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Reducing the energy inefficiency of conventional CMOS-based computing devices—which rely on
logically irreversible gates to process information—remains both a fundamental engineering chal-
lenge and a practical social challenge of increasing importance. In this work, we extend an alter-
native computing paradigm which utilizes distributions of microstates to store information in the
metastable minima determined by an effective potential energy landscape. These minima serve
as mesoscopic memory states which are manipulated by a dynamic landscape to perform informa-
tion processing. Central to our results is the control erase (CE) protocol, which manipulates the
landscape’s metastable minima to control whether information is preserved or erased. Importantly,
successive executions of this protocol can implement a NAND gate—a logically-irreversible universal
logic gate. We show how to practically implement this in a device created by two inductively coupled
superconducting quantum interference devices (SQUIDs). We identify circuit parameter ranges that
give rise to effective CEs and characterize the protocol’s robustness by comparing relevant protocol
timescales. Due to their superconducting operational temperatures, performing optimized CEs with
SQUIDs can serve as a platform for highly energy-efficient universal computation.

I. INTRODUCTION

Conventional classical computing systems harness ir-
reversible logic gates—e.g., NAND gates—to process in-
formation. Irreversibility arises from erasing input in-
formation to create desired output states, coming at a
minimum theoretical heat dissipation cost of kBT ln 2
[1] per erasure. During their operation, current con-
ventional CMOS-based computational devices generate
O(104) times more heat than this minimum cost [2–5].
On the social scale, energy consumption for computa-
tional purposes is projected to reach 20% of global en-
ergy demand by 2030 [6]. In light of this, it is time to
investigate alternative strategies and substrates that give
rise to energy-efficient universal computation.

One strategy implied in Landauer’s seminal 1961 result
[1, 7–14] focuses on manipulating metastable energy min-
ima in an effective potential energy landscape. Coarse-
graining the microstate phase-space surrounding the min-
ima yields long-lived mesoscopic memory states that cor-
respond to the logical 0s and 1s for binary computation.
From this perspective, a computation is implemented by
controlling memory-state dynamics by changing the po-
tential energy landscape. A computation is then a map
between initial and final memory states. This “energy
first” perspective of computation allows for careful anal-
ysis and prediction of a given logic gate’s performance
and efficiency [1, 7, 11, 14].

Elaborating on this framework, Sec. II first describes
the characteristics of a potential energy landscape ca-
pable of storing two bits of information. Sec. III in-
troduces a family of control erase (CE) protocols—two-
dimensional generalizations of single-bit erasure proto-
cols. Sec. IV then presents a device constructed from two
inductively coupled superconducting quantum interfer-
ence devices (SQUIDs) [15–20]. This device implements

the required potential energy landscape and executes CE
protocols by changing its circuit parameters. Sections
VA-VC characterize the effectiveness of the SQUID CE
implementation by exploring circuit parameter ranges.
Notably, with serial executions of CEs, a robust NAND
gate can be performed, as detailed in Sec. VD. Execut-
ing robust NAND gates with this device could lead to
extremely low energy universal computations.

II. PHYSICAL COMPUTING VIA
METASTABLE LANDSCAPES

We assume a potential energy landscape of interest
supports several energy minima and an underlying phys-
ical substrate, which is connected to a thermal environ-
ment that introduces damping and noise into its dy-
namics. The minima are separated by energy barriers
substantially larger than the thermal energy kBT . The
thermal environment quickly induces distributions of mi-
crostates to settle into local equilibria in the phase-space
regions surrounding the minima. Noise, though, perturbs
the microstates within their respective regions. However,
it is unlikely to drive the microstates between these re-
gions on a timescale that is exponential in energy bar-
rier height. The energy barriers prevent mixing between
these regions except on these very long timescales; as a
result, the minima serve to support long-lived mesoscopic
system states—metastable memory states. Manipulating
them with the potential’s dynamics corresponds to infor-
mation processing.
The following details physically-embedded computa-

tions via landscape control [1, 13, 21–24]. Specifically,
these computations are stochastic mappings from the set
of initial to final memory states M. Here, we introduce
the control erase (CE) protocol over two input bits. One
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FIG. 1. Example 2-bit memory mesoscopic-state instantia-
tion: Regions surrounding energy minima provide metastable
information storage, whose bit value is assigned according
to Eq. (1). Controlling this energy landscape manipu-
lates the memory state’s dynamics—implementing informa-
tion processing.

way of embedding 2-bit computations is to control a two-
dimensional potential with a minimum in each quadrant.
The memory states are distinguished using the x and y
axes:

first [second] bit =

{
0 if x [y] < 0 ,

1 if x [y] > 0 .
(1)

Fig. 1 illustrates a quadruple-well potential with an
example memory-state instantiation chosen by the loca-
tions of the minima according to Eq. (1). The compu-
tational operations to be performed on the potential—
i.e., the deterministic transformation of the potential that
maps information from initial to final metastable mem-
ory states—are referred to as a physical protocol.

Last, we formally define metastable memory states
in the x–y plane and how they evolve under a com-
putational protocol. Over the time interval t ∈ [ti, tf ]
and given an initial two-bit metastable memory state
(X, Y) := (mx(t = ti),my(t = ti)) ∈ M, the final memory
state (X′, Y′) := (mx(t = tf ),my(t = tf )) is determined
by the conditional probability p = Pr((X′, Y′)|(X, Y)).
With this, the final microstate distribution p⃗(t = tf )
is updated through p⃗(t = tf ) = p p⃗(t = ti). A deter-
ministic logic gate is successfully performed when these
conditional probabilities are very close to either 0 or 1.

