
MAY/JUNE 2007 Copublished by the IEEE CS and the AIP 1521-9615/07/$25.00 © 2007 IEEE 75

Editor: David Winch, winch@taosnet.net

E D U C A T I O N

T he field of computational sci-
ence and engineering (CSE)
integrates mastery of specific

domain sciences with expertise in data
structures, algorithms, numerical
analysis, programming methodolo-
gies, simulation, visualization, data
analysis, and performance optimiza-
tion. The CSE community has em-
braced Python as a platform for
attacking a wide variety of research
problems, in part because of Python’s
support for easily gluing together
tools from different domains to solve
complex problems. Many of the same
advantages that Python brings to CSE
research also make it useful for teach-
ing: Python and its many batteries can
help students learn a wide swath of
techniques necessary to perform ef-
fective CSE research.

“Computational Methods for Non-
linear Systems” is a graduate-level
computational science laboratory
course that we jointly teach at Cornell.
We began developing the course in
summer 2004 to support the curricular
needs of the Cornell IGERT program
in nonlinear systems, a broad and in-
terdisciplinary graduate fellowship pro-
gram aimed at introducing theoretical
and computational techniques devel-
oped in the study of nonlinear and
complex systems to a range of fields.

The course’s format is somewhat
unusual. As a computational labora-

tory course, it provides relatively little
in the way of lectures: we prefer to
have students learn by doing rather
than listening. The course is auto-
nomous, modular, and self-paced: stu-
dents choose computational modules
to work on from a large (and hopefully
growing) suite of those available, and
then proceed to implement relevant
simulations and analyses as laid out in
the exercises. We provide “Hints” files
to help the students along: these con-
sist of documented skeletal code that
the students are meant to flesh out.
We’ve written several different visual-
ization tools to provide visual feed-
back. We find these help engage the
students in new problems and are use-
ful in code debugging.

Python is a useful teaching language
for several reasons. Its clean syntax lets
students learn the language quickly, and
lets us provide concise programming
hints in our documented code frag-
ments. Python’s dynamic typing and
high-level, built-in datatypes enable stu-
dents to get programs working quickly,
without struggling with type declara-
tions and compile-link-run loops. Be-
cause Python is interpreted, students can
learn the language by executing and
analyzing individual commands, and we
can help them debug their programs by
working with them in the interpreter.

Another key advantage that Python
brings to scientific computing is the

availability of many packages support-
ing numerical algorithms and visualiza-
tion. While some of our exercises
require developing algorithms from
scratch, others rely on established nu-
merical routines implemented in third-
party libraries. Although it’s important
to understand the fundamentals of al-
gorithms, error analysis, and algorith-
mic complexity, it’s also useful to know
when and how to use existing solutions.
We make heavy use of the NumPy
(www.scipy.org/numpy) and SciPy (www.
scipy.org) packages for efficiently ma-
nipulating arrays and for accessing rou-
tines to generate random numbers,
integrate ordinary differential equa-
tions, find roots, compute eigenvalues,
and so on. We use matplotlib (http://
matplotlib.sourceforge.net) for x-y plot-
ting and histograms. We’ve written sev-
eral visualization modules that we
provide to students, based on the
Python Imaging Library (PIL; www.
pythonware.com/products/pil), using
PIL’s ImageDraw module to place
graphics primitives within an image,
and the ImageTk module to paste an
image into a Tk window for real-time
animation. We recommend the use of
the IPython interpreter, which facili-
tates exploration by students (www.
ipython.scipy.org). We’ve also used
VPython (www.vpython.org) to gen-
erate 3D animations to accompany
some of our modules.

PYTHON FOR EDUCATION
Computational Methods for Nonlinear Systems

By Christopher R. Myers and James P. Sethna

The authors’ interdisciplinary computational methods course uses Python and associated numerical and
visualization libraries to enable students to implement simulations for several different course modules, which
highlight the breadth and flexibility of Python-powered computational environments.

76 COMPUTING IN SCIENCE & ENGINEERING

Course Modules
Our course modules are too numerous
to describe in detail in this article, so
we refer interested readers to our
course Web site (www.physics.cornell.
edu/sethna/teaching/Computational
Methods) for more information, as
well as access to problems, hints, and
answers. (Many of the exercises have
also been incorporated into a new text-
book.1) Here, we highlight a few of the
modules to illustrate both the breadth
of science that you can teach with
Python and the variety of tools and
techniques that Python can bring to
bear on such problems.

Small-World Networks
The study of complex networks has
flourished over the past several years as
researchers have discovered common-
alities among networked structures that
arise in diverse fields such as biology,
ecology, sociology, and computer sci-
ence.2 An interesting property found in
many complex networks is exemplified
in the popular notion of “six degrees of
separation,” which suggests that any
two people on Earth are connected
through roughly five intermediate ac-

quaintances. Duncan Watts (now at
Columbia) and Steve Strogatz at Cor-
nell3 developed a simple model of ran-
dom networks that demonstrates this
“small world” property. Our course
module enables students to construct
small-world networks and examine how
the average path length connecting two
nodes decreases rapidly as random,
long-range bonds are introduced into a
network consisting initially of only
short-ranged bonds (see Figure 1).

Computationally, this module intro-
duces students to data structures that
represent undirected graphs, object-
oriented encapsulation of those data
structures, and graph-traversal algo-
rithms. Python makes the development
of an undirected graph data structure ex-
ceedingly simple, a point made long ago
by Python creator Guido van Rossum in
one of his early essays on the language.4

In an undirected graph, nodes are con-
nected to other nodes by edges. A sim-
ple way to implement this is to combine
the two cornerstones of container-based
programming in Python: lists and dic-
tionaries. In our UndirectedGraph
class, a dictionary of network neighbor
connections (a neighbor dictionary)
maps a node identifier to a list of other
nodes to which the reference node is
connected. Because the graph edges are
undirected, we duplicate the connection
information for each node: if an edge is
added connecting nodes 1 and 2, the
neighbor dictionary must be updated so
that node 2 is added to node 1’s list of
neighbors, and vice versa.

We can, of course, hide the details of
adding edges inside an AddEdge

method defined on an Undirected
Graph class:

class UndirectedGraph:

...

def AddEdge(self, n1, n2):

“””Add an edge connecting

nodes n1 and n2”””

self.AddNode(n1)

self.AddNode(n2)

nd = self.neighbor_dict

if n2 not in nd[n1]:

nd[n1].append(n2)

if n1 not in nd[n2]:

nd[n2].append(n1)

In the small-world networks exer-
cise, we choose to label nodes simply
by integers, but Python’s dynamic typ-
ing doesn’t require this. If we were
playing the “six degrees of Kevin Ba-
con” game of searching for shortest
paths in actor collaboration networks,
we could use our code snippet to build
a graph connecting the names of actors
(encoded as strings). This dynamic typ-
ing allows for significant code reuse (as
described in the next section). Al-
though our UndirectedGraph class is
exceedingly simple and built to support
only the analyses relevant to our course
module, the same basic principles are
at work in a much more comprehen-
sive, Python-based, graph construction
and analysis package—NetworkX—
developed at Los Alamos National
Labs (http://networkx.lanl.gov).

Percolation
Percolation is the study of how objects
become connected (or disconnected) as
they’re randomly wired together (or
cut apart). It’s an important and classic
problem in the study of phase transi-
tions that has practical relevance as
well: the oil and gas industry, for
example, has shown considerable in-
terest over the years in percolation
phenomena because fluid is extracted
through a network of pores in rock.

Although percolation is tradition-
ally studied on regular lattices, it’s a
problem more generally applicable to
arbitrary networks, and in fact, we’re
able to reuse some of the code devel-

E D U C A T I O N

Figure 1. Node and edge betweenness
in a model of small-world networks.
Undirected edges (black lines) connect
nodes (red dots). Betweenness
measures how central each node and
edge is to the shortest network paths
connecting any two nodes. In this plot,
node diameter and edge thickness are
proportional to node and edge
betweenness, respectively.

MAY/JUNE 2007 77

oped in the small-world networks
module to support percolation stud-
ies. As noted earlier, Python’s dynamic
typing makes our definition of a node
in a graph very flexible; in a percola-
tion problem on a lattice, we can reuse
our UndirectedGraph class de-
scribed earlier by making node iden-
tifiers be lattice index tuples (i, j). We
can thus easily make an instance of
bond percolation on a 2D square lat-
tice of size L (with periodic boundary
conditions) and bond fraction p:

def MakeSquareBondPerc(L,p):

"""Constructs and returns

a bond percolation

instance on an LxL square

lattice with periodic

boundaries, where bonds are

filled with probability p"""

g = UndirectedGraph()

for i in range(L):

for j in range(L):

g.AddNode((i,j))

if random.random() < p:

g.AddEdge((i,j), \

((i+1)%L,j))

if random.random() < p:

g.AddEdge((i,j), \

(i,(j+1)%L))

return g

Figure 2 shows instances of percola-
tion networks generated by this proce-
dure. Students use breadth-first search
to identify all connected clusters in
such a network, and our PIL-based vi-
sualization tool colors each separate
cluster distinctly, taking as input a list
of all nodes in each cluster.

We also introduce the concept of
universality of phase transitions in the
course: despite their microscopic dif-
ferences, site-percolation on a 2D tri-
angular lattice and bond-percolation
on a 2D square lattice are indistin-
guishable from each other on long

length scales, and exhibit the same crit-
ical behavior (scaling exponents). Scal-
ing collapses are a useful construct for
revealing the universality of phase tran-
sitions, and typically involve trans-
forming the x and y axes in specified
ways to get disparate data sets to “col-
lapse” onto one universal scaling form.
With Python, we can support such
scaling collapses very flexibly by using
the built-in eval() function that eval-
uates expressions encoded as strings.
Rather than hard-coding particular
functional forms for scaling collapses,
we can simply encode and evaluate ar-
bitrary mathematical expressions.

