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Composition as a source of
unbounded complexity from
computation

rule 110 =
15 118
v
prime rules E
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Composition of ECA rules 50 o 37 ’5“'—5;'-'—:,_;—"_ -
with colour remapping leading to J;::;';: = Composition of ECA rules 170 o 15
a 4-colour Turing universal CA ) == o 118 with colour re-mapping
emulation =, . .
emulating rule 10. mapping leading to a 4-colour
Turing universal CA emulating
rule 10.

Boolean composition of prime ECA rules 15, 118 and 170 simulates ECA rule 110

Proving the power of interactions to produce unbounded complexity (and random-looking behaviour)

J. Riedel and H. Zenil, Rule Primality, Minimal Generating Sets and Turing-Universality in the Causal
Decomposition of Elementary Cellular Automata, Journal of Cellular Automata, vol. 13, pp. 479-497, 2018



Pervasive Turing universalitye
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J Riedel, H. Zenil, Cross-
boundary Behavioural
Reprogrammability Reveals
Evidence of Pervasive
Turing Universality,
International Journal of
Unconventional
Computing, vol 13:14-15
pp. 309-357, 2018.



The hacker view of causality

-
sourcecode: [Zr v ru e | jgen

space-time Opalible
evolution
Misled Common
Observer — / Observer
T

Can we infer these rule using classical information theory?
(computational mechanics without the stochastic part)



Correlation v Causation

Entropy can only “see” statistical regularities

Thue-Morse sequence: 01101001100101101001011001101001
Segment of 7 in binary: 0010010000111111011010101000100

Definition
Kolmogorov(-Chaitin) complexity (1965,1966):

Ku(s) = min{|p|, U(p) = s}

The power of K (algorithmic randomness)

Martin Lof proves (1966) that K captures all possible computable
properties, and so a random string s is random if it is typical in the sense

that there is no property that shortens any description of s. A string s is
random if K(s) (in bits) ~ |s|.




Correlation v Causation

Entropy can only “see” statistical regularities

Thue-Morse sequence: 01101001100101101001011001101001
Segment of 7 in binary: 0010010000111111011010101000100

Definition
Kolmogorov(-Chaitin) complexity (1965,1966):

Ku(s) = min{|p|, U(p) = s}

The power of K (algorithmic randomness) Convergence of definitions!

Martin Lof proves (1966) that K captures all possible computable
properties, and so a random string s is random if it is typical in the sense

that there is no property that shortens any description of s. A string s is
random if K(s) (in bits) ~ |s|.




Correlation v Causation

Entropy can only “see” statistical regularities

Thue-Morse sequence: 01101001100101101001011001101001
Segment of 7 in binary: 0010010000111111011010101000100

Definition Semi-computable!!!
Kolmogorov(-Chaitin) complexity (1965,1966):

Ku(s) = min{|p[, U(p) = s}

The power of K (algorithmic randomness) Convergence of definitions!

Martin Lof proves (1966) that K captures all possible computable
properties, and so a random string s is random if it is typical in the sense

that there is no property that shortens any description of s. A string s is
random if K(s) (in bits) ~ |s]|.




Estimating K in practice

Do we measure K with programming language or universal TM U; or U?
The Invariance Theorem:

|KU1 (5) - KU2(5)| < Cu,,up

It is not relevant in the limit, the difference is a constant that vanishes the
longer the strings.

|Ku, (s) — Ku, (s)|

Rate of convergence of K and the behaviour of ¢ with respect to |s|

The Invariance theorem in practice is a negative result

The constant involved can be arbitrarily large, the theorem tells nothing
about the convergence. Any estimating method of K is subject to it.




. . ) i In principle: more serious that
Estimating K In practice uncomputability!

Do we measure K with programming language or universal TM U; or U?
The Invariance Theorem:

|Ku, () — Kuy(s)| < ¢y, 4,
It is not relevant in the limit, the difference is a constant that vanishes the
longer the strings.

Ky, (8) = Ku, (s)l

Rate of convergence of K and the behaviour of ¢ with respect to |s|

The Invariance theorem in practice is a negative result

The constant involved can be arbitrarily large, the theorem tells nothing
about the convergence. Any estimating method of K is subject to it.




Algorithmic Information Theory in Molecular Biology

Superficially landmark results turn out to reproduce trivial results in
structural biology:

Carp
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Cat Ferungulates
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Opossum Metatheria
Wallaroo
Echidna Prototheria
Platypus

Figure: Each species’ average GC-content lies on the curve determining its place
in the phylogenetic space.