III. CONTROL ERASE PROTOCOL

The NAND gate is a binary logical gate that takes
in two input bits, meaning there are four possible input
states: 00, 01, 10, and 11—and outputs one bit—either
0 or 1. Specifically, the output state is 1 for all input

x

y

x x

FIG. 2. Illustrating the control erase (CE) protocol via the
“dynamical skeleton” of the potential energy landscape in Fig.
1, which only shows the potential’s fixed points and corre-
sponding flow fields. Here, stable minima (unstable saddle)
fixed points are colored blue (red), while grey indicates a local
maximum. This CE is executed with respect to the y axis:
The states contained on the negative x half plane undergo
an erasure of Y to the 1 state, while those on the positive
x half plane do not change. This results in the third quad-
rant’s stored information being erased into the second quad-
rant. (Left) Initial potential energy landscape configuration.
(Center) The stable and unstable fixed points in quadrant
III approach each other just before annihilation. (Right)
Just after fixed point annihilation in the third quadrant, the
most important step of this example CE. If this landscape is
held long enough, all information initially stored in quadrant
III will be erased to quadrant II. Importantly, all other fixed
points are maintained during this time. One completes the
CE protocol cycle by bringing the potential back to its start-
ing configuration.

states except if both input bits are 1, in which case the
output is 0. Now, consider having no knowledge of a
NAND gate’s input state and subsequently reading the
output state to be 1. Attempting to infer which specific
two-bit input state led to this output state is impossi-
ble, as there are three possible input states that result
in 1. Microscopically, a state-space contraction occurred
during the NAND gates operation, and this manifested
as an irreversible erasure of information. However, if the
output was 0, then the input is trivially known to be 11.
This is the underlying information processing task of the
NAND gate: to preserve some input information, while
erasing the rest. Thus, performing a NAND gate requires
the ability to carry out controlled erasure protocols over
the space of memory states.
Erasure protocols in one-dimensional systems have

been studied previously [1, 11, 13, 25–29]. The follow-
ing extends this to an erasure protocol via the two-
dimensional potential shown in Fig. 1. The additional
freedom given by the second dimension permits control
over what information is preserved and erased. Via that
control, a NAND operation can be performed. To accom-
plish this, we introduce the control erase (CE) protocol.
Fig. 2 illustrates a CE protocol via the potential’s skele-
ton, which views the potential from a dynamical systems
perspective—i.e., its fixed points and flow fields in the
microscopic state space. In this example, the negative x
half-plane executes an erasure protocol, while the posi-
tive x half-plane remains unchanged.
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FIG. 3. (a) State mapping executed by the control erasure (X′, Y′) = (IX, CXE1). Each quadrant contains a coarse-grained
metastable memory state, defined by Eq. (1). Every circle represents a distribution of microstates, i.e. information, and is
colored based on its original memory-state instantiation. (b) CE truth table. The overline above state X, in the symbol CX,
indicates controlling on the negation of X, erasing Y to 1 only when X = 0. (c) Arrow-based notation illustrating the (IX, CXE1)
CE protocol. This depiction is also used in Sec. VD. Fig. 8 shows all CEs of interest.

Executing a given CE protocol requires three binary
choices, illustrated via examples:

1. First, choose which of the two input bits to operate
on. For example, erasing information only along
the y axis requires operating only on the second
bit so that Y′ ̸= Y. This implies that the first input
bit is preserved, i.e., X′ = X. However, this does not
fully specify the pair of states that involved in the
CE: 00 and 01, or 10 and 11, are both candidate
pairs for a Y′ ̸= Y operation.

2. Next, specify which pair of two-bit memory states
are involved in the erasure. Suppose we select
states 10 and 11. Doing this controls the erasure
operation on X such that it erases the information
in Y only if X = 1. Otherwise, if X = 0, then the
information stored in Y is preserved. This control
will be denoted as CX.

3. Finally, we choose whether Y is erased to the 0 or
the 1 state. This is denoted as E1, for example, if
we erase to the state 1;.

These three binary choices produce eight CE proto-
cols of interest; which are detailed in Fig. 8. We de-
note the particular choices in the examples above with
Y′ = CXE1(X) and X′ = IX(X), where IX indicates an
identity operation of the X input bit , since the infor-
mation from the first bit X is preserved. With this nota-
tion, and dropping the initial memory state dependence
in the operations, the described CE protocol is written
as: (X′, Y′) = (IX, CXE1).
Fig. 3 shows multiple representations of another CE:

(IX, CXE1). We are still erasing information stored in
Y, but instead of erasing the information if X = 1, the
erasure happens if X = 0. In other words, our control is X
(NOT X), rather than X. Of particular importance is the
arrow-based notation in Fig. 3, which will be employed
when detailing the NAND gate in Sec. VD.

Finally, to generalize the CE notation, first we know
that one of the two output states ρ′ ∈ {X′, Y′} is created
by the identity operation ρ′ = Iρ, where ρ ∈ {X, Y}. The
other output state is created by CσEA: Here, σ ∈ {ρ, ρ}
indicates the control state for an erasure to the A ∈ {0, 1}
state. Note that the overline ρ above ρ indicates a nega-
tion of the ρ state.

