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Abstract:

Flocking refers to the collective and coherent motion of a large group of animals. T his project is 
an attempt to simulate flocking behavior using autonomous agents with simple movement rules.  
The algorithm is based on the three basic principles first proposed by Craig Reynolds in his 
ground breaking 1 987 paper "Flock, Herds, and Schools :  A Dis tribut ed Behavior Model" (1).  
The project consists primarily of visualization modules, alt hough it also contains some 
preliminary dynamical systems analysis of the flock movement. Unfortunately, due to the high 
level of complexity of the system standard analysis techniques have been hard to implement. In 
particular, measuring the degree of instability or chaos in the system via Lyapunov characteristic 
exponents or an analogus quantity has proved difficult.  



Introduction

Although people have always been intrigued by the graceful movement exhibited by flocks of 
migrating birds, schools of fish, and other such creatures it is only relatively recently that we have 
begun to systematically study and model this behavior.  The first substantial effort to model 
flocking was probably by the computer scientist and animation artist Craig Reynolds in 1987 (1).  
However, since that  time flocking dynamics  has quickly become a subject  of great interest among 
a variety of communities including computer scientists, animal biologists, and applied 
mathematicians.  

Flocking behavior is interesting  to scientists for a variety of reasons. Biologist s are often 
interested in studying the flocking behavior of real species in relation to evolution and survival 
strategies. Herd animals such as Buffalo, for example, run together when attacked by predators 
rather than dispersing because it increases the average survival rate of animals within the herd. It 
is a evolutionary strategy. On the other end of the spectrum are the more philosophically inclined 
AI folks who are interested in studying flocking behavior theoretically as an example of an 
emergent phenomena and 'collective intelligence'.  More recently flocking inspired algorithms 
have also been used by applied mathematicians and other scientists to solve difficult optimization 
and data clustering problems (3,4).  

My work focuses primarily on simulation methods and visualization of flocking 'boids' on a 2D 
surface. However, some attempt has also been made to characterize the stability of the system in 
dynamical systems terms. Preliminary results seem to indicate, quite surprisingly given its 
complexity, that the system of independent boids is, in fact, a non-chaotic dynamical system, at  
least within the parameter ranges that generate suitable flocking behavior. 

Background

My model was based off the three basic principles of Reynolds which I outline below. The 
algorithm section contains a more detailed explanation of how these principles were implemented 
in the 2D model. Reynolds used a 3D model so some adapt ations had t o be made for the 2D case. 
 No other real knowledge is required outside of basic dynamical systems principles. 

(1)  Static Collision Avoidance - Boids s teer away from st ationary obst acles such as walls and
       other obstructions, and also steer away from other boids that are too close to them.

(2)  Flock Centering - Boids  try to move towards t he center of mass  of the flock.

(3)  Velocit y Mat ching - Boids try t o mat ch their velocity to t hat of ot her boids  in the flock.  

It should be noted that each boid has a limited radius of perception. They can only 'see' other 
boids that are within this radius. Thus, the algorithm dictates that a given boid actually moves 
towards the center of mass of its 'neighbors'  not t he true center of mass of t he flock, and only 
matches its velocity to the average velocity of its 'neighbors' not the actual average velocity of the 
flock. (Here the neighbors of a given boid refers to all other boids within its radius of perception). 



Dynamical System

In dynamical systems terms, a system of N boids can be represented heuristically as a system of 
2N symmetric coupled second order differential equations, or 4N first order differential 
equations. The 'equations of motion' are symmetric because all boids are identical, a nd second 
order because the algorithm affecting their movement modifies only their acceleration, not their 
position or velocity directly. The factor of 2 comes in because the simulation takes places in a 2D 
world: for each boid there is one equation corresponding to movement in the x direction and one 
equation corresponding to movement in the y direction. 

However, the 'equations of motion' are not  really equat ions. T hey are given by a reasonably 
simple algorithm but it requires a number of case statements and would be extremely difficult, if 
not impossible, to reformulate directly as a system of explicit equations. A schematic outline of 
the algorithm is given in the following section (it is also well outlined in the code with 
comments). One unfortunate consequence of the lack of explicit equations, though, is that  
because there is no Jacobian Matrix we can't evolve orthogonal unit vectors and calculate a set of 
Lyapunov exponents like we could for a regular set of differential equations.