[R. Cilibrasi and P.M.B. Vitanyi, Clustering by Compression (2005)]



Can we do better than practical lossless compression?
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Figure: (originally Emile Borel's infinite monkey theorem): A monkey on a computer
has greater chances to produce structure than a monkey on a typewriter.
[Inspired by a sketch from C. Bennett]



Algorithmic Probability and
Coding theorem

3.1415926535897932384

6
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J.-P. Delahaye and H. Zenil, Numerical Evaluation of the
Complexity of Short Strings: A Glance Into the Innermost
Structure of Algorithmic Randomness

Applied Mathematics and Computation 219, pp. 63-77,
2012.



Computability, Algorithmic
Complexity & Causalitye

(Un)Computability mediates in the challenge of
algorithmic causality by way of Algorithmic
Information Theory:

K(s) =min{p | U(p) = s}

| Generating l
mechanism

Observation Most likely Compo’rible
mechanism  Constructor gw’rh Th’r'e
according observation

Method to Occam’s

Can be approximated from above (lower semi-computable)



The AP approach to K: The Coding Theorem Method
(CTM)

(empty input)

n=0
\ 4

n: =n+1 1
(machine counter)

halts?
(Busy Beaver
values)

Y

Frequency
counter (Pr) %

TM produces s for the

N T —> first time, thus
coding theorem K(s) = {ITM| in bits}
| ‘
I
v |
K(s)=-logPr(s)+c — — — = » Kpyg)~K(s) < - — — — - — 4

[Soler, Zenil et al, PLoS ONE (2014)]

Changing the underlying computational model the distribution remains stable



The Coding Theorem
Method (CTM)

The Coding Theorem Method

More likely to be
generated by chance

oliinioliclic

Not complex (shorter description) Complex (longer description)

J.-P. Delahaye and H. Zenil, Numerical Evaluation of the
Complexity of Short Strings: A Glance Into the Innermost
Structure of Algorithmic Randomness

Applied Mathematics and Computation 219, pp. 63-77,
2012.



FiInding Generative Models

Entropy vs algorithmic complexity (by BDM)

Generative models Observed data

e (found by running BDM) d (sequence, no access to prob.
(1,1)->(1,1,+1) distributions or source)
(1:0)'>(2:1; '1) s= 11 21 31 41 51 6; 7/ 81 -91 10[ ey N
(2,1)->(2,0,-1)
(2,0)->(1,0,+1)
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H. Zenil, N.A. Kiani, A. Zeq, J. Tegnér, Causal Deconvolution by Algorithmic Generative
Models

Nature Machine Intelligence, vol 1(1), pp 58-66, 2019.



The Coding Theorem Method
(CTM): A model generator

_ # of times that a machine (n,2) produces S

CTM{(s) # of machines in (n, 2)

CTM(s) ~ —log, D(n, 2)(s)

We are less interested by the output real numbers than by the set of
(non-necessarily) minimal length programs (candidate models explaining s)

J.-P. Delahaye and H. Zenil, Numerical Evaluation of the
Complexity of Short Strings: A Glance Into the Innermost Structure
of Algorithmic Randomness

Applied Mathematics and Computation 219, pp. 63-77, 2012.



Significance of Algorithmic Probability

@ R. Solomonoff demonstrates that AP is an optimal universal inference method
(presented at the Dartmouth Conference 1956 considered the starting point of Al).

@ Walter Kirchherr. The Miraculous Universal Distribution.
The Mathematical Intelligencer, 1997.

More recently. Marvin Minsky:

It seems to me that the most important discovery since Godel was the
discovery by Chaitin, Solomonoff and Kolmogorov of the concept called
Algorithmic Probability

it should be possible to make practical approximations to the Chaitin,
Kolmogorov, Solomonoff theory that would make better predictions than
anything we have today. Everybody should learn all about that and spend
the rest of their lives working on it.

Marvin Minsky Panel on The Limits of Understanding World Science Festival
NYC, Dec 14, 2014



Emergence of the Universal Distribution
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Figure: Emergence of the Universal Distribution. Algorithmic Probability as a
function of computational power: Increasing monotonic.

H. Zenil et al., Coding-theorem Like Behaviour and Emergence of the Universal
Distribution from Resource-bounded Algorithmic Probability, International Journal of
Parallel Emergent and Distributed Systems (2018)



Resources needed for calculation of D

Table: Letter code: F full space, S sample, R(n, m) reduced enumeration. Time
is given in seconds (s), hours (h) and days (d).

