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Reducing the energy inefficiency of conventional CMOS-based computing devices—which rely on
logically irreversible gates to process information—remains both a fundamental engineering chal-
lenge and a practical social challenge of increasing importance. We extend an alternative computing
paradigm that manipulates microstate distributions to store information in the metastable minima
determined by an effective potential energy landscape. These minima serve as mesoscopic memories
that are manipulated by a dynamic landscape to perform information processing. Central to our
results is the control erase (CE) protocol that controls the landscape’s metastable minima to deter-
mine whether information is preserved or erased. Importantly, successive protocol executions can
implement a NAND gate—a logically-irreversible universal logic gate. We show how to practically
implement this in a device created by two inductively-coupled superconducting quantum interference
devices (SQUIDs). We identify circuit parameter ranges that give rise to effective CEs and establish
the device’s robustness against logical errors. These SQUID-based logical devices are capable of
operating above GHz frequencies and at the kBT energy scale. Due to this, optimized devices and
associated protocols provide a universal-computation substrate that is both computationally fast
and energy efficient.

I. INTRODUCTION

Conventional classical computing systems harness ir-
reversible logic gates—e.g., NAND gates—to process in-
formation. Irreversibility arises from erasing input in-
formation to create desired output states, coming at a
minimum theoretical heat dissipation cost of kBT ln 2
[1] per erasure. During their operation, current con-
ventional CMOS-based computational devices generate
O(104) times more heat than this minimum cost [2–5].
On the social scale, energy consumption for computa-
tional purposes is projected to reach 20% of global energy
demand by 2030 [6]. In light of this, it is time to investi-
gate alternative strategies and substrates that give rise to
markedly-more energy-efficient universal computation.

One strategy implied in Landauer’s seminal 1961 result
[1, 7–14] focuses on manipulating metastable energy min-
ima in an effective potential energy landscape. Coarse-
graining the microstate phase-space surrounding the min-
ima yields long-lived mesoscopic memory states that cor-
respond to the logical 0s and 1s for binary computation.
From this perspective, a computation is implemented by
controlling memory-state dynamics through changes in
the landscape. Altogether, a computation is then a map
between initial and final memory states. This “energy
first” perspective of computation allows for careful anal-
ysis and prediction of a given logic gate’s performance
and efficiency [1, 7, 11, 14].

Elaborating on this framework, Sec. II first describes
a family of potential energy landscapes capable of stor-
ing two bits of information. Section III introduces a
family of control erase (CE) protocols—two-dimensional
generalizations of single-bit erasure protocols. Section
IV then presents a device constructed from two induc-
tively coupled superconducting quantum interference de-

vices (SQUIDs) [15–20]. We demonstrate that this device
implements the required family of potential energy land-
scapes and executes CE protocols by changing its circuit
parameters. Sections VA-VC explore the effectiveness of
the SQUID CE implementation as a function of circuit
parameters. Notably, serial executions of CEs produce a
robust NAND gate, as detailed in Sec. VD. Executing
robust NAND gates with this device supports extremely
low-energy universal computation.

II. PHYSICAL COMPUTING VIA
METASTABLE LANDSCAPES

Consider a potential energy landscape that exhibits
several energy minima supported via an underlying phys-
ical substrate which itself is connected to a thermal en-
vironment that introduces damping and noise into its
dynamics. The minima are separated by energy barriers,
whose heights are substantially larger than the thermal
energy kBT . The thermal environment quickly induces
distributions of microstates to settle into local equilibria
in the phase-space regions surrounding these wells. Noise
perturbs the microstates within their respective regions;
however, it is unlikely to drive the microstates between
these regions on a timescale that scales exponentialy with
the energy barrier height. The energy barriers prevent
mixing between these regions except on these very long
timescales. As a result, the minima serve to support
long-lived mesoscopic system states—metastable mem-
ory states. Manipulating them with the potential’s dy-
namics corresponds to information processing.
The following details physically-embedded computa-

tions via landscape control in this setting [1, 13, 21–24].
Specifically, these computations are stochastic mappings
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FIG. 1. Example 2-bit memory mesoscopic-state instantiation
in a four well potential. Regions surrounding energy minima
provide metastable information storage, whose bit value is
assigned according to Eq. (1). Controlling this energy land-
scape manipulates the memory state’s dynamics, thereby im-
plementing information processing.

from the set of initial to final memory states M. Here,
we introduce the control erase (CE) protocol over two
input bits. One way of embedding 2-bit computations is
to control a two-dimensional potential with a minimum
in each quadrant. The memory states are distinguished
using the x and y axes:

first [second] bit =

{
0 if x [y] < 0 ,

1 if x [y] > 0 .
(1)

Figure 1 illustrates a quadruple-well potential with an
example memory-state instantiation chosen by the loca-
tions of the minima according to Eq. (1). The compu-
tational operations to be performed on the potential—
i.e., the deterministic transformation of the potential that
maps information from initial to final metastable mem-
ory states—is referred to as a physical protocol.