The Algorithm

At each timestep the following algorithm is applied to all boids simultaneously, and the positions  
and velocities of all boids at the next time step are updated accordingly. Here neighbors refers to 
all other boids within our boid's radius of perception, and obstacles refers to all other boids or 
stationary obstacles within our boid's radius of avoidance. Walls are separate stationary obstacles 
that confine the boids to a square grid for display purposes. The radiance of avoidance is larger 
for walls and stationary obstacles than it is for other boids.

The Algorithm:  (a = acceleration, v = velocity, p = position)

v_next = v_current + a_current*timestep
p_next = p_current + v_current*timestep + 1/2 * a_current*timestep^2

where we calculate a_current using the four acceleration factors below:

a_velocity = (average velocity of neighbors - av erage velocity of boid) * scaling factor
a_center = (av erage position of neighbors - av erage position of boid) * scaling factor
a_static = movement away from the closest obstacle involv ing both a turning factor
                 and a direct movement away in the direction opposite of the displacement. 
a_wall = movement away from the closest section of wall inv olving both a turning factor
               and a direct movement away in the direction opposite of the displacement.

The first three factors are added in order of priority (static collision avoidance > velocity 
matching > flock centering) until either the maximum acceleration level of a boid MA is reached 
or until all three factors have been added in. The resulting quantity is our initial determination of 
a_current. If the boid is within range of a wall this value of a_current is averaged with a_wall to 
give us a new value of a_current. Finally, if a_current*timestep + v_c urrent exceeds the boid's 



maximum velocity we cut back the acceleration accordingly so that at the next timestep the boid's 
velocity will be its maximum potential velocity MV. 

A few notes about the algorithm:

(1) The positions, velocit ies , and accelerations of t he boids  are all 2D vect ors (x,y).

(2) Because a boid's neighbors change from timestep to timestep the 'equations' change 
     so implementing a Runga-Kutta integrator would be difficult. T he factor of 1/2*a*t ^2 in t he 
     calculat ion of p_next  is an att empt  to smooth the integration process, and stay closer to t he
     act ual 'equations'. In practice it seems t o help. 

(3) The turning factors mentioned above are somewhat annoying to calculate (see code) but they
      appear t o smooth the trans itions around obstacles and provide a more natural motion. 
      Reynolds actually used a much more complicated turning procedure to replicate 3D flight.

(4) The priority ordering system for the various methods of acceleration was proposed 
      by Reynolds, although he did not specify a precise order in his paper only that they should be
      ordered rather than averaged. This makes sense if you think about it. Given conflicting 
      impulses a creature mus t decide which way to move rat her than average t he impulses and
      do nothing. For example, a bird can either turn left or right to avoid an upcoming tree,
      but it would be fatal to average the two impulses and maintain its forward trajectory.
      Given that  we want to prioritize, clearly it  makes sense to give obstacle avoidance the highest
      priority. In practice I found that using velocity matching as the second priority seems to work
      well.    

(5) The scaling for the four different components of acceleration is crucial to the way the 
      sys tem functions. I found it  best  to keep the magnitude of a_velocity and a_current  fixed at
      1/3 of the maximum acceleration and comput e the magnitude of a_wall and a_static as t he
      inverse of the dist ance to the obstacle (as you get closer and closer you try harder and harder 
      to avoid it.)

(6) Reynolds actually weighted the effect a boid's neighbors had on it by the inverse of the
     square of the distance between them. It was  not until rereading the paper more carefully that  I
     determined this, and it would have been somewhat difficult t o implement  in terms of t he
     averaging processes, but  the code seems to work at least decently well without  this.

Methods

The algorithm outlined above was used to simulate the movements of a set of 20 birds with 
random initial positions and velocities confined to a square grid. Multiple simulations  were run to 
optimize the model parameters and produce the most realistic flocking movement. Additionally, 
the stability of the system was assessed by creating very similar sets of initial conditions (boid 
locations and velocities) and evolving their trajectories to monitor divergence.  The simulat ion 
engine was run in python and the display module used pygame.



