
In recent years, various universities have sup-
plemented their usual courses on theoretical
and experimental physics with courses on
computational physics, and the physics de-

partment at the Technische Universität Dresden is
no exception. In this article, I give a short overview
of our experience in establishing such a course with
Python as a programming language. The course’s
main goal is to enable students to solve problems
in physics with the help of numerical computations.
In particular, we want them to use graphical and in-
teractive exploration to gain a more profound un-
derstanding of the underlying physical principles
and the problem at hand.

Starting the Course
After setting up a list of possible topics for the
course, one of the first decisions we had to make
was our choice of programming language. Several
points drove our decision to pick Python:

• It’s freely available for Linux, Macintosh, and
Windows systems.

• For a full programming language, it’s easy to
learn (even for beginners).

• Its readable and compact code allows for a shorter
development time, which gives students more
time to concentrate on the physics problem itself.

• It can be used interactively, including for plotting.
• Object-oriented programming (OOP) is possi-

ble, but it isn’t required.

We started the computational physics course in
2002 and have run it every summer term since
then, with student numbers increasing from
roughly 20 to 70 students total—up to 50 percent
of each year’s physics students. Two-hour tutorials
and exercise sheets accompany the two-hour
weekly lectures that cover both the physical and
numerical aspects of elementary numerical meth-
ods (differentiation, integration, zero finding), dif-
ferential equations, random numbers, stochastic
processes, Fourier transformation, nonlinear dy-
namics, and quantum mechanics. Students hand in
their solutions by email, and instructors print out,
test, correct, grade, and return their programs in
the next tutorial session to provide individual feed-
back. In addition, we post extensively commented
sample solutions on the course’s Web page.

Student Experience
Over the years since the course’s inception, we’ve
found our students’ knowledge of programming

30 THIS ARTICLE HAS BEEN PEER-REVIEWED. COMPUTING IN SCIENCE & ENGINEERING

Computational Physics
Education with Python

Educators at an institution in Germany have started using Python to teach computational
physics. The author describes how graphical visualizations also play an important role,
which he illustrates here with a few simple examples.

ARND BÄCKER

Technische Universität Dresden

1521-9615/07/$25.00 © 2007 IEEE

Copublished by the IEEE CS and the AIP

P Y T H O N :
B A T T E R I E S I N C L U D E D

MAY/JUNE 2007 31

languages to be rather diverse, ranging from no
experience at all to detailed expertise in C++.
With a few exceptions, we rarely found previous
knowledge of Python. To provide the necessary
basics, we give a short introduction to the lan-
guage, which makes extensive use of Python’s in-
teractive capabilities (with IPython). This
introduction covers the use of variables, simple
arithmetic, loops, conditional execution, small
programs, and subroutines. Of particular impor-
tance for numerical computations is the use of ar-
rays provided by NumPy, which lets the students
write efficient code without explicit loops. Again,
this makes the code compact but also enhances its
readability and programming speed. Students can
use SciPy for additional numerical routines, such
as solving ordinary differential equations or com-
puting special functions.

Finally, we give a short introduction to plotting
via matplotlib. After starting IPython with support
for interactive plotting via ipython –pylab, stu-
dents can do

Array of x values

x = linspace(0.0, 2.0*pi, 100)

plot graph of sin(x) vs. x:

plot(x,sin(x))

add another graph

plot(x,cos(2*x))

and then zoom into the resulting plot via the mouse.

from pylab import * # plotting routines

from scipy.integrate import odeint # routine for ODE integration

def derivative(y, t):

"""Right hand side of the differential equation.

Here y = [phi, v].

"""

return array([y[1], sin(y[0]) + 0.25* cos(t)]) # (\dot{\phi}, \dot{v})

def compute_trajectory(y0):

"""Integrate the ODE for the initial point y0 = [phi_0, v_0]"""

t = arange(0.0, 100.0, 0.1) # array of times

y_t = odeint(derivative, y0, t) # integration of the equation

return y_t[:, 0], y_t[:, 1] # return arrays for phi and v

compute and plot for two different initial conditions:

phi_a, v_a = compute_trajectory([1.0, 0.9])

phi_b, v_b = compute_trajectory([0.9, 0.9])

plot(phi_a, v_a)

plot(phi_b, v_b, "r-–")

xlabel(r"φ")

ylabel(r"v")

show()

Figure 1. Python program to compute and visualize a driven pendulum’s time evolution.

Figure 2. Pendulum example. Using matplotlib,
we can visualize a driven pendulum’s dynamics
(described in Equation 1) for two different initial
conditions (bold and dashed curves).

32 COMPUTING IN SCIENCE & ENGINEERING

Two Examples
A typical example we use in the classroom is a dri-
ven pendulum, described by

,

which we can rewrite as a coupled differential
equation:

(1)

for which the simple program in Figure 1 computes
the time evolution.

Figure 2 shows the resulting plot of v versus � as
a screenshot; in this system, we see how a moder-
ate change in the initial condition leads to quite dif-
ferent behavior after a short time period.

A more advanced example is the visualization of
quantum probability densities for the hydrogen
atom’s wave functions, which, in spherical coordi-
nates, reads

(2)

where n, l, and m are the quantum numbers that
characterize the wave function, Y is the spherical
harmonics (numerically determined from scipy.
special.sphharm), and L is the associated La-

guerre polynomial (determined from scipy.
special.assoclaguerre).

Because �(x, y, z) is a scalar function defined on
�3, we can either use a density plot or plot equi-
energy surfaces. Instead of writing the corre-
sponding (nontrivial) visualization routines from
scratch, we use the extremely powerful Visualiza-
tion Toolkit (VTK; www.vtk.org), whose routines
are also accessible from Python. The first step is to
generate a data file suitable for VTK by choosing a
rasterization in Cartesian coordinates (x, y, z) on
[–40, 40]3 with 100 points in each direction,

vtk DataFile Version 2.0

data.vtk hydrogen wave function data

ASCII

DATASET STRUCTURED_POINTS

DIMENSIONS 100 100 100

ORIGIN -40.0 -40.0 -40.0

SPACING 0.8 0.8 0.8

POINT_DATA 1000000

SCALARS scalars float

LOOKUPTABLE default

... 1000000 real numbers corresponding

to |\psi_{5,2,1}(x,y,z)|^2...

We can visualize this data set with MayaVi by
starting at the shell prompt

mayavi -d data.vtk -m IsoSurface -m Axes

This command line reads the data file hdata.vtk,

Ψn l m

lm

r

Y
, , (, ,)

(,)

υ ϕ
υ ϕ

=

⋅ (()!(/)
[()]!

