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The principle goal of computational mechanics is to define pattern and structure so that the
organization of complex systems can be detected and quantified. Computational mechanics developed
from efforts in the 1970s and early 1980s to identify strange attractors as the mechanism driving
weak fluid turbulence via the method of reconstructing attractor geometry from measurement time
series and in the mid-1980s to estimate equations of motion directly from complex time series. In
providing a mathematical and operational definition of structure it addressed weaknesses of these
early approaches to discovering patterns in natural systems.
Since then, computational mechanics has led to a range of results from theoretical physics and

nonlinear mathematics to diverse applications. The former include closed-form analysis of finite- and
infinite-state Markov and non-Markov stochastic processes that are ergodic or nonergodic and their
measures of information and intrinsic computation. The applications range from complex materials
and deterministic chaos and intelligence in Maxwellian demons to quantum compression of classical
processes and the evolution of computation and language.
This brief review clarifies several misunderstandings and addresses concerns recently raised

regarding early works in the field (1980s). We show that misguided evaluations of the contributions
of computational mechanics are groundless and stem from a lack of familiarity with its basic goals
and from a failure to consider its historical context. For all practical purposes, its modern methods
and results largely supersede the early works. This not only renders recent criticism moot and
shows the solid ground on which computational mechanics stands but, most importantly, shows the
significant progress achieved over three decades and points to the many intriguing and outstanding
challenges in understanding the computational nature of complex dynamic systems.
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I. GOALS

The rise of dynamical systems theory and the matura-
tion of the statistical physics of critical phenomena in
the 1960s and 1970s led to a new optimism that compli-
cated and unpredictable phenomena in the natural world
were, in fact, governed by simple, but nonlinearly inter-
acting systems. Moreover, new mathematical concepts
and increasingly powerful computers provided an entrée
to understanding how such phenomena emerged over time
and space. The overarching lesson was that intricate
structures in a system’s state space amplify microscopic
uncertainties, guiding and eventually attenuating them
to form complex spatiotemporal patterns. In short order,
though, this new perspective on complex systems raised
the question of how to quantify their unpredictability and
organization.

By themselves, qualitative dynamics and statistical me-
chanics were mute to this challenge. The first hints at
addressing it lay in Kolmogorov’s (and contemporaries’)
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introduction of computation theory [1–3] and Shannon’s
information theory [4] into continuum-state dynamical
systems [5–11]. This demonstrated that information had
an essential role to play in physical theories of complex
phenomena—a role as important as energy, but comple-
mentary. Specifically, it led to a new algorithmic foun-
dation to randomness generated by physical systems—
behavior that cannot be compressed is random—and so a
bona fide measure of unpredictability of complex systems
was established.

Generating information, though, is only one aspect of
complex systems. How do they store and process that
information? Practically, the introduction of information
and algorithmic concepts side-stepped questions about
how the internal mechanisms of complex systems are
structured and organized. Delineating their informational
architecture was not addressed, for good reason. The task
is subtle.

Even if we know their governing mechanisms, complex
systems (worth the label) generate patterns over long tem-
poral and spatial scales. For example, the Navier-Stokes
partial differential equations describe the local in time
and space balance of forces in fluid flows. A static pres-
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sure difference leads to material flow. However, despite
the fact that any flow field is governed instantaneously
by these equations of motion, the equations themselves
do not directly describe fluid structures such as vortices,
vortex pairs, vortex streets, and vortex shedding, let alone
turbulence [12]. When structures are generated at spa-
tiotemporal scales far beyond those directly specified by
the equations of motion, we say that the patterns are
emergent.

Two questions immediately come to the fore about emer-
gent patterns. And, this is where the subtlety arises [13].
We see that something new has emerged, but how do we
objectively describe its structure and organization? And,
more prosaically, how do we discover patterns in the first
place?

Refining the reconstruction methods developed to identify
chaotic dynamics in fluid turbulence [14, 15], computa-
tional mechanics [16, 17] provided an answer that was as
simple as it was complete: a complex system’s architec-
ture lies in its causal states. A causal state is a set of
histories, all of which lead to the same set of futures. It’s
a simple dictum: Do not distinguish histories that lead
to the same predictions of the future.