Last, we formally define metastable memory states
in the x–y plane and how they evolve under a com-
putational protocol. Over the time interval t ∈ [ti, tf ]
and given an initial two-bit metastable memory state
(X, Y) := (mx(t = ti),my(t = ti)) ∈ M, the final memory
state (X′, Y′) := (mx(t = tf ),my(t = tf )) is determined
by the conditional probability p = Pr((X′, Y′)|(X, Y)).
With this, the final microstate distribution p⃗(t = tf )
is updated through p⃗(t = tf ) = p p⃗(t = ti). A deter-
ministic logic gate is successfully performed when these
conditional probabilities are very close to either 0 or 1.

x

y

x x

FIG. 2. Control erase (CE) protocol illustrated via the dy-
namical skeleton of the potential energy landscape in Fig. 1,
showing only the potential’s fixed points and corresponding
local flow fields. Stable minima (unstable saddle) fixed points
are colored blue (red), while grey indicates a local maximum.
This CE is executed with respect to the y axis: The states
contained on the negative x half plane undergo an erasure of
Y to the 1 state, while those on the positive x half plane do
not change. This results in the third quadrant’s stored in-
formation being erased into the second quadrant. (Left) Ini-
tial potential energy landscape configuration. (Center) The
stable and unstable fixed points in quadrant III approach
each other just before annihilation. (Right) Immediately after
fixed point annihilation in the third quadrant. If this land-
scape is held long enough, all information initially stored in
quadrant III will be erased to quadrant II. Importantly, all
other fixed points are maintained during this time. One com-
pletes the CE protocol cycle by bringing the potential back
to its starting configuration.

III. CONTROL ERASE PROTOCOL

The NAND gate is a binary logical gate that takes
in two input bits, meaning there are four possible input
states—00, 01, 10, and 11—and one output bit—either 0
or 1. Specifically, the output state is 1 for all input states
except if both input bits are 1, in which case the output
is 0.

Consider reading the output state to be 1 with no
knowledge of a NAND gate’s input state. Since there are
three possible inputs that can produce this single output
state, inferring which specific two-bit input state led to
the output bit 1 is impossible. The logical impossibility
manifests as a physically-irreversible erasure of informa-
tion associated with phase-space contraction at the mi-
croscopic scale. In contrast, if the output was 0, then
the input is trivially known to be 11 and no phase-space
contraction is entailed.

The above illustrates the NAND’s underlying informa-
tion processing task: Preserve some input information,
while erasing the rest. In this way, performing a NAND
gate requires the ability to carry out controlled erasure
protocols over the space of memory states.

Erasure protocols in one-dimensional systems have
been studied previously [1, 11, 13, 25–29]. The follow-
ing extends this to an erasure protocol via the two-
dimensional potential shown in Fig. 1. The additional
freedom given by the second dimension permits control
over what information is preserved and erased. Via that
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control, a NAND operation can be performed. To ac-
complish this, we introduce the control erase (CE) proto-
col. Figure 2 illustrates a CE protocol via the potential’s
skeleton, viewing the potential from a dynamical systems
perspective—i.e., via its fixed points and local flow fields
in the microscopic state space. In this example, the neg-
ative x half-plane executes an erasure protocol, while the
positive x half-plane remains unchanged.

Executing a given CE protocol requires three binary
choices, illustrated via examples:

1. First, choose which of the two input bits to operate
on. For example, erasing information along the y
axis requires operating only on the second bit so
that Y′ ̸= Y. This implies that the first input bit is
preserved, i.e., X′ = X. However, this does not fully
specify the pair of states that involved in the CE:
00 and 01, or 10 and 11, are both candidate pairs
for a Y′ ̸= Y operation.

2. Next, specify which pair of two-bit memory states
are involved in the erasure. Suppose we select the
states 10 and 11: Doing this controls the erasure
operation on X such that information is erased in Y
only if X = 1. Otherwise, if X = 0, the information
stored in Y is preserved. We denote this choice as a
function CE(X, Y) that is an identity on Y if X = 0
and an erasure of Y if X = 1.

3. However, we also need to choose whether Y is erased
to the 0 or the 1 state. For example, if we erase
to the state 1, we augment our notation to be
CE1(X, Y).

These three binary choices produce the eight CE pro-
tocols of interest shown in Fig. 8. All said, the choices
above give us (X′, Y′) = (I(X), CE1(X, Y)), where I(X) in-
dicates an identity operation on the X input bit. For legi-
bility, we introduce a condensed notation that suppresses
the functional dependencies: (X′, Y′) = (IX, CXE1). The
following relies on this notation.

Figure 3 shows multiple representations of another CE:
(IX, CXE1). This also erases information stored in Y, but
instead of erasing the information if X = 1, the erasure
happens if X = 0. In other words, our control is X (NOT
X), rather than X. Of particular importance is the arrow-
based notation in Fig. 3, which is employed when detail-
ing the NAND gate in Sec. VD.

Finally, to generalize the CE notation, first we know
that one of the two output states ρ′ ∈ {X′, Y′} is created
by the identity operation ρ′ = Iρ, where ρ ∈ {X, Y}. The
other output state is created by CσEA. Here, σ ∈ {ρ, ρ}
indicates the control state for an erasure to the A ∈ {0, 1}
state. Note that the overline ρ above ρ indicates a nega-
tion of the ρ state. The eight CEs of interest are shown
in Fig. 8 in App. C.

IV. DEVICE IMPLEMENTATION

Under the current computing paradigm, superconduct-
ing quantum interference devices (SQUIDs) are employed
only as a physical platform for performing CE proto-
cols. (To emphasize, other than zero-resistance super-
currents and the Josephson nonlinearity, no quantum-
mechanical phenomena are used for information process-
ing. And, low-temperate operation is relied on only in-
sofar as it freezes out irrelevant thermal degrees of free-
dom.) We first briefly review related superconducting de-
vice physics. Then, we specify the device of interest—two
inductively coupled SQUIDs, shown in Fig. 4—whose
potential energy landscape can dynamically execute CE
protocols.

