then, we deploy a neural network w(x, v) to learn the
force at time t with the loss function Eq. (E7). This
assumes access to the velocity via some kind of measure-
ment. It is typical, however, to treat such a system as a
partially observed—one for which we only have access to
the time series of positions: {x(a∆t)}Na=0. In such a case,
the velocity must be estimated. Our perspective is espe-
cially well suited to estimation of a partially-observed
system—since the goal is to find alternative loss func-
tions that agree upon averaging with loss functions that
are experimentally inaccessible. In this case, we will as-
sume the simplest estimation for the velocity:

v̂(t) =
x(t+∆t)− x(t)

∆t
. (E8)
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FIG. 3: Mean entropy production and R2 score between theoretical and estimated stochastic entropy production
with initial distribution Σ2 at Th/Tc = 2: (a) Relative entropy production as a function of the number of paths
using different coarse steps. The left (right) plot is the relative entropy with the first- (second-)order loss functions.
(b) 1−R2 score between trajectory’s theoretical and estimated stochastic entropy productions as functions of the
number of paths. The left (right) plot is the result with the first- (second-)order loss functions.
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FIG. 4: Mean entropy production and R2 score between the theoretical and estimated stochastic entropy production
with ΣNESS at Th/Tc = 2: (a) Relative entropy production as a function of the number of paths using different
coarse steps. The left (right) plot gives the relative entropy results with the first- (second-)order loss functions. (b)
1−R2 score between trajectory’s theoretical and estimated stochastic entropy productions as functions of the
number of paths. The left (right) plot gives the results with the first- (second-)order loss functions.

If we replace v in Eq. (E7) with its estimation Eq. (E8),
can we still learn the force F (x, v, t) without changing
anything else? The answer is no. However, appropri-
ately modifying the loss function, we can learn the force.
Simply replacing v with v̂, the new loss function is:

LF (x, v̂) = E[−w(x, v̂)∆v̂ +
1

2
w2(x, v̂)∆t] , (E9)

where ∆v̂ = v̂(t + ∆t) − v̂(t) and we remove the super-
script (1) since this is no longer the correct loss function.

We first compute the difference between v and v̂ and
then compute the average of the loss function Eq. (E9)
up to O(∆t). As in the overdamped case, we assume the
data comes from a O(∆t3/2) integrator for the velocity:

x(t+∆t)− x(t) =

∫ t+∆t

t

v(s)ds

=

∫ t+∆t

t

ds

(
v(t) +

∫ s

t

F (x, v)ds′ + σWs +O(∆t3/2)

)
= v(t)∆t+ σI

(1)
0w +

∫ t+∆t

t

ds

∫ s

t

F (x, v)ds′ +O(∆t5/2) .

The leading order of the force integral includes a factor

of I
(1)
00 , which is O(∆t2), thus the difference between v̂

and v is given by:

v̂ = v +
1

∆t
σI

(1)
0w + F (x, v)∆t+O(∆t3/2) .

We can now expand each term in the loss function. First,
we address:

∆v̂ = v̂(t+∆t)− v̂(t)

=
x(t+ 2∆t)− 2x(t+∆t) + x(t)

∆t

=
1

∆t
(σ(I

(2)
0w − 2I

(1)
0w )) + F (x, v)∆t+O(∆t3/2) .

(E10)

Similarly:

w(x, v̂) = w(x, v) + ∂vw(x, v) · (v̂ − v) + · · ·

= w(x, v) + ∂vw(x, v)

[
1

∆t
σI

(1)
0w + F (x, v)∆t

]
+

1

2
∂vvw(

1

∆t
σI

(1)
0w )2 +O(∆t3) .
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Now, let’s return to the loss function. The second term
in Eq. (E9) is already O(∆t) to leading order, so v̂ can be
safely exchanged with v in this term since the correction
would be more than first order in ∆t and we are seeking
a first-order loss function. The first term, however, has
significant cross terms to contend with:

w(x, v̂)∆v̂ = w(x, v)

[
1

∆t
(σ(I

(2)
0w − 2I

(1)
0w )) + F (x, v)∆t

]
+ ∂vw(x, v)

[
1

∆t2
σ2I

(1)
0w (I

(2)
0w − 2I

(1)
0w )

]
.