(/)

n l n
n n l

r n l

− −
+

⋅

1 2
2

2

3

ee L r nr n
n l
l−
− −
+/ (/),1

2 1 2

�
�
ϕ
υ ϕ

=
= +

v
tsin (/)cos1 4

��ϕ ϕ= +sin (/)cos1 4 t

(a) (b)

Figure 3. Isosurface example. The (a) screenshot of a MayaVi visualization shows a surface of constant
value of |�n,l,m(x, y, z)|2 for the hydrogen atom, where n, l, m = 5, 2, 1. With minor variations, we get
(b) the same type of plot, but with a scalar cut-plane and a different lookup table.

MAY/JUNE 2007 33

loads the isosurface module, and adds axes to the
plot. By modifying the isosurface’s value, we get the
plot in Figure 3a for n, l, m = 5, 2, 1. Adding a
scalar-cut-plane, a different color lookup table, and
varying the view takes us to Figure 3b. This short
example shows that with only a moderate level of
effort, highly instructive and appealing data visual-
izations are possible.

At the end of the course, students give a short
presentation on a small project of their choice. In
this task, the students’ creativity isn’t limited by
Python because it helps them create highly illus-
trative dynamical visualizations, some of them even
in 3D (with VPython; www.vpython.org).

Our initial attempt at using Python for
teaching computational physics has
proven to be highly successful. In fact,
several students have continued to use

Python for other tasks, such as data analysis in ex-
perimental physics courses or during a diploma
thesis outside our group. The plan is to fully inte-
grate the computational physics course into the
compulsory curriculum.

Acknowledgments
I thank Roland Ketzmerick, with whom the concept of
this computational physics course was developed jointly.
I also thank the people involved in setting up and running
the course. Finally, a big thanks to all the authors and
contributors to Python and the software mentioned here.

Arnd Bäcker is a scientific researcher at the Institut für
Theoretische Physik, Technische Universität Dresden. His
research interests include nonlinear dynamics, quantum
chaos, and mesoscopic systems. Bäcker has a PhD in the-
oretical physics from the Universität Ulm. Contact him at
baecker@physik.tu-dresden.de.

The purpose of this conference is to identify problems where computation helps students understand key physics
concepts. Participants are university and college faculty interested in integrating computation at their home
institutions. Some participants already teach or have taught computational physics to undergraduates and some are
looking for ways to integrate computational physics into their existing physics curriculum.

Participants will contribute and discuss algorithms and curricular material for teaching core subjects such as
mechanics, electricity and magnetism, quantum mechanics, and statistical and thermal physics. Participants will
prepare and edit their material for posting on an AAPT website such as ComPADRE. Visiting experts will give talks
on how computational physics may be used to present key concepts and current research to undergraduates.

Participants are invited to prepare a poster describing how they incorporate computational physics into their
teaching, what projects they have assigned to students at different levels, and how computation has enhanced their
curriculum. Posters will remain up throughout the conference.

Invited speakers include Amy Bug (Swarthmore College), Norman Chonacky (CiSE editor), Francisco Esquembre
(University of Murcia, Spain), Robert Swendsen(Carnegie-Mellon University) , Steven Gottlieb (Indiana University),
Rubin Landau (Oregon State University), Julien C. Sprott (University of Wisconsin), Angela Shiflet (Wofford Col-
lege), and Eric Warren (Evernham Motorsports).

The organizing committee consists of Wolfgang Christian, Jan Tobochnik, Rubin Landau, and Robert Hilborn.

*Partial funding for this conference is being provided by Computing in Science & Engineering,
the Shodor Foundation, the TeraGrid project, and NSF grant DUE-442581.

AAPT Topical Conference
Computational Physics
for Upper Level Courses

27–28 July 2007

Davidson College
Davidson, NC

For further information go to www.opensourcephysics.org/CPC

Acentral component of the emerging
field of systems biology is the modeling
and simulation of complex biomolecu-
lar networks, which describe the dy-

namics of regulatory, signaling, metabolic, and
developmental processes in living organisms. (Fig-
ure 1 shows a small but representative example of
such a network, describing signaling by G protein-
coupled receptors.1 Other networks under investi-
gation by our group appear online at www.lassp.
cornell.edu/sethna/GeneDynamics/.) Naturally,
tools for inferring networks from experimental
data, simulating network behavior, estimating
model parameters, and quantifying model uncer-
tainties are all necessary to this endeavor.

Our research into complex biomolecular net-
works has revealed an additional intriguing prop-
erty—namely, their sloppiness. These networks are
vastly more sensitive to changes along some direc-
tions in parameter space than along others.2–5 Al-
though many groups have built tools for simulating
biomolecular networks (www.sbml.org), none sup-

port the types of analyses that we need to unravel
this sloppiness phenomenon. Therefore, we’ve im-
plemented our own software system—called
SloppyCell—to support our research (http://sloppy
cell.sourceforge.net).

Much of systems biology is concerned with un-
derstanding the dynamics of complex biological
networks and in predicting how experimental
interventions (such as gene knockouts or drug ther-
apies) can change that behavior. SloppyCell aug-
ments standard dynamical modeling by focusing on
inference of model parameters from data and quan-
tification of the uncertainties of model predictions
in the face of model sloppiness, to ascertain whether
such predictions are indeed testable.

The Python Connection
SloppyCell is an open source software system writ-
ten in Python to provide support for model con-
struction, simulation, fitting, and validation. One
important role of Python is to glue together many
diverse modules that provide specific functional-
ity. We use NumPy (www.scipy.org/NumPy) and
SciPy (www.scipy.org) for numerics—particularly,
for integrating differential equations, optimizing
parameters by least squares fits to data, and ana-
lyzing the Hessian matrix about a best-fit set of pa-
rameters. We use matplotlib for plotting (http://
matplotlib.sourceforge.net). A Python interface to
the libSBML library (http://sbml.org/software/libs

34 THIS ARTICLE HAS BEEN PEER-REVIEWED. COMPUTING IN SCIENCE & ENGINEERING

Python Unleashed on Systems Biology

Researchers at Cornell University have built an open source software system to model
biomolecular reaction networks. SloppyCell is written in Python and uses third-party
libraries extensively, but it also does some fun things with on-the-fly code generation and
parallel programming.

CHRISTOPHER R. MYERS, RYAN N. GUTENKUNST,
AND JAMES P. SETHNA

Cornell University

1521-9615/07/$25.00 © 2007 IEEE

Copublished by the IEEE CS and the AIP

P Y T H O N :
B A T T E R I E S I N C L U D E D

MAY/JUNE 2007 35

bml/) lets us read and write models in a standard-
ized, XML-based file format, the Systems Biology
Markup Language (SBML),6 and we use the py-
par wrapper (http://datamining.anu.edu.au/~ole/
pypar/) to the message-passing interface (MPI)
library to coordinate parallel programs on distrib-
uted memory clusters. We can generate descrip-
tions of reaction networks in the dot graph
specification language for visualization via
Graphviz (www.graphviz.org). Finally, we use the
smtplib module to have simulation runs send
email with information on their status (for those
dedicated researchers who can’t bear to be apart
from their work for too long).