Historically, the quantum flux parametron (QFP) was
invented by Goto in 1985 [15, 30] for classical computing
applications on an energy-efficient superconducting plat-
form. With the incentive of optimizing circuit parameters
and operating on slower computational timescales to aid
energy efficiency, Takeuchi et al introduced the adiabatic
QFP [4, 31]. In contrast to our focus here, their cir-
cuit parameters were not optimized for thermodynamic
performance, but were instead were determined via bi-
furcation theory. With a similar design construction as
the QFP, but having the same equations of motion as
the QFP, in 1989 Han et al introduced the variable β
radio frequency SQUID [16–18]. This device was later
named the compound Josephson junction radio frequency
SQUID (CJJ rf SQUID) [19, 32, 33]. Its principle use
was for investigating macroscopic quantum phenomena
(MQP), not classical information processing. As such,
our present goal—demonstrating universal classical in-
formation and storage—is not shared with the CJJ rf
SQUID literature.

This said, the circuit parameter values used in these
earlier devices happen to be useful in Sec. VC for evalu-
ating the performance of our device of interest when per-
forming CE protocols. Since QFPs and CJJ rf SQUIDs
are both SQUIDs, we refer to the device in Fig. 4 as
two inductively coupled SQUIDs. Reference [20] intro-
duced and detailed the device in Fig. 4. Importantly, it
supports a potential equivalent to that of Fig. 1. To
understand how it executes computations, the follow-
ing gives a synopsis of the device’s potential energy sur-
face. Physically-grounded approximations and assump-
tions for executing a CE protocol are then detailed.

Figure 4 illustrates a device consisting of two induc-
tively coupled SQUIDs. In this circuit, Li [lj ] indi-
cate the radio frequency [direct current] SQUID induc-
tances, while Jj indicate Josephson junctions, all for
which i = 1, 2, and j = 1, 2, 3, 4. This device generates
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(a) (b) (c)

FIG. 3. (a) State mapping executed by the control erasure (X′, Y′) = (IX, CXE1). Each quadrant contains a coarse-grained
metastable memory state, defined by Eq. (1). Every circle represents a distribution of microstates, i.e. information, and is
colored based on its original memory-state instantiation. (b) CE truth table. The overline above state X, in the symbol CX,
indicates controlling on the negation of X, erasing Y to 1 only when X = 0. (c) Arrow-based notation illustrating the (IX, CXE1)
CE protocol. This depiction is also used in Sec. VD. Fig. 8 shows all CEs of interest.
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FIG. 4. Two inductively coupled SQUIDs interacting via mu-
tual inductance coupling constant M .

the following potential energy surface:

U ′ = U/U0 =
1

2
(φ1 − φ1x)

2 +
1

2
(φ2 − φ2x)

2

+
γ1
2
(φ1dc − φ1xdc)

2 +
γ2
2
(φ2dc − φ2xdc)

2

− β1 cos
φ1dc

2
cosφ1 − β2 cos

φ2dc

2
cosφ2

+ δβ1 sin
φ1dc

2
sinφ1 + δβ2 sin

φ2dc

2
sinφ2

+ µ(φ1 − φ1x)(φ2 − φ2x) . (2)

Here, φr = (2πϕr)/Φ0 is the reduced flux variable of the
rth flux variable, while Φ0 is the flux quantum. We sub-
sequently take L := L1 = L2 and l1(2) := l1(3) = l2(4).

Next, Lα = αL for which α = 1 − µ2 such that µ =
M/L. M is a tunable mutual inductance constant: While
its experimental implementation—a SQUID coupler be-
tween the two SQUIDs—are discussed in Refs. [32–
34], the coupler’s dynamics will not be addressed here.
With this, U0 = (Φ0/2π)

2/Lα and γ1(2) = Lα/2l1(2).
Last, β1(2) = 2πLα(Ic2(4) + Ic1(3))/Φ0, and δβ1(2) =
2πLα(Ic2(4) − Ic1(3))/Φ0, where each Icj corresponds to
the critical current Ic of the jth Josephson junction.
Note that Eq. (2) contains four degrees of freedom,

namely φi and φidc, where i = 1, 2. This type of com-
pound SQUID is generally constructed with γi ≫ 1
[18, 35]. This implies that any changes in φixdc are
rapidly observed in φidc, so we assume φidc = φixdc. Ap-
plying this approximation to Eq. (2) projects the poten-
tial onto two dimensions, providing the potential energy
surface shown in Fig. 1 in the φ1–φ2 plane.
Next, we assume that the fabrication consistency of

the JJ elements is such that δβ1 = δβ2 = 0: This as-
sumption is fairly common, as it streamlines the process
of analyzing the device’s equation of motion. In practice,
δβ1 ̸= δβ2 ̸= 0, which results in a slight offset in the
wells’ locations [27]. This induced asymmetry in a real
device can be at least partially compensated by external
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flux parameters if necessary. Along similar lines, we let
β := β1 = β2 as well as Ic := Ic1 = Ic2 = Ic3 = Ic4.
Finally, assuming small-valued coupling ratios, we drop
terms that are quadratic in µ, which sends α → 1 and
Lα → L.