Pattern Formation
in Cardiac Dynamics
Pattern formation is ubiquitous in spa-
tially extended nonequilibrium systems.
Many patterns involve regular, periodic
phenomena in space and time, but
equally important are localized coherent
structures that break or otherwise inter-
rupt these periodicities. Patterns lie at
the root of much activity in living tis-
sues: the regular beating of the human
heart is perhaps our most familiar re-
minder of the spatiotemporal rhymicity
of biological patterns. Cardiac tissue is
an excitable medium: rhythmic voltage
pulses, initiated by the heart’s pace-
maker cells (in the sinoatrial node),
spread as a wave through the rest of the
heart, inducing the heart muscle to con-

tract and thereby pumping blood in a
coherent fashion. In some situations,
however, this regular beating can be-
come interrupted by the presence of
spiral waves in the heart’s electrical ac-
tivity (see Figure 3). These spiral waves
generate voltage pulses on their own,
disrupting the normal heart’s coordi-
nated rhythm, leading to cardiac arry-
thmia. Our course module, which we
developed in conjunction with Niels
Otani of Cornell’s biomedical sciences
department, introduces a simple model
of cardiac dynamics—the two-dimen-
sional FitzHugh-Nagumo equations.5,6

The FitzHugh-Nagumo model de-
scribes the coupled time evolution of
two fields, the transmembrane potential
V and the recovery variable W (given
parameters �, � , and �):

.

Fixed-point solutions to the
FitzHugh-Nagumo equations come by
root-finding, which we accomplish us-
ing the brentq function in SciPy:

def FindFixedPoint(c, b):

“””Given parameters

c (gamma) and b (beta),

returns (v*,w*) for which

dv/dt=0 and dw/dt=0 for

∂
∂

= − +W
t

V Wε γ β()

∂
∂

= ∇ + − −V
t

V V V W2 31
3

ε
(/)

(a) (b) (c)

Figure 2. Two instances of bond-percolation on a 2D square lattice, and an
instance of site-percolation on a triangular lattice. In bond-percolation,
neighboring lattice points are connected with probability p, and connected
clusters in the resulting network are identified via breadth-first search.
Separate clusters are colored distinctly, for (a) a 10 � 10 grid and (b) a 1,024 �
1,024 grid. In (c) site-percolation, lattice sites are filled with probability p, and
clusters connect the filled neighboring sites.

78 COMPUTING IN SCIENCE & ENGINEERING

FitzHugh-Nagumo model”””

f = lambda v, c, b: \

(v-(v**3)/3.)- \

((1./c)*(v+b))

vstar = brentq(f,-2.,2., \

args=(c, b))

wstar = ((1./c)*(vstar+b))

return vstar, wstar

We also introduce students to finite
difference techniques for computing
spatial derivatives in the solution of par-
tial differential equations (PDEs).
NumPy arrays represent the V and W
fields of the FitzHugh-Nagumo model,
and we can use stencil notation and ar-
ray syntax to compactly compute the
Laplacian of the voltage field, �2V(x, y).
We ask students to implement two dif-
ferent approximations to the Laplacian
operator (a five- and nine-point stencil),
and compare their effects on the detailed
form of propagating electrical waves.
The computation of the five-point sten-
cil is shown here:

def del2_5(a, dx):

“””del2_5(a, dx) returns

the finite-difference

approximation of the

laplacian of the array a,

with lattice spacing dx,

using the five-point stencil:

0 1 0

1 -4 1

0 1 0

“””

del2 = scipy.zeros(a.shape,

float)

del2[1:-1, 1:-1] = \

(a[1:-1,2:]+a[1:-1,:-2]+ \

a[2:,1:-1]+a[:-2,1:-1]- \

4.*a[1:-1,1:-1])/(dx*dx)

return del2

At this point, we provide an animation
tool that we wrote, based on PIL and
Tkinter, which lets students update the
display of the voltage field V at every
time step and use the mouse to intro-
duce local “shocks” to the system. These
shocks are both useful in initiating spiral
waves and in resetting the system’s
global electrical state as a defibrillator
might do. Optional extensions to the
module, which our collaborator Otani
developed, enable simulations of spon-
taneous pacemakers, dead regions of tis-
sue, and more complex heart-chamber
geometries, by letting the model’s vari-
ous parameters become spatially varying
fields themselves (again implemented via
NumPy arrays).

Gene Regulation
and the Repressilator
Gene regulation describes a set of
processes by which the expression of
genes within a living cell—their tran-
scription to messenger RNA and ul-
timately their translation to protein—is
controlled. While modern genome se-
quencing has provided great insights
into many organisms’ constituent parts
(genes, RNAs, and proteins), much less
is known about how those parts are
turned on and off and mixed and
matched in different contexts: how is it
that a brain cell and a hair cell, for
example, can derive from the same ge-
nomic blueprint but have such differ-
ent properties?

The Repressilator is a relatively sim-
ple synthetic gene regulatory network
developed by Michael Elowitz (now at
Caltech) and Stan Leibler at Rocke-
feller University.7 Its name derives
from its use of three repressor proteins
arranged to form a biological oscillator:
these three repressors act in a manner
akin to the “rock-paper-scissors” game,
in which TetR inhibits �cI, which in
turn inhibits LacI, which in turn in-
hibits TetR. Figure 4 shows a snapshot
of the Repressilator’s time evolution.

Important scientific and computa-
tional features emphasized in this mod-
ule are the differences between
stochastic and deterministic representa-
tions of chemical reaction networks.
(We first introduce these concepts in a
warm-up exercise, called Stochastic
Cells, in which students simulate a much
simpler biochemical network: one rep-
resenting the binding and unbinding of
two monomer molecules M form a sin-
gle dimer D: M + M � D.) We intro-
duce students to Petri nets as a graphical
notation for encoding such networks,
and then have them, from the underly-
ing Petri net representation, both syn-
thesize differential equations describing
the deterministic time evolution of the
system, and implement the Gillespie al-
gorithm (a form of continuous time
Monte Carlo) for stochastic simulation.8

Gillespie’s “direct method” involves
choosing a particular reaction and reac-
tion time based on instantaneous reac-
tion rates. For the Repressilator, this can
be done quite compactly using array op-
erations within NumPy/SciPy:

class StochasticRepressilator:

...

def Step(self, dtmax):

“””Execute one step of

the Gillespie direct

method by: (1) computing

instantaneous reaction

E D U C A T I O N

Figure 3. Snapshot in the time
evolution of the FitzHugh-Nagumo
model of cardiac dynamics. The
transmembrane voltage V is depicted
via a grayscale map (higher voltages
are in lighter gray). Spiral waves in
the voltage field can lead to cardiac
arrythmias by disrupting the normal
periodic rhythm generated by the
sinoatrial node.

MAY/JUNE 2007 79

rates, (2) getting an

exponentially distributed

random time from rates,

(3) choosing a random

reaction with probability

proportional to reaction

rate, (4) executing the

chosen reaction based on

its stoichiometry, and

(5) returning the time

at which the reaction

takes place”””

(1)

self.GetReactionRates()

(2)

tot_rate = sum(self.rates)

ran_time = -scipy.log(\

1.-random.random()) \

/tot_rate

if ran_time > dtmax:

return dtmax

(3)

ran_rate = tot_rate * \

random.random()

index = len(self.rates) \

- sum(scipy.cumsum(\

self.rates)> ran_rate)

reac = \

self.reactions[index]

(4)

for chem, dchem in \

reac.stoichio.items():

chem.amount += dchem

(5)

return ran_time

O ur course introduces students to
several other problems that we

can only mention in passing here. This
includes modules to study chaos and bi-
furcations in iterated maps; biolocomo-
tion in a simple model of a bipedal
walker; properties of random walks and
extremal statistics; connections between
NP-complete constraint satisfaction
problems and the statistical mechanics
of phase transitions; universality of

eigenvalue distributions in random ma-
trix theory; the emergence of collective
thermodynamic properties from mole-
cular dynamics; and phase transitions
and Monte Carlo algorithms in the
Ising model of magnetic systems.

We continue to look for new prob-
lems to add to this collection, and for
collaborators interested in contribut-
ing their scientific and computational
expertise to this endeavor. (Please con-
tact us if you have ideas for interesting
modules.) Our goal is to provide a
hands-on introduction to scientific
computing, and we hope that this
course can help serve several educa-
tional objectives in the part of a larger
curriculum in CSE.

Acknowledgments
We thank our colleagues who have
helped us develop computational mod-
ules and have given us useful feedback:
Steve Strogatz, Andy Ruina, Niels
Otani, Bart Selman, Carla Gomes, and
John Guckenheimer. We also thank all
the students who have completed our
course and have helped us work the bugs
out of exercises and solutions. Funding
from NSF awards DGE-0333366 and
DMR-0218475, and from the Cornell
Theory Center, helped support the de-
velopment of course modules.

References
1. J.P. Sethna, Statistical Mechanics: Entropy, Or-

der Parameters, and Complexity, Oxford Univ.
Press, 2006.

2. A.-L. Barabasi, Linked: How Everything Is Con-
nected to Everything Else and What It Means,
Perseus Publishing, 2002.

3. D. Watts and S. Strogatz, “Collective Dynam-
ics of ‘Small-World’ Networks,” Nature, vol.
393, no. 6684, 1998, pp. 440–442.

4. G. van Rossum, “Python Patterns: Imple-
menting Graphs,” 1998; www.python.org/
doc/essays/graphs/.

6. R. FitzHugh, “Impulses and Physiological States
in Theoretical Models of Nerve Membrane,”
Biophysical J., vol. 1, no. 6, 1961, pp. 445–466.

7. J. Nagumo, S. Arimoto, and S. Yoshizawa,
“An Active Pulse Transmission Line Simulat-
ing Nerve Axon,” Proc. Inst.of Radio Engineers,
vol. 50, no. 10, 1962, pp. 2061–2070.

8. M. Elowitz and S. Leibler, “A Synthetic Oscilla-
tory Network of Transcriptional Regulators,”
Nature, vol. 403, no. 6767, 2000, pp. 335–338.

9. D. Gillespie, “Exact Stochastic Simulation of
Coupled Chemical Reactions,” J. Physical Chem-
istry, vol. 81, no. 25, 1977, pp. 2340–2361.

Christopher R. Myers is a senior research

associate and associate director in the Cor-

nell Theory Center at Cornell University. For

more than a decade, he has advocated for

and explored the capabilities of Python-

powered computational environments in

physics, materials science, engineering, and

biology. Myers has a PhD in physics from

Cornell. Contact him at myers@tc.cornell.

edu; www.tc.cornell.edu/~myers.

James P. Sethna is a professor of physics at

Cornell University. He has a PhD in physics

from Princeton University. Sethna is the au-

thor of Statistical Mechanics: Entropy, Order

Parameters, and Complexity; www.physics.

cornell.edu/sethna/StatMech/. Contact him

via www.lassp.cornell.edu/sethna or sethna@

lassp.cornell.edu.

Figure 4. Snapshot in the stochastic
time evolution of the Repressilator.
Protein concentrations (back row),
mRNA concentrations (middle) and
promoter states (front) are shown. At
this instant, TetR (red) concentration is
high, leading to suppression of �cI
(yellow). Because �cI is low, however,
LacI (green) concentration can grow,
leading to TetR’s eventual suppression.