Although Python serves admirably as the glue,
we focus here on a few of its powerful features—
the ones that let us construct highly dynamic and
flexible simulation tools.

Code Synthesis
and Symbolic Manipulation
Researchers typically treat the dynamics of reac-
tion networks as either continuous and de-
terministic (modeling the time evolution of
molecular concentrations) or as discrete and sto-
chastic (by simulating many individual chemical
reactions via Monte Carlo). In the former case,
we construct systems of ordinary differential
equations (ODEs) from the underlying network
topology and the kinetic forms of the associated
chemical reactions. In practice, these ODEs are
often derived by hand, but they need not be: all
the information required for their synthesis is
embedded in a suitably defined network, but the
structure of any particular model is known only
at runtime once we create and specify an instance
of a Network class.

With Python, we use symbolic expressions (en-
coded as strings) to specify the kinetics of different
reaction types and then loop over all the reactions
defined in a given network to construct a symbolic
expression for the ODEs that describe the time
evolution of all chemical species. (We depict the re-
actions as arrows in Figure 1; we can query each re-
action to identify those chemicals involved in that
reaction [represented as shapes], as well as an ex-
pression for the instantaneous rate of the reaction
based on model parameters and the relevant chem-
ical concentrations.) This symbolic expression is
formatted in such a way that we can define a new
method, get_ddv_dt(y, t), which is dynamically
attached to an instance of the Network class using
the Python exec statement. (The term “dv” in the
method name is shorthand for “dynamical vari-
ables”—that is, those chemical species whose time

evolution we’re solving for.) We then use this dy-
namically generated method in conjunction with
ODE integrators (such as scipy.integrate.
odeint, which is a wrapper around the venerable
LSODA integrator,7,8 or with the variant LSODAR,9

which we’ve wrapped up in SloppyCell to integrate
ODEs with defined events). We refer to this
process of generating the set of ODEs for a model
directly from the network topology as “compiling”
the network.

This sort of technique helps us do more than just
synthesize ODEs for the model itself. Similar tech-
niques let us construct sensitivity equations for a
given model, so that we can understand how model
trajectories vary with model parameters. To ac-
complish this, we developed a small package that
supports the differentiation of symbolic Python
math expressions with respect to specified variables,

R

� ��

� ��

� ��

��

��

�

GDP

GDP

GDP

GDP

GDP

GTP

GTP

GTP

�

R
R

GTP
�

Figure 1. Model for receptor-driven activation of heterotrimeric G
proteins.1 The � signaling protein is inactive when bound to
guanosine diphosphate (GDP) and active when bound to
guanosine triphosphate (GTP). After forming a complex with a ��
protein, binding to the active receptor R allows the � protein to
release its GDP and bind GTP. The complex then dissociates into R,
��, and activated �. The activated � protein goes on to signal
downstream targets, whereas the �� protein is free to bring new
inactive � to the receptor.

36 COMPUTING IN SCIENCE & ENGINEERING

by converting mathematical expressions to abstract
syntax trees (ASTs) via the Python compiler mod-
ule. This lets us generate another new method,
get_d2dv_dovdt(y, t), which describes the de-
rivatives of the dynamical variables with respect to
both time and optimizable variables (model para-
meters whose values we’re interested in fitting to
data). By computing parametric derivatives analyt-
ically rather than via finite differences, we can bet-
ter navigate the ill-conditioned terrain of the
sloppy models of interest to us.

The ASTs we use to represent the detailed math-
ematical form of biological networks have other
benefits as well. We also use them to generate
LaTeX representations of the relevant systems of
equations—in practice, this not only saves us from
error-prone typing, but it’s also useful for debug-
ging a particular model’s implementation.

Colleagues of ours who are developing
PyDSTool (http://pydstool.sourceforge.net)—a
Python-based package for simulating and analyz-
ing dynamical systems—have taken this type of ap-
proach to code synthesis for differential equations
a step further. The approach we described earlier
involves generating Python-encoded right-hand
sides to differential equations, which we use in con-
junction with compiled and wrapped integrators.
For additional performance, PyDSTool supports
the generation of C-encoded right-hand sides,
which it can then use to dynamically compile and
link with various integrators using the Python
distutils module.

Parallel Programming in SloppyCell
Because of the sloppy structure of complex bio-
molecular networks, it’s important not to just sim-
ulate a model for one set of parameters but to do so
over large families of parameter sets consistent with
available experimental data. Accordingly, we use
Monte Carlo sampling to simulate a model with
many different parameter sets and thus estimate the
model uncertainties (error bars) associated with
predictions. Parallel computing on distributed
memory clusters efficiently enables these sorts of
extensive parameter explorations. Moreover, sev-
eral different Python packages provide interfaces
to MPI libraries, and we’ve found pypar to be es-
pecially useful in this regard.

Whereas message passing on distributed mem-
ory machines is inherently somewhat cumbersome
and low level, pypar raises the bar by exploiting
built-in Python support for the pickling of complex
objects. Message passing in a low-level program-
ming language such as Fortran or C typically re-
quires constructing appropriately sized memory

buffers into which we must pack complex data
structures, but pypar uses Python’s ability to seri-
alize (or pickle) an arbitrary object into a Python
string, which can then be passed from one proces-
sor to another and unpickled on the other side.
With this, we can pass lists of parameters, model
trajectories returned by integrators, and so on; we
can also send Python exception objects raised by
worker nodes back to the master node for further
processing. (These can arise, for example, if the
ODE integrator fails to converge for a particular
set of parameters.)

Additionally, Python’s built-in eval statement
makes it easy to create a very flexible worker that
can execute arbitrary expressions passed as strings
by the master (requiring only that the inputs and
return value are pickle-able). The following code
snippet demonstrates a basic error-tolerant
master–worker parallel computing environment
for arbitrarily complex functions and arguments
defined in some hypothetical module named
our_science:

import pypar

our_science contains the functions

we want to execute

import our_science

if pypar.rank() != 0:

The workers execute this loop.

(The master has rank == 0.)

while True:

Wait for a message from

the master.

msg = pypar.receive(source=0)

Exit python if sent a

SystemExit exception

if isinstance(msg, SystemExit):

sys.exit()

Evaluate the message and

send the result back to

the master.

If an exception was raised,

send that instead.

command, msg_locals = msg

locals().update(msg_locals)

try:

result = eval(command)

except X:

result = X

pypar.send(result, 0)

The code below is only run by

MAY/JUNE 2007 37

the master.

Evaluate our_science.foo(bar) on each

worker, getting values for bar from

our_science.todo.

command = ‘our_science.foo(bar)’

for worker in range(1, pypar.size()):

args = {‘bar’: \

our_science.todo[worker]}

pypar.send((command, args), worker)

Collect results from all workers.

results = [pypar.receive(worker) \

for worker in \

range(1, pypar.size())]

Check if any of the workers failed.