IV. DEVICE IMPLEMENTATION

In this work, superconducting quantum interference
devices (SQUIDs) are employed as a physical platform
for performing CE protocols. We first briefly review rele-
vant superconducting device literature. Then, we specify
the device of interest—two inductively coupled SQUIDs
(SQUIDs), shown in Fig. 4—whose potential energy
landscape can dynamically execute CE protocols.

The quantum flux parametron (QFP) was invented
by Goto in 1985 [15, 30], whose primary focus was for
energy-efficient classical computing applications in the
superconducting regime. With the incentive of optimiz-
ing circuit parameters and operating on slower compu-
tational timescales to aid in energy efficiency, Takeuchi
et al. introduced the adiabatic QFP [4, 31]. In con-
trast to our work, circuit parameters are not optimized
via algorithms for thermodynamic performance, but are
instead found by utilizing bifurcation theory. With a
similar design construction as the QFP, but having the
same equations of motion as the QFP, in 1989 Han et al.
introduced the variable β radio frequency SQUID [16–
18]. This device was later named the compound Joseph-
son junction radio frequency SQUID (CJJ rf SQUID)
[19, 32, 33]. Its principle use was for investigating
macroscopic quantum phenomena (MQP). The goal of
the present effort—demonstrating universal classical in-
formation and storage—is not shared with the CJJ rf
SQUID literature.
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FIG. 4. Two inductively coupled SQUIDs interacting via mu-
tual inductance coupling constant M .

This said, the circuit parameter values from these ar-
eas of literature is used in Sec. VC for evaluating the
performance of the device of interest when performing
CE protocols. Since QFPs and CJJ rf SQUIDs are both
SQUIDs, we refer to the device in Fig. 4 as two induc-
tively coupled SQUIDs. Ref. [20] introduced and de-
tailed the device in Fig. 4. Importantly, it supports
a potential equivalent to that of Fig. 1. To under-
stand how it executes computations, the following gives
a synopsis of the device’s potential energy landscape cre-
ated. Physically-grounded approximations and assump-
tions for executing a CE protocol are then detailed.

Fig. 4 illustrates a device consisting of two inductively
coupled SQUIDs. In this circuit, Li [lj ] indicate the ra-
dio frequency [direct current] SQUID inductances, while
Jj indicate Josephson junctions, all for which i = 1, 2,
and j = 1, 2, 3, 4. This device generates the following
potential energy surface:

U ′ = U/U0 =
1

2
(φ1 − φ1x)

2 +
1

2
(φ2 − φ2x)

2

+
γ1
2
(φ1dc − φ1xdc)

2 +
γ2
2
(φ2dc − φ2xdc)

2

− β1 cos
φ1dc

2
cosφ1 − β2 cos

φ2dc

2
cosφ2

+ δβ1 sin
φ1dc

2
sinφ1 + δβ2 sin

φ2dc

2
sinφ2

+ µ(φ1 − φ1x)(φ2 − φ2x) . (2)

Here, U0 = (Φ0/2π)
2/Lα, where Φ0 is the flux quan-

tum, φr = (2πϕr)/Φ0 is the reduced flux variable of the
rth flux variable, and Lα = αL for which α = 1−M2/L2

with M being a tunable mutual inductance between the
two SQUIDs. Next, L := L1 ≈ L2, γi = Lα/2li in which
l1(2) := l1(3) ≈ l2(4), βn = 2πLα(Ic2(4) + Ic1(3))/Φ0, and
δβn = 2πLα(Ic2(4) − Ic1(3))/Φ0, where each Icj corre-
sponds to the critical current Ic of the jth Josephson
junction, with n = 1, 2. Lastly, µ = M/L. Here, M
is treated as a tunable constant: While its experimen-
tal implementation—a SQUID coupler—are discussed in
Refs. [32–34], the coupler’s dynamics will not be ad-
dressed here.
Note that Eq. (2) contains four degrees of freedom,

namely φi and φidc, where i = 1, 2. This type of
compound SQUID is generally constructed with γ ≫ 1
[18, 35]. This implies that any changes in φixdc are
rapidly observed in φidc, so we assume φidc = φixdc. Ap-
plying this approximation to Eq. (2) projects the poten-
tial onto two dimensions, providing the potential energy
surface shown in Fig. 1 in the φ1–φ2 plane.
Next, we assume that the fabrication consistency of

the JJ elements is such that δβ1 = δβ2 = 0. In practice,
δβ1 ̸= δβ2 ̸= 0, which results in a slight offset in the min-
ima’s locations [27]. This induced asymmetry in a real
device can be at least partially compensated by external
flux parameters if necessary. The δβ = 0 assumption is
fairly common, and is made in order to streamline the
process of analyzing the device’s equation of motion. As
a similar assumption, we let β := β1 = β2 and, further-
more, Ic := Ic1 = Ic2 = Ic3 = Ic4.
Finally, assuming small-valued coupling ratios, we

drop terms that are quadratic in µ, which yields α → 1
and Lα → L.

All this done, rewriting Eq. (2) then gives:

U ′ =
1

2
(φ1 − φ1x)

2 +
1

2
(φ2 − φ2x)

2

− β cos
φ1xdc

2
cosφ1 − β cos

φ2xdc

2
cosφ2

+ µ(φ1 − φ1x)(φ2 − φ2x) . (3)

Eq. (3) describes a dimensionless potential U ′ with two
degrees of freedom; this will be frequently referred to for
the remainder of this work. We manipulate this potential
energy landscape with the following circuit parameters
for i = 1, 2: (i) φix tilts the potential with respect to the
ith axis, (ii) φixdc provides an in-situ barrier control on
the ith axis, and (iii) µ supplies a coupling interaction
between the two circuits, which biases the potential to
favor wells that lie on one of the two diagonals in the
φ1–φ2 plane.