B y using a dynamical system to model a flour beetle’s
life cycle, we can estimate the key parameters that
describe its behavior. In the last issue, we presented

the model and defined six parameters.

PROBLEM 1.

To get some experience with this model, plot the popula-
tions L, P, and A for 100 days for three sets of data: b =
11.6772, �L = 0.5129, cel = 0.0093, cea = 0.0110, cpa = 0.0178,
L(0) = 70, P(0) = 30, A(0) = 70, and �� = 0.1, 0.6, and 0.9.
Describe the behavior of the populations in these three cases
as if you were speaking to someone who isn’t looking at the
graphs.

Answer:
Figure 1 shows the results. When �A = 0.1, the solution

eventually settles into a cycle, oscillating between two dif-
ferent values: 18.7 and 321.6 larvae, 156.7 and 9.1 pupae,
and 110.1 and 121.2 adults. Thus the population at four-
week intervals is constant. Note that the peak pupae popu-
lation lags two weeks behind the peak larvae population, and
that the adult population’s oscillation is small compared to
the larvae and pupae.

For �A = 0.6, the population eventually approaches a fixed
point: 110.7 larvae, 54.0 pupae, and 42.3 adults.

In the third case, �A = 0.9, there is no regular pattern for
the solution, so it’s called chaotic. The number of larvae
varies between 18 and 242, the number of pupae between 8
and 117, and the number of adults between 9 and 94.

PROBLEM 2.

Let �L = 0.5, �A = 0.5, cel = 0.01, cea = 0.01, and cpa = 0.01. Plot
Afixed, Lfixed, and Pfixed for b = 1.0, 1.5, 2.0, …, 20.0. To com-

pute these values for each b, use fsolve, started from the
solution with cel = 0, to solve the equations

. Provide fsolve with the Jacobian
matrix for the function ; on your plot, mark the b values
for stable equilibria with plus signs.

Answer:
Figure 2 shows the results. For the stable solutions, if we

start with population values near Afixed, Lfixed, and Pfixed, we’ll
converge to these equilibrium values.

PROBLEM 3.

(a) Let �L = 0.5128, cel = 0.0, cea = 0.01, and cpa = 0.09. For
�A = 0.02, 0.04, …, 1.00, use the LPA relations to determine
the population for 250 cycles. On a single graph, plot the
last 100 values as a function of �A to produce the bifurca-
tion diagram.

(b) Determine the largest of the values �A = 0.02, 0.04,
…, 1 for which the constant solution is stable (that is, well-
conditioned).

(c) Explain why the bifurcation diagram isn’t just a plot of
Lfixed versus �A when the system is unstable.

(d) Give an example of a value of �A for which nearby so-
lutions cycle between two fixed values. Give an example of
a value of �A for which nearby solutions are chaotic (or at
least have a long cycle).

Answer:
Figure 3 shows the bifurcation diagram. The largest

tested value of �A that gives a stable solution is 0.58. If we
perform the computation in exact arithmetic, the graph
would just be a plot of Lfixed versus �A. When the solution is
stable, a rounding error in the computation produces a

F̂
ˆ () ()F x F x x 0= − =

80 Copublished by the IEEE CS and the AIP 1521-9615/07/$25.00 © 2007 IEEE COMPUTING IN SCIENCE & ENGINEERING

Partial Solution to Last Issue’s Homework Assignment

BEETLES, CANNIBALISM, AND CHAOS:
ANALYZING A DYNAMICAL SYSTEM MODEL
By Dianne P. O’Leary

Editor: Dianne P. O’Leary, oleary@cs.umd.edu

Y O U R H O M E W O R K A S S I G N M E N T

Last issue’s installment of Your Homework Assignment featured the final problem in Dianne O’Leary’s popular
long-running department. In this issue, she offers a partial solution to it.

MAY/JUNE 2007 81

nearby point from which the iteration tends to return to the
fixed point. When the solution is unstable, a rounding error
in the computation can cause the computed solution to drift
away. Sometimes it produces a solution that oscillates be-
tween two values (for example, when �A = 0.72), and some-
times the solution becomes chaotic or at least has a long
cycle (for example, when �A = 0.94).

PROBLEM 4.

(a) Use lsqnonlin to solve the least-squares minimization
problem, using each of the four sets of data in beetle-
data.m. In each case, determine the six parameters (�L, �A,
cel, cea, cpa, and b). Set reasonable upper and lower bounds on
the parameters and perhaps start the least-squares iteration
with the guess �L = �A = 0.5, cel = cea = cpa = 0.1, and b = 10.
Print the solution parameters and the corresponding resid-
ual norm.

(b) Compare your results with those that Brian Dennis
and his colleagues computed (see param_dl in beetle-
data.m). Be sure to include a plot that compares the pre-
dicted values with the observed values.

Answer:
I used bounds of 0 and 1 for all parameters except b. For

b, I used [0.1, 9.0]. The results are summarized in Tables 1
and 2 and contrast with the results of our model (new) with
that of Dennis and his colleagues (old).

Figure 4 shows the predictions obtained from my para-
meters and from those of Dennis and his colleagues. Note
that none of the models gives good predictions; we will see

35 40 45 5010 15 20 25 30
Time (two−week periods)

100
200
300
400

50

N
um

b
er

Time (two−week periods)
10 15 20 25 30 35 40 45 50

50
100
150
200

50

N
um

b
er

Time (two−week periods)
10 15 20 25 30 35 40 45 50

100

200

300

50

N
um

b
er

Larvae Pupae Adults

Figure 1. Results of the LPA model with three different choices of �A. Model predictions for b = 11.6772, �L = 0.5129, cel =
0.0093, cea = 0.0110, cpa = 0.0178, L(0) = 70, P(0) = 30, A(0) = 70, and �A = 0.1 (left), 0.6 (middle), and 0.9 (right). Number
of larvae is in blue, pupae in green, and adults in red.

20

b

Po
p

ul
at

io
n

40

60

80

100

120

140

160

2 4 6 8 10 12 14 16 18 200

Larvae
Pupae
Adults

Figure 2. Equilibrium population as a function of b for �L =
0.5, �A = 0.5, cel = 0.01, cea = 0.01, and cpa = 0.01, b = 1.0,
1.5, 2.0, …, 20.0. Stable solutions are marked with pluses.

Colony cel cea cpa b �L �A Residual

New: a 0.018664 0.008854 0.020690 5.58 0.144137 0.036097 5.04
Old: a 0.009800 0.017500 0.019800 23.36 0.472600 0.093400 17.19
New : b 0.004212 0.013351 0.028541 6.77 0.587314 0.000005 7.25
Old: b 0.010500 0.008700 0.017400 11.24 0.501400 0.093000 14.24
New : c 0.018904 0.006858 0.035082 6.47 0.288125 0.000062 4.37
Old: c 0.008000 0.004400 0.018000 5.34 0.508200 0.146800 4.66
New: d 0.017520 0.012798 0.023705 6.79 0.284414 0.005774 6.47
Old: d 0.008000 0.006800 0.016200 7.20 0.564600 0.109900 7.42

Table 1. Parameter estimates computed in Problem 4.

Colony Norm of New Old
data vector residual residual

Colony a 33.55 5.04 17.19
Colony b 33.70 7.25 14.24
Colony c 33.44 4.37 4.66
Colony d 33.68 6.47 7.42

Table 2. Residual norms computed in Problem 4.

82 COMPUTING IN SCIENCE & ENGINEERING

later that lsqnonlin finds only a locally optimal set of pa-
rameters—not necessarily the best choice overall. There
is also the possibility of non-modeled errors in the data,
and perhaps the beetles didn’t respond well to the count-
ing process.

PROBLEM 5

Consider the data for the second beetle colony. For each
value b = 0.5, 1.0, …, 50.0, minimize the least-squares func-
tion by using lsqnonlin to solve for the five remaining pa-
rameters. Plot the square root of the least-squares function
versus b, and determine the best set of parameters. How sen-
sitive is the function to small changes in b?

Perform further calculations to estimate the forward er-
ror—how sensitive the optimal parameters are to small
changes in the data—and the backward error—how sensitive
the function is to small changes in the parameters.

Answer:
When the data is randomly perturbed, the estimate of b

for the second colony ranges from 4.73 to 6.83.

Y O U R H O M E W O R K A S S I G N M E N T

2 4 6 8 10 12 14 16 18 20
Time

2 4 6 8 10 12 14 16 18 20
Time

0 2 4 6 8 10 12 14 16 18 20
Time

60
80

100
120
140

A
du

lts

100

200

300

0

Pu
p

ae

200

400

600

0

La
rv

ae

(d)

2 4 6 8 10 12 14 16 18 20
Time

2 4 6 8 10 12 14 16 18 20
Time

18 200 2 4 6 8 10 12 14 16
Time

40
60
80

100
120

A
du

lts

50

100

150

0

Pu
p

ae

100

200

300

0

La
rv

ae

(c)

2 4 6 8 10 12 14 16 18 20
Time

0 2 4 6 8 10 12 14 16 18 20
Time

2 4 6 8 10 12 14 16 18 20
Time

50

100

150

A
du

lts

0

100

200

300

Pu
p

ae

200

400

600

0

La
rv

ae

(b)

18 202 4 6 8 10 12 14 16
Time

0 2 4 6 8 10 12 14 16 18 20
Time

0 2 4 6 8 10 12 14 16 18 20
Time

60
80

100
120
140

A
du

lts

100

200

300

Pu
p

ae

200

400

600

0

La
rv

ae

(a)

Figure 4. Model predictions for colonies (a) through (d). The solid line represents the data, the pluses are the predictions
from Dennis and his colleagues, and the squares are our predictions.

0 1 2 3 4 5 6 7 8 9
b estimates

Figure 5. Values of b computed for colony b with 250
random perturbations of the log of the data, drawn from a
normal distribution with mean 0 and standard deviation 1.

Re
si

du
al

 n
or

m

5 6 7 8 9 10 11 12
b

4

7.7

7.6

7.5

7.4

7.3

7.2

Figure 6. Changes in the residual as b is changed for colony
b, leaving the other parameters fixed.

La
rv

ae

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.00

500

1,000

1,500

Pu
p

ae

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.00

200
400
600
800

A
du

lts

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.00

200
400
600
800

�A �A �A

Figure 3. Bifurcation diagram for the data in Problem 3.

MAY/JUNE 2007 83

A larger upper bound for b tends to cause the minimizer
to converge to a local solution with a much larger residual.