If so, raise the resulting Exception.

for r in results:

if isinstance(r, Exception):

raise r

Shut down all the workers.

for worker in range(1, pypar.size()):

pypar.send(SystemExit(), worker)

We’ve very briefly described a few
of the fun and flexible features
that Python provides to support
the construction of expressive

computational problem-solving environments, such
as those needed to tackle complex problems in sys-
tems biology. Although any programming language
can be coaxed into doing what’s desired with suffi-
cient hard work, Python encourages researchers to
ask questions that they might not have even con-
sidered in less expressive environments.

Acknowledgments
We thank Fergal Casey, Joshua Waterfall, Robert
Kuczenski, and Jordan Atlas for their help in developing
and testing SloppyCell, and we acknowledge the insights
of Kevin Brown and Colin Hill in developing predecessor
codes, which have helped motivate our work.
Development of SloppyCell has been supported by NSF
grant DMR-0218475, USDA-ARS project 1907-21000-
017-05, and an NIH Molecular Biophysics Training grant
to Gutenkunst (no. T32-GM-08267).

References
1. V.Y. Arshavsky, T.D. Lamb, and E.N. Pugh, “G Proteins and Pho-

totransduction,” Ann. Rev. Physiology, vol. 64, no. 1, 2002, pp.
153–187.

2. K.S. Brown and J.P. Sethna, “Statistical Mechanical Approaches
to Models with Many Poorly Known Parameters,” Physical Rev.
E, vol. 68, no. 2, 2003, p. 021904; http://link.aps.org/abstract/
PRE/v68/e021904.

3. K.S. Brown et al., “The Statistical Mechanics of Complex Signal-
ing Networks: Nerve Growth Factor Signaling,” Physical Biology,
vol. 1, no. 3, 2004, pp. 184–195; http://stacks.iop.org/1478-
3975/1/184.

4. J.J. Waterfall et al., “Sloppy-Model Universality Class and the Van-
dermonde Matrix,” Physical Rev. Letters, vol. 97, no. 15, 2006,
pp. 150601–150604; http://link.aps.org/abstract/PRL/v97/
e150601.

5. R.N. Gutenkunst et al., “Universally Sloppy Parameter Sensitivi-
ties in Systems Biology,” 2007; http://arxiv.org/q-bio.QM/
0701039.

6. M. Hucka et al., “The Systems Biology Markup Language (SBML):
A Medium for Representation and Exchange of Biochemical Net-
work Models,” Bioinformatics, vol. 19, no. 4, 2003, pp. 524–531;
http://bioinformatics.oxfordjournals.org/cgi/content/abstract/
19/4/524.

7. A.C. Hindmarsh, “Lsode and Lsodi, Two New Initial Value Ordi-
nary Differential Equation Solvers,” ACM-SIGNUM Newsletter, vol.
15, no. 4, 1980, pp. 10–11.

8. L.R. Petzold, “Automatic Selection of Methods for Solving Stiff
and Nonstiff Systems of Ordinary Differential Equations,” SIAM
J. of Scientific and Statistical Computing, vol. 4, no. 1, 1983, pp.
137–148.

9. A.C. Hindmarsh, “Odepack, A Systematized Collection of ODE
Solvers,” Scientific Computing, North-Holland, 1983, pp. 55–64.

Christopher R. Myers is a senior research associate and
associate director in the Cornell Theory Center at Cornell
University. His research interests lie at the intersection of
physics, biology, and computer science, with particular
emphases on biological information processing, robust-
ness and evolvability of natural and artificial networks,
and the design and development of software systems to
probe complex spatiotemporal phenomena. Myers has a
PhD in physics from Cornell. Contact him at myers@
tc.cornell.edu; www.tc.cornell.edu/~myers.

Ryan N. Gutenkunst is a graduate student in the Labo-
ratory of Atomic and Solid State Physics at Cornell Uni-
versity. He uses SloppyCell to study universal properties of
complex biological networks, and is interested in how
these properties affect both practical model development
and the dynamics of evolution. Gutenkunst has a BS in
physics from the California Institute of Technology. Con-
tact him rng7@cornell.edu; http://pages.physics.cornell.
edu/~rgutenkunst/.

James P. Sethna is a professor of physics at Cornell Uni-
versity, and is a member of the Laboratory of Atomic and
Solid State Physics. His recent research interests include
common, universal features found in nonlinear optimiza-
tion problems with many parameters, such as sloppy
models arising in the study of biological signal transduc-
tion. Sethna has a PhD in physics from Princeton Univer-
sity. Contact him at sethna@lassp.cornell.edu; www.
lassp.cornell.edu/sethna.

The Hubble Space Telescope (HST), a
2.4-meter optical, ultraviolet, and in-
frared telescope, has orbited Earth for
more than 16 years. Ground-based

telescopes suffer the effects of the atmosphere. In
particular, the atmosphere blurs the image, blocks
ultraviolet and infrared photons, and scatters
light—whether from the moon or your local street-
light—resulting in brighter backgrounds and
greater difficulty in observing faint sources. Being
above the atmosphere means that the HST makes
sharper images of fainter sources at wavelengths not
visible from the ground. As a result, the HST can
obtain exquisite observations and make many im-
portant discoveries that are otherwise unobtainable.

The Space Telescope Science Institute (STScI) is
responsible for the HST’s scientific operation, in-
cluding scheduling observations and processing and
disseminating the resulting data to both the public
and astronomers. Our group at STScI develops the
software used to calibrate and analyze the data. This
article describes our experiences with the Python lan-
guage and how we’ve incorporated it into our work.

Using Python
Our initial use of Python was in developing an al-
ternate scripting environment for a popular astro-
nomical analysis system called IRAF (for Imaging
Reduction and Analysis Facility), which has its own
custom compiled language for its applications and
its own scripting language and command-line envi-
ronment. Although IRAF had great initial success
and longevity (the US National Optical Astronomy
Observatory developed it in the early 1980s), it has
proved to be an increasingly constrained develop-
ment environment as time goes on. To remedy this
situation, we developed a way to script IRAF appli-
cations using Python so that we could run IRAF
tasks more robustly and combine them with the
wide variety of libraries and tools available in
Python. This new scripting environment—called
PyRAF—proved easier to develop in Python than
we expected and let us add more powerful capabili-
ties than we had originally hoped (see www.python.
org/workshops/2000-01/proceedings/papers/
white/pyrafpaper.pdf). Python had fewer limits on
what it could accomplish—outside of efficiency con-
cerns—and offered broad library support, powerful
yet easy-to-read language features (particularly its
numerous language hooks for extending features to
new objects), and the ability to call out to C when
necessary (for which the need was rare). More im-
portant, Python’s interactive nature made it much
easier to prototype, test, and debug applications.

38 THIS ARTICLE HAS BEEN PEER-REVIEWED. COMPUTING IN SCIENCE & ENGINEERING

Reaching for the Stars with Python

The author describes how Python has helped scientists calibrate and analyze data from the
Hubble Space Telescope, first as a means of scripting legacy applications, and, more
recently, as a way of developing new applications in Python itself.