V. CONTOL ERASE PROTOCOL
IMPLEMENTATION

The approximations in Sec. IV yield the potential
given in Eq. (3), and is displayed in Fig. 1. Manip-
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ulating the aforementioned external circuit parameters
implements any of the eight possible control erase (CE)
protocols shown in Fig. 8. Using the CE (IX, CXE1) from
Figs. 2 and 3 as an example, we detail how to find circuit
parameter values that give rise to “effective” protocols
in Sec. VA. We qualitatively show this by exploring cir-
cuit parameter values that give rise to ranges for which
this particular CE can be executed. Furthermore, we
quantify this protocol’s effectiveness—i.e., if it is highly
robustness—in Sec. VC. Sec. VB generalizes to deter-
mine which circuit parameters will be used to carry out
any CE protocol in Fig. 8. With this, Sec. VD demon-
strates the physical execution of an effective NAND gate.

A. Effective CE Protocol

Fig. 5 highlights the important fixed points on the po-
tential immediately before and after the stable (red) and
unstable (green) fixed points annihilate in the negative-
x half plane. After the annihilation, a CE is possible
since the orange, blue, and purple fixed points on the
positive-x half plane are preserved. From the perspective
detailed in Sec. III, the information stored in the Y state
on the negative-x half plane is erased, while all other in-
formation in the potential’s memory states is preserved.
In this example, ∆U ′

00 denotes the potential barrier re-
quired to vanish for the CE to be carried out. Once this
barrier vanishes, ∆U ′

01, ∆U ′
10 and ∆U ′

11 indicate the bar-
riers that need to be maintained. The goal is to find the
circuit parameter values which give these barriers suf-
ficiently large heights, as this further contributes to a
successful CE.

Fig. 5 illustrates bifurcation diagrams of the φ2 coordi-
nate over a given circuit parameter range, while all other
parameters are held constant. Motivated by Ozfidan et
al. [36], we take β = 2.3. Additionally, the coordinate φ2

is solely illustrated because φ1 varies negligibly in com-
parison.

To guide exploring viable parameter values, a general
view of the relationship between the dimensionless bar-
rier heights illustrated in Fig. 5 and the energy scale of
thermal fluctuations kBT is useful. Understanding this
aids in determining if a barrier height is energetically
large enough to store microstates within a metastable
memory state; for example, for the barrier to be no
smaller than 50 kBT . At T = 100 mK, this minimum re-
quirement corresponds to a dimensionless barrier height
of ∆U ′ = 50kBT/U0 = 0.15 when using the circuit pa-
rameters of Ref. [36]. We indicate this barrier height
with the dotted horizontal line in the insets of Fig. 5.
This line will represent a proxy for characterizing dimen-
sionless barrier heights. That is, if a circuit parameter’s
value results in either ∆U ′

01, ∆U ′
10, or ∆U ′

11 falling be-
low this line, then we say it is no longer able to reliably
store information in the relevant well at 100 mK. Of
course, this all varies based on the operating tempera-
ture and the circuit parameters, but this same process

can be carried out for any particular set of temperature
and parameters.
The following now describes the qualitative conse-

quences of changing each circuit parameter and the re-
sulting potential in Fig. 5. First, as µ increases, the
depth of the minima representing the states 01 and 10
increases. Meanwhile, the minima depths in the 11 state
decrease, leading to ∆U ′

11 decreasing. This indicates that
µ should not take on too large of a value in order to avoid
fluctuations over the ∆U ′

11 barrier. Next, if the magni-
tude of φ2xdc increases, then both ∆U ′

11 and ∆U ′
10 de-

crease. Consequently, its value should be large enough
only to ensure that ∆U ′

00 is eliminated while ∆U ′
11 and

∆U ′
10 are maintained. Changing φ1x adjusts the poten-

tial’s tilt with respect to the φ1 axis. If φ1x takes on too
large of a value, then the barrier ∆U ′

01 will be undesir-
ably eliminated. However, its value must be large enough
to ensure that ∆U ′

00 is eliminated. Similarly, tuning φ2x

changes the tilt of the potential with respect to the φ2

axis. If φ2x is too large, then the blue (purple) stable
(unstable) fixed points can annihilate, which causes in-
formation to be erased in the region where it should be
preserved.
Obtaining effective circuit parameter ranges involves

determining two particular values: (i) the value resulting
in ∆U ′

01, ∆U ′
10, and ∆U ′

11 having the same height and
(ii) the value which results in one barrier falling below
the proxy line. The first (second) criterion serves as the
lower (upper) ends of the range. Ultimately, there are
clear tradeoffs that depend on the value of a given cir-
cuit parameter. Finding the set of parameters permitting
control over which information is erased and preserved
requires a balancing act: A careful process of selecting
parameter values that are large enough to erase the de-
sired information, but not so large that the information
originally planned to be preserved ends up being erased.
For µ, since ∆U ′

11 is most susceptible to information
leakage, its effective range corresponds to [0.06, 0.09].
Similarly, to maintain as large ∆U ′

11 and ∆U ′
10 as pos-

sible, the value of φ2xdc should also lie at the lower end
of the range [1.79, 1.88]. Then, to aid the effect of µ and
φ2xdc on the potential and to maintain ∆U ′

01, φ1x would
ideally take on a value within the range of [0.59, 0.65]. At
the same time, to strike a balance between the increase
of ∆U ′

11 and the decrease of ∆U ′
10, φ2x ideally lies within

the range [0.1, 0.15]. Within these ranges, a reliable CE
can be performed.