The terms proportional to I
(n)
0w in the first line vanish

upon averaging. In the second line, we are terms propor-

tional to I
(n)
0w I

(m)
0w . We eliminate these with the identities

following Eq. (E3). So, up to O(∆t), the loss function
is:

LF (x, v̂) =E[−w(x, v)F (x, v)∆t− 1

6
σ2∂vw(x, v)∆t

+
1

2
w2(x, v)∆t] .

This is not the correct loss function for learning force,
so we need to modify the loss function to cancel out the
appearance of the cross term:

L(1)
F (x, v̂) = LF (x, v̂) + E[

1

6
σ2∂vw(x, v̂)∆t] (E11)

= E[−w(x, v)F (x, v)∆t+
1

2
w2(x, v)∆t] .

At first order F (x, v)∆t ∼ ∆v, so this loss function does
agree with that using observed v. (Simply adding this ex-
tra term works out because any correction from replacing
∆t∂vw(x, v̂) with ∆t∂vw(x, v) is higher order than ∆t.)
We can use this loss function to learn the force from the
dynamics.

However, as we see in Eq. (E11), there is a derivative
term in the loss function. This sometimes makes the neu-
ral network hard to train. Again, by carefully tracking
the ∆t order of our approximations, we can use another
term to replace this derivative term. This is inspired by
following relation, which is true for infinitesimal dt:

E[dw · dv
dt

] = E[∂vw dv · dv
dt

] = E[σ2∂vw] . (E12)

First, though, we must consider its finite expansion
version:

∆w = w(x(t+∆t), v̂(t+∆t), t+∆t)− w(x(t), v̂(t), t)

= ∂tw∆t+ ∂xw(v∆t+ σI
(1)
0w )

+ ∂vw · σ

∆t

(
I
(2)
0w − 2I

(1)
0w

)
+ . . . .

Now, let’s consider the estimated version of the term
above E[∆w∆v̂

∆t ]. We know that ∆v̂/∆t has a leading

order of ∆t−1/2. ∆w has a leading order of ∆t1/2, and

its only O(∆t1/2) contribution is ∂vw[
1
∆tσ(I

(2)
0w − 2I

(1)
0w )].

Note that we only need O(∆t0) since the term in question
has a factor of ∆t attached. So, up to O(∆t0) we have:

E[∆w
∆v̂

∆t
] = E[∂vw

σ2

∆t3
[(I

(2)
0w − 2I

(1)
0w )][(I

(2)
0w − 2I

(1)
0w )]]

+O(∆t1/2)

= E[
2

3
σ2∂vw] +O(∆t1/2) ,

where in the second equality, we again use the ensemble
average identities listed previously. Therefore, we can
replace E[σ2∂vw] in the loss function with 3

2 E[∆w∆v̂
∆t ]

without changing the order of our inference with respect
to ∆t. The loss function without the w derivative is:

L(1)
F (x, v̂)

= E[−w(x, v̂)∆v̂ +
1

2
w2(x, v̂)∆t+

1

4
∆w(x, v̂)∆v̂] .

(E13)

As an additional bonus, the diffusion constant disappears
in this loss function. There is no need to infer the diffu-
sion constant before learning the force.

2. Entropy production

The average entropy production for an underdamped
system is related to a local function—the irreversible ve-
locity [56]:

uirr = −γv/m− γT/m2∂v log f .

The mean entropy production rate is m2/(γT )E[u2
irr].

Thus, we must estimate the correlation current for uirr

rather then the full uv appearing in the Klein-Kramers
equation. The derivation of this current appears in pre-
vious works [27, 35], so we skip it here. The result is that
to estimate the entropy production rate at time t in un-
derdamped dynamics, we use the following loss function:

Luirr
(x, v) = E[

1

2
w(x, v)2dt− γ

m
w(x, v)vdt+

1

2m
dw · dv] .