The causal states and the transition dynamic over them
give a canonical representation—the ε-machine. A sys-
tem’s ε-machine is its unique optimal predictor of minimal
size [16, 18, 19]. The historical information stored in the
causal states of a process quantifies how structured the
process is. A process’ ε-machine is its effective theory—its
equations of motions. One notable aspect of the ε-machine
construction is that focusing on how to optimally predict
a process leads to a notion of structure. Predictability
and organization are inextricably intertwined.

With a system’s ε-machine minimal representation in
hand, the challenge of quantifying emergent organization
is solved. The answer lies in a complex system’s intrinsic
computation [16] which answers three simple questions:

1. How much of the past does a process store?
2. In what architecture is that information stored?
3. How is that stored information used to produce future

behavior?

The answers are direct: the stored information is that
in the causal states; the process’ architecture is laid out
explicitly by the ε-machine’s states and transitions; and
the production of information is the process’ Shannon
entropy rate.

At first blush it may not be apparent, but in this, compu-
tational mechanics parallels basic physics. Physics tracks
various kinds of energy and monitors how they can be

transformed into one another. Computational mechan-
ics asks, What kinds of information are in a system and
how are they transformed into one another? Although
the ε-machine describes a mechanism that generates a
system’s statistical properties, computational mechan-
ics captures more than mere generation. And, this is
how it was named: I wished to emphasize that it was
an extension of statistical mechanics that went beyond
analyzing a systems’ statistical properties to capturing its
computation-theoretic properties—how a system stores
and processes information, how it intrinsically computes.

II. PROGRESS

One might be concerned that this view of complex systems
is either not well grounded, on the one hand, or not prac-
tical, on the other. Over the last three decades, however,
computational mechanics led to a number of novel results
from theoretical physics and nonlinear mathematics that
solidified its foundations to applications that attest to its
utility as a way to discover new science. Discoveries from
over the last decade or so give a sense of the power of
the ideas and methods, both their breadth and technical
depth.

Recent theoretical physics and nonlinear mathematics
contributions include the following:

• Continuum and nonergodic processes [20–27];
• Analytical complexity [28–33];
• Causal rate distortion theory [34–36];
• Synchronization and control [37–40];
• Enumerating memoryful processes [16, 41, 42];
• Crypticity and causal irreversibility [43–49];
• Bayesian structural inference [50–52];
• Input-output systems [53];
• Complexity of prediction versus generation [54];
• Predictive features and their dimensions [55];
• Sufficient statistics from effective channel states [56];
• Equivalence of history and generator ε-machines [57];
• Informational anatomy [58]; and
• Automated pattern detection [59].

Recent applications of computational mechanics include
the following:

• Complex materials [32, 33, 60–62];
• Stochastic thermodynamics [63–71];
• Information fluctuations [72, 73];
• Information creation, destruction, and storage [74];
• Spatiotemporal computational mechanics [75, 76];
• Quantum mechanics [77–81]; and
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• Evolution [82–86].

Staying true to our present needs, this must leave out
detailed mention of a substantial body of computational
mechanics research by others—a body that ranges from
quantum theory and experiment [87–89] and stochastic
dynamics [90–95] to spatial [96–101] and social systems
[102].

III. HISTORY

What’s lost in listing results is the intellectual history
of computational mechanics. Where did the ideas come
from? What is their historical context? What prob-
lems drove their invention? Revisiting the conditions
from which computational mechanics emerged shows that
aspects of this history resonate with the science that
followed.