There are many ways to measure sensitivity:

• We might ask how large a change we see in b when the
data is perturbed a bit. This is a forward error result.

• We might ask how large a change we see in the residual
when the value of b is perturbed a bit. This is a backward
error result.

To estimate the forward error, I repeated the fit after adding
50 samples of normally distributed error (mean 0, standard
deviation 1) to the log of the counts. This is only an approxi-
mation to the error assumption usually made for counts—
Poisson error—but by using the log function in their
minimization, the authors are assuming that this is how the
error behaves. Even so, the estimate shown in Figure 5 range
from 1.00 to 9.00, quite a large change.

To estimate the backward error, I varied b, keeping the
other parameters at their optimal values, and plotted the re-
sulting residual versus b in Figure 6. We see that the resid-
ual isn’t very sensitive to changes in b.

Then I minimized the residual as a function of the five pa-
rameters remaining after setting b to fixed values. From Fig-
ure 7, we conclude that for any value of b between 1 and 50,
we can obtain a residual norm within 10 percent of the com-
puted minimum over all choices of b. This model seems to
give no insight into the true value of b.

But as a final attempt, I used a homotopy algorithm, re-
peating the computations from Figure 7, but starting each
minimization from the optimal point found for the previous
value of b. The resulting residuals, shown in Figure 8, are
much smaller, and the b value is somewhat better deter-
mined—probably between 5 and 10. Even more interesting,
the fitted model finally gives a reasonable approximation of
most of the data (see Figure 9).

To check the reliability of these estimates, it would be a
good idea to repeat the experiment for the data for the other
three colonies and to repeat the least-squares calculations us-
ing a variety of initial guesses.

Dianne P. O’Leary is a professor of computer science and a fac-

ulty member in the Institute for Advanced Computer Studies and

the Applied Mathematics Program at the University of Maryland.

She has a BS in mathematics from Purdue University and a PhD in

computer science from Stanford. O’Leary is a member of SIAM

and AWM, and a fellow of the ACM. Contact her at oleary@

cs.umd.edu; www.cs.umd.edu/users/oleary/.

0 5 10 15 20 25 30 35 40 45 50
b

Re
si

du
al

 n
or

m

7.70
7.65
7.60
7.55
7.50
7.45
7.40
7.35
7.30
7.25
7.20

Best
1.05*Optimal

Figure 7. Best (smallest) residuals for colony b computed
as a function of the parameter b (blue circles) compared
with the red dotted line, indicating a 10 percent increase
over the minimal computed residual.

0 5 10 15 20 25 30 35 40 45 50
b

Re
si

du
al

 n
or

m

Best
1.05*Optimal

5.0

5.5

6.0

6.5

7.0

7.5

8.0

8.5

9.0

Figure 8. Best (smallest) residuals for colony b computed
as a function of the parameter b (blue circles) compared
with the red dotted line, indicating a 10 percent increase
over the minimal computed residual, using homotopy.

La
rv

ae

200

400

600

0 2 4 6 8 10 12 14 16 18 20
Time

Pu
p

ae

100

200

300

0 2 4 6 8 10 12 14 16 18 20
Time

A
du

lts

100

200

300

200 2 4 6 8 10 12 14 16 18
Time

Figure 9. Revised model predictions for colony b, with
parameters cel = 0.008930, cea = cpa = 0, b = 7.5, �L =
0.515596, �A = 0.776820. The solid line represents the
data, the pluses are the predictions from Dennis and his
colleagues, and the squares are our predictions.

A lot of the mathematical work I do is best expressed
in complex variables, so I’m partial to program-
ming languages that support complex arithmetic

and that possess a library of standard complex functions. It’s
no fun to program complex arithmetic in languages lacking
such extensions: the resulting code is cumbersome, opaque,
and hard to maintain. Basic, C, and Pascal never pretended
to support complex types, but it was a shock when the os-
tensibly compliant Fortran 77 I bought for my PC back in
the mid-1980s didn’t support complex arithmetic either.

Complex arithmetic can, of course, be expressed as real-
number arithmetic, but the result is messy. As the Numeri-
cal Recipes in C1 file complex.c makes clear, each complex
operation—even addition and multiplication—requires a
separate subroutine. Thus I was driven to work with exten-
sible languages such as Lisp and Forth, for which I could
write my own complex extensions.

Today, Python, C++, and other languages besides For-
tran (even the new C99 standard) support complex types
and operators, so rolling one’s own is no longer necessary.
The disadvantage of this, however, is that there’s no stan-
dard (to my knowledge) for the behavior of the supplied li-
braries in the various languages (or even within a single
open source language). Hence, results might not be correct,
portable, or predictable.

Because I contemplate future forays into the complex
plane, it seemed reasonable to introduce the subject with
applications in which complex arithmetic simplifies the
programming. I chose vector analysis in two dimensions
and evaluating oscillatory integrals numerically via con-
tour deformation.

Complex Arithmetic
The complex numbers

z = x + iy, i2 = –1,

defined in terms of real number pairs (x, y), were introduced
to provide solutions to such polynomial equations as x2 – 2x
+ 5 = 0, which obviously can’t be satisfied by any real num-
ber substituted for x but is satisfied by the two complex roots
z = 1 ± 2i.

In z = x + iy, we call x the real part of z, denoted by Re(z);
for historical reasons, we call y the imaginary part, denoted
by Im(z). The usual laws of algebra define operations such
as addition, multiplication, and division. For example,

(x + iy)(u + iv) = xu + iyu + ixv + i2yv � (xu – yv) + i(yu + xv).

That is, when we multiply two complex numbers, the result is
another complex number, and similarly with addition. (A math-
ematician would say the complex numbers are closed under ad-
dition and multiplication.) One important new operation we
will need is complex conjugation, denoted by a * superscript and
defined as “reverse the sign of the imaginary part”:

.

Geometric Interpretation
We can regard the complex number z = x + iy as a vector z = x
+ y in two-dimensional Cartesian coordinates (here and
are unit vectors in the horizontal, or x, direction and the verti-
cal, or y, direction). This 2D vector space is often called the Ar-
gand plane. The magnitude of a complex number is the length
of its corresponding 2-vector (I use z to represent a 2-vector
and z to represent its corresponding complex number):

. (1)

Figure 1 illustrates these definitions.
Figure 1 also exhibits the polar representation, z = rei�,

which exploits Euler’s identity,

| | | |z x y= = +z 2 2

ŷx̂ŷ
x̂

z x iy x iy
df

* () *= + = −

84 Copublished by the IEEE CS and the AIP 1521-9615/07/$25.00 © 2007 IEEE COMPUTING IN SCIENCE & ENGINEERING

MAKING THE COMPLEX SIMPLE
By Julian V. Noble

Editor: Isabel Beichl, isabel.beichl@nist.gov

C O M P U T I N G P R E S C R I P T I O N S

This installment of Computing Prescriptions illustrates how complex arithmetic can simplify algorithms in two-
dimensional Cartesian vector space as well as how to make difficult numerical integrals tractable. In other words,
computer languages for scientific applications should support complex arithmetic.

MAY/JUNE 2007 85

ei� � cos� + isin�,

so that

x = rcos�, y = rsin�.

Addition of complex numbers,

z + w = (x + iy) + (u + iv) = (x + u) + i(y + v),

is equivalent to vector addition in the plane, as Figure 2
shows.

Beware of Libraries
Some care is needed when performing complex arithmetic in
various languages that now include it—libraries generally
have issues the user needs to know. Let’s look at two examples.

A naive definition of, say, the absolute value of a complex
number,

is easy (as usual, I use a Fortran-ish cum C-ish pseudocode
for code fragments):

real function cabs (z)

return sqrt((Re(z))^2 + (Im(z))^2)

but it would never do in a library. If, say, Im(z) were larger
than the square root of the maximum floating-point num-

ber, then (Im(z))2 would overflow.2 Unfortunately, although
the C99 Standard3 is aware of such problems, I found the
naive version in more than one implementation of the li-
brary <complex.h>. (The function isn’t defined in Python,
as far as I know.) To minimize overflow problems, the cor-
rect way to write the code is

real function cabs (z)

complex z

if z = cmplx(0,0) return 0 \ check for z = 0

else

x = max(abs (Re(z)), abs (Im(z)))

y = min(abs (Re(z)), abs (Im(z)))

return x * sqrt(1 + (y/x)2)

There’s a speed hit relative to the naive version (because of the
extra division), but that’s better than unexpected overflows.

A second problem in writing a complex function library
has to do with the singularities known as “branch cuts,” in
complex-speak. (A singularity is a place where the function
behaves badly—for example, it might be infinite or discon-
tinuous.) Consider the complex logarithm function. It’s nat-
urally defined as

Of course, we should use the overflow-insensitive cabs
function to compute

Re[log()] lnx iy x y
df

+ = +⎛
⎝

⎞
⎠

2 2

log() ln() ln (/)x iy r i x y i y x+ = + ≡ +⎛
⎝

⎞
⎠ +ϑ 2 2 Arctan ..

| |z x y= +2 2

Im(z)

Re(z)

y

z

r

�

Figure 1. The Argand plane. This plane illustrates both the
vector representation of a complex number and its polar
representation.

y

x

z

z + w

w

Figure 2. Addition of complex numbers. Adding complex
numbers is equivalent to vector addition in the plane.

IN MEMORIAM

J ulian V. Noble passed away on 11 March in Charlottesville, Virginia. We knew him for several years through our collabora-
tion on this department. His charm, wit, erudition, and unique view of the world of computing always came through,

even in email. When we finally met him in person, we were delighted to learn that he was even better in the flesh than on
the screen. Besides our mutual obsession on how computing should be taught, we shared an interest in ancient TV come-
dies, especially those starring Sid Caesar. Unlike one of us, he remembered more than merely the “look and feel” of those
shows; he could quote large chunks of dialogue and do it with panache. Our vigorous debates over the form and content of
our department were a joy to us, and we think he liked them, too. We will miss him. —Francis Sullivan and Isabel Beichl

86 COMPUTING IN SCIENCE & ENGINEERING

(although this wasn’t done in the libraries I examined), but
the real issue is the imaginary part, involving the Arctan
function. Many implementations use the library function
atan2(x, y) analogous to the venerable Fortran version,
whose range is (–�, �). This automatically places the branch
cut along the negative real axis. I hasten to add that there’s
nothing wrong with this, but a user expecting the branch cut
to run along, say, the positive real axis could obtain nonsense.