B. Control Erase Parameter Selection

We can now detail which circuit parameters—including
their respective signs and magnitudes—are deployed for
any of the eight CE protocols of interest. By leveraging
the relationship between the potential’s dynamics and
the circuit’s parameters, and the CE notation introduced
in Sec. III, all eight CE protocols in Fig. 8 can be imple-
mented in a systematic way. The following explains this
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FIG. 5. Circuit parameter ranges that eliminate the dimensionless potential barriers ∆U ′
00 and maintain ∆U ′

11 and ∆U ′
10. In

the insets, light blue, light green, and light red correspond to the barriers ∆U ′
11, ∆U ′

10 and ∆U ′
01, respectively. The barrier

∆U ′
01 serves as the most conservative one for the 01 state during the CE. Last, the dotted line corresponds to a thermal energy

barrier of 50 kBT at T = 100 mK. (a) Specific fixed points (colored diamonds) within the potential energy landscape, as well
as corresponding energy barriers, are utilized to investigate the CE in Fig. 2. (Left) Prior to the fixed point annihilation in the
third quadrant. (Right) After fixed point annihilation that causes ∆U ′

00 to vanish. Once all information stored in the 00 state
is erased into the 01 state and the potential is subsequently brought back to its original configuration, the CE is completed. (b)
Circuit parameter ranges for achieving the CE in Fig. 2, which can be accomplished by the annihilation of the green and red
fixed points while maintaining the yellow and blue fixed points. Each circuit parameter range holds all other nonzero circuit
parameters at the respective constant values: µ = 0.06, φ2xdc = 1.79, φ1x = 0.59, and φ2x = 0.10. These circuit parameters
lead to effective CE protocols and thereby robust NAND gates.

approach, summarizing the results in Table II. To begin, define a sign-based Iverson bracket:

JP K :=

{
> 0 if [P ] = 1 ,

< 0 if [P ] = 0 .
(4)
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Here, [P ] is the Iverson bracket of the statement P ; [P ]
evaluates to 1 if P is true, or 0 if P is false. This nota-
tion is useful when discussing how the sign of a circuit
parameter is determined. Let’s review the four parame-
ters involved in each CE protocol:

• φixdc lowers the barrier between specific pairs of
states to be erased;

• φjx compensates for the unwanted effects of φixdc;

• µ biases the target erasure state to be more ener-
getically favorable; and

• φix compensates for the unwanted effects of µ.

For these parameters, i, j ∈ {1, 2} with i ̸= j. To deter-
mine which φixdc is utilized for a particular CE, recall
that we specify a CE with three parameters: ρ, σ, and
A. If ρ = X (Y), then i, j = 2, 1 (1, 2). As seen from
Eq. (3), φixdc appears only in the cosine function: Since
this function is even, the sign of φixdc is not relevant.
Recall from Secs. III and VA that φixdc lowers energy
barriers on both sides of the ith axis, but the CE requires
one barrier to be maintained. Thus, we need a control
parameter to offset this barrier drop so that it applies
to only one half of the φ1–φ2 plane, while maintaining
the other barrier. The parameter deploying this barrier
offset is φjx, and it’s sign is given by Jσ ̸= ρK.
Next, µ biases the potential such that the minima

along one of the diagonals of the φ1–φ2 plane are energet-
ically favorable compared to those on the other diagonal.
Its sign determines which well becomes the target for the
erasure, and is given by J[σ = ρ] XOR AK. Recall that
A ∈ {0, 1} is the state to which the control bit is erased.
Since µ acts along the diagonals of the plane, it has the
unwanted effect of making both wells along a given diago-
nal more energetically favorable. This causes asymmetry
between two wells that are supposed to be storing infor-
mation, resulting unwanted information leakage. Fortu-
nately, the parameter φix can be used to compensate this
effect by tilting the potential to offset this unintentional
information leakage. The sign of this parameter is found
through JAK.

For all CEs of interest in Fig. 8, Table II compactly
shows the signs of the relevant circuit parameters.

C. CE Robustness

During our example CE in Fig. 5, once ∆U ′
00 vanishes,

the information needs to propagate from the 00 state to
the 01 state. The time this takes is denoted tCE; it serves
as a proxy for the CE timescale.

As this information is erased, other information is be-
ing stored in the 01, 10, and 11 states due to the barriers
∆U ′

01, ∆U ′
10, and ∆U ′

11 being maintained. However, we
see in Fig. 5 that as a circuit parameter increases, at least
one barrier’s height decreases. The microstates stored in

these decreasing barriers are most susceptible to fluctu-
ating out of their respective memory states. Due to this,
the timescale that characterizes how long these states re-
liably store information is in competition with tCE. This
type of timescale is known as a dwell time [16, 18, 37],
which is denoted td. Implicitly from Fig. 5, there are
three dwell times that contribute to CE performance—
those being the dwell times corresponding to the states
01, 10, and 11. The minimum of these three dwell times
ultimately dictates CE failure.