The minimum of this loss function leads the uirr, i.e.:

argmin
w

Luirr = uirr(x, v, t) . (E14)

Given access to the full phase space (x, v), the corre-
sponding discretized loss function can be used to estimate
the entropy production rate:

L̂(1)
uirr

(x, v) = E[
1

2
w(x, v)2∆t− γ

m
w(x, v)v∆t+

1

2m
∆w∆v] .

(E15)

However, when the velocity is not directly accessible, we
need to consider the average of the following discretized
version with v̂ and compute the modifications:

E[
1

2
w(x, v̂)2∆t− γ

m
w(x, v̂)v̂∆t+

1

2m
∆w(x, v̂)∆v̂] .
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We expand up to O(∆t1). We can safely replace v̂ and
v in terms 1

2w(x, v̂)
2∆t and γ

mw(x, v̂)v̂∆t as both are

O(∆t1) at leading order. For the term ∆w∆v̂, we reuse
the relation above:

E[∆w
∆v̂

∆t
] ∼ E[ 23σ

2∂vw] . (E16)

So we have:

E[
1

2
w(x, v̂)2∆t− γ

m
w(x, v̂)v̂∆t+

1

2m
∆w(x, v̂)∆v̂]

= E[
1

2
w(x, v)2∆t− γ

m
w(x, v)v∆t+

1

3m
σ2∂vw(x, v)∆t] .

Recalling that σ2∂vw = dw dv
dt to leading order upon aver-

aging, we see that this loss function is easily augmented:
To learn the irreversible current correctly, the loss func-
tion should be:

L̂(1)
uirr

(x, v̂)

= E[
1

2
w(x, v̂)2∆t− γ

m
w(x, v̂)v̂∆t+

3

4m
∆w(x, v̂)∆v̂] .

This modified loss function facilitates learning the irre-
versible velocity in partially-observed underdamped dy-
namics.

3. Diffusion constant

Next, consider estimating the thermal noise variance
σ2 for underdamped dynamics. We use a network w to
learn σ. As in overdamped dynamics, the candidate loss
function could be:

Lσ = E[ 12w
2dt− w(dv)2] . (E17)

Or simply put, the variance of thermal noise is given by:

σ2dt = E[(dv)2] . (E18)

With access to the velocity v, we use its discretized ver-
sion:

σ2(1) = E[(∆v)2/∆t] . (E19)

If we estimate the velocity v̂ using Eq. (E10), the average
of our discretized version is:

E[(∆v̂)2] =
2

3
σ2∆t+O(∆t2) . (E20)

This leads to:

σ2(1) =
3

2
E[(∆v̂)2/∆t] , (E21)

which agrees with previous results [57, 58].

4. Second-order loss functions for underdamped
dynamics

The main text’s finite difference technique can be used
to derive second-order loss functions for underdamped
dynamics. We simply list the results directly, since there
is no practical difference between these derivations and
the one laid out in the main text:

L̂(2)
F (x, v̂)

= E[ 12w
2(x, v̂)∆t− 2w(x, v̂)∆v̂ + 1

2w(x, v̂)∆2v̂

+ 1
2∆w(x, v̂)∆v̂ − 1

8∆2w(x, v̂)∆2v̂]

= E[ 12w
2(x, v̂)∆t− 2w(x, v̂)∆v̂ + 1

2w(x, v̂)∆2v̂

+ 1
4∆w(x, v̂)∆v̂] ,

L̂(2)
uirr

(x, v̂)

= E[ 12w(x, v̂)
2∆t− 2

γ

m
w(x, v̂)∆x+ 1

2

γ

m
w(x, v̂)∆2x

+ 3
2m∆w(x, v̂)∆v̂ − 3

8m
∆2w(x, v̂)∆2v̂]

= E[ 12w(x, v̂)
2∆t− 2 γ

mw(x, v̂)∆x+ 1
2

γ
mw(x, v̂)∆2x

+ 3
4m∆w(x, v̂)∆v̂] ,

and:

σ2(2) = 3
2 E[2(∆v̂)2/∆t− 1

2 (∆2v̂)
2/∆t] .