PERRY GREENFIELD

Space Telescope Science Institute

1521-9615/07/$25.00 © 2007 IEEE

Copublished by the IEEE CS and the AIP

P Y T H O N :
B A T T E R I E S I N C L U D E D

MAY/JUNE 2007 39

Because of our success with PyRAF, we decided to
develop as many of our applications in Python as pos-
sible. This seemed realistic because many as-
tronomers have successfully developed useful tools
and applications with the commercial image-
processing package IDL (Interactive Data Lan-
guage), an interactive array manipulation language
that lets users easily handle images and spectra in
mathematical expressions via numerical and visual-
ization tools. Because it looked as if Python could do
much of what IDL could, we began building tools to
enable application development in Python. We
started with an enhanced array package (Numarray;
www.python.org/pycon/papers/numarray.html). The
successor to Numarray, NumPy (see Travis
Oliphant’s article on p. 10 of this issue), incorporates
all of its features; we’re in the process of converting
all our programs to use it. We’ve also developed
other libraries such as PyFITS (www.stsci.edu/
resources/software_hardware/pyfits/Users_Manual
1.pdf), a module that can read and write the standard
astronomical Flexible Image Transport System
(FITS) data format and also contributed to mat-
plotlib (see the Scientific Programming department
on p. 90).

This direction has proved to be very productive.
We’re now able to develop and modify applications
much faster in Python than we could have with

IRAF. When it’s necessary to develop algorithms
that require a compiled language, it’s straightfor-
ward to write routines with C (via “vanilla” Python
extensions) to handle the small percentage of cases
that require it, and still use the routines from
Python. Today, we develop nearly all our new soft-
ware in Python.

An Example Application
A heavily used application, both for calibration
pipelines and interactive analysis, is Multidrizzle.1

This application takes several spatially offset (but
overlapping) exposures of the sky and combines
them into one image. This might seem like a sim-
ple operation, but it’s actually quite complex—
because of telescope and camera distortion, we can’t
simply offset image arrays spatially and add them
together. Rather, we must resample the pixels and
apply distortion corrections before combining. The
task is further complicated by the presence of cos-
mic rays, which are high-energy particles that cause
spurious star-like objects in telescopic images. Be-
cause they don’t appear in multiple images, we want
to compare overlapping regions to see if these fea-
tures appear in only one of them and reject them if
they don’t appear in all of them.

The issue of determining proper registration of
these different images is complex and involves au-

Figure 1. One raw exposure of the Tadpole galaxy (UGC10214). Each raw exposure consists of two 4,096 � 2,048 pixel
charge-coupled device images (one of which is shown). This 840-second exposure was taken with a wide-band filter
centered at 606 nm (orange-red). Most of the tens of thousands of star-like images, specks, and streaks aren’t stars—
they’re the result of cosmic rays, and thus don’t represent detected photons. This figure (and Figure 2) uses a nonlinear
intensity transfer function to emphasize the fainter features in the image.

40 COMPUTING IN SCIENCE & ENGINEERING

tomatic object identification and matching. Natu-
rally, the amount of data to which this technique is
applied is large—each exposure is 4,000 � 4,000
pixels, and we might have to combine many of
them. Figure 1 shows an image (one of several) as
it appears before using Multidrizzle to process it,
and Figure 2 shows the result after processing.

Multidrizzle calls a Fortran routine for the pixel
resampling (and a few C-extension routines for other
operations), but most of the code is Python. An as-
sociated Python program called tweakshifts per-
forms automatic image registration by using other
packages to identify objects. Multidrizzle can auto-
matically process thousands of data sets in the HST
data-processing pipelines, but it’s also distributed to
the astronomical community for interactive use.
Moreover, PyRAF lets us run Multidrizzle as though

it were an IRAF task even though it isn’t. In other
words, users can run it from a familiar command en-
vironment with an interface similar to IRAF tasks.

We’re impressed with Python be-
cause it works well as a glue for
integrating existing software
tools, from libraries to stand-

alone executables to entire legacy systems. Python
is much more accessible to scientists than languages
such as C, C++, Java, or Fortran—indeed, a staff as-
tronomer, not a professional software developer,
wrote the initial Multidrizzle prototype.

We’ve also used Python to process data from an
experiment to measure the structural stability of
the mirror-support structure of the next large space
telescope in development. The James Webb Space
Telescope (JWST) will have a 6.5-meter primary
mirror made up of 18 hexagonal mirror segments,
and has a planned launch date in 2013. JWST’s
mirror-support structure must remain stable to
within tens of nanometers for modest changes in
its temperature (which is very cold, just tens of de-
grees above absolute zero). We’ve developed
Python applications to acquire and process 10
Tbytes of data over the experiment’s run, and we
expect to write most of our JWST data-processing
and reduction applications in Python as well.

But Python’s use at STScI isn’t limited to data
processing and analysis: we’re using it in many other
areas, including telescope scheduling and planning.
It has even found wider use in astronomy outside of
STScI and appears to be the most commonly
adopted scripting language for large projects in sev-
eral scientific domains. For example, other major
legacy astronomical data analysis software systems
have added Python interfaces: PyMidas for MIDAS
(Munich Image Data Analysis System), Parseltongue
for AIPS (Astronomical Image Processing System),
and PySL for CIAO (Chandra Interactive Analysis
of Observations); the next major radio astronomy
project, ALMA (Atacama Large Millimeter Array),
uses Python as its scripting language.

Reference
1. A.M. Koekemoer et al., “MultiDrizzle: An Integrated PyRaf Script

for Registering, Cleaning and Combining Images,” 2002 HST
Calibration Workshop, Space Telescop Science Inst., 2002;
www.stsci.edu/largefiles/hst/HST_overview/documents/
calworkshop/workshop2002/CW2002_Papers/koekemoer
_multidrizzle.pdf.

Perry Greenfield is a science analysis tools project lead at
the Space Telescope Science Institute. He has a PhD in
physics from MIT. Contact him at perry@stsci.edu.

Figure 2. The final image produced by combining six individual
exposures with Multidrizzle. Nearly all the cosmic rays are removed
here. The odd outline at the edges results from the different
overlaps used to cover the observed field. Nearly all the remaining
small objects visible are galaxies. Higher noise is apparent in the
regions covered with fewer exposures. The resulting image’s size is
larger because of the offsets—it’s now 4,582 � 4,879 pixels (the
displayed image is slightly cropped on the left and right sides).

MAY/JUNE 2007 THIS ARTICLE HAS BEEN PEER-REVIEWED. 41

A Python Module for Modeling
and Control Design of Flexible Robots

P Y T H O N :
B A T T E R I E S I N C L U D E D

Flexible robots offer the benefits of being
lighter, faster, and cheaper to actuate than
their rigid counterparts. However, robots
with flexible links or joints also pose a con-

siderable challenge because they might be composed
of discrete and distributed parameter elements,
many links, complicated actuators, and multiple
feedback loops. The example system analyzed in this
article poses two additional challenges: it’s hydrauli-
cally actuated with two feedback loops in which the
sensors and actuators aren’t precisely collocated.