My interests started as a fascination with mainframe com-
puters in the 1960s and with information theory in the
1970s. I worked for a number of years in Silicon Valley,
for IBM at what was to become its Almaden Research
Center on information storage technology—magnetic bub-
ble devices—and at Xerox’s Palo Alto Research Center—
which at the time was busily inventing our current com-
puting environment of packet-based networks (ethernet),
internet protocols, graphical user interfaces, file servers,
bitmap displays, mice, and personal workstations. An
active member of the Homebrew Computer Club, I built
a series of microcomputers—4-bit, 8-bit, and eventually
16-bit machines. There, I met many technology buffs,
several who later become titans of modern information
technology. I suggested and then helped code up the first
cellular automaton simulator on a prototype 6502 (8-bit)
microcomputer, which would become the Apple I.

As a college student at the University of California, Santa
Cruz (UCSC), I learned about the mathematics of com-
puters and communication theory directly from the in-
formation theory pioneer David Huffman. Huffman, in
particular, was well known for his 1950s work on minimal
machines—on what was called machine synthesis. His
pioneering work was an integral part of his discrete math-
ematics and information theory courses. Harry Huskey,
one of the engineers on the first US digital computers
(ENIAC and EDVAC) also taught at UCSC and I learned
computer architecture from him. In short, thinking about
computing and its physical substrates went hand in hand
with my physics training in statistical mechanics and
mathematics training in dynamical systems theory. This
theme drove the bulk of my research on chaotic dynamics.

With this background in mind, let me turn to address
what were the immediate concerns of nonlinear physics

in the 1980s. As computers reduced in size and cost,
they became an increasingly accessible research tool. In
the late 1970s and early 1980s it was this revolution
that led to the burgeoning field of nonlinear dynamics. In
contrast with abstract existence proofs, through computer
simulations we could simply look at and interact with
the solutions of complex nonlinear systems. In this way,
the new tools revealed, what had been relatively abstract
mathematics through most of the 20th century, a new
universe of exquisitely complex, highly ramified structures
and unpredictable behaviors.

Randomness emerged spontaneously, though paradoxi-
cally we knew (and had programmed) the underlying
equations of motion. This presented deep challenges.
What is randomness? Can we quantify it? Can we ex-
tract the underlying equations of motion from observa-
tions? Soberingly, was each and every nonlinear system,
in the vast space of all systems, going to require its own
“theory”? The challenge, in essence, was to describe the
qualitative properties of complex systems without getting
bogged down in irrelevant explicit detail and microscopic
analysis. How to see the structural forest for the chaotic
trees?

In the 1970s a target problem to probe these questions
was identified by the nonlinear physics community—fluid
turbulence—and a testable hypothesis—the Ruelle-Takens
conjecture that strange attractors were the internal mecha-
nism driving it [103]. This formalized an earlier proposal—
“deterministic nonperiodic flow”—by the meteorologist
Lorenz [104]: nonlinear instability was responsible for the
unpredictability of weather and fluid turbulence generally.

There was a confounding problem, though. On the one
hand, we had time series of measurements of the fluid
velocity at a point in a flow. On the other, we had the
abstract mathematics of strange attractors—complicated
manifolds that circumscribed a system’s instability. How
to connect them? This was solved by the proposals to use
the measured time series to “reconstruct” the system’s
effective state space. This was the concept of extracting
the attractor’s “geometry from a time series” (1980-81)
[14, 15]. These reconstruction methods created an effec-
tive state space in which to look at the chaotic attractors
and to quantitatively measure their degree of instability
(Kolmogorov-Sinai entropy and Lyapunov characteristic
exponents) and their attendant complicatedness (embed-
ding and fractal dimensions). This was finally verified
experimentally in 1983 [105], overthrowing the decades-
old Landau-Lifshitz multiple incommensurate-oscillator
view of turbulence.

Reconstructing a chaotic attractor from a time series
became a widely used technique for identifying and quan-
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tifying deterministic chaotic behavior, leading to the field
of nonlinear time series modeling [106].

Reconstruction, however, fell short of concisely expressing
a system’s internal structure. Could we extend reconstruc-
tion to extract the system’s very equations of motion?
A substantial benefit would be a robust way to predict
chaotic behavior. The answer was provided in a method
to reconstruct “Equations of Motion from a Data Series”
[107, 108].