If the length of time that information can be reliably
stored is much longer than the timescale of a CE protocol,
there is a low probability of error due to an unwanted
thermally activated transition. To quantify this, we take
the ratio td/tCE as a measure of robustness.

To calculate tCE, we approximate the information in
the 00 state as a single damped particle travelling down a
quadratic potential from the point where the fixed points
initially annihilate; the derivation is included in App.
A. For td, since there are three dwell times that affect
CE performance, we choose the minimum of these dwell
times to characterize CE robustness. This provides a
more conservative estimate of a particular CE’s perfor-
mance; refer to App. B for details. From here, we note
that the dwell time is exponentially proportional to L
and T . This has a dominant effect on the robustness ratio
td/tCE. Therefore, studying the robustness as a function
of L and T allows for interpreting the performance of a
CE across the MQP and QFP literature.

From Sec. VA, selecting parameter values at the lower
end of the effective parameter range yields a more robust
CE: We found that µ = 0.06, φixdc = 1.79, φix = 0.61,
and φjx = 0.10. These will be known as the effec-
tive parameter values. With these, Fig. 6 displays the
CE robustness for different values of L and T . Since
the MQP (QFP) literature employ SQUIDs for differ-
ent purposes—thereby leading to differing ranges of L
and T—we separate the possible value ranges into the
left (right) figures. The relevant MQP literature [16–
19, 27, 29, 32, 33, 35, 38] corresponds to the left figure,
which has a general temperature range of [100, 500] mK,
while the inductance values range from [140, 300] pH. An
upper value of O(1048) CEs per device is obtained with
the inductance value of L = 140 pH found from Saira et
al. [27] at T = 100 mK.

On the right—corresponding to the QFP literature [4,
31, 39, 40]—the operating temperatures are no colder
than 4.2 K, in addition to L ≥ 10 pH. To demonstrate
robustness with a broader scope than constructed thus
far, we use a range that begins at a theoretical value
of L = 5 pH to obtain an upper value of O(1031) CEs
per device at 4.2 K. For both areas of literature, we
identify that lower temperature and inductance values
correspond to a greater expected number of successful
CEs per device. The values of R, C, and Ic are chosen
as typical values found in the respective literatures.

As a final point, note that from Fig. 6 the ratio td/tCE

was calculated with the effective parameter values. We
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FIG. 6. The ratio td/tCE characterizes the robustness of a particular device’s construction as an order of magnitude estimate.
(Left) MQP literature inductance values and temperatures [16–19, 27, 29, 32, 33, 35, 38]. To demonstrate the behavior of the
robustness at colder temperatures, the temperature range [100 − 300] mK is only displayed. Note that R = 1 Ω, C = 500 fF,
and Ic = 5 µF. (Right) QFP literature inductance and temperature values [4, 31, 39, 40]. Note that the values 5 ≤ L ≤ 10 pH
are exercised to demonstrate the performance of a QFP if obtainable, while typical QFP inductances are greater than or equal
to 10 pH. For this figure, R = 1 Ω, C = 1 pF and Ic = 25 µF.

further assumed that the information travelling from the
00 state to the 01 state begins at the location determined
from nonzero circuit parameters for the CE.

Now, suppose all circuit parameters were initialized to
zero, so that the potential matches Fig. 1. Then, tune
all circuit parameters infinitely fast to their respective fi-
nal values. Due to this, the information stored in the 00
state is now travelling from the location determined by
zero-valued circuit parameters, as opposed to the point of
annihilation. Considering this scenario provides a more
conservative estimate for the ratio td/tCE, as the infor-
mation from the 00 state must travel a greater distance
to the 01 state, thereby resulting in a larger tCE. How-
ever, this larger tCE will be no more than twice the value
of the most conservative estimate of tCE, leading to a re-
duction of the robustness of order one compared to that
shown in Fig. 6.

D. NAND Gate Application

Executing successive CE protocols allows for perform-
ing a NAND gate. The CE has two input bits and two
output bits as seen from Fig. 3, while the NAND gate
has two inputs but only one output bit. When the num-
ber of logical output bits is less than the number of em-
bedded output bits in a computational system, there is
added flexibility when choosing which bit to read as the
output for a computation. For example, we can specify
X′ = NAND[(X, Y)] without prescribing the Y′ computa-
tion. Thus, we define two kinds of NAND gates: a par-

tial NAND, written as Pρ′ [(X, Y)], which only requires
the state ρ′ to yield the desired output, and a com-
plete NAND, denoted as C[(X, Y)], which requires that
X′ = Y′ = NAND[(X, Y)].

Fig. 7 illustrates both kinds of computation. Recall
from Fig. 1 that the first, second, third, and fourth
quadrants correspond to the memory states 11, 01, 00,
and 10, respectively. In this example, carrying out only
steps (1)-(3) executes the partial computation PY′ . This
can seen by tracking the arrows through the included
protocol steps: In step (1), the information in the state
10 is erased into the 00 state; in step (2), the combined
information—comprising of the information from the ini-
tial 00 and 10 states—is erased into the 01 state; in step
(3), the information in the 11 state is translated into the
10 state using the dynamics of the CE protocol. Note
that in this step there is no logical erasure, since quad-
rant III was vacated in step (1). At this point, the Y′

output bit represents a NAND gate of X and Y. Con-
tinuing to track the arrows for steps (4)-(5) completes
computation C, assuming that X′ also yields a NAND
gate.