(n,m) | Calculation | Number of Machines Time
(2,2) F— (6 steps) | |R(2,2)| = 2000 0.01s
(3,2) F-(21) R(3,2)| = 2151296 8 s
(42) | F-(107) R(4,2)| = 3673320192 4 h
(4,2)2p | Fap— (1500) | |R(4,2)sp| = 315140100864 | 252 d
(4,4) S (2000) 334 x 10° 62 d
(4,5) S (2000) 214 x 10° 44 d
(4,6) S (2000) 180 x 10° 41 d
(4,9) S (4000) 200 x 10? 75 d
(4,10) | S (4000) 201 x 10° 87 d
(5,2) F- (500) |R(5,2)| = 9658153742336 | 450 d
(5.2)2p | Sop (2000) | 1291 x 10° 1970 d

[Soler-Toscano and Zenil et al. PLoS ONE (2014)]



Block Decomposition Method

sample

7 020 TITI0+ 0.0000770 | 100101 - To3x107

1:0250 00100 ¢ 0.0000456 43x10°¢
00: 0.101 11011 : 0.0000456 9313107
01: 0101 01010: 0.0000419 | 000110 9313x10°"

10: 0101 10101 : 0.0000419

00000301

0000391

0.0000391

0.0000301

£ 00000289

Rube
Goldberg
machine

9313x107
£ 0318x10°7
01 - 0.3

310
9313x10-
4.663x107

0100000 : 4.663x 107
0101110 4.663x107
0110000 : 4.663x10°7
0111010 4.663x107
1000101 : 4.663x10-7
1001111 : 4.663x10~
1010001

4663x10°7

11101 : 0,0000489 | 110110 1 1011111 ¢ 4663x10-7
00001 : 0.0000470 | 111101 : 1 1111001 : 4.663x10-7
01111 : 0.0000470 | 010110 1111101 2 4663x10-7

470 | 011010

Xample sample
If any part of the whole system (samples) is of high m(x) and low K(x), then that
art can be generated by mechanistic/algorithmic means and thus is causal.

The lower BDM the more causal.



Block Decomposition Method (BDM)

The following is a BDM partitioning example for block size = 6 and block
overlap = 1 as an illustration of the meaning of block size and block
overlap in the estimation of a complexity of a long string:

Example string: \111001}(\)10111 }
| |
Block size 6: ‘111001“010111H
Y { }

Y
Block overtap 1: 111001 101011 010111

Figure: Block decomposition method (BDM).

H Zenil, et al.

A Decomposition Method for Global
Evaluation of Shannon Entropy and Local
Estimations of Algorithmic Complexity,
Entropy, 20(8), 605, 2018.



Block Decomposition Method

H Zenil, et al.
e No overla pp|ng Under-estimation A Decomposition Method for Global

Evaluation of Shannon Entropy and Local
Estimations of Algorithmic Complexity,
Entropy, 20(8), 605, 2018.

« Overlapping: Over-estimation



Plotonic space of
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BDM
mapping

Reprogrammabili

randomness

H Zenil, et al.

A Decomposition Method for Global
Evaluation of Shannon Entropy and Local
Estimations of Algorithmic Complexity,
Entropy, 20(8), 605, 2018.



Block Decomposition

Method (BDM)

D(n,k)(z) =

T € (n,k) : T produces x}|

CTM(z,n, k) = —log,(D(n,k)(z))

k
BDM(X,1,m) =Y CTM(z;,n, k) +log(s;)

H Zenil, et al.
A Decomposition Method for Global

Evaluation of Shannon Entropy and Local

Estimations of Algorithmic Complexity,
Entropy, 20(8), 605, 2018.

{T € (n,k) : T halts }|

06

04

0.2

0.0

-o— BDM

—=— Compress

-+ Entropy

0 20 40 60 80 100

E.g. These two strings are of

lower randomness than what

Entropy would suggest:

011011010010, 010101110100



BDM v Lossless Compression

The transition between one method and the other. What is complex for the
Coding Theorem method is also less compressible.

length 10 length 11

950 ¢ Q- 1000 F ¢ Q-
@ ol ATRNE

850 | <> 1 900f
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N ]
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All 2" bit strings for small n sorted by CTM versus lossless compression

[F. Soler-Toscano, H. Zenil et al. Computability (2013)]



Correlation with number of instructions (K,, = CTM)

:: @Q
! Q%ik

—_—

1 1 1 ! 1 1 ! 1
3 4 5 6 7 8 9 10

Figure 1: Distribution chart of K, values according to the minimum number
of instructions required. Each “drop-like” distribution is the set of strings
that are minimally produced with the same number of instructions (hori-
zontal axis). The more instructions needed to produce the strings, the more
complex they are (vertical axis in K, units).