Geometric Applications
The one-to-one correspondence between complex numbers
and Cartesian 2-vectors lets us replace vector operations—
usually expressed as matrix multiplication—with simple
complex arithmetic. For example, we rotate a 2-vector coun-
terclockwise by angle � via

.

Complex arithmetic simplifies this to z� = ei�z � (cos� +
isin�)z.

The dot product of two vectors is also simple:

z � w = xu + yv,

where

.

In most languages, we have to write the dot product as a
function or subroutine, but with complex arithmetic, we can
write it as a simple multiplication:

z � w = xu + yv = Re[(x – iy)(u + iv)] � Re(z * w).

Similarly, we can compute the vector product of two 2-
vectors (the usual vector product points perpendicular to
the x – y plane; I label that direction to distinguish it from
the complex number z):

.

That is, one complex multiplication, z * w, evaluates simul-
taneously both the dot and vector products of the 2-vectors
represented by z and w.

Intersecting Lines
To remove hidden lines in an image, we need to determine
whether two line segments in a plane intersect, and if so,
where. Two line segments can be represented parametrically
in vector notation by z(t) = a + (b – a)t, w(u) = A + (B – A)u,
where a, b and A, B are 2-vectors representing the segments’
endpoints. In complex notation,

z(t) = a + (b – a)t, w(u) = A + (B – A)u,

where a, b and A, B are complex numbers representing the
segments’ endpoints. In either representation, the parame-
ters t and u are real numbers in the interval [0, 1].

We must first decide whether the lines are parallel because
parallel lines don’t intersect. The cross-product of parallel
vectors vanishes, so we compute

[z(t) – z(0)] � [w(u) – w(0)] �
Im[(z(t) – z(0)) * (w(u) – w(0))]. (2)

If the cross-product doesn’t equal zero, the (infinitely ex-
tended) lines will intersect somewhere. We can therefore lo-
cate the point of intersection and determine whether it
corresponds to values of t and u, both of which lie between
0 and 1 (that is, whether the intersection point is common
to both segments). The segments cross if and only if this
condition is met. Line segments and (crossing seg-
ments) illustrate this case; Figure 3 also shows the segments

and (non-parallel, non-crossing) and and
(parallel, non-crossing).

In vector notation, the point of intersection for two lines
is given by a + (b – a)t = A + (B – A)u.

This represents the two simultaneous algebraic equations
in the two unknowns, t and u:

. (3)

We solve this in the usual fashion, leading to algebraically
complicated formulas for t and u.

Suppose we tackle the same problem using complex arith-
metic. The intersection point is then a + (b – a)t = A + (B –
A)u, so multiplying through by (b – a)*, we have

b a A B
b a A B

t
u

A a
A

x x x x

y y y y

x x

y

− −
− −

⎛

⎝⎜
⎞

⎠⎟
⎛
⎝⎜

⎞
⎠⎟

=
−
− aay

⎛

⎝⎜
⎞

⎠⎟

cd�AB�cd�ab�

AB�ab�

() ˆ Im(*)z w× ⋅ = − ≡ζ xv yu z w

ζ̂

z w=
⎛
⎝⎜

⎞
⎠⎟

=
⎛
⎝⎜

⎞
⎠⎟

x
y

u
v

,

x
y

x
y

'
'

cos sin
sin cos

⎛
⎝⎜

⎞
⎠⎟

=
−⎛

⎝⎜
⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

ϕ ϕ
ϕ ϕ

C O M P U T I N G P R E S C R I P T I O N S

c

d

a

b

A

B

Figure 3. Line segments. Some of the segments cross and
some don’t.

MAY/JUNE 2007 87

(b – a) * (b – a)t =
|b – a|2t = (b – a) * (A – a) + (b – a) * (B – A)u.

Taking the imaginary parts of both sides, and recalling that
t, u, and |b – a|2 are all real, we find

(4a)

and, mutatis mutandis,

. (4b)

The denominators are the same for t and u. In fact, they’re
the determinant of the 2 � 2 matrix in Equation 3 as well
as our criterion for parallelism. Because Im[(B – A) * (b –
a)] � 0—that is, the lines aren’t parallel—we aren’t divid-
ing by zero.

The expressions for t and u in complex arithmetic are
rather simple compared to what we get by solving vectorial
equations component-wise. The advantage of using com-
plex arithmetic for such tasks is that it hides complexity,
leading to a simpler, more maintainable program.

Point in a Triangle
Next, we’ll determine whether a given point lies within a
given triangle. Label the corners of the triangle with com-
plex numbers A, B, and C as in Figure 4.

If we rotate the line about the point A until it be-
comes horizontal (taking the sense of rotation to leave the
rotated point C� above), the rotated point Z� would
lie above the line if it lies within the triangle. Figure
5 shows how it should look.

Although a point Z� outside the triangle might lie above
one (rotated) side—say, —an outside point can’t si-
multaneously lie “above” all three (rotated) sides. Thus if we
repeat the rotation for the sides and , an exterior Z�
will end up below at least one rotated side. We therefore
transform Z once per side, each time inquiring whether the

new Z� lies above the corresponding side. If Z is “above” all
three sides, it must be an interior point of �ABC.

To transform Z relative to a given line (by translating
the origin to A and then rotating about A until is hor-
izontal), we write B – A = |B – A|e i�, and thus

.

Because we need only the algebraic sign of Im(Z�), we can
eliminate the division by the (positive) length |B – A|.
We’re left with the criterion

Im[(B – A) * (Z – A)] > 0.

However, we might have rotated the wrong way, so that the
point C � now lies below rather than above. We could
do more geometry to get the correct sense of rotation, but
it seems simpler to apply the transformation once to Z and
once to C and to multiply the criteria. We also have to check
that the triangle’s area is greater than some minimum be-
cause we aren’t interested in degenerate triangles.

Another useful application in which complex arithmetic
greatly simplifies the programming is motion in two di-
mensions. Unfortunately space doesn’t permit me to illus-
trate this here.

Numerical Integration in the Argand Plane
In an earlier installment of Computing Prescriptions,4 I
demonstrated how we could simplify a numerically difficult
real-valued Cauchy principal value integral

by rotating to the contour z = re–i�/3 and integrating in the
complex plane. The ability to do this derives from Cauchy’s
Theorem,5,6 which states that the contour integral of a func-
tion f(z) around a simple contour 	 vanishes if the function
is analytic within and continuous on the contour:

I P=
−

∞
∫ dx

x

1

1 30

A B' '�

Z e Z A
B A
B A

Z Ai' ()
() *
| |

()= − = −
−

−− ϑ

A B' '�
AB�

CA�BC�

A B' '�

A B' '�
A B' '�

AB�

t
B A A a
B A b a

= − −
− −

Im[() * ()]
Im[() * ()]

u
b a A a
B A b a

= − −
− −

Im[() * ()]
Im[() * ()]

C

B

A Z

Figure 4. A point within a triangle. We want to determine
whether point Z lies inside �ABC (Figure 5 shows how to
do so).

C ′

B ′A

Z ′

Figure 5. The point and the triangle after a rotation.
Rotate the triangle and point Z about point A until side

is horizontal. Does Z � lie above the line ?A B' '�A B' '�

88 COMPUTING IN SCIENCE & ENGINEERING

. (5)

Figure 6 illustrates the application of Cauchy’s Theorem to
this integral. The original contour (pink) avoids the pole at
x = 1 with a small semicircle that will shrink to zero radius.
The contour then continues with the black arc whose radius
R will become infinite. The integral on this arc is of O(R–2)
and so vanishes in that limit. Finally, the deformed (blue)
contour is the line z = re–i�/3. Because the integral around the
entire contour is zero, the integrals on the original and de-
formed contours are equal. We get the desired (principal
value) integral by comparing their real parts.

Consider the rather difficult integral

,

with A large and positive. Up to an uninteresting factor
IB(A) is a Bessel function of argument A and order B.7

When A is large, it’s hard to evaluate IB(A) precisely be-
cause the integrand oscillates fiercely, leading to a sum con-
sisting of small differences between large numbers.
Evaluation of such oscillatory integrals seems to be a topic
of some current interest.8

Because we’re trying to speed up this calculation, rela-
tive to brute-force numerical integration, it pays to elimi-
nate computationally expensive trig functions by the
change of integration variable t = cos�. The transformed
integral is

(6)

The function (1 – t2)� has (for noninteger �) branch points

at t = ±1; we can arrange the corresponding branch lines to
run along the real t-axis from –
 to +1. We’re integrating
along the green line t = x + i�, 0 � x � 1 in Figure 7. Let’s add
to the original line the sides and top (shown in blue) of the
tall, thin rectangle of base 1 and height L to make a closed
contour. According to Cauchy’s Theorem (Equation 5), the
integral around the closed rectangle is zero because the in-
tegrand is analytic within it. We can therefore write

The second integral (the line closing the top, from 1 + iL
to 0 + iL) can be neglected in the limit L �
 because it’s
bounded in magnitude by

Another change of variable t � iy lets us express IB(A) as

(7)

where the second line of Equation 7 follows from the as-

I A i dy e y e y y iB
Ay iA() Re [() (())]= + − −

=

−∞
∫ 1 22
0

λ λ

IIm (()) ,e dy e y y iiA Ay−∞
−∫ 2

0
λ

= + →−
→∞

() .3 02L e AL

L

λ

≤ +− ∫e dx LAL ()3 2
0

1 λ

e dx e x iL

e dx e

AL iAx

AL iAx

−

−

− + ≤

−

∫ (())

(

1

1

2
0

1 λ

(())x iL+∫ 2
0

1 λ

I A dt e t e tB
L

iAt iA() lim (() (()))= − − − +
→∞

1 1 12 2λ λ
ii

iL

L
AL iAxe dx e x iL

0

2
0

1
1

+

→∞
−

∫

∫+ − +lim (()) .λ

I A dt e t

dt e

B
iAt B

iAt

() Re ()

Re (

()/= −

≡

∫ −1

1

2
0

1 1 2

−−∫ t2
0

1
) .λ

I A d eB
iA B() Re (sin)cos/

= ∫ ϑ ϑϑπ
0

2

f z dz() =∫ 0
Γ
�

C O M P U T I N G P R E S C R I P T I O N S

Γ

y

x = 1
x

Figure 6. Deformed contour for the Cauchy principal value
integral. We can replace the integral along the real line
(pink) by an integral in the complex plane, along the
deformed contour (blue line plus black circle).

–1 0 1

1 + iL

Re t

Im t

0 + iL

Figure 7. The original (green) and deformed (blue)
contours of an oscillatory numerical integral. We replace
the integral along the original line by one along the
deformed contour because, for positive real A that
changes the oscillatory behavior of the integrand to
exponentially decreasing behavior, making it numerically
much easier to evaluate.