This worked quite well, when one happened to choose a
mathematical representation that matched the class of
nonlinear dynamics generating the behavior. But as Ref.
[107] demonstrated in 1987, if you did not have the correct
representational “basis” it not only failed miserably, it
also did not tell you how and where to look for a better
basis. Thus, even this approach to modeling complex
systems had an inherent subjectivity in the choice of
representation. Structural complexity remained elusive.

How to remove this subjectivity? The answer was pro-
vided by pursuing a metaphor to the classification scheme
for automata developed in discrete computation theory
[3, 109, 110]. There, the mathematics of formal languages
and automata had led in the 1950s and 1960s to a struc-
tural hierarchy of representations that went from devices
that used finite memory to infinite memories organized in
different architectures—tapes, stacks, queues, counters,
and the like.

Could we do this, not for discrete bit strings, but con-
tinuous chaotic systems? Answering this question led
directly to computational mechanics as laid out in 1989
by Ref. [16]. The answer turned on a predictive equiv-
alence relation developed from the geometry-of-a-time-
series concept of reconstructed state [14] and adapted to
an automata-theoretic setting. The equivalence relation
gave a new kind of state that was a distribution of futures
conditioned on past trajectories in the reconstructed state
space. These were the causal states and the resulting prob-
abilistic automata were ε-machines. In this way, many
of the notions of information processing and computing
could be applied to nonlinear physics.

IV. MISDIRECTION

The preceding history introduced the goals of computa-
tional mechanics, showed its recent progress, and put its
origins in the historical context of nonlinear dynamics of
complex systems, such as fluid turbulence. As we will
now see, the original history and recent progress form
a necessary backdrop for some distracting, but pressing
business.

It is abundantly clear at this point that the preceding
overview is not a literature review on intrinsic computa-
tion embedded in complex systems. Such a review would
be redundant since reviews and extensive bibliographies
that cite dozens of active researchers have been provided
elsewhere and at semi-regular intervals since Ref. [16]
(1989); see, e.g., Refs. [17–19, 111, 112]. Rather, the
preceding is provided as a narrative synopsis of its moti-
vations, goals, and historical setting. After three decades
of extensive work by many researchers in computational
mechanics, why is this necessary? The reason is that
critiques appeared recently that concern computational
mechanics publications from the 1980s and 1990s—that
is, works that are two and three decades old. And so, the
early history and recent progress is a necessary backdrop.

The following addresses the issues raised and explains
that, aside from several interesting, detailed mathemati-
cal issues, they are in large measure misguided. They are
based on arguments that selectively pick details, either
quoting them out of context or applying inappropriate
contexts of interpretation. As presented, they are ob-
scured technically so that expertise is required to evaluate
the arguments. In other cases, the issues raised are not
criticisms at all—they are already well known. The fol-
lowing (A) reviews the issues and offers a broad response
that shows they are misguided at best and (B) highlights
the rhetorical style of argumentation, which shows that
the nontechnical (in some cases, ad hominem) arguments
rely on fundamental errors of understanding. After re-
viewing all of them carefully, we cannot find any concern
that would lead one to question the very solid and firm
grounding of computational mechanics.

A. Technical Contentions

As analysis tools, ε-machines are defined and used in two
different ways. In the first they are defined via the pre-
dictive equivalence relation over sequences, as already
discussed and as will be detailed shortly; these are his-
tory ε-machines. In the second, ε-machines are defined
as predictive generators of processes; these are generator
ε-machines. (Mathematically, they are unifilar hidden
Markov models with probabilistically distinct states that
generate a given process.) The definitions are comple-
mentary. In the first, one goes from a given process to
its ε-machine; in the second, one specifies an ε-machine
to generate a given process. Importantly, the definitions
are equivalent and this requires a nontrivial proof [57].
The criticisms concern history ε-machines and so we need
focus only on them. The computational mechanics of
ε-machine generators is not at issue.

Reference [113] raises technical concerns regarding sta-
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tistical estimation of finite-state and probabilistic finite
state machines, as discussed in several-decades-old com-
putational mechanics publications; principally two from
1989 and 1990: Refs. [16] and [114], respectively.