All this done, rewriting Eq. (2) then gives:

U ′ =
1

2
(φ1 − φ1x)

2 +
1

2
(φ2 − φ2x)

2

− β cos
φ1xdc

2
cosφ1 − β cos

φ2xdc

2
cosφ2

+ µ(φ1 − φ1x)(φ2 − φ2x) . (3)

Equation (3) describes a dimensionless potential U ′ with
two degrees of freedom; this will be frequently referred
to in the remainder. We manipulate the potential energy
landscape with the following circuit parameters for i =
1, 2: (i) φix tilts the potential with respect to the ith axis,
(ii) φixdc provides an in-situ barrier control on the ith
axis, and (iii) µ supplies a coupling interaction between
the two circuits, which biases the potential to favor wells
that lie on one of the two diagonals in the φ1–φ2 plane.

V. CONTROL ERASE PROTOCOL
IMPLEMENTATION

The approximations in Sec. IV yield the potential
given in Eq. (3) and displayed in Fig. 1. Manipulat-
ing the aforementioned external circuit parameters im-
plements any of the eight possible control erase (CE)
protocols shown in Fig. 8. Using the CE (IX, CXE1) from
Figs. 2 and 3 as an example, we detail how to find circuit
parameter values that give rise to “effective” protocols in
Sec. VA. We qualitatively show this by exploring circuit
parameter values that give rise to ranges for which this
particular CE can be executed. Furthermore, we quantify
this protocol’s effectiveness—i.e., if it is highly robust—
in Sec. VC. Section VB generalizes to determine which
circuit parameters will be used to carry out any CE pro-
tocol in Fig. 8. With this, Sec. VD demonstrates the
physical execution of an effective NAND gate.

A. Effective CE Protocol

Figure 5(a) highlights the important fixed points on
the potential immediately before and after the stable
(red) and unstable (green) fixed points annihilate in the
negative-x half plane. After the annihilation, a CE is
possible since the orange, blue, and purple fixed points
on the positive-x half plane are preserved. From the per-
spective detailed in Sec. III, the information stored in
the Y state on the negative-x half plane is erased, while
all other information in the potential’s memory states is
preserved. In this example, ∆U ′

00 denotes the potential
barrier that must vanish for the CE to be carried out.
Once this barrier vanishes, ∆U ′

01, ∆U ′
10, and ∆U ′

11 de-
note the barriers that need to be maintained. The goal is

to find the circuit parameter values that give these bar-
riers sufficiently large heights, as this further contributes
to a robust CE.

Figure 5(b) illustrates bifurcation diagrams of the φ2

coordinate over a given circuit parameter range, while all
other parameters are held constant. Note that the coordi-
nate φ2 is solely illustrated because φ1 varies negligibly
in comparison. Additionally, if fixed points annihilate
within a parameter value range, they are displayed in
Fig. 5(b). Otherwise, the fixed points do not annihilate
within this selected range, and their φ2 trajectory will
not be shown.

To guide the exploration of viable parameter values,
a general view of the relationship between the dimen-
sionless barrier heights illustrated in Fig. 5(b) and the
energy scale of thermal fluctuations kBT is useful. Un-
derstanding this aids in determining if a barrier height is
energetically large enough to store microstates within a
metastable memory state.

For example, suppose the barrier should be no smaller
than 50kBT . Using common values from the SQUID
literature [17, 36], T = 100 mK and L = 230 pH,
this corresponds to a dimensionless barrier height of
∆U ′ = 50kBT/U0 = 0.15. We indicate this barrier
height with the dashed horizontal line in the insets of
Fig. 5(b); it represents a proxy for characterizing dimen-
sionless barrier heights. That is, if a circuit parameter’s
value results in either ∆U ′

01, ∆U ′
10, or ∆U ′

11 falling be-
low this line, then we say it is no longer able to reliably
store information in the relevant well. Of course, this
all varies depending on the device’s operating tempera-
ture and parameter values. For instance, if we wanted to
continue using U ′ = 0.15 as a standard value from the
QFP literature [4, 31, 37, 38]—that being T = 4.2 K and
L = 10 pH—this corresponds to a dimension-full bar-
rier height of ∆U = 0.15U0 = 28kBT . As a final note,
motivated by Ozfidan et al [36], we let β = 2.3.

The following now describes the qualitative conse-
quences of changing each circuit parameter and the re-
sulting potential in Fig. 5(a). First, as µ increases, the
depth of the minima representing the states 01 and 10 in-
creases. Meanwhile, the minima’s depth in the 11 state
decrease, leading to ∆U ′

11 decreasing. This indicates that
µ should not take on too large of a value in order to avoid
fluctuations over the ∆U ′

11 barrier. Next, if the magni-
tude of φ2xdc increases, then both ∆U ′

11 and ∆U ′
10 de-

crease. Consequently, its value should be large enough
only to ensure that ∆U ′

00 is eliminated while ∆U ′
11 and

∆U ′
10 are maintained. Changing φ1x adjusts the poten-

tial’s tilt with respect to the φ1 axis. If φ1x takes on too
large of a value, then the barrier ∆U ′

01 will be undesir-
ably eliminated. However, its value must be large enough
to ensure that ∆U ′

00 is eliminated. Similarly, tuning φ2x

changes the tilt of the potential with respect to the φ2

axis. If φ2x is too large, then the blue (purple) stable
(unstable) fixed points can annihilate, which causes in-
formation to be erased in the region where it should be
preserved.



6

Obtaining effective circuit parameter ranges involves
determining two particular values: (i) the value resulting
in ∆U ′

01, ∆U ′
10, and ∆U ′

11 having the same height, and
(ii) the value which results in one barrier falling below
the proxy line. The first (second) criterion serves as the
lower (upper) end of the range. Ultimately, there are
clear tradeoffs that depend on the value of a given cir-
cuit parameter. Finding the set of parameters permitting
control over which information is erased and preserved
requires a balancing act: A careful process of selecting
parameter values that are large enough to erase the de-
sired information, but not so large that the information
originally planned to be preserved ends up being erased.