Existing modeling approaches for flexible struc-
tures are inadequate for designing controllers for
flexible robots. The transfer matrix method
(TMM) might be an excellent approach if some
theoretical hurdles are overcome and if some new
software package makes the approach more acces-
sible and user friendly.1–4

This article discusses how we expanded the
TMM’s capabilities and developed a Python soft-
ware module to make the TMM an excellent tool

for the modeling and control design of practical
flexible robots.5

System Description
Figure 1 shows a picture of the flexible robot we
used in the experimental part of our work. The
robot is called SAMII, which stands for small, ar-
ticulated manipulator II. SAMII is a hydraulically
actuated robot with rigid links mounted on the
end of a cantilevered beam. The cantilevered
beam represents a larger robot that would give
SAMII a larger workspace and move it into the
general position desired. Once SAMII is in posi-
tion, the large robot’s joints might be locked.
Thus, the large robot must have long links to give
SAMII a large workspace, even though this length
inherently implies flexibility and vibration prob-
lems. We thus need modeling approaches and
control schemes to deal with this flexibility and
suppress or avoid vibrations.

Problem Statement
Figure 2 shows a block diagram of the control scheme.
The goal is to develop transfer functions for G� and
Ga, where G� specifies how the system will respond to
commands to move to a desired position �d and is re-
ferred to as the motion control portion of the control
scheme, and Ga is the vibration suppression controller.
We want to find the optimal G� and Ga so that the ro-
bot moves quickly while also suppressing vibration.

This article discusses the creation of a Python module for object-oriented modeling and
control design of flexible robots using the transfer matrix method (TMM). The authors
overcame several theoretical hurdles to apply the TMM to practical flexible robots and
have experimentally validated the Python module’s modeling capabilities.

RYAN W. KRAUSS

Southern Illinois University Edwardsville
WAYNE J. BOOK

Georgia Institute of Technology

1521-9615/07/$25.00 © 2007 IEEE

Copublished by the IEEE CS and the AIP

42 COMPUTING IN SCIENCE & ENGINEERING

The Need for Better Modeling Tools
Many approaches exist for modeling flexible struc-
tures, but two of the most prominent are finite el-
ement analysis (FEA) and the assumed modes
method (AMM).

FEA is widely used in the analysis of flexible
structures, but it isn’t the ideal tool for control de-
sign. It’s difficult, for example, to find an FEA soft-
ware package that can model multiple feedback

loops and hydraulic actuators. Moreover, even if we
found a suitable package that could model the
closed-loop response of hydraulically actuated flex-
ible robots, we couldn’t use such a model for con-
trol design without modal discretization. It would
be a clumsy approach for very flexible robots in
which the feedback controller affects the system’s
mode shapes.

Other researchers have applied the AMM to ro-
botics,6 but the approach quickly grows unwieldy
as the number of links increases. Correctly han-
dling element-connectivity conditions as we add
more links to the model is quite burdensome, and
it would quickly become very complicated if we ap-
plied this approach to the robot analyzed here. Ad-
ditionally, this approach is clumsy for extremely
flexible robots.

Expanding the TMM’s Capabilities
The TMM has the potential to overcome other
methods’ shortcomings. It doesn’t grow unwieldy
as more links are added to the model, and it han-
dles element-connectivity conditions exactly and
automatically. It can also handle distributed para-
meter elements without discretization, so very flex-
ible robots don’t pose any additional challenges.
The TMM lends itself to control design because
the method outputs Bode plots (that is, magnitude
and phase plots of the complex valued transfer
functions between system inputs and outputs) very
naturally, and it’s easy to incorporate feedback.

However, we had two large obstacles to over-
come before we could use the TMM to model
SAMII: hydraulic actuators and non-collocated
feedback.

The TMM models each element in a system
with a matrix that transfers a state vector from one
end of the element to the other. Each matrix is
multiplied by the state vector at the end of the pre-
ceding element; the system transfer matrix comes
from multiplying the element transfer matrices to-
gether. For example, SAMII’s open-loop system
transfer matrix is given by

Usys = Ubs Ubeam Ul0 Uj1 Ul1 Uact Ul2 Uj3 Ul3–6, (1)

where Ubs is the transfer matrix for the basespring,
Ubeam is the transfer matrix for the beam, and so
on for each element in Figure 3’s schematic. Be-
cause of this approach, we can’t use a state from
several elements back in the model, which pro-
hibits accurate representation of the physical
system. For practical reasons, our vibration-
suppression scheme is based on accelerometers
mounted on the end of the cantilever beam. The

ẍ

5-meter beam

Joint 2

�

Figure 1. Picture of SAMII. Joint 2’s angular
position is �, and is the acceleration of SAMII’s
base (that is, the end of the cantilever beam).

��x

MAY/JUNE 2007 43

accelerometer signal is fed back into the control
scheme through the actuator of joint 2, which is
several elements away in the TMM model. We de-
veloped a transfer matrix for non-collocated feed-
back based on symbolically inverting a transfer
matrix from the sensor location to the actuator lo-
cation. This transfer matrix enables the TMM to
determine the sensor state based on the states at
the actuator location (that is, the states that will
multiply the actuator transfer matrix). We’ve ex-
perimentally verified these matrices for non-
collocated feedback in a model that correctly
predicts the system’s closed-loop response.

We also developed a transfer matrix model for a
hydraulic actuator interacting with the flexible
structure. Similarly, we experimentally verified the
model and found that it accurately captures the in-
teraction between the actuator and the structure
at resonance.

A Python Module
for Analyzing Flexible Robots
We created a Python module for objected-oriented
analysis of flexible structures via the TMM. The
objected-oriented nature of the software leads to
clean, clear, and easy-to-maintain code and pro-
vides a framework for user extensibility through in-
heritance. A user can define a new transfer matrix
element by deriving from the base class, which
clearly defines what properties and methods the
new element must have to be valid.

The module uses two primary classes for
TMM analysis: TMMElement and TMMSystem.
Examples of TMMElement include flexible links
(beam elements), rigid links, torsional springs,
hydraulic actuators, and feedback elements (pos-
sibly non-collocated); users can develop them by
deriving from the base class. The TMMElement is
the TMM model’s primary building block, and it
has two primary methods: GetMat and GetHT.
The former takes the frequency variable s as an
input and returns the element transfer matrix,
which the TMMSystem then uses to form the sys-
tem transfer matrix according to Equation 1.
GetHT returns the homogeneous transformation
matrix for the element used in the 3D visualiza-
tion of the mode shapes.