The simplest response is that almost all of the con-
cerns have been superseded by modern computational
mechanics: mixed-state spectral decomposition [28, 29]
and Bayesian structural inference and ε-machine enumer-
ation methods [41, 52]. The view from the present is that
the issues are moot.

That said, when taken at face value, the bulk of the issues
arise from technical misinterpretations. Largely, these
stem from a failure to take into account that computa-
tional mechanics introduced and regularly uses a host
of different equivalence relations to identify related, but
different kinds of state. Ignoring this causes confusion.
Specifically, it leads to Ref. [113]’s misinterpretations of
covers and partitions of sequence space, transient versus
recurrent causal states, the vanishing measure of nonsyn-
chronizing sequences, and an ε-machine’s start state. It
also leads to a second confusion over various machine
reconstruction methods. Let’s take these two kinds of
misunderstanding in turn.

Effective states and equivalence relations One of compu-
tational mechanics’ primary starting points is to identify
a stochastic process’ effective states as those determined
by an equivalence relation. Said most simply, group
pasts that lead to the same distribution of futures. Col-
loquially: do not make distinctions that do not help in
prediction. The equivalence relation ∼ connects two pasts
x−K:0 = x−K . . . x−1 and x−K′:0 = x−K′ . . . x−1, if the
future X0:L = X0 . . . XL−1 after having seen each looks
the same:

x−K:0 ∼ x−K′:0 ⇔ Pr(X0:L|x−K:0) = Pr(X0:L|x−K′:0) .

Taking finite or infinite pasts and futures and those of
equal or unequal lengths defines a family of equivalence
relations and so of different kinds of causal state.

“Inferring Statistical Complexity” (1989) focused on de-
termining a process’ long-term memory and so used
K,K ′ → ∞ and L → ∞ [16]. That is, it worked
with a process’ recurrent causal states, defining the pro-
cess’ statistical complexity as the amount of information
they store. This and later works also used finite pasts
(K,K ′ ∈ {0, 1, 2, 3, . . .}) and infinite futures (L→∞) to
define causal states more broadly. This introduced the
notion of transient causal states. In turn, they suggested
the more general notion of mixed states that monitor how
an observer comes to know a process’ effective states—
how the observer synchronizes to a process. And, finally,
in this regime one has the subtree reconstruction method

that merges candidate states with different-length pasts.
The mixed states are critical to obtaining closed-form
expressions for a process’ information measures [29–31].
This setting also introduces the notion of an ε-machine’s
start state—the effective state the process is in, having a
correct model in hand, but having made no measurements:
K,K ′ = 0. Similarly, later works used infinite pasts and
finite-length futures. Finally, using pasts and futures of
equal length, but increasing them incrementally from zero
leads to the class of causal-state splitting reconstruction
methods [115].

Why all these alternatives? The answer is simple: each
equivalence relation in the family poses a different ques-
tion to which the resulting set of states is the answer or,
at least, is an aid in answering. For example and some-
what surprisingly, Upper showed that even with infinite
pasts and futures and the induced recurrent causal states,
there are elusive and unreachable states that are never
observed [116]. More to the point, defining other kinds
of state has been helpful in other ways, too. For exam-
ple, to define and then calculate a process’ Markov and
cryptic orders requires a different kind of transient state
[37]. Analogously, very general convergence properties of
stochastic processes are proved by constructing the states
of a process’ possibility machine [38, 39, 117].

With this flexibility in defining states, the mathematical
foundations of computational mechanics give a broad set
of analytical tools that tell one how a given process is
organized, how it generates and transforms its informa-
tion. Insisting on and using only one definition of causal
state gives a greatly impoverished view of the structure
of stochastic processes. Each kind is an answer to a dif-
ferent question. Apparently, this richness and flexibility
is a source of confusion. No surprise, therefore, that if a
question of interest is misunderstood, then a given rep-
resentation may appear wrong, when it is in fact correct
for the task at hand.