For µ, since ∆U ′
11 is most susceptible to information

leakage, its effective range corresponds to [0.06, 0.09].
Similarly, to maintain as large ∆U ′

11 and ∆U ′
10 as pos-

sible, the value of φ2xdc should also lie at the lower end
of the range [1.79, 1.88]. Then, to aid the effect of µ and
φ2xdc on the potential and to maintain ∆U ′

01, φ1x would
ideally take on a value within the range of [0.59, 0.65]. At
the same time, to strike a balance between the increase
of ∆U ′

11 and the decrease of ∆U ′
10, φ2x ideally lies within

the range [0.1, 0.15]. Within these ranges, a reliable CE
can be performed.

B. Control Erase Parameter Selection

We now detail which circuit parameters—including
their respective signs and magnitudes—are deployed for
any of the eight CE protocols of interest. By leveraging
the relationship between the potential’s dynamics and
employing the CE notation introduced in Sec. III, all
eight CE protocols in Fig. 8 can be implemented in a
systematic way. The following explains this approach,
summarizing the results in Table II.

To begin, define a sign-based Iverson bracket:

JP K :=

{
> 0 if [P ] = 1 ,

< 0 if [P ] = 0 .
(4)

Here, [P ] is the Iverson bracket of the statement P , and
[P ] evaluates to 1 if P is true or to 0 if P is false. This
notation is useful when discussing how the sign of a cir-
cuit parameter is determined. Let’s now review the four
parameters involved in each CE protocol:

• φixdc lowers the barrier between specific pairs of
states to be erased;

• φjx compensates for the unwanted effects of φixdc;

• µ biases the target erasure state to be more ener-
getically favorable; and

• φix compensates for the unwanted effects of µ.

For these parameters, i, j ∈ {1, 2} with i ̸= j. To de-
termine which φixdc to use for a given CE, recall that
we specify a CE with three parameters: ρ, σ, and A. If

ρ = X (Y), then i, j = 2, 1 (1, 2). As seen from Eq. (3),
φixdc appears only in the cosine function: Since this func-
tion is even, the sign of φixdc is not relevant. Recall from
Sections III and VA that φixdc lowers energy barriers
on both sides of the ith axis. However, the CE requires
one barrier to be maintained. Thus, we need a control
parameter to offset this barrier drop so that it applies
to only one half of the φ1–φ2 plane, while maintaining
the other barrier. The parameter deploying this barrier
offset is φjx, and its sign is given by Jσ ̸= ρK.

Next, µ biases the potential such that the minima
along one of the diagonals of the φ1–φ2 plane are more
energetically favorable compared to those on the other
diagonal. Its sign determines which well becomes the
target for the erasure and is given by J[σ = ρ] XOR AK.
Since µ acts along the diagonals of the φ1–φ2 plane, it
causes asymmetry between two wells that are supposed
to be storing information, resulting unwanted informa-
tion leakage. Fortunately, the parameter φix can be used
to compensate this effect by tilting the potential to offset
this unintentional information leakage. The sign of this
parameter is found through JAK.

For all CEs of interest in Fig. 8, Table II compactly
shows the signs of the relevant circuit parameters.

C. CE Robustness

During our example CE in Fig. 5, once ∆U ′
00 vanishes,

the information needs to propagate from the 00 state to
the 01 state. The time this takes is denoted tCE; it serves
as a proxy for the CE timescale.

As this information is erased, other information is be-
ing stored in the 01, 10, and 11 states due to the barriers
∆U ′

01, ∆U ′
10, and ∆U ′

11 being maintained. However, we
see in Fig. 5(b) that as a circuit parameter increases,
at least one barrier’s height decreases. The microstates
stored in these decreasing barriers are most susceptible
to fluctuating out of their respective memory states. Due
to this, the timescale that characterizes how long these
states reliably store information is in competition with
tCE. This type of timescale is known as a dwell time
[16, 18, 39], which is denoted td. Implicitly from Fig.
5(a), there are three dwell times that contribute to CE
performance—those being the dwell times corresponding
to the states 01, 10, and 11. The minimum of these three
dwell times ultimately dictates CE failure.

If the length of time that information can be reliably
stored is much longer than the timescale of a CE proto-
col, then the probability of an error resulting from an un-
wanted thermally activated transition is low. To quantify
this, we take the ratio td/tCE as a measure of robustness.

To calculate tCE, we approximate the information in
the 00 state as a single damped particle travelling down
a quadratic potential from the point where the fixed
points initially annihilate; the derivation is included in
App. A. For td, since there are three dwell times that
affect CE performance, we choose the minimum of these
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FIG. 5. Circuit parameter ranges that eliminate the dimensionless potential barriers ∆U ′
00 and maintain ∆U ′

11 and ∆U ′
10. In

the insets, light blue, light green, and light red correspond to the barriers ∆U ′
11, ∆U ′

10 and ∆U ′
01, respectively. The dotted

line corresponds to a thermal energy barrier of 50kBT at T = 100 mK with L = 230 pH. For exemplary purposes, β = 2.3.
(a) Specific fixed points (colored diamonds) within the potential energy landscape, as well as corresponding energy barriers,
are utilized to investigate the CE in Fig. 2. (Left) Prior to the fixed point annihilation in the third quadrant. (Right) After
fixed point annihilation that causes ∆U ′