Partial NAND gates built from CEs require fewer suc-
cessive CE protocol executions than complete NAND
gates. However, performing complete NAND gates pro-
vides more redundancy regarding from which states the
computations can be read.
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(b) (c)

(a)

FIG. 7. NAND computations carried out on a coarse-grained
potential of Fig. 1, which is reproducible by Eq. (3). (a)
Tabulated computations of the NAND gate. Steps (1)-(3) ex-
ecute the partial computation PY′ [(X, Y)]. Additionally, steps
(1)-(5) accomplish the complete computation C[(X, Y)]. (b)
Arrow-based schematic for performing partial and complete
NAND gates. (c) Tabulated step numbers and CE protocols
corresponding to Fig. (b).

VI. CONCLUSION

We presented the family of control erase (CE) proto-
cols in Fig. 8 and introduced notation in Sec. III that
allows them to be concisely enumerated. We introduced
a device in Fig. 4 that performs CE protocols by tuning
circuit parameter values to access desired bifurcations.
Characterizing a measure of a protocol’s robustness in-
volved associating a storage length time with the pro-
tocol’s duration. We conducted an order of magnitude

estimate of the robustness for an example CE protocol in
Fig. 6, yielding a high robustness for protocols that em-
ploy realistic parameter values spanning different areas
of superconducting circuit literature.

Sec. VB established a connection between the device’s
circuit parameters and the CE notation. Linking vari-
ous CE protocols together by leveraging this relationship
allowed for universal computations. Sec. VD demon-
strated a NAND gate that employs only CEs. Due to
its superconducting operation, the device performs CE-
based universal computations at extremely low energy
cost.

In addition, there is added flexibility when performing
NAND gates via the potential in Fig. 1. Partial com-
putations permit fewer executions of erasure protocols,
which implies that computations can be performed with
even lower energetic costs. Conversely, executing com-
plete computations gives rise to reading the same compu-
tation regardless of which axis is chosen to be the output,
thereby providing an added layer of redundancy.

Follow-on efforts explore the thermodynamic efficiency
of this NAND gate, SPICE simulations of the protocol
for varying circuit constructions, and investigations into
implementing other useful and more complex logical op-
erations.
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Appendix A: Control Erase Timescale
Approximation Scheme

In this section, we detail an approximation scheme for
the potential in Eq. (3) during the control erase (CE)
protocol described in Sec III. Specifically, to represent
the distribution of microstates being erased into the 01
state, we approximate this situation as a particle rolling
down a quadratic slope. From this, we calculate tCE—



11

Circuit quantity z′(zc) Identifications

m m′(C)

γ γ′(1/R)

ϕ φ(ϕc)

U U ′(ϕ2
c/L)

t t′(
√
LC)

TABLE I. Relevant circuit quantity scalings.

the time it takes for the particle to travel to the bottom
of the slope.

First, note that in Fig. 3, the coordinate ϕ1 has negli-
gible change in comparison to the change in ϕ2. With this
in mind, we will consider the potential to be dependent
only on ϕ2. Next, the height of the potential U that the
particle travels down is on the order of U0 ∼ 10−22: Es-
sentially, the particle’s motion can be described in terms
of ϕ2 without loss of generality. Then, there are two
forces acting on the particle: (i) the force due to the
potential −dU/dϕ2, and (ii) the classical damping force
−γdϕ2/dt. This means that the particle’s motion is de-
scribed by Newtonian mechanics due to the influence of
a dimension-full potential U and damping coefficient γ,
written as:

d2ϕ2

dt2
+

γ

m

dϕ2

dt
+

1

m

dU

dϕ2
= 0 . (A1)

First, we note that Eq. (3) is dimensionless, while Eq.
(A1) describes a particle’s motion under the influence
of a potential with units of energy. To reconcile this,
we must rewrite Eq. (A1) in terms of dimensionless
quantities. Ref. [35] detailed a strategy for converting
dimension-full equations of motion—such as Eq. (A1)—
into dimensionless equations of motion. To do this, we
write a dimensional quantity z as z = z′zc in which z′

is the dimensionless representation of the quantity, while
zc represents a dimensional scaling factor: Table I sum-
marizes the circuit quantity scaling parameters zc.

Now, after appropriately making substitutions and
simplifying, we write the dimensionless Eq. (A1) as:

d2φ2

dt′2
+ Λ

dφ2

dt′
+ θ

dU ′

dφ2
= 0 , (A2)

where Λ = γ′
√
LC/m′RC and θ = 1/m′.

The approximation scheme of the potential will now
be detailed. First, we write the dimension-full potential
as U(ϕ2) = kϕ2

2/2, where k now serves as the ‘spring
constant’ of the potential. In dimensionless form, the
potential reads: U ′(φ2) = k′φ2

2/2. This implies that
kc = Uc/2ϕ

2
c , and furthermore k′ = U ′/(φ2)

2. Now, the
particle’s motion is written as:

d2φ2

dt′2
+ 2λ

dφ2

dt′
+ ω2φ2 = 0 , (A3)

which is analogous to the differential equation modelling
a damped harmonic oscillator which oscillates at fre-
quency ω2 = k′θ under damping coefficient λ = Λ/2.
We deploy the ansatz: φ2(t) = Aeαt in which α =