MAY/JUNE 2007 89

sumption that � is real (for complex �,
we must keep both terms from the first
line). The convergence of the integral
improves as A increases, quite the op-
posite behavior we encounter in evalu-
ating the original oscillating integral
(see Table 1).

We have thereby replaced an inte-
grand that definitely converges (it oscil-
lates in sign and decreases in magnitude)
with one that decays exponentially, for
which a Gauss-Laguerre quadrature
formula would be appropriate. Gauss-Laguerre quadrature9

approximates an integral on the interval [0,
) in the form

,

where the points �n and weights wn are free parameters—
that is, a quadrature formula of order N will integrate the
polynomial

f(x) = a0 + a1x +
 + a2N –1x2N–1

exactly. To integrate a function that behaves like e–Ax, we
simply rescale: t = Ax.

Table 1 lists values of the integral Equation 6 for several
large values of A and � = 7, computed in real arithmetic us-
ing adaptive quadrature. Table 1 also lists values of the trans-
formed integral Equation 7 computed by using adaptive
(Simpson’s rule) quadrature. It also shows the number of
evaluations of the integrand. Table 2 compares the evalua-
tion of the transformed integral by adaptive quadrature with
the results of a 10-point Gauss-Laguerre rule. The absolute
error criterion for the adaptive quadrature was 10–12; as
Table 1 shows, both the real and complex adaptive methods
agree with each other to this precision; the 10-point Gauss-
Laguerre method agrees with both to this precision, and it
requires only 10 evaluations of the integrand, so it’s the
method of choice.

D eforming the integration contour of an oscillatory in-
tegral into the complex plane is a trick I’ve long found

useful. Even when the integrand involves the solution of a
differential equation, the method still works because most
such equations are sufficiently analytic that they can be con-
tinued (numerically) into the complex plane. The key issue

is to make sure that in deforming the contour of integration,
we cross no singularities.

References
1. W.H. Press et al., Numerical Recipes in C, 2nd ed., Cambridge Univ.

Press, 1992, Appendix C.

2. D. Goldberg, “What Every Computer Scientist Should Know about
Floating-Point Arithmetic,” ACM Computing Surveys, vol. 23, no. 1,
1991, pp. 5–48.

3. C99 Draft Standard, Joint Tech. Committee ISO/IEC JTC1, Information
Technology, Subcommittee SC22, 6 May 2005; www.open-std.org/
jtc1/sc22/wg14/www/docs/n1124.pdf.

4. J.V. Noble, “Gauss-Legendre Principal Value Integration,” Computing in
Science & Eng., vol. 2, no. 1, 2000, pp. 92–95.

5. E.T. Copson, An Introduction to the Theory of Functions of a Complex Vari-
able, Clarendon Press, 1955.

6. E.T. Whittaker and G.N. Watson, A Course of Modern Analysis, 4th ed.,
Cambridge Univ. Press, 1963.

7. M. Abramowitz and I.A. Stegun, Handbook of Mathematical Functions,
Dover Publications, 1965, p. 360.

8. G.A. Evans and J.R. Webster, “A Comparison of Methods for the Evalua-
tion of Highly Oscillatory Integrals,” J. Computational and Applied Mathe-
matics, vol. 112, 1999, pp. 55–69.

9. M. Abramowitz and I.A. Stegun, Handbook of Mathematical Functions,
Dover Publications, 1965, p. 890.

Julian V. Noble was professor emeritus of physics at the University

of Virginia’s Department of Physics. His interests were eclectic, both

in and out of physics. His philosophy of teaching computational

methods was “no black boxes.” Noble passed away on 11 March in

Charlottesville, Va.

f x e dx f wx
n n

n

N
() ()−

=

∞
≈ ∑∫ ξ

1
0

Real Complex

A Ncalls I(A) Ncalls I(A)

10 2,445 7.31477251207E-3 1,545 7.31477251218E-3
20 3,601 –2.19385695893E-5 373 –2.19385695736E-5
30 4,917 8.87060992799E-7 177 8.87060992040E-7

Table 1. Quadrature by real and complex arithmetic.

Adaptive 10-pt Gauss-Laguerre

A Ncalls I(A) I(A)
10 1,545 7.31477251218E-3 7.31477251203E-3
20 373 –2.19385695736E-5 –2.19385695900E-5
30 177 8.87060992040E-7 8.87060992893E-7

Table 2. Adaptive vs. Gauss-Laguerre quadrature.

www.computer.org/internet/

Engineering and
Applying the Internet

I began learning Python in 2001, mainly as a way to pro-
crastinate during the final stages of preparing my dis-
sertation. I was hooked in short order. My numerical

and statistical workflow at the time was a mix of Fortran,
C++, and Matlab; I used the file system to communicate be-
tween the three. Python’s ability to integrate seamlessly and
transparently with high-performance compiled code dra-
matically simplified this workflow, but I couldn’t quite wean
myself from the breadth, quality, and ease of use that the
Matlab environment offered for graphics.

Around that time, I began a fairly substantial project that
involved writing an application to analyze human electro-
corticography (ECoG) signals registered with 3D medical
image data, and I debated long and hard about using
Python or Matlab. On balance—and after much hand
wringing—Matlab won, primarily because of its excellent
graphics and secondarily because of its widespread use in
the ECoG community. The application quickly grew in
complexity, ultimately incorporating 3D medical image vi-
sualizations, 2D ECoG displays, spectral and time-series
analyses, and the data structures required to represent hu-
man subject data. The networking support included data
files served up over HTTP, metadata served up over
MySQL, and some Web Common Gateway Interface
(CGI) forms thrown into the mix for good measure. Not
everyone knows that Matlab embeds its own Java Virtual
Machine (JVM), which makes it possible to handle all of
these things, but making them work together became in-
creasingly painful, and I eventually hit the wall and decided
to start all over again in Python.

The first step was to find a suitable replacement for the
Matlab 2D graphics engine (the Visualization Toolkit
[VTK] in Python provided 3D-visualization support that
was more than adequate for my purposes). Although a score
of graphics packages were and are readily available for
Python, none met all my needs: they had to be embeddable

in a GUI for application development, support different
platforms, offer extremely high-quality raster and vector
(primarily PostScript) hardcopy output for publication, pro-
vide support for mathematical expressions, and work inter-
actively from the shell.

I wrote matplotlib to satisfy these needs, concentrating
initially on the first requirement so I could get up and run-
ning with my ECoG application (the pbrain component of
the “neuroimaging in Python project” at http://nipy.scipy.
org; also, see p. 52 in this issue) and then gradually adding
support for the others, with generous contributions from
the matplotlib community. Because I was intimately famil-
iar with Matlab and happy with its graphics environment, I
followed the advice of Edward Tufte (“copy the great archi-
tectures”) and T.S. Elliot (“talent imitates, but genius
steals”) and reverse-engineered the basic Matlab interface.
Figure 1 shows a screenshot of the pbrain ECoG viewer I
wrote in matplotlib.

The latest release of matplotlib runs on all major operat-
ing systems, with binaries for Macintosh’s OS X, Microsoft
Windows, and the major Linux distributions; it can be em-
bedded in GUIs written in GTK, WX, Tk, Qt, and FLTK;
has vector output in PostScript, Scalable Vector Graphics
(SVG), and PDF; supports TeX and LaTeX for text and
mathematical expressions; supports major 2D plot types and
interactive graphics, including xy plots, bar charts, pie
charts, scatter plots, images, contouring, animation, pick-
ing, event handling, and annotations; and is distributed un-
der a permissive license based on the one from the Python
Software Foundation. Along with a large community of
users and developers, several institutions also use and sup-
port matplotlib development, including the Space Telescope
Science Institute and the Jet Propulsion Laboratory.

Getting Started: A Simple Example
Matplotlib has a Matlab emulation environment called

90 Copublished by the IEEE CS and the AIP 1521-9615/07/$25.00 © 2007 IEEE COMPUTING IN SCIENCE & ENGINEERING

MATPLOTLIB:
A 2D GRAPHICS ENVIRONMENT
By John D. Hunter

Editors: George K. Thiruvathukal, gkt@cs.luc.edu

Konstantin Läufer, laufer@cs.luc.edu

S C I E N T I F I C P R O G R A M M I N G

Matplotlib is a 2D graphics package used for Python for application development, interactive scripting,
and publication-quality image generation across user interfaces and operating systems.

MAY/JUNE 2007 91

PyLab, which is a simple wrapper of the matplotlib API. Al-
though many die-hard Pythonistas bristle at PyLab’s Mat-
lab-like syntax and its from pylab import * examples,
which dump the PyLab and NumPy functionality into a sin-
gle namespace for ease of use, this feature is an essential sell-
ing point for many teachers whose students aren’t
programmers and don’t want to be: they just want to get up
and running. For many of these students, Matlab is the only
exposure to programming they’ve ever had, and the ability
to leverage that knowledge is often a critical point for teach-
ers trying to bring Python into the science classroom. In
Figure 2 , I’ve enabled the usetex parameter in the mat-
plotlib configuration file so LaTeX can generate both the
text and the equations.

Let’s look at a sample session from IPython, the interac-
tive Python shell that is matplotlib-aware in PyLab mode
(also see p. 21 in this issue):

> ipython -pylab

IPython 0.7.3 — An enhanced Interactive Python.

Welcome to pylab, a matplotlib-based

Python environment. For more information,

type ‘help(pylab)’.

In [1]: subplot(111)

In [2]: t = arange(0.0,3.01,0.01)

In [3]: s = sin(2*pi*t)

In [4]: c = sin(4*pi*t)

In [5]: fill(t, s, ‘blue’, t, c, ‘green’,

alpha=0.3);

In [6]: title(r’\TeX\ is

No.$\displaystyle\sum_{n=1}^\infty

\frac{-e^{i\pi}}{2^n}$!’)

IPython detects which GUI windowing system you want
to use by inspecting your matplotlib configuration, imports
the PyLab namespace, and then makes the necessary thread-
ing calls so you can work interactively with a GUI mainloop
such as GTK’s.

Images, Color Mapping,
Contouring, and Color Bars
In addition to simple line plots, you can fairly easily create
more sophisticated graphs, including color-mapped images
with contouring and labeling, in just a few lines of Python.
For pseudocolor images, matplotlib supports various image-
interpolation and color-mapping schemes. For interpola-
tion, you can choose “nearest” (which does a nearest

neighbor interpolation for those who just want to see their
raw data), “bilinear,” “bicubic,” and 14 other interpolation
methods for smoothing data. For color mapping, all the clas-
sic color maps from Matlab are available (gray, jet, hot,
copper, bone, and so on) as well as scores more. You can
also define custom color maps.