00 to vanish. Once all information stored in the 00 state is erased into the 01 state and
the potential is subsequently brought back to its original configuration, the CE is completed. (b) Circuit parameter ranges for
achieving the CE in Fig. 2, which can be accomplished by the annihilation of the green and red fixed points while maintaining
the yellow and blue fixed points. Each circuit parameter range holds all other nonzero circuit parameters at the respective
constant values: µ = 0.06, φ2xdc = 1.79, φ1x = 0.61, and φ2x = 0.10. These circuit parameters lead to effective CE protocols
and thereby robust NAND gates.
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dwell times to characterize CE robustness. This pro-
vides a more conservative estimate of a particular CE’s
performance; refer to App. B for details. Of particu-
lar relevance, td is exponentially proportional to 1/L and
1/T ; this has a dominant effect on the robustness td/tCE.
Studying the robustness as a function of L and T allows
for interpreting the performance of a CE across the MQP
and QFP literature.

From Sec. VA, selecting parameter values at the lower
end of the effective parameter range yields a more robust
CE: We found that µ = 0.06, φixdc = 1.79, φjx = 0.61,
and φix = 0.10. These will be known as the effec-
tive parameter values. With these, Fig. 6 displays the
CE robustness for different values of L and T . Since
the MQP (QFP) literatures employ SQUIDs for differ-
ent purposes—thereby leading to differing ranges of L
and T—we separate the possible value ranges into the
left (right) figures. The relevant MQP literature [16–
19, 27, 29, 32, 33, 35, 40] corresponds to the left figure,
which has a general temperature range of [100, 500] mK,
while the inductance values range from [140, 300] pH. An
upper value of O(1048) CEs per device is obtained with
the inductance value of L = 140 pH found from Saira et
al [27] at T = 100 mK.

On the right—following the QFP literature [4, 31,
37, 38]—the operating temperatures are no colder than
4.2 K, in addition to L ≥ 10 pH. To demonstrate robust-
ness with a broader scope than constructed thus far, we
use a range that begins at a theoretical value of L = 5 pH
to obtain an upper value of O(1031) CEs per device at
4.2 K. For both areas of literature, we identify that
lower temperature and inductance values correspond to
a greater expected number of successful CEs per device.
The values of R, C, and Ic are chosen as typical values
found in the respective literatures. As a final point, note
that from Fig. 6 the ratio td/tCE was calculated with the
effective parameter values. We further assumed that the
information travelling from the 00 state to the 01 state
begins at the location determined from nonzero circuit
parameters for the CE.

Now, suppose all circuit parameters were initialized to
zero, so that the potential matches Fig. 1. Then, tune all
circuit parameters infinitely fast to their respective final
values. Due to this, the information stored in the 00
state is now travelling from the location determined by
zero-valued circuit parameters, as opposed to the point of
annihilation. This means that the information must now
travel a greater distance to the 01 state, thereby resulting
in a larger tCE. Considering this scenario provides a more
conservative estimate for the ratio td/tCE. That said, we
found that this larger tCE will be no more than twice the
value of the most conservative estimate of tCE, leading
to a reduction of the robustness of order one compared
to that shown in Fig. 6.

D. NAND Gate Application

Executing successive CE protocols allows for perform-
ing a NAND gate. The CE has two input bits and two
output bits as seen from Fig. 3, while the NAND gate
has two inputs but only one output bit. When the num-
ber of logical output bits is less than the number of em-
bedded output bits in a computational system, there is
added flexibility when choosing which bit to read as the
output for a computation. For example, we can spec-
ify X′ = NAND[(X, Y)] without prescribing the Y′ com-
putation. Thus, we define two kinds of NAND gates:
a partial NAND, written as Pρ′ [(X, Y)], which only re-
quires the state ρ′ to yield the desired output, and a
complete NAND, denoted as C[(X, Y)], which requires
that X′ = Y′ = NAND[(X, Y)]. Fig. 7(a) tabulates these
choices.
From here, Fig. 7(b) illustrates both kinds of compu-

tations, and Fig. 7(c) tabulates the computations. Re-
call from Fig. 1 that the first, second, third, and fourth
quadrants correspond to the memory states 11, 01, 00,
and 10, respectively. In this example, carrying out only
steps (1)-(3) executes the partial computation PY′ . This
can seen by tracking the arrows through the included
protocol steps: In step (1), the information in the state
10 is erased into the 00 state; in step (2), the combined
information—comprising of the information from the ini-
tial 00 and 10 states—is erased into the 01 state; in step
(3), the information in the 11 state is translated into the
10 state using the dynamics of the CE protocol. Note
that in this step there is no logical erasure since quad-
rant III was already vacated in step (1). At this point,
the Y′ output bit represents a NAND gate of X and Y.
Continuing to track the arrows for steps (4)-(5) executes
the computation C.
Partial NAND gates built from CEs require fewer suc-

cessive CE protocol executions than complete NAND
gates. However, performing complete NAND gates pro-
vides more redundancy regarding from which states the
computations can be read.