[H. Zenil and J-P. Delahaye, Computability; 2013]



The Online Algorithmic
Complexity Calculator

Main Page | How It Works | How To Cite | Team | GitHub Repo | Download Data and Tools | Publications

The Online Algorithmic Complexity Calculator

v3.0

To know how to calculate your personal 'cognitive randomness'
ability (as shown in our widely covered article) read this.
The data produced by more than 3400 people trying to generate random data
can be found here (make sure to cite properly as explained here).
For the new functionality on network analysis read:
An Algorithmic Information Calculus for Causal Discovery and Reprogramming Systems
and also, very important, the Numerical Limitations subsection in the How It Works subpage.

For any string For binary arrays/adjacency matrices

For short strings Network perturbation
Block Decomposition Method for Strings

Enter a string

010101010101010101010101010101010101

Block size
2

3 4

Block overlap

complexitycalculator.com




Graphs and
Networks




Graph complexity

M. Gell-Mann (Nobel Prize 1969) thought that any reasonable measure of complexity of
graphs should have both completely disconnected and completely connected graphs to
have minimal complexity ( The quark and the jaguar, 1994).

Unlike Graph Entropy, Graph Kolmogorov complexity is robust:

complete graph: K ~ log(|N|) E-R random graph: K ~ |E]

Graph Kolmogorov complexity

Complete and disconnected graphs with |N| nodes have low (algorithmic)
information content. In a random graph every edge e € E requires some

information to be described. Both K(G) ~ K(Adj(G)) !




[] -]
Numerical estimations to K(G)

What is the Kolmogorov complexity of an adjacency matrix?

01 100 ]
1 0011

s Ag=| 1 0 0 1 O
0 1 1 01 ]
01 010

Figure: Two-dimensional Turing machines, also known as Turmites (Langton, Physica
D, 1986). This idea can be generalized to n-dimensional 'tapes’.

[Zenil et al. Physica A, 2014]



Graph algorithmic probability

@ Labelled complexity is a good approximation of unlabelled.

@ Different boundary conditions provide a solution to the boundaries
problem (cyclic, overlapping).

@ Overlapping sub matrices avoids the problem of permuting squares
with same complexity (leads to overfitting).

@ The best option is to recursively divide into square matrices for which
exact complexity estimations are known.

@ Numerically sound and robust.

[Zenil et al. Physica A: Statistical Mechanics and Its Applications (2014)]



Boundary Conditions

k
BDM(X,l,m) =Y CTM (z;,n, k) + log(s;)

H Zenil, F Soler-Toscano, N.A. Kiani, S. Hernadndez-Orozco, A. Rueda-Toicen
A Decomposition Method for Global Evaluation of Shannon Entropy and Local Estimations of
Algorithmic Complexity, Entropy 20(8), 605, 2018.



BDM and graph automorphism group
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Figure: Left: An adjacency matrix is not a unlabelled graph invariant yet
isomorphic graphs have similar K. Right: Graphs with large automorphism group
size (group symmetry) have lower K.

This correlation shows that for low algebraic complexity of labelled graphs (large

automorphism count) as measure on a single adjacency matrix, any labelled graph
is a good approximation of the algorithmic complexity of the graph isomorphism
group. is captured by the complexity of their adjacency matrix (which is a

labelled graph object).
: ject) [Zenil et al. Physica A (2014)]



Unlabelled Graph Complexity

Graph unlabelled Kolmogorov complexity:

Definition
Graph Unlabelled Kolmogorov Complexity: Let Adj(G) be the adjacency
matrix of G and Aut(G) its automorphism group, then,

K(G) = min{K(Adj(G))|Adj(G) € A(Aut(G))}

where A(Aut(G)) is the set of adjacency matrices of all G € Aut(G).
(The problem is believed to be in NP but not in NP-complete).

o

Labelled graph complexity = unlabelled graph complexity up to a constant
c. Proof sketch: There is an algorithm (e.g. brute force) of finite (small)
size ¢ that produces any isomorphic graph from any other (even if in NP).

[Zenil, Kiani and Tegnér (Seminars in Cell and Developmental Biology), 2016]



Graph tests

Definition

Dual graph: A dual graph of a plane graph G is a graph that has a vertex
corresponding to each face of G, and an edge joining two neighboring
faces for each edge in G.