Reconstruction methods Reference [113] is unequivocal
in its interpretation of machine reconstruction. It turns
out there is little need to go into a detailed rebuttal of its
statements, as they arise from a kind of misinterpretation
similar to the misinterpretations discussed above. In short,
Ref. [113] confuses a set of related, but distinct machine
reconstruction methods.

For example, sometimes one is interested in a representa-
tion of the state machine that simply describes a process’
set of allowed realizations; that is, we are not interested
in their probabilities, only which strings occur and which
do not. This is the class of topological machine reconstruc-
tion methods; the origins of which go back to the earliest
days of the theory of computation—to David Huffman’s
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work. One can also, as a quick approximation, take a
topologically reconstructed machine and have it read over
a process’ sequence data and accumulate transition and
state probabilities. This is a mixture of topological re-
construction and empirical estimation. And, finally, one
can directly estimate fully probabilistic ε-machines via
algorithms that implement the equivalence relation of
interest.

One can then use this range of reconstruction methods—
topological, topological plus empirical, and probabilistic—
with one or the other of the above equivalence relations.

It is important to point out that these statistical methods
all have their weaknesses. That is, for a given reconstruc-
tion algorithm implementation, one can design a process
sample for which the implementation will behave mislead-
ingly. For example, it has been known for some time that
causal-state splitting reconstruction methods [115] often
give machines with a diverging set of states, if one presents
them with increasingly more data. This occurs due to its
“determinization” step, which has an exponential state-set
blow-up when converting an intermediate, approximate
nondeterministic presentation to a deterministic (or unifi-
lar) one. Analogously, the subtree reconstruction method
suffers from “dangling states” in which inadequate data
leads to improperly estimated future conditional distribu-
tions from which there is no consistent transition. This
is not surprising in the least. Many arenas of statistical
inference are familiar with such problems, especially when
tasked to do out-of-class modeling. The theoretical sleight
of hand one finds in mathematical statistics is to assume
data samples come from a known model class. For those
interested in pattern discovery, this begs the question of
what are patterns in the first place.

Now, many such problems can be overcome in a theoreti-
cal or computational research setting by presenting the
algorithms with a sufficient amount data. However, in
a truly empirical setting with finite data, one must take
care in their use.

To address the truly empirical setting, these problems
led us to introduce Bayesian Structure Inference for
ε-machines [52]. It relies on an exact enumeration of
a set of candidate ε-machines and related models [41]. It
does not suffer from the above estimation problems in that
it does not directly convert data to states and transitions
as the above reconstruction algorithms do. Rather, it uses
well-defined candidate models (ε-machines) to estimate
the probability that each produced the given data. It
works well and is robust, even for very small data sets.
That is, it is data parsimonious and relatively computa-
tionally efficient. And, if one has extra knowledge (from
theoretical or symmetry considerations) one needs only

use a set of candidate models consistent with that knowl-
edge. In many settings, this leads to markedly increased
computational efficiency.

To close this section, it is clear that one could spend an
inordinate amount of time arguing which combination of
the above equivalence relations and reconstruction meth-
ods is “correct” and which is “incorrect”. This strikes me
as unnecessarily narrow. The options form a toolset and
those methods that produce consistent results, strength-
ened by testing against known cases, yield important
process properties. Practically, I recommend Bayesian
Structural Inference [52]. If I know a source will have low
entropy rate and I want to see if it is structurally complex,
though, I use probabilistic subtree reconstruction. I avoid
causal-state splitting reconstruction.

B. Rhetorical Diversions

The preceding text offers a concise rebuttal to Ref. [113]’s
claims by identifying their common flaws. The latter’s
technical discussion, though, is embedded in a misleading
rhetorical style. The import of this misdirection may be
conveyed by analyzing two less technical points that are
also presented with distracting emotion.

The first is a misreading of the 1989 computational me-
chanics publication, “Inferring Statistical Complexity”.
The claim is that the title is grossly misleading since
the article is not about statistical inference. This is an
oddly anachronistic view of work published 30 years ago,
which seems to require looking through the lens of our
present Big Data era and the current language of machine
learning.