VI. CONCLUSION

We presented the family of control erase (CE) proto-
cols in Fig. 8 and introduced notation in Sec. III that
allows them to be concisely enumerated. We introduced
a device in Fig. 4 that performs CE protocols by tuning
circuit parameter values to access desired bifurcations.
Characterizing a measure of a protocol’s robustness in-
volved associating a storage length time with the pro-
tocol’s duration. We conducted an order of magnitude
estimate of the robustness for an example CE protocol in
Fig. 6, yielding a high robustness for protocols that em-
ploy realistic parameter values spanning different areas
of superconducting circuit literature.
Section VB established a connection between the de-

vice’s circuit parameters and the CE notation. Linking
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FIG. 6. The ratio td/tCE characterizes the robustness of a particular device’s construction as an order of magnitude estimate.
(Left) MQP literature inductance values and temperatures [16–19, 27, 29, 32, 33, 35, 40]. To demonstrate the behavior of the
robustness at colder temperatures, the temperature range [100 − 300] mK is only displayed. Note that R = 1 Ω, C = 500 fF,
and Ic = 5 µA. (Right) QFP literature inductance and temperature values [4, 31, 37, 38]. Note that the values 5 ≤ L ≤ 10 pH
are exercised to demonstrate the performance of a QFP if obtainable, while typical QFP inductances are greater than or equal
to 10 pH. For this figure, R = 1 Ω, C = 1 pF and Ic = 25 µA.

(b) (c)(a)

FIG. 7. NAND computations carried out on a coarse-grained potential of Fig. 1, which is reproducible by Eq. (3). (a)
Tabulated computations of the NAND gate. Steps (1)-(3) execute the partial computation PY′ [(X, Y)]. Additionally, steps
(1)-(5) accomplish the complete computation C[(X, Y)]. (b) Arrow-based schematic for performing partial and complete NAND
gates. (c) Tabulated step numbers and CE protocols corresponding to Fig. (b).

various CE protocols together by leveraging this rela-
tionship allowed for universal computations. Section VD
demonstrated a NAND gate that employs only CEs. Due
to its superconducting operation, the device can perform
CE-based universal computations at extremely low en-
ergy cost.

In addition, there is added flexibility when performing
NAND gates via the potential in Fig. 1. Partial com-
putations permit fewer executions of erasure protocols,
which implies that computations can be performed with
even lower energetic costs. Conversely, executing com-
plete computations gives rise to reading the same compu-

tation regardless of which axis is chosen to be the output,
thereby providing an added layer of redundancy.

Follow-on efforts explore the thermodynamic efficiency
of this NAND gate, run SPICE simulations of the pro-
tocol for varying circuit constructions, and investigate
implementing other useful and more complex logical op-
erations.
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Appendix A: Control Erase Timescale
Approximation Scheme

The following details an approximation scheme for the
potential in Eq. (3) during the control erase (CE) pro-
tocol described in Sec III. Specifically, to represent the
distribution of microstates being erased into the 01 state,
we approximate this situation as a particle sliding down
a quadratic slope. From this, we calculate tCE—the time
it takes for the particle to travel to the bottom of the
slope.

First, note that in Fig. 3, the coordinate ϕ1 has negli-
gible change in comparison to the change in ϕ2. With this
in mind, we will consider the potential to be dependent
only on ϕ2. Next, the height of the potential U that the
particle travels down is on the order of U0 ∼ 10−22: Es-
sentially, the particle’s motion can be described in terms
of ϕ2 without loss of generality. Then, there are two
forces acting on the particle: (i) the force due to the

Circuit quantity z′(zc) Identifications

m m′(C)

γ γ′(1/R)

ϕ φ(ϕc)

U U ′(ϕ2
c/L)

t t′(
√
LC)

TABLE I. Relevant circuit quantity scalings.

potential −dU/dϕ2 and (ii) the classical damping force
−γdϕ2/dt. This means that the particle’s motion is de-
scribed by Newtonian mechanics due to the influence of
a dimension-full potential U and damping coefficient γ,
written as:

d2ϕ2

dt2
+

γ

m

dϕ2

dt
+

1

m

dU

dϕ2
= 0 . (A1)

Observe that Eq. (3) is dimensionless, while Eq. (A1)
describes a particle’s motion under the influence of a
potential with units of energy. To reconcile this, we
must rewrite Eq. (A1) in terms of dimensionless quan-
tities. Reference [35] detailed a strategy for converting
dimension-full equations of motion—such as Eq. (A1)—
into dimensionless equations of motion. To do this, we
write a dimensional quantity z as z = z′zc in which z′

is the dimensionless representation of the quantity, while
zc represents a dimensional scaling factor. Table I sum-
marizes the circuit quantity scaling parameters zc.
Now, after appropriately making substitutions and fur-

ther simplifying, we write the dimensionless Eq. (A1) as:

d2φ2

dt′2
+ Λ

dφ2

dt′
+ θ

dU ′

dφ2
= 0 , (A2)

where Λ = γ′
√
LC/m′RC and θ = 1/m′. The ap-

proximation scheme of the potential will now be de-
tailed. First, we write the dimension-full potential as
U(ϕ2) = kϕ2

2/2, where k serves as the spring constant of
the dimension-full potential. The goal is to write the po-
tential in the dimensionless form: U ′(φ2) = k′φ2

2/2, with
k′ being the spring constant of the dimensionless poten-
tial. This can be done by setting kc = Uc/2ϕ

2
c , in order

to obtain k′ = U ′/(φ2)
2. Now, the particle’s motion is

written as:

d2φ2

dt′2
+ 2λ

dφ2

dt′
+ ω2φ2 = 0 , (A3)

which is analogous to the differential equation mod-
elling a damped harmonic oscillator that oscillates at fre-
quency ω2 = k′θ under damping coefficient λ = Λ/2.