Definition
Graph spectra: The set of graph eigenvalues of the adjacency matrix is

called the spectrum of the graph. The Laplacian matrix of a graph is
sometimes also known as the graph’s spectrum.

Definition
Cospectral graphs: Two graphs are called isospectral or cospectral if they
have the same spectra.




Testing compression and BDM

on dual graphs
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[Zenil et al. Physica A (2014)]

H, compression and BDM on cospectral graphs

@orginal graph cospectral

L T T R T
Q oon
O oses
Q <o
~ >
(Gl S o
2 E
O ooss gm
a

0.950 it

#isconnected nod
o 10 20 30 w0

# disconnected nodes

‘@orginal graphl cospeciral .

s
I

1000 .
5 10° : 5 !
& Al =1 P
o { o i

\
e
L‘\

ca,



Algorithmic
Information
Dynamics




Perturbation analysis

Causal/algorithmic interventional
calculus applied to networks

Generative model Type of Intervention Network type
(found by BDM) node deletion .
simple:
a For j = 1 to n no node deletion requires a 1 6

For i = 1 to n change to the generative code

Connect(i to j)
i:=1+1; j: =3 +1

(dtvfwer than O(log n) bits)

b |
_ _ E-R random:

Connect: 1 to 7;1 to 3; every deletion requires .
1 to 6; 6 to 5; 6 to 4; n changes to the code :
6 to 5; 6 to 2; 7 to 4; '

c : : :

For i, j = 1 to m, n  deletions have an impact in the Con’zplex:
Connect(i to j) code greater than logn |

is=1+1; j: =73+ 1; smaller than n
Disconnect all edges to 5 and 7 M

except 5 to 4 and 7 to 2

H Zenil, N.A. Kiani, F. Marabita, Y. Deng, S. Elias, A. Schmidt, G. Ball, J. Tegnér,
An Algorithmic Information Calculus for Causal Discovery and Reprogramming Systems, bioaRXiv DOI:
https://doi.org/10.1101/185637



Algorithmic Information Dynamics: A
Calculus of Algorithmic Information
Change

simple graph node and link incoherence information spectra
a e f I | -
IR .
e Lt/
W N
C \\\‘}//zl}/
¢ |
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\\ /
q directed graph
BT
i
random graph ”‘;\,
e APl
oo ‘.

H Zenil, N.A. Kiani, F. Marabita, Y. Deng, S. Elias, A. Schmidt, G. Ball, J. Tegnér,
An Algorithmic Information Calculus for Causal Discovery and Reprogramming Systems, bioaRXiv DOI.
https://doi.org/10.1101/185637



Information Signatures

-
info value

o (G)
signatures

50 100 150 200

critical

H Zenil, N.A. Kiani, F. Marabita, Y. Deng,
S. Elias, A. Schmidt, G. Ball, J. Tegnér,
An Algorithmic Information Calculus for
Causal Discovery and Reprogramming
Systems, bioaRXiv DOI: https://doi.org/
10.1101/185637



Moving Networks

Numerically moving networks towards
or away from randomness

AR
2RI
NS
==

H Zenil, N.A. Kiani, F. Marabita, Y. Deng, S. Elias, A. Schmidt, G. Ball, J. Tegnér,
An Algorithmic Information Calculus for Causal Discovery and Reprogramming Systems, bioaRXiv DOI:
https://doi.org/10.1101/185637



E.Coli experimentally
validated TF-network

An Algorithmic Information Calculus for Causal Discovery and Reprogramming Systems
H Zenil, N.A. Kiani, F. Marabita, Y. Deng, S. Elias, A. Schmidt, G. Ball, J. Tegnér
doi: https://doi.org/10.1101/185637



BDM

Block Decomposition Method

e -

200 - 200 -

Cluster

° 1

TF 2

* FALSE
* TRUE

/

BDM

L

[ I & T N )

g.
%

=200 - -200 -

I I I I
0 500 1000 0 500 1000
gene gene

Six clusters were selected, using partitioning around medoids clustering. The number of
clusters was estimated by optimum average silhouette width