We used the relation:

∆w(x, v̂)∆v̂ ∼ 1

2
∆2w(x, v̂)∆2v̂ +O(∆t2) . (E22)

5. Trajectory-based entropy production

This section derives the stochastic entropy produc-
tion for an underdamped Langevin NESS for simplic-
ity. The stochastic entropy production for each trajec-
tory Γ = {(xt, pt)}t=τ

t=0 is straightforward to write down
in Stratonovich notation:

σΓ = − log f(xt, vt) + log f(x0, v0) +Q/T

=

∫
Γ

−∂x log f ◦ dx− ∂v log f ◦ dv

+
1

T
(m

dv

dt
− Φ) ◦ dx

=

∫
Γ

[−∂x log f +
1

T
(m

dv

dt
− Φ)] ◦ dx− ∂v log f ◦ dv

=

∫
Γ

(−∂x log f − 1

T
Φ)vdt+ (

1

T
mv − ∂v log f) ◦ dv .

Unlike overdamped case, we must learn three functions
from trajectories: v∂x log f , ∂v log f , and Φ. We already
discussed how to infer the drift Φ and ∂v log f , so we only
need to address the single remaining term. As before, we
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begin by assuming that we have full access to the phase
space and then consider the partially-observed case.

To infer the v∂x log f , we use the following current:

Lvdx log f = E[ 12w
2(x, v)dt− w(x, v)v∂x log fdt] .

Integration by parts leads to:

Lvdx log f = E[ 12w
2(x, v)dt+ v∂xw(x, v)dt] .

The corresponding discrete version is:

L̂(1)
vdt log f = E[ 12w

2(x, v)∆t+ [w(x+∆x, v)− w(x, v)]] ,

where we used w(x+∆x, v)−w(x, v) = ∂xw(x, v)v∆t+
O(∆t2).

Thus, given full observational access to position and
velocity, we can estimate the stochastic entropy produc-
tion along a trajectory. Next, let us study the stochastic
entropy production with access to position only.

To begin with, we write down the discretized version
of stochastic entropy production for one step:

σΓ = [−∂x log f(x, v)−
1

T
Φ(x, v)]v∆t

+ { 1
T
m
v + (v +∆v)

2
− 1

2
[∂v log f(x+∆x, v +∆v)

+ ∂v log f(x, v)]}∆v − ∂t log f(x, v)∆t (E23)

Now, we must write this in terms of the estimated ve-
locity v̂. We find that, unlike the overdamped case, the
stochastic entropy production of a trajectory cannot be
computed from the trajectory and the local thermody-
namic function only. This is due to the estimation of the
velocity v̂. While the average entropy production can
be accurately estimated without measuring the velocity
directly, the trajectorywise entropy production cannot.
There is an inherently stochastic term in the discretized
stochastic entropy production expression ,if we must es-
timate the velocity.

To illustrate this point, we first look at a trivial cur-
rent:

J =

∫
Γ

1 ◦ dv . (E24)

The corresponding one-step discretized value ∆v and the
estimated value ∆v̂ are:

∆v = F (x, v)∆t+ σW∆t +O(∆t3/2)

∆v̂ =
1

∆t
(σ(I

(2)
0w − 2I

(1)
0w )) + F (x, v)∆t+O(∆t3/2) ,

which gives:

∆v = ∆v̂ − 1

∆t
(σ(I

(2)
0w − 2I

(1)
0w )) + σW∆t +O(∆t3/2).

In a long trajectory with N steps, the relation between
the actual current value and the estimated value is:

JΓ = ĴΓ +N [− 1

∆t
(σ(I

(2)
0w − 2I

(1)
0w )) + σW∆t] +O(∆t1/2) .