We deploy the ansatz: φ2(t
′) = Aeαt

′
in which α =

−λ ±
√
λ2 − ω2 = −λ ± Ω. We will focus on two pos-

sible situations which involve Ω2 > 0 or Ω2 < 0. Sub-
sequently, these will be categorized as overdamped and
underdamped, respectively.
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a. Overdamped

When Ω2 > 0, the solution to Eq. (A3) is [41]:

φ2(t
′) = A exp(−(λ−Ω)t′) +B exp(−(λ+Ω)t′) , (A4)

which describes an overdamped oscillator with initial
conditions A and B. To understand them, we first detail
the consequences of the particle-like representation of the
distribution of microstates. The average position of this
distribution localizes to a position at any given time—
represented by a particle in this case—while its average
initial velocity will be zero. With this, the initial condi-
tions are (i) φ2(t

′ = 0) = φo
2 and (ii) dφ2(t

′ = 0)/dt′ = 0.
Solving for these two initial conditions, and substituting
the results back into Eq. (A4), gives:

φ2(t
′) =

φo
2

Ω
(λ+Ω)e−λt′ sinh(Ωt′) + φo

2e
−(λ+Ω)t′ . (A5)

Numerically solving Eq (A5) for a final time t′ = t′f and

multiplying the result by
√
LC, yields tCE = t′f

√
LC.

b. Underdamped

If Ω2 < 0, we must define ω̃ =
√
ω2 − λ2 in order for

the general solution to be written as [41]:

φ2(t
′) = D exp(−λt′) cos(ω̃t′ + θ) . (A6)

Equation (A6) describes an underdamped harmonic os-
cillator for which the coefficient D and phase θ are solved
using initial conditions. Subsequently, solving for them
in the same manner as before and substituting the results
into Eq. (A6) produces:

φ2(t
′) = φo

2

√
1 +

(
λ

ω̃

)2

exp(−λt′) cos(ω̃t′ +Θ) ,

for which Θ = arctan(λ/ω̃).

Appendix B: Dwell Time

The escape rate [27, 42, 43] in the l = 1, 2 direction is:

Γl =
ωp,l

2π
exp

(
−∆Ub

kBT

)
. (B1)

First, ωp,l is the plasma frequency in the lth flux direc-
tion. It serves as the characteristic frequency of oscilla-
tions that are parallel to the escape direction; i.e., how
frequently the particle approaches the barrier. To find
it, we consider the dimension-full potential U(ϕ1, ϕ2) and
identify that we can perform a Taylor expansion in the
lth coordinate around a minimum (ϕ1 = ϕ∗

1, ϕ2 = ϕ∗
2).

Of particular interest, and up to a constant, we look to
the following second order terms of the potential:

U(ϕ1, ϕ2) ≈
1

2

∂2U

∂ϕ2
1

∣∣∣∣
(ϕ∗

1 ,ϕ
∗
2)

(ϕ1 − ϕ∗
1)

2 , (B2)

as well as:

U(ϕ1, ϕ2) ≈
1

2

∂2U

∂ϕ2
2

∣∣∣∣
(ϕ∗

1 ,ϕ
∗
2)

(ϕ2 − ϕ∗
2)

2 . (B3)

We identify the second partial derivative taken with re-
spect to ϕl evaluated at the minimum to be the spring
constant kl. From here, we take the corresponding
plasma frequency to be ωp,l =

√
kl/m for which the

dimension-full mass m = C.
Furthermore, ∆Ub indicates the barrier height between

a local minimum and a local maximum, kB is the Boltz-
mann constant, and T is the circuit’s operating temper-
ature. The escape rate is exponentially damped by the
energy barrier because the thermal environment guaran-
tees particles are exponentially unliklely to have energies
that exceed the thermal energy scale. Γl characterizes
how many escape events are expected out of the minima
per second. Finally, the dwell time is the reciprocal of
Eq. (B1): td,l = 1/Γl. Explicitly, the plasma frequencies
of interest for the dimensionless barriers ∆U ′

01 (∆U ′
11 and

∆U ′
10) correspond to the flux direction l = 1 (l = 2). We

utilize the minimum dwell time to calculate the robust-
ness td/tCE.

Appendix C: Control Erasures of Interest

Figure 8 exhibits all control erasure protocols of in-
terest. Appropriate successive executions of a subset of
these protocols lead to performing a NAND gate. Note
that this is not an exhaustive illustration of possible con-
trol erasure protocols, but only represents those of cur-
rent interest. Table II shows the indices, signs and rela-
tionships of the relevant circuit parameters for a partic-
ular CE. The nonzero barrier-control parameter is deter-
mined by i. Meanwhile, the magnitudes of the tilt pa-
rameters that offset the bias and barrier changes to the
potential are related by |φjx| > |φix|, respectively. By
using the effective magnitudes of the circuit parameters
detailed in Sec. VC and successively executing effective
CE protocols, a robust NAND gate can be performed.
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FIG. 8. All control erasure protocols of interest here, displayed with arrow-based notation first shown in Fig. 3.

(IX, CXE1) (IX, CXE1) (CYE1, IY) (CYE1, IY) (IX, CXE0) (IX, CXE0) (CYE0, IY) (CYE0, IY)

i 2 2 1 1 2 2 1 1
j 1 1 2 2 1 1 2 2

sgn(φ1x) + − + + + − − −
sgn(φ2x) + + − + − − − +
sgn(µ) + − − + − + + −

TABLE II. Tabulated relationships between experimental circuit parameters—including their indices and signs—and the CE
notation introduced in Sec. III. + (−) corresponds to a positive (negative) sign of a particular circuit parameter.
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