An Algorithmic Information Calculus for Causal Discovery and Reprogramming Systems
H Zenil, N.A. Kiani, F. Marabita, Y. Deng, S. Elias, A. Schmidt, G. Ball, J. Tegnér

doi: https://doi.org/10.1101/185637



Block Decomposition Method

J.1U
G0:0006094 gluconeogenesis 1.60E-06
G0:0006096 glycolysis 0.00036
G0:0008615 pyridoxine biosynthetic process 0.0124 Fundamental or
G0:0009255 Entner-Doudoroff pathway 0.0124 @ homeostatic
processes
G0:0042330 taxis 0.02035
G0:0016052 carbohydrate catabolic process 0.02911
2 - - -
3 - - -
4 - = -
5 o = o
G0:0006793 phosphorus metabolic process 2.10E-08 Specialized
G0:0009252 peptidoglycan biosynthetic process 2.90E-07 processes
G0:0006777 | Mo-molybdopterin cofactor biosynthetic process | 1.20E-05 Q
G0:0009086 methionine biosynthetic process 0.0027
G0:0009242 colanic acid biosynthetic process 0.0124
G0:0006164 purine nucleotide biosynthetic process 0.0196
G0:0009228 thiamine biosynthetic process 0.0254
G0:0009243 O antigen biosynthetic process 0.0254|

Gene Ontology (Biological Process):

over-represented categories tested with TopGO weight01 method (Fisher p<0.05)

An Algorithmic Information Calculus for Causal Discovery and Reprogramming Systems
H Zenil, N.A. Kiani, F. Marabita, Y. Deng, S. Elias, A. Schmidt, G. Ball, J. Tegnér
doi: https://doi.org/10.1101/185637



Block Decomposition Method

Fundamental or

KEGG ID Term Pval
00010 Glycolysis / Gluconeogenesis 1.76E-08
00051 Fructose and mannose metabolism 7.13E-06
02030 Bacterial chemotaxis 6.32E-05
02020 Two-component system 7.55E-04
00620 Pyruvate metabolism 4.08E-03
00030 Pentose phosphate pathway 5.14E-03
02060 Phosphotransferase system (PTS) 5.45E-03
00680 Methane metabolism 6.70E-03
01110 Biosynthesis of secondary metabolites 9.59E-03
01120 Microbial metabolism in diverse environments 1.44E-02
00550 Peptidoglycan biosynthesis 1.01E-07
01100 Metabolic pathways 6.74E-04|
04122 Sulfur relay system 4.11E-03
00621 Dioxin degradation 9.20E-03
00622 Xylene degradation 9.20E-03 é
00360 Phenylalanine metabolism 1.48E-02
00300 Lysine biosynthesis 2.48E-02
00230 Purine metabolism 3.50E-02
00670 One carbon pool by folate 3.73E-02

4 homeostatic
processes

Specialized
processes

Over-represented KEGG pathways (p<0.05)
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uperpathway of glycolysis and Entner-Doudoroff 5.37E-07|
ugar Alcohols Degradation 4.82E-06|
uperpathway of hexitol degradation (bacteria) 1.91E-05)
glycolysis | (from glucose-6P) 1.91E-05|
glycolysis Il (from fructose-6P) 1.91E-05|
gluconeogenesis | 2.56E-04
luconeogenesis 2.56E-04
ugar Derivatives Degradation 0.003115401
Metabolites Degradation 0.003131693
0.004830985)

0.004830985)

0.005196795

tulose bisphosphate bypass

Entner-Duodoroff Pathways

ignal transduction pathways

methylphosphonate degradation |

Phosphorus Compounds Metabolism

Methylphosphonate Degradation

Pyrimidine Nucleobases Degradation

Uracil Degradation

racil degradation IlI

eptidoglycan biosynthesis (meso-diaminopimelate containing)

Peptidoglycan Biosynthesis

ell Wall Biosynthesis

utrescine degradation Il

-phenylpropionate and 3-(3-hydroxyphenyl)propionate degradation

roline to cytochrome bo oxidase electron transfer

UDP-N-acetylmuramoyl-pentapeptide biosynthesis | (meso-DAP-containin,
UDP-N-Acetylmuramoyl-Pentapeptide Biosynthesis

-oxopentenoate degradation

Putrescine Degradation 0.0413727

rimidine Nucleotides Degradation 0.06959294
uperpathway of ornithine degradation 0.075477235
Purine Nucleotides De Novo Biosynthesis 0.075477235
uperpathway of purine nucleotides de novo biosynthesis Il 0.075477235
uperpathway of arginine, putrescine, and 4-aminobutyrate degradation 0.09681385
L-rhamnose degradation | 0.09815362
L-rhamnose Degradation 0.09815362

Over-represented EcoCyc
pathways (FDR<0.05)