(E25)

From this example, with only the position data, there
is a stochastic term in the difference between the esti-
mated and actual current value. These stochastic terms
have a vanishing ensemble average, meaning that we can-

not learn them. We will only be able to learn ĴΓ, rather
than the true current JΓ. Thus, with a partially observed
current, we can only estimate the true current up to some
variance.
With this intuition, we return to the entropy pro-

duction. First, consider a general discrete one-step
Stratonovich current of the form w(x, v) ◦ ∆v. For the
fully and partially observed cases, we have the current
values:

w(x, v) ◦∆v

= w(x, v)F (x, v)∆t+ wσW∆t + ∂vw(x, v)
1
2σ

2W 2
∆t

and:

w(x, v̂) ◦∆v̂

= 1
2 [w(x, v̂) + w(x+∆x, v̂ +∆v̂)]∆v̂

= w(x, v)F (x, v)∆t+ w(x, v) 1
∆tσ(I

(2)
0w − 2I

(1)
0w )

+ ∂vw
1

∆t2σ
2I

(2)
0w (I

(2)
0w − 2I

(1)
0w ) +O(∆t3/2) .

The relation between the fully and partially observed cur-
rents is:

w(x, v̂) ◦∆v̂

= w(x, v) ◦∆v − σw(x, v)[W∆t −
1

∆t
(I

(2)
0w − 2I

(1)
0w )]

− σ2∂vw(x, v)[
1

2
W 2

∆t −
1

∆t2
I
(2)
0w (I

(2)
0w − 2I

(1)
0w )]

+O(∆t3/2) .

With this relation, the entropy production in Eq. (E23)
can be written in terms of v̂:

σΓ = [−∂x log f(x, v̂)−
1

T
Φ(x, v̂)]v̂∆t

+ { 1
T
m
v̂ + (v̂ +∆v̂)

2
− 1

2 [∂v log f(x+∆x, v +∆v̂)

+ ∂v log f(x, v̂)]}∆v̂

+ [σ m
2T v̂ − ∂v log f(x, v̂)][W∆t − 1

∆t (I
(2)
0w − 2I

(1)
0w )]

+ σ2∂vv log f(x, v̂)[
1
2W

2
∆t − 1

∆t2 I
(2)
0w (I

(2)
0w − 2I

(1)
0w )]

+O(∆t3/2) .

Echoing Eq. (E25), we think of the above as:

σΓ = σ̂Γ

+ [σ
m

2T
v̂ − ∂v log f(x, v̂)][W∆t −

1

∆t
(I

(2)
0w − 2I

(1)
0w )]

+ σ2∂vv log f(x, v̂)[
1

2
W 2

∆t −
1

∆t2
I
(2)
0w (I

(2)
0w − 2I

(1)
0w )]

+O(∆t3/2) .
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Again, we find that σΓ can only be estimated to within
a stochastic contribution that vanishes upon averaging.
And so, it cannot be learned. For short times, we cannot
expect this stochastic term to converge to its mean (and,
thus, vanish) along a particular trajectory. Moreover,
we will not be able to accurately estimate the entropy
production. That said, for long trajectories, the stochas-
tic terms converge to their corresponding means. Rather
than a weakness of our method, we believe this is an il-
luminating point—one that’s indicative of the generality
of our approach to finding loss functions. Even in the
case where a target function cannot be determined from
the available observations, we are able to arrive at a loss
function that captures as much as possible and quantita-
tively represents the uncertainty inherent in the partially-
observed system by giving expressions from which we can
estimate the uncertainty imposed by partial observations.