−λ ±
√
λ2 − ω2 = −λ ± Ω. Depending on the value of

R, L and C, Ω > 0 or Ω < 0: These two situations
will be categorized as ‘overdamped’ and ‘underdamped’,
respectively, in the subsequent discussion.

a. Overdamped

When Ω > 0, the solution to Eq. (A3) is [41]:

φ2(t
′) = A exp(−(λ−Ω)t′) +B exp(−(λ+Ω)t′) , (A4)

which describes an overdamped oscillator with initial
conditions A and B. To understand them, we first de-
tail the consequences of the particle-like representation
of the distribution of microstates. The average position
of this distribution localizes to a position at any given
time—represented by a particle in this case—while its
average initial velocity will be zero. With this, the ini-
tial conditions are (i) φ2(t

′ = 0) = φo
2, and (ii) dφ2(t

′ =
0)/dt′ = 0. Solving for these two initial conditions, and
substituting the results back into Eq. (A4) gives:

φ2(t
′) =

φo
2

Ω
(λ+Ω)e−λt′ sinh(Ωt′) + φo

2e
−(λ+Ω)t′ . (A5)

Numerically solving Eq (A5) for a final time t′ = t′f , and

multiplying the result by
√
LC, yields tCE = t′f

√
LC.

b. Underdamped

If Ω < 0, we must define ω̃ =
√
ω2 − λ2 in order for

the general solution to be written as [41]:

φ2(t
′) = D exp(−λt′) cos(ω̃t′ + θ) . (A6)

Eq. (A6) describes an underdamped harmonic oscillator
for which the coefficient D and phase θ are solved using
initial conditions. Subsequently solving for them in the
same manner as before, and substituting the results into
Eq. (A6), produces:

φ2(t
′) = φo

2

√
1 +

(
λ

ω̃

)2

exp(−λt′) cos(ω̃t′ +Θ) ,

for which Θ = arctan(λ/ω̃).

Appendix B: Dwell Time

The escape rate [27, 42, 43] in the l = 1, 2 direction is:

Γl =
ωp,l

2π
exp

(
−∆Ub

kBT

)
. (B1)
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FIG. 8. All control erasure protocols of interest for this work, displayed with arrow-based notation first shown in Fig. 3.

First, ωp,l is the plasma frequency in the lth flux direc-
tion. To understand it, we consider the dimension-full
potential U(ϕ1, ϕ2), perform a Taylor expansion around
a minimum (ϕ1 = ϕ∗

1, ϕ2 = ϕ∗
2), and only look to the sec-

ond order terms whose partial derivatives are both either
with respect to ϕ1 or ϕ2:

U(ϕ∗
1, ϕ

∗
2) ∼

1

2

∂2U

∂ϕ2
1

∣∣∣∣
(ϕ∗

1 ,ϕ
∗
2)

(ϕ1 − ϕ∗
1)

2

+
1

2

∂2U

∂ϕ2
2

∣∣∣∣
(ϕ∗

1 ,ϕ
∗
2)

(ϕ2 − ϕ∗
2)

2 .

We identify that a partial derivative taken with respect
to ϕl, and subsequently evaluated at the minimum, cor-
responds the spring constant kl. From here, we take the
corresponding plasma frequency to be ωl =

√
kl/m for

which the dimension-full mass m = C.
Furthermore, ∆Ub indicates the barrier height between

a local minima and a local maxima; kB is the Boltzmann
constant; and T is the circuit’s operating temperature.
Γl characterizes how many escape events are expected
out of the minima per second. Finally, the dwell time
is the reciprocal of Eq. (B1): td,l = 1/Γl. Explicitly,
the plasma frequencies of interest for the dimensionless

barriers ∆U ′
01 (∆U ′

11 and ∆U ′
10) correspond to the flux

direction l = 1 (l = 2). Then, for values of L and T in
Fig. 6, we select the minimum dwell time to calculate
the robustness td/tCE.

Appendix C: Control Erasures of Interest

Fig. 8 exhibits all control erasure protocols of inter-
est. Successive executions of a subset of these protocols
can lead to performing a NAND gate. Note that this is
not an exhaustive illustration of possible control erasure
protocols, but only represent those of this work’s inter-
est. Table II shows the indices, signs and relationships
of the relevant circuit parameters for a particular CE. In
the notation of Sec. VB, the non-zero barrier-control pa-
rameter is determined by j. Meanwhile, the magnitudes
of the tilt parameters which offset the bias and barrier
changes to the potential are related by |φix| > |φjx|,
respectively. By using the effective magnitudes of the
circuit parameters detailed in Sec. VC and successively
executing effective CE protocols, a robust NAND gate
can be performed.
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(IX, CXE1) (IX, CXE1) (CYE1, IY) (CYE1, IY) (IX, CXE0) (IX, CXE0) (CYE0, IY) (CYE0, IY)

i 1 1 2 2 1 1 2 2
j 2 2 1 1 2 2 1 1

sgn(φ1x) + − + + + − − −
sgn(φ2x) + + − + − − − +
sgn(µ) + − − + − + + −

TABLE II. Tabulated summary of the relationship between experimental circuit parameters—including their indices and signs—
and the CE notation introduced in Sec. III. Here, + (−) corresponds to the sign of a particular circuit parameter, that being
> 0 (< 0). Note that the non-zero barrier flux control parameter for a given CE is determined by j. Meanwhile, the magnitudes
of the tilt parameters—which offset the bias (barrier) effect of µ (φjxdc)—are related by |φix| > |φjx|, respectively.
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