Fundamental or
homeostatic
processes
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ENTROPY
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Three clusters were identified (above baseline, baseline, below baseline).
Non-baseline nodes are enriched for Transcription Factors
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COMPRESSION
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Two clusters were identified (above baseline, baseline).
Above-baseline nodes are enriched for Transcription Factors
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Non significant clusters using
Compression

xenobiotic metabolic process

G0:0009255 [Entner-Doudoroff pathway 0.014

G0:0006355 |regulation of transcription, DNA-dependent  |0.029

Gene Ontology (Biological Process): Over-represented categories
tested with TopGO weightO1 method (Fisher p<0.05) using lossless
compression (Compress algorithm).
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BDM sensitivity and specificity

B L. BDM did not correlate with
Sertentes ~ln s any ftrivial graph-theoretic
measure such as:

« Node degree
 |In degree

T I N :
E - B pm: « QOut degree
i m .
ol mBl0s LT = . Betweeness Centrality
o o « Entropy
- ﬁ = 5 « Compression

An Algorithmic Information Calculus for Causal Discovery and Reprogramming Systems
H Zenil, N.A. Kiani, F. Marabita, Y. Deng, S. Elias, A. Schmidt, G. Ball, J. Tegnér
doi: https://doi.org/10.1101/185637



E.coli TF network

Info nodes of the e.coli, the most studied organism and genetic network:

GO KEGG EcoCyc
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Resource to check: Fundamental = Conserved

These findings point at an emerging picture in which a core of
enzyme activities involving amino acid, energy, carbohydrate

and lipid metabolism have evolved to provide the basic func-

tions required for life. However, as indicated by the relatively
low number of significantly modular links, the precise com-
plement of enzymes associated within this core for each spe-
cies is flexible. It is important to remember that the network

O metabolism

0 Ao.

O o

Pathway Superclass
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Abstract

Carbohydrate metabolism [l

Energy metabolism [l

Lipid metaboism Il

Nucleotide metaboiism [l

Amino acid metabolism Il

Other amino acid metabolism [l

Glycan metaboiism [l
Go-factors and vitamins
Secondary metaboiites

Xenobiotics [l

Number of enzymes in pathway
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Background: Cellular metabolism is a fundamental biological system consisting of myriads of
enzymatic reactions that together fulfill the basic requirements of life. The recent availability of vast
amounts of sequence data from diverse sets of organisms provides an opportunity to systematically
examine metabolism from a comparative perspective. Here we supplement existing genome and
protein resources with partial genome datasets derived from 193 eukaryotes to present a
comprehensive survey of the conservation of metabolism across 26 taxa representing the three
domains of life.

Results: In general, metabolic enzymes are highly conserved. However, organizing these enzymes
within the context of functional pathways revealed a spectrum of conservation from those that are
highly conserved (for example, carbohydrate, energy, amino acid and nucleotide metabolism
enzymes) to those specific to individual taxa (for example, those involved in glycan metabolism and
secondary metabolite pathways). Applying a novel co-conservation analysis, KEGG defined
pathways did not generally display evolutionary coherence. Instead, such modularity appears
restricted to smaller subsets of enzymes. Expanding analyses to a global metabolic network
revealed a highly conserved, but nonetheless flexible, 'core’ of enzymes largely involved in multiple
reactions across different pathways. Enzymes and pathways associated with the periphery of this
network were less well conserved and associated with taxon-specific innovations.

Concl These findings point to an emerging picture in which a core of enzyme activities
involving amino acid, energy, carbohydrate and lipid metabolism have evolved to provide the basic
functions required for life. However, the precise complement of enzymes associated within this
core for each species is flexible.




Information dynamics of biological cells
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Info nodes of a T,17 mouse cell in its differentiation process (gene
expression, siRNA). A: Distribution of info genes. B: Non-uniform
distribution of T/17 marker genes. C: Information change in the 3 time
steps. D: Overal network complexity.
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Information dynamics of biological

B Enrichment analysis of
Th17 associated genes

A Info gene distributions
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Waddington's Landscape
Reconstruction

Waddington’s energy
landscape reconstruction
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Data from: CellNet (Harvard)

Reconstruction of mammalian gene regulatory
networks from 21 cell types and tissues: https://
www.cell.com/cell/abstract/S0092-8674(14)00934-9
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Algorithmic/Dynamic
Landscape Relationship

Algorithmic space Dynamical phase space
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Test: all possible Boolean nets

of size up 1o & & larger BNs

3-node motifs

DELINGS

4-node motifs

R MM NR )

5-node motifs

Y AN

Perturbation by edge deletion

14 - Al : o o
® 12
9
(3 10
k)
* B AL
> 2D @ @
k@(\ @‘>\\ <>5\K\A 0?\\4
¢ Q (\Q
f perturbation
20K [ER T i
” -
515K . ’
Q
©
= 10K —_ I . P
(]
ks) - l
g 5K
o | 1
- N ) X (®)
O & Qo%\ & &(\b

perturbation

e

6lc
» 5
S
sS4
=
5 3
35

2.