A TMMSystem consists of a list of serially con-
nected TMMElements along with a specification of
the system boundary conditions and the output sig-
nals to be calculated. The TMMSystem class has
methods for finding a system’s natural frequencies
and mode shapes, generating Bode plots of specific
outputs, system identification, and so on.

Figure 3 shows a picture of SAMII along with a

schematic; each element in the schematic is an ob-
ject in the code from Figure 4. Each of Lines 2
through 9 in Figure 4 creates a TMMElement ob-
ject from a derived class (TorsionalSpring-
Damper4x4, samiiBeam, samiiLink0, and so
on). Each object models a specific physical piece
of the robot by calculating a transfer matrix that
captures that piece’s dynamics. Line 7 creates an
AVSwThetaFB element that models a hydraulic
actuator under � feedback, including the interac-
tion between the structure and the actuator. Line
8 creates a SAMIIAccelFB element that models

Ga

(� feedback loop)

(x feedback loop)¨

Actuator/
structure

interaction
Acceleration

response

GpG
�

Gflexb

���d�d
ˆ ẍ

Figure 2. Block diagram. The system requires motion control
(� feedback) and vibration suppression (feedback).��x

Beam

Accelerometer

Base spring

Link 0

Link 1

Link 2

Joint 1

Joint 2/
actuator

Figure 3. SAMII. Both the picture and schematic illustrate the
transfer matrix model.

44 COMPUTING IN SCIENCE & ENGINEERING

the non-collocated accelerometer feedback,
where the sensor is at the end of the beam and the
actuator is at joint 2. Lines 10 and 11 specify the
output signals to calculate, and Line 12 returns
an object derived from TMMSystem, in which the
system boundary conditions are specified
(clamped-free). The entire system model is cre-
ated in just 12 lines.

Capabilities
Once we’ve created a system model, the software
provides many capabilities for analysis, system
identification, and control design. Examples in-
clude finding the system’s natural frequencies and
mode shapes, automated system identification,
Bode analysis with user-defined outputs, and con-
trol design and optimization. We can do control
design by optimizing multiple Bode plots or op-
timizing the closed-loop pole locations.

The software also has the ability to find
closed-form symbolic expressions for the closed-
loop system response by using Python to auto-
matically write an input script to Maxima, which
does the symbolic analysis and outputs its results
to Fortran files. We can import these Fortran
files into Python in two ways: compile them and
use f2py to connect to the compiled code, or au-
tomatically parse the Fortran code into Python
modules that we can directly import. All of this
can happen without forcing the user to learn
Maxima or Fortran—or even knowing that
they’re being used.

Example Usage and Results
Now that we’ve created the system model, it’s very
straightforward to generate Bode plots for the sys-
tem’s open- or closed-loop response. As an exam-
ple of the software’s predictive capabilities, Figures
5 and 6 show Bode plots of the system with both
the motion control and vibration-suppression loops
closed (that is, like the closed-loop system illus-

1 def accfbsamiimodel(xf,Ga=1):

2 basespring = TorsionalSpringDamper4x4({’k’:xf[0],’c’:xf[1]},

unknownparams=[’k’,’c’])

3 beam = samiiBeam()

4 link0 = samiiLink0()

5 j1spring = TorsionalSpringDamper4x4({’k’:xf[2],’c’:xf[3]},

unknownparams = [’k’,’c’])

6 link1 = samiiLink1()

7 clavs = AVSwThetaFB({’Ka’:xf[4],’tau’:xf[5],’ks’:xf[6],’c’:xf[7],’

Gc’:180.0/pi},unknownparams=[’Ka’,’tau’,’ks’,’c’])

8 accfb = SAMIIAccelFB(link0,j1spring,link1,clavs,Ga = Ga)

9 link2 = samiiLink2()

10 bodeout1 = bodeout(input=’j2dhat’,output=’j2a’,type=’diff’,ind=[

clavs,link1],dof=1)

11 bodeout2 = bodeout(input=’j2dhat’,output=’a1’,type=’abs’,ind=beam,

post=’accel’,dof=0,gain=xf[8])

12 return ClampedFreeTMMSystem([basespring,beam,link0,j1spring,link1,

accfb,clavs,link2],bodeouts=[bodeout1,bodeout2])

Figure 4. Python code to create the transfer matrix method (TMM) model of SAMII corresponding to Figure 3.

Experimental data
Python/TMM model

Experimental data
Python/TMM model

M
ag

. r
at

io
 (

dB
)

Ph
as

e
(°

)

100 101

100 101

50

0

–50

–100

–150

–200

10
5
0

–5
–10
–15
–20
–25
–30

(a)

(b)

Figure 5. Closed-loop actuator Bode plot �/ . We’re comparing
experimental data to the transfer matrix model for the system that
has � and feedback (vibration suppression).��x

θ̂d

MAY/JUNE 2007 45

trated in Figure 2). We find excellent agreement
between model and experiment.

We chose Python for our work for
two main reasons: Python makes
object-oriented programming
easy, and many scientific and en-

gineering modules are available for us to build on.
We also found that our coding time was greatly re-
duced through interactive development with
IPython (http://ipython.scipy.org). We plan to con-
tinue this work by developing Python modules for
simulating interconnected dynamic systems and for
rapidly implementing the control schemes on real-
time embedded hardware.

References
1. E.C. Pestel and F.A. Leckie, Matrix Methods in Elastomechanics,

McGraw-Hill, 1963.

2. W.J. Book, Modeling, Design and Control of Flexible Manipulator
Arms, PhD dissertation, Dept. of Mechanical Eng., Massachusetts
Inst. of Tech., Apr. 1974.

3. W.J. Book, O. Maizza-Neto, and D.E. Whitney, “Feedback Con-
trol of Two Beam, Two Joint Systems with Distributed Flexibil-
ity,” J. Dynamic Systems, Measurement and Control, vol. 97, no.
4, 1975, pp. 424–431.

4. R.W. Krauss, O. Brüls, and W.J. Book, “Two Competing Linear
Models for Flexible Robots: Comparison, Experimental Valida-
tion, and Refinement,” Proc. 2005 Am. Control Conf., IEEE CS
Press, 2005, pp. 1963–1968; http://ieeexplore.ieee.org/xpl/free
abs_all.jsp?arnumber=1470257.

5. R.W. Krauss, An Improved Technique for Modeling and Control of
Flexible Structures, PhD dissertation, Dept. of Mechanical Eng.,
Georgia Inst. of Tech., Aug. 2006; http://etd.gatech.edu/theses/
available/etd-06202006-185450/.

6. A. Deluca and B. Siciliano, “Closed-Form Dynamic-Model of Pla-
nar Multilink Lightweight Robots,” IEEE Trans. Systems Man and
Cybernetics, vol. 21, no. 4, 1991, pp. 826–839.

Ryan W. Krauss is an assistant professor in the me-
chanical engineering department at Southern Illinois
University Edwardsville. His research interests include
control of flexible structures, applied controls, automo-
tive crashworthiness, and technical computing. Krauss
has a PhD in mechanical engineering from the Georgia
Institute of Technology. Contact him at rkrauss@
siue.edu.