Let’s look at a Python script that computes a bivariate
Gaussian distribution plotted as a grayscale image and then
overlays contour lines using the heated object scale hot
color map:

Figure 1. The PBrain project. An electrocorticography
(ECoG) viewer, written in matplotlib and embedded in a
pygtk application.

Figure 2. LaTeX support. Setting the usetex option in the
matplotlib configuration file enables LaTeX generation of
the text and equations in a matplotlib figure, as this
screenshot shows.

92 COMPUTING IN SCIENCE & ENGINEERING

from pylab import figure, cm, nx, show

from matplotlib.mlab import meshgrid, \

bivariate_normal

delta = 0.025

x = nx.arange(-3.0, 3.0, delta)

y = nx.arange(-2.0, 2.0, delta)

X, Y = meshgrid(x, y)

Z1 = bivariate_normal(X, Y, 1.0, 1.0, 0.0, 0.0)

Z2 = bivariate_normal(X, Y, 1.5, 0.5, 1, 1)

Z = 10.0 * (Z2 - Z1) # difference of Gaussians

fig = figure()

ax = fig.add_subplot(111)

make a grayscale image

im = ax.imshow(Z, interpolation=’bilinear’,

cmap=cm.gray, extent=(-3,3,-2,2),

origin=’lower’)

levels = nx.arange(-1.2, 1.6, 0.2)

do a contour using a “hot” colormap for

the lines

cs = ax.contour(Z, levels, linewidths=2,

cmap=cm.hot, extent=(-3,3,-2,2),

origin=’lower’)

label every 2nd contour inline

ax.clabel(cs, levels[1::2], inline=1,

fmt=’%1.1f’)

make a colorbar for the contour lines

cbar = fig.colorbar(cs, shrink=0.8,

extend=’both’)

we can still add a colorbar for the image, too.

cbarim = fig.colorbar(im, orientation=

’horizontal’, shrink=0.8)

This makes the original colorbar look a bit

out of place, so let’s improve its position.

l,b,w,h = ax.get_position()

ll,bb,ww,hh = cbar.ax.get_position()

cbar.ax.set_position([ll, b+0.1*h, ww, h*0.8])

show()

Figure 3 shows the output of this Python script, with mul-
tiple color maps and color bars supported in a single axes, as
well as continuous (the horizontal gray bar) and discrete
color bars (the vertical hot bar).

Interactive Plotting
To facilitate interactive work, matplotlib provides access to ba-
sic GUI events, such as button_press_event, mouse
_motion_event, key_press_event, draw_event, and so
on; you can also register with these events to receive callbacks.
In addition to the GUI-provided information, we attach mat-
plotlib-specific data—if you connect to the button_
press_event, for example, you can get the button press’s x
and y location in the display space, the xdata and ydata co-
ordinates in the user space, which axes the click occurred in,
and the underlying GUI event that generated the callback.

Event Handling
Matplotlib abstracts GUI event handling across the five ma-
jor GUIs it supports, so event-handling code written in mat-
plotlib works across many different GUIs. Let’s look at a
simple example that reports the x and y locations in the dis-
play and user spaces with a mouse click:

from pylab import figure, show

fig = figure()

ax = fig.add_subplot(111)

ax.plot([1,2,3])

def onpress(event):

if not event.inaxes: return

print ‘click’

print ‘\tuser space: x=%1.3f, y=%1.3f’%(

S C I E N T I F I C P R O G R A M M I N G

Figure 3. Images, contours, and color mapping. This
screenshot from matplotlib illustrates how to add contour
lines to luminosity images; note that the use of multiple
color maps (gray and hot) and color bars (continuous
and discrete) are supported.

MAY/JUNE 2007 93

event.xdata, event.ydata)

print ‘\tdisplay space: x=%1.3f, y=%1.3f’%(

event.x, event.y)

fig.canvas.mpl_connect(‘button_press_event’,

onpress)

show()

Basic events like button and key presses, mouse motion,
and canvas drawing are supported across the five GUIs that
matplotlib supports, thus matplotlib code written for one
GUI will port without changes to another.

Picking
All matplotlib Artist primitives define a method pick that
supports picking so that users can interactively select objects
in the plot scene via mouse clicks. Users can also define
threshold tolerance criteria in distance units—for example,
to define a hit if the mouse click is within five printer’s points
of the graphical object—or provide a custom hit-testing
function. Let’s print the data points that fall within five
points of the mouse-click location:

from pylab import figure, nx, show

fig = figure()

ax1 = fig.add_subplot(111)

5 points tolerance

line, = ax1.plot(nx.mlab.rand(100), ‘o’,

picker=5)

def onpick(event):

line = event.artist

xdata = line.get_xdata()

ydata = line.get_ydata()

ind = event.ind

print ‘data: ‘, zip(nx.take(xdata, ind),

nx.take(ydata, ind))

fig.canvas.mpl_connect(‘pick_event’, onpick)

show()

More elaborate examples, such as defining custom hit-
testing functions, are located in the examples directory of
the matplotlib source distribution.

Matplotlib Toolkits
Matplotlib supports toolkits for domain-specific plot-

ting functionality that’s either too big or too narrow in
purpose for the main distribution. Jeffrey Whitaker of
the US National Oceanic and Atmospheric Association
offers the excellent basemap toolkit for plotting data on
map projections (http://matplotlib.sourceforge.net/mat
plotlib.toolkits.basemap.basemap.html). Some of the
available projections include cylindrical equidistant,
mercator, lambert conformal conic, lambert azimuthal
equal area, albers equal area conic, stereographic, and
many others. The basemap toolkit ships with the proj4
library and Python wrappers to do the projections.
Coastlines, political boundaries, and rivers are available
in four resolutions: crude, low, intermediate, and high.
The toolkit also supports contouring and annotations.
Figure 4 shows an orthographic map projection of the
Earth from the perspective of a satellite looking down at
50N, 100W using low-resolution coastlines and from
this code:

from matplotlib.toolkits.basemap import Basemap

from pylab import nx, show

don’t plot features that are smaller than

1000 square km.

map = Basemap(projection=’ortho’,lat_0=50,

lon_0=-100, resolution=’l’,

area_thresh=1000.)

draw coastlines, country boundaries, fill

continents.

map.drawcoastlines()

map.drawcountries()

map.fillcontinents(color=’coral’)

draw the edge of the map projection region

(the projection limb)

map.drawmapboundary()

draw lat/lon grid lines every 30 degrees.

map.drawmeridians(nx.arange(0,360,30))

map.drawparallels(nx.arange(-90,90,30))

show()

Many more sophisticated examples including annota-
tions, alternate projections, and detailed political and geo-
graphic boundaries are available in the examples directory
of the basemap toolkit, which also ships with shape files for
the boundaries.

94 COMPUTING IN SCIENCE & ENGINEERING

The Matplotlib API
At its highest level, the matplotlib API has three basic
classes: FigureCanvasBase is the canvas onto which the
scene is painted, analogous to a painter’s canvas;
RendererBase is the object used to paint on the canvas,
analogous to a paintbrush; and Artist is the object that
knows how to use a renderer to paint on a canvas. Artist
is also where most of the interesting stuff happens; basic
graphics primitives such as Line2D, Polygon, and Text all
derive from this base class. Higher-level artists such as
Tick (for creating tick lines and labels) contain layout al-
gorithms and lower-level primitive artists to handle the
drawing of the tick line (Line2D), grid line (Line2D), and
tick label (Text). At the highest level, the Figure instance
itself is an Artist that contains one or more Axes in-
stances—the subplot command in Figure 2 creates an
Axes instance.

The basic drawing pipeline is fairly straightforward. For
concreteness, let’s look at the Agg back end. Agg is the core
matplotlib raster back end that uses the antigrain C++ ren-
dering engine to create pixel buffers with support for anti-
aliasing and alpha transparency (see www.antigrain.com).
FigureCanvasAgg creates the pixel buffer, and Renderer
Agg provides low-level methods for drawing onto the can-
vas—for example, with draw_lines or draw_polygon.
The canvas is created with a reference to Figure, which
is the top-level Artist that contains all other artists. This

provides a rigid segregation between Figure and the out-
put formats. Let’s look at a complete example that uses the
Agg canvas to make a PNG output file:

from matplotlib.backends.backend_agg import \

FigureCanvasAgg as FigureCanvas

from matplotlib.figure import Figure

fig = Figure()

canvas = FigureCanvas(fig)

ax = fig.add_subplot(111)

ax.plot([1,2,3])

fig.savefig(‘agg_demo.png’)

To create a different output format, such as PostScript, we
need only change the first line to from matplotlib.back-
ends.backend_ps import FigureCanvasPS as Fig-

ureCanvas. The method canvas.draw() in our code
example creates a back-end-specific renderer and forwards
the draw call to Figure. The draw method looks like this:

class FigureCanvasAgg(FigureCanvasBase):

def draw(self):

renderer = RendererAgg(self.width,

self.height, ...)

self.figure.draw(renderer)

Every Artist must implement the draw method; the call
to Figure.draw calls Axes.draw for each Axes in the Fig-
ure. In turn, Axes.draw calls Line2D.draw for every line
in the Axes, and so on, until all the matplotlib Artists con-
tained in the figure are drawn. Let’s look at the code for the
top-level Line2D.draw method, which closes the circle be-
tween the high-level matplotlib Artists and the low-level
primitive renderer methods:

class Line2D(Artist):

def draw(self, renderer):

x, y = self.get_transformed_xy()

gc = renderer.new_gc()

gc.set_foreground(self._color)

gc.set_antialiased(self._antialiased)

gc.set_linewidth(self._linewidth)

gc.set_alpha(self._alpha)

renderer.draw_lines(gc, x, y)

This code illustrates the encapsulation of the back-end ren-
derer from the matplotlib Artist: the Line2D class knows

S C I E N T I F I C P R O G R A M M I N G

Figure 4. Low-resolution satellite view of the Earth using
the matplotlib basemap toolkit. Higher-resolution political
and geographic boundaries, as well as a wealth of map
projections, are available as configuration options in the
toolkit.

MAY/JUNE 2007 95

that the Renderer instance has a draw lines method, but
doesn’t know what kind of output it renders to, be it a Post-
Script canvas or GTK DrawingArea. Likewise, the renderer
and canvas don’t know anything about the matplotlib coordi-
nate system or figure hierarchy or primitive geometry types;
instead, they rely on the individual artists to do the layout and
transformation and make the appropriate primitive renderer
calls. Although this design isn’t always ideal—for example, it
doesn’t exploit some of the features in a given output specifi-
cation—it does keep the back ends reasonably simple and
dumb, allowing us to quickly add support for a new format.