\ @ N
Na ‘?,}\\4 W & 60@
&\(b Q}q oc)\ ,\Q;\' N
[e) '\ Q \ \(b’

g perturbation
) 2.8
226
©
= 24
S22
=

2.0 — — .

N 2 A
\(\Q} (§\4 \);\\46 \3{0’ 606\
{\Q Q)@ 3 (\42;\’ O
N\ Q &

perturbation

An Algorithmic Information Calculus for Causal Discovery and Reprogramming Systems
H Zenil, N.A. Kiani, F. Marabita, Y. Deng, S. Elias, A. Schmidt, G. Ball, J. Tegnér

doi: https://doi.org/10.1101/185637



Reprogrammability

Thermodynamics of
computer programs

Information
Information signature of E-R
signature of Highest reprogrammability point random graph

complete graph

+

nodes

I — edges

Relative programmability of a fixed graph
The slope of a segment is a measure of algorithmic

sensitivi
faster and Y difficult and
easier to slow to
N
reprogram | ~€— Directional asymmetry > | reprogram \
Iog|VSG)| . P Algorithmic Complexity .K(E-R) ~ | E(G) |.
.(o ¢ e o y o,,.v“./’...<_. 0’"‘. .
| , Information . o) Y
e o sensitivity v v

Algorithmic
random (AR) network

An Algorithmic Information Calculus for Causal Discovery and Reprogramming Systems
H Zenil, N.A. Kiani, F. Marabita, Y. Deng, S. Elias, A. Schmidt, G. Ball, J. Tegnér
doi: https://doi.org/10.1101/185637



Algorithmic Deconvolution
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CA separation

Ground truth

Original cellular automaton

Typical last step observation

]

(

Causal deconvolution

Sanity check

T E

5 3

3 3

[

L B

: L s N L

8 8 2 8 8§ 2

sjaxid jo Jaquinny

RHS

LHS

ution by Algorithmic Generative Models

Nature Machine Intelligence, vol 1(1), pp 58-66, 2019.

H. Zenil, N.A. Kiani, A. Zeq, J. Tegnér, Causal Deconvo



Network separation by
generative mechanism

Decomposition/deconvolution
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Network separation by
generative mechanism

Termination criterion:
When continue breaking
actually increases the sum
of the program-lengths
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Reconstructing space-time
diagrams by reconstruction of
minimal K configuration

FW

= 8.733333 p = 0.8245542

ﬁﬁ_.- ==

ho = -9.666667 p = 0.89498672

=7

ho = -0.233333 p = 0.545699 rho = 0.966667 p = 0.0000215503

ho = 0 633333 p = 0.067 8858 rho = 8.1 p = 8.797972

%#.&ﬁ

ho 0.9 p 0.000943062 rho 0.966667 p 0.0000215503

Lowest algorithmic complexity configuration of CA space-time diagrams.
Left columns: Original Right: Reconstructed.
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Reconstruction of fime indexes
(and thus, e.g. initial conditions &
even the genera’nng rulel)

A

rho = ©.900644 p = 7.40177x10" rho = ©.919176 p = 2.5617T1x10 %

= Intuition: You can

-------- recover the last step
m_ from the previous ones,
e — SO you can ‘peel’ back
s ri the system.

(we are applying this
to continuous dynamical
systems via K-Sinai entropy)

> 5 ¥
rho = -0, 8993555 p = 0.564257

Adding time index to the reconstruction by perturbation analysis. Each
row has a time index. Real vs guessed index Pearson correlation values
reported.
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Entropy at the core of
Machine & Deep Learning
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A DNN
performance is
how well the
distance is
minimised
between every
point in the
fraining set vs
the testing set
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How do we fix thise Statistical +

Symbolic

Paradoxically!
Back to square 1

Statistical pattern matching:

« Powerful statistical engine for
pattern recognition
Combinatorial and numerical
data representation

We need to teach
computers how to count

= again!

i A

¥y

: -

Symbolic computation:
Optimal inference engine

Program/model synthesis

Computational mechanics

Algorithmic probability %Z

Immune
Algorithmics




Algorithmic Machine Learning

Algorithmic hyper
parameter
controller

Deep Neural
Network
receives s and
AP(s)
s=0,01,10,11,100,101

Algorithmic
Probability acting as
working memory

Three papers submitted to NeurlPS 2019