Read dispassionately, the title does allude to “inferring”,
which the dictionary says is “deducing or concluding (in-
formation) from evidence and reasoning rather than from
explicit statements”. And that, indeed, is how the article
approaches statistical complexity—discovering patterns
of intrinsic computation via the causal equivalence rela-
tion. It not only defines statistical complexity, but also
introduces the mathematics to extract it. Yes, the article
is not statistical inference. The topic of statistical infer-
ence as it is understood today was addressed in a number
of later works; the most recent of which was mentioned
above—“Bayesian Structural Inference for Hidden Pro-
cesses” [52]. In short, the criticism is as specious as the
rhetoric is distracting: the claim attributes anachronistic
and inaccurate meanings to the article.

The second nontechnical issue is developed following a
similar strategy, and it also reveals a deep misunderstand-
ing. Packard and I had studied the convergence properties
of Shannon’s entropy rate [118–120] and along with Rob
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Shaw [121] had realized there was an important com-
plexity measure—the past-future mutual information or
excess entropy—that not only controlled convergence, but
was on its own a global measure of process correlation.
As those articles and Packard’s 1982 PhD dissertation
[122] point out this quantity was already used to classify
processes in ergodic theory [123].

Given that excess entropy’s basic properties and alterna-
tive definitions had been explored by then, Packard and
I moved on to develop a more detailed scaling theory for
entropy convergence, as one of the articles noted in its
title “Noise Scaling of Symbolic Dynamics Entropies”. In
this we defined the normalized excess entropy, which was
normalized to its exact infinite-history, zero-noise value.
This followed standard methods in phase transition the-
ory to use “reduced” parameters. (A familiar example is
the reduced temperature t̂ = (T − Tc)/Tc normalized to
vanish at the critical temperature Tc at which the phase
transition of interest occurs.)

The complaint is that this definition is intentionally mis-
leading since it is not the excess entropy. Indeed, it is not.
The normalized excess entropy is a proxy for a single term
in the excess entropy. And, the article is absolutely clear
about its focus on scaling and the tools it employs. Once
one does have a theory of how entropy convergence scales,
in particular the convergence rate, then it is easy to back-
out the excess entropy. A simple formula expresses the
excess entropy in terms of that rate and the single-symbol
entropy.

So, this too is a toothless criticism, but it exemplifies
the emotion and rhetorical style employed throughout
Ref. [113]. The nontechnical and ad hominem criticisms
intertwined with the technical faults are evidence of the
consistent projection of irrelevant meanings onto the ma-
terial. Once such an intellectually unproductive strategy
is revealed, further rebuttal is unnecessary.

V. FINAL REMARKS

To summarize, computational mechanics rests on firm
foundations—a solidity that led to many results over the
last three decades, ranging from theoretical physics and
nonlinear mathematics to diverse applications. It is a
direct intellectual descendant of many researchers’ efforts,

including my own, in the 1970s and early 1980s to describe
the complex behaviors found in fluid turbulence.

Reference [113]’s technical claims arise from a misunder-
standing of computational mechanics’ goals, methods,
successes, and history. Its rhetoric reveals a strategy
of quoting out of context and reinterpreting decades-old
work either without benefit of modern results or pro-
jecting arbitrary assumptions onto the early work. Any
dogmatic conclusions on what is “correct” that follow
from such a strategy are flawed. Moreover, Ref. [113]’s
claims to precedence are based on false memories, are
unsubstantiated, and, in light of the history of events, are
unsubstantiatable.

Current work simply eclipses the questions raised in dis-
tant retrospect, rendering the criticisms moot. Time
passes. We should let it move on.

Over the years, computational mechanics has been broadly
extended and applied, far beyond its initial conception
30 years ago. That said, its hope to lay the foundations
of a fully automated “artificial science” [16]—in which
theories are built automatically from raw data—remains
a challenge. Though the benefits are tantalizing, it was
and remains an ambitious goal.
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