M atplotlib has achieved many of its early goals; its cur-
rent objectives include improving performance for

real-time plotting and offering better support for an arbi-
trary number of scales for a given axis, user coordinate sys-
tems, and basic 3D graphics (http://matplotlib.sf.net/goals.
html). The latter goal is one of the most frequent requests
from matplotlib users.

The requirement for high-quality 3D graphics and visual-
ization in Python is mostly solved via the wrapping of VTK;
MayaVi2, which is part of the Enthought Toolsuite
(http://code.enthought.com), provides a convenient Matlab-
like interface to VTK’s fairly complex functionality. Mat-
plotlib provides some rudimentary 3D graphics, and we want
to improve them so that our users can rely on basic function-
ality for surfaces, meshes, and 3D scatterplots without having
to depend on the VTK installation. But for anything more so-
phisticated, we prefer to stick to our core competency—high-
quality interactive scientific 2D graphs—rather than trying to
replicate the already fantastic graphics provided by VTK and
the MayaVi wrappers.

John D. Hunter is Senior Research Programmer and Analyst at

Tradelink. His research interests include scientific visualization and

event-driven trading strategies. Hunter has a PhD in neurobiology

from the University of Chicago. Contact him at jdh2358@

gmail.com.

Circulation: Computing in Science & Engineering (ISSN 1521-9615) is published bimonthly by the AIP and the IEEE Computer Society. IEEE Headquarters,
Three Park Ave., 17th Floor, New York, NY 10016-5997; IEEE Computer Society Publications Office, 10662 Los Vaqueros Circle, PO Box 3014, Los Alamitos,
CA 90720-1314, phone +1 714 821 8380; IEEE Computer Society Headquarters, 1730 Massachusetts Ave. NW, Washington, DC 20036-1903; AIP
Circulation and Fulfillment Department, 1NO1, 2 Huntington Quadrangle, Melville, NY 11747-4502. 2007 annual subscription rates: $45 for Computer
Society members (print plus online), $76 (sister society), and $100 (individual nonmember). For AIP society members, 2007 annual subscription rates are
$45 (print plus online). For more information on other subscription prices, see www.computer.org/subscribe/ or https://www.aip.org/forms/journal
_catalog/order_form_fs.html. Computer Society back issues cost $20 for members, $96 for nonmembers; AIP back issues cost $22 for members.

Postmaster: Send undelivered copies and address changes to Computing in Science & Engineering, 445 Hoes Ln., Piscataway, NJ 08855. Periodicals postage
paid at New York, NY, and at additional mailing offices. Canadian GST #125634188. Canada Post Corporation (Canadian distribution) publications mail
agreement number 40013885. Return undeliverable Canadian addresses to PO Box 122, Niagara Falls, ON L2E 6S8 Canada. Printed in the USA.

Copyright & reprint permission: Abstracting is permitted with credit to the source. Libraries are permitted to photocopy beyond the limits of US
copyright law for private use of patrons those articles that carry a code at the bottom of the first page, provided the per-copy fee indicated in the code is
paid through the Copyright Clearance Center, 222 Rosewood Dr., Danvers, MA 01923. For other copying, reprint, or republication permission, write to
Copyright and Permissions Dept., IEEE Publications Administration, 445 Hoes Ln., PO Box 1331, Piscataway, NJ 08855-1331. Copyright © 2007 by the
Institute of Electrical and Electronics Engineers Inc. All rights reserved.

Advertising Sales
Representatives

Mid Atlantic (product/recruit-
ment)
Dawn Becker
Phone: +1 732 772 0160
Fax: +1 732 772 0164
Email: db.ieeemedia@ieee.org

New England (product)
Jody Estabrook
Phone: +1 978 244 0192
Fax: +1 978 244 0103
Email: je.ieeemedia@ieee.org

New England (recruitment)
John Restchack
Phone: +1 212 419 7578
Fax: +1 212 419 7589
Email: j.restchack@ieee.org

Connecticut (product)
Stan Greenfield
Phone: +1 203 938 2418
Fax: +1 203 938 3211
Email: greenco@optonline.net

Midwest (product)
Dave Jones
Phone: +1 708 442 5633
Fax: +1 708 442 7620
Email: dj.ieeemedia@ieee.org
Will Hamilton

Phone: +1 269 381 2156
Fax: +1 269 381 2556
Email: wh.ieeemedia@ieee.org
Joe DiNardo
Phone: +1 440 248 2456
Fax: +1 440 248 2594
Email: jd.ieeemedia@ieee.org

Southeast (recruitment)
Thomas M. Flynn
Phone: +1 770 645 2944
Fax: +1 770 993 4423
Email: flynntom@mindspring.com

Southeast (product)
Bill Holland
Phone: +1 770 435 6549
Fax: +1 770 435 0243
Email: hollandwfh@yahoo.com

Midwest/Southwest (recruit-
ment)
Darcy Giovingo
Phone: +1 847 498-4520
Fax: +1 847 498-5911
Email: dg.ieeemedia@ieee.org

Southwest (product)
Steve Loerch
Phone: +1 847 498 4520
Fax: +1 847 498 5911
Email:
steve@didierandbroderick.com

Northwest (product)
Peter D. Scott
Phone: +1 415 421-7950
Fax: +1 415 398-4156
Email: peterd@pscottassoc.com

Southern CA (product)
Marshall Rubin
Phone: +1 818 888 2407
Fax: +1 818 888 4907
Email: mr.ieeemedia@ieee.org

Northwest/Southern CA (recruit-
ment)
Tim Matteson
Phone: +1 310 836 4064
Fax: +1 310 836 4067
Email: tm.ieeemedia@ieee.org

Japan
Tim Matteson
Phone: +1 310 836 4064
Fax: +1 310 836 4067
Email: tm.ieeemedia@ieee.org

Europe (product)
Hilary Turnbull
Phone: +44 1875 825700
Fax: +44 1875 825701
Email:
impress@impressmedia.com

Advertiser | Product Index
May | June 2007

Advertiser Page number
AAPM 2007 Cover 3
LinuxWorld 2007 Cover 4

*Boldface denotes advertisements in this issue

Advertising Personnel
Marion Delaney | IEEE Media, Advertising Director
Phone: +1 415 863 4717 | Email: md.ieeemedia@ieee.org

Marian Anderson | Advertising Coordinator
Phone: +1 714 821 8380 | Fax: +1 714 821 4010
Email: manderson@computer.org

Sandy Brown
IEEE Computer Society | Business Development Manager
Phone: +1 714 821 8380 | Fax: +1 714 821 4010
Email: sb.ieeemedia@ieee.org

96 Copublished by the IEEE CS and the AIP 1521-9615/07/$25.00 © 2007 IEEE COMPUTING IN SCIENCE & ENGINEERING

T H E L A S T W O R D

characters, each of which must be correct. But others are of
a much different and more subtle character and can persist
for years before being exposed.

I recall working on a code for a molecular dynamics sim-
ulation. Every few time steps of integration of the govern-
ing differential equations required a recalculation of each
particle’s local neighborhood because the particles moved
as the simulation proceeded. Because this recalculation was
so frequent, not too much was expected to change between
updates. I tried to take advantage of this fact by using Edsger
Dijkstra’s elegant smoothsort algorithm, which runs in lin-
ear time on lists that are almost sorted. After the program
we’d written had been in use for several years and served as
the basis of a few publications, I noticed that I’d made an er-
ror by coding an “improved” smoothsort! The bug re-
mained hidden because my implementation was correct
unless the number of particles grew quite large. When I ex-
plained this to the users, I learned that they’d quietly re-
placed my version of smoothsort with a correct quicksort
years earlier because they didn’t understand how smooth-
sort was supposed to work.

Ever since this strange episode, I’ve wondered how and
why such things can happen. Of course, if the pseudocode is
well structured, it’s possible to write a correct program with-
out having any understanding of the algorithm. It reminds
me of the song “Lobachevsky” by Tom Lehrer:

I am never forget the day I am given first original paper to write.
It was on Analytic and Algebraic Topology of Locally Euclidean
Metrization of Infinitely Differentiable Riemannian Manifold.
Bozhe moi! This I know from nothing. But I think of great
Lobachevsky and I get idea—haha!

Lobachevsky’s idea, of course, was to plagiarize. However, in-

stead of merely plagiarizing from smoothsort’s pseudocode, I
decided to do something more dangerous: I decided to think.
The error was typical of what can happen when you “almost”
understand an algorithm and then make a small change to ex-
press things differently. In other words, the mistake was in my
interpretation of what I thought was smoothsort logic.

Philosophers have written extensively about logic errors,
focusing on the question of how they could occur if every-
thing is done according to logic. These authors usually mean
“true” errors rather than something like a typing mistake, but
it’s difficult to tell if they assume that, for every proposition,
either it or its negation could be proved. In the case of com-
puter programs, Dijkstra and his colleagues strongly advo-
cated a technology of formal verification, which can be useful
in small cases because it provides clarity, discipline, and struc-
ture. If I’d done a formal analysis of my modification, I might
have found the flaw. But then, of course, I’d have to somehow
check the formal verification, perhaps by doing a higher-level
even more formal verification of the first formal verification,
and so on. It begins to feel like the halting problem.

S o what is to be done? I suspect a completely reliable,
formal, and rigorous self-checking method for express-

ing algorithms is impossible. This doesn’t mean we shouldn’t
try for clarity of expression, but in the end, the acid test is to
run the program on real data—lots and lots of real data. Dur-
ing the Punic wars, the Roman senator Cato said Carthago
delenda est! (Carthage must be destroyed!) With apologies to
all readers expert in Latin, I’m adopting as a motto, data vera
utenda sunt! (Real data must be used!)

Francis Sullivan is the director of the IDA Center for Computing Sci-

ences in Bowie, Maryland. Contact him at fran@super.org.

WRONG AGAIN!

By Francis Sullivan

E VERYONE WHO’S EVER WRITTEN A PROGRAM MUST HAVE WONDERED AT

SOME POINT HOW SO VERY MANY REALLY SNEAKY BUGS MANAGED TO

CREEP INTO THE CODE. SOME ERRORS, OF COURSE, ARE MERELY TYPING MIS-

TAKES—EVEN A MODERATE-SIZED PROGRAM CONSISTS OF SEVERAL THOUSAND