Wayne J. Book is the Husco/Ramirez Distinguished Pro-
fessor in Fluid Power and Motion Control in the George W.
Woodruff School of Mechanical Engineering at the Geor-
gia Institute of Technology. His research interests include
fluid power, motion control, haptics, and hardware-in-the-
loop simulations. Book has a PhD in mechanical engi-
neering from MIT. He is a fellow of the American Society
of Mechanical Engineers and the IEEE. Contact him at
wayne.book@me.gatech.edu.

FREE Visionary Web Videos
about the Future of Multimedia.

Listen to premiere
multimedia experts!

Post your own views and demos!

Visit www.computer.org/multimedia

M
ag

. r
at

io
 (

dB
)

Ph
as

e
(°

)

100 101

100 101

50

0

–50

–100

–150

–200

0

–10

–20

–30

–40

–50

–60
(a)

(b)

Experimental data
Python/TMM model

Figure 6. Closed-loop flexible base Bode plot . We’re
comparing experimental data to the transfer matrix model for the
system that has � and feedback (vibration suppression).��x

��x d/ θ̂

In our photonics research group at Ghent
University, we’re very active in the field of
nanophotonics, which takes a complex optical
system the size of a large table and shrinks it

so that it fits onto a photonic chip of a few mm2.
Miniaturization and integration have done wonders
for electronics in the past few decades, and the
hope is that a similar strategy can work for pho-
tonics, too, leading to highly performant optical
chips for fields as diverse as high-speed telecom-
munications, optical computing, and biosensors.

The electronics industry has spent billions of
dollars perfecting fabrication technology in silicon,
so it seems like a smart idea to piggyback on their
mature processes for photonics applications. This
is why our group is working on photonic structures
made in silicon-on-insulator, which we’re fabricat-
ing with the same state-of-the-art deep-UV litho-
graphy that produced the latest computer chip.
These structures are typically less than a micron in
size and can guide light along narrow waveguides,
make very tight bends, or squeeze light into ex-
tremely small volumes.

In getting to a working device, however, we face
several challenges and rely heavily on Python to
overcome them.

Challenges and Advantages
A first step for any photonics research involves fig-

uring out how light behaves in complicated struc-
tures. For our particular studies, we use an in-house-
developed Maxwell solver (http://camfr.source
forge.net). Its core is written in C++, and it uses a few
legacy Fortran routines, but its interaction with our
simulator (to define the structure to be simulated, the
quantities to be calculated, and so forth) happens via
Python scripts, glued to C++ via Boost.Python. This
C++ library makes it easy to expose C++ code to
Python, is very powerful, and provides support for
advanced C++ options. Its drawback, though, is that
compilation times and memory requirements can be
quite heavy. Figure 1 shows an example of a
nanolaser’s optical field, as calculated with our elec-
tromagnetics solver CAMFR.

Using Python
Once we come up with a good design, we still have
to fabricate it, which involves designing a mask.
Python scripts can help us define these masks: be-
cause Python is a full-fledged programming lan-
guage, it’s easy to parameterize the design or create
repetitive structures using loops. Once the mask is
finished, we place it in a deep-UV stepper to pro-
ject the design on a photosensitive resist spun on a
silicon wafer. Unfortunately, the pattern that ends
up on the wafer isn’t the same as the one on the
mask, due to the projected light’s diffraction, pecu-
liarities in the etching process, and so forth. To get
around this, we used NumPy or SciPy to write a
process simulator that can calculate various effects.

As Figure 2 illustrates, Python can take us from
electromagnetic design to mask layout and process
technology simulation. This ability also lets us
close the loop and, for example, recalculate the
electromagnetic properties of the actual resulting
geometry as predicted by the technology simula-

46 THIS ARTICLE HAS BEEN PEER-REVIEWED. COMPUTING IN SCIENCE & ENGINEERING

Python in Nanophotonics Research
The authors describe how they use Python for nanophotonics research—specifically, they
describe using it for electromagnetic modeling, mask design, and process simulation.

PETER BIENSTMAN, LIEVEN VANHOLME, WIM BOGAERTS,
PIETER DUMON, AND PETER VANDERSTEEGEN

Ghent University

1521-9615/07/$25.00 © 2007 IEEE

Copublished by the IEEE CS and the AIP

P Y T H O N :
B A T T E R I E S I N C L U D E D

MAY/JUNE 2007 47

tor, compare it to the nominal design, and make
some modifications and precorrections, if needed.

All Python tools have a single aspect in common:
they must be able to handle a structural definition
(in terms of geometric primitives). For our re-
search, we designed a generic class library that deals
with geometric prototypes and creates a “little”
language on top of Python to define a structure
(such as the one in Figure 3):

air = Material(1) # Air has a refrac-

tive index of 1.

mat = Material(3) # Our material has a

refractive index of 3.

g = Geometry(air) # Air is the back-

ground material.

Now add some shapes.

g += Rectangle(Point(0.0, 1.0),

Point(2.0, 2.0), mat)

g += Triangle (Point(2.0, 2.0),

Point(2.0, 1.0), Point(3.0, 1.5), mat)

g += Circle (Point(4.5, 1.5), 0.5, mat)

Although we could probably implement similar ap-
proaches in different languages, Python’s increased
productivity makes it a very attractive option for us.

We’re currently extending and for-
malizing the definition of our
“little” language, such that it will
be powerful enough to use as in-

put for our Maxwell solver and to automatically
generate a mask description from it. We also plan
to write a wrapper around other third-party simu-
lation software, such that these generic structure
definitions can be used as inputs for a wide variety
of tools.

Peter Bienstman is an associate professor at Ghent Uni-
versity, Belgium. His research interests include nanopho-
tonics and scientific computing. Contact him at Peter.
Bienstman@UGent.be.

Lieven Vanholme works in the Photonics Research Group
at Ghent University. His research interests include pro-
gramming and physics. Contact him at Lieven.Vanholme@
UGent.be.

Wim Bogaerts is a postdoc in the photonics group at
Ghent University. His research interests include silicon
nanophotonics. Contact him at Wim.Bogaerts@UGent.be.

Pieter Dumon is a PhD student in electronic engineering
at Ghent University. His research interests include simula-
tion and fabrication of silicon nanophotonic components.
Contact him at Pieter.Dumon@UGent.be.

Peter Vandersteegen is a PhD student in the photonics
group at Ghent University. His research focuses on or-
ganic LEDs and simulation methods. Contact him at Pe-
ter.Vandersteegen@UGent.be.

Figure 1. Optical field in a nanolaser, as calculated
by our electromagnetics solver CAMFR.

Structure of interest

Electromagnetic simulation

Mask layout

Simulated lithography

Actual lithography

Figure 2. Python in the process.

(0,0)

Figure 3. Example of a simple geometry.