Appendix F: Markovian Jump Process

Our L2−based method also works for discrete Marko-
vian jump processes. We consider the dynamics of an
n-state Markovian jump process governed by the master
equation:

∂px
∂t

=
∑
y

Rxypy ,

where px(t) is the probability distribution on n states and
Rxy is the transition-rate matrix with diagonal elements
Rxx = −∑

y,y ̸=x Ryx. A stochastic trajectory Xτ can be
denoted by a sequence of N jump events:

Γ = [(x0, t0), (x1, t1) . . . , (xN , tN )], (F1)

where the system initiates at the state x0 and under-
goes a series of N transitions from state xn−1 to xn at
times tn with n = 1, 2, · · · , N . The entropy production of
this Markovian jump process is related to the generalized
thermodynamic force:

fxy = log
Rxypy
Ryxpx

.

The short-time entropy production is:

σdt =
∑
(x,y)

Rxypyfxydt . (F2)

To estimate the entropy production, we learn the func-
tion fxy. According to our method, this means using a
loss function:

Lf = E[
1

2
w2

xy − fxywxy] ,

where the expectation is taken over a data set of observed
jumps starting from state x and ending in state y. Since
the process is Markovian by definition, we do not keep

track of where the state was before it landed in state x.
As such, the data set can be reorganized into a set of
D = {nxy}, where nxy is the number of transitions from
state y to state x during time duration from t to t+ dt.
For this data set, rather than sum over observed jumps,
we sum over pairs of states:

Lf = E[
∑
x ̸=y

(
1
2w

2
xy − fxywxy

)
nxy] .

This motivates introducing a current with weight
wxy—the empirical current :

j(wxy)dt :=
∑
x ̸=y

wxynxy .

The expectation value of this short time current with
weight wxy is:

E[
∑
x ̸=y

wxynxy] =
∑
x̸=y

wxyRxypydt . (F3)

From this perspective, we see that σdt = E[j(fxy)dt]
and the weight Rxypy in the expected value expression
are analogous to the weight u(x, t) appearing in the
Stratonovich current in overdamped dynamics. However,
note that it does not appear in the entropy production
the way that u did.
Using notation from the main development, the ex-

pected values of short empirical currents with weights
w2 and wf (analogs of the fluctuation current and
correlation current for Markov jump processes) are:

E[jw]dt =
∑
x ̸=y

1

2
w2

xyRxypydt and

E[jf ]dt =
∑
x ̸=y

wxyfxyRxypydt .

With some foresight, instead of learning generalized ther-
modynamic force directly, we choose to learn the func-
tion:

rxy = efyx =
Ryxpx
Rxypy

.

To do this, we expect the loss function to be:

Lrxy
= E[jwdt]− E[jrdt]

=
∑
x̸=y

(
1

2
w2

xy − rxywxy)Rxypydt .

To estimate the correlation current from data, we note
that:

E[jrdt] =
∑
x ̸=y

wxy
Ryxpx
Rxypy

Rxypydt

=
∑
x ̸=y

wxyRyxpxdt

=
∑
x ̸=y

1/wxyRxypydt ,



21

where, in the last equality, we impose the constraint
wxywyx = 1 for any pair of (x, y). Thus, the loss function
can be estimated from:

L̂rxy
= E[

∑
x ̸=y

(
1

2
w2

xy −
1

wxy
)nxy] , (F4)

provided we impose the symmetry constraint wxywyx = 1
on the weight function. This loss function can be esti-
mated from the data directly and the minimum leads to:

wxy = rxy =
Ryxpx
Rxypy

.

The stochastic entropy production for a trajectory is

σΓ = −
∫
Γ

∂t log pxdt+
∑
ti

log
Rxi+1xi

pxi

Rxixi+1
pxi+1

Θ(t− ti),

(F5)

where the first contribution comes from dwelling and the
second from jumps. To learn the temporal score function
∂t log px, simply consider a state function wx and loss
function

L∂t log p = E[
1

2
w2

xdt− wx∂t log pxdt]

= E[
1

2
w2

xdt]− dE[wx], (F6)

where we use E[wx∂t log pxdt] =
∑

x wx∂tpxdt = dE[wx].
Here, dE[wx] is the change in expected wx from time t to
t + dt. After these, we can learn the stochastic entropy
production in Markovian jump processes.
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