Results 

After a good bit of parameter tuning the simulations did finally produce a reasonable 
approximation of flocking behavior. Randomly distributed boids will cluster into small groups 
which merge together and eventually form one large flock. Once formed the flock maintains 
unity as it wanders about the grid for the duration of each simulation. The boids also do a good 
job of avoiding contact with one another, walls, and other stationary obstacles (Although perhaps 
they could move around obstacles and away from walls a bit more smoothly). The main failing of 
the simulations thus far is that the boids don't do a great job of matching their velocity to the 
average flock velocity. If the velocity data is smoothed over many timesteps the boid's average 
velocity over the longer time period is close to that of the flock, but at any given instant the 
velocities may differ substantially. For a demonstration of the flocking process  use the program 
FlockingDisplayObstacles.py with an appropriate data file. For the convergence of flock 
positions and velocities see Figure 1.

From the simulations you can clearly see that when the flock forms the boids are generally 
separated by a distance of approximately the obstacle avoidance radius (3 body lengths) and 
remain in such a relative position structure throughout the simulations. Thus, the sys tem 
definitely contains at least one attractor - the set of all possible 4N dimensional vectors which 
have the position components for all boids separated by approximately the radius of obstacle 
avoidance.  Whether t his is in fact one att ractor or instead has  multiple components is not  entirely 
clear. However, because of the way the simulation is  run with the flock confined to the relat ively 
small grid which it appears to traverse somewhat randomly, it is likely that all or virtually all of 
such well spaced position states would eventually be reached - i.e. they must lie on the same 
attractor. Nevert heless , there may also be other at tractors as well with much smaller basins of 
attraction. Perhaps some highly symmetric set of initial conditions could generate periodic 
motion of some sort. 

As previously mentioned analyzing the stability of the system via standard Lyapunov exponent 
methods proved difficult because there was no explicit Jacobian matrix. Instead I chose to create 
flocks with similar sets of initial conditions (only the initial position and velocity of a single boid 
had been modified) and then evolve the two flocks to monitor divergence in their overall 
trajectories. The simulations show t hat even two flocks with such a highly similar initial 
condition have rapidly diverging trajectories. Within a few thousand timesteps (or roughly the 
time needed for either flock to traverse the grid a few times) the two flocks have entirely 
separated. For a demonstration of the divergence processes use the program 
FlockingDisplayDivergence.py with an appropriate data file.

To be somewhat more quantitative I attempted to calculate a single Lyapunov exponent for the 
system based upon the magnitude of the displacement, δ, bet ween the 2N dimens ional posit ion 
vector of one flock and the 2N dimensional position vector of it modified copy as function of 
time using the formula  λ =  (1/t)*ln(|δt |/|δo|). The velocit y components were ignored because, as 
seen in Figure 1, t hey appeared to be most ly noise on t he single t imestep scale at which we were 
calculating. Unlike the animations which seemed to indicate chaotic behavior (rapidly diverging 



trajectories of nearby initial conditions) the Lyapunov exponent calculations seemed to indicate 
that the system was, in fact, non chaotic with a Lyapunov exponent close to zero. Rather than 
growing exponentially the magnitude of δt  appeared t o grow roughly linearly in time. Of course, 
the difference in the overall position vectors was bounded by the grid the flocks were contained 
in making them artificially close.  However, when the walls were removed the linear growth then 
became even more pronounced. In retrospect this is actually quite logical. A flock's average 
velocity should be roughly on the order of the maximum boid velocity MV, and its trajectory 
more or less straight in the absence of walls or other obstacles, at least over the length of the 
simulations. Thus, the distance between the centers of two flocks (and thus their corresponding 
members) should grow roughly linearly in time.  See F igures 2,3. 

Discussion and Conclusions

This 2D boid model seems to be a reasonable approximation of flocking behavior, but a number 
of questions remain to be addressed. First a more accurate quantitative analysis of the degree of 
chaos in the system is needed. The visualizations give us int uition, but they are not measure able, 
while the single Lyapunov exponent calculation may be out of place in this context. Secondly, 
there are number of parameters or ratios of parameters that would be interesting to investigate 
including the ratio of the radius of perception to the radius of obstacle avoidance, the ratio of a 
boid's maximum velocity to its maximum acceleration, and the ratio of the number of boids to the 
size of the grid.  The behavior of the sys tem may change dramatically as  these paramet ers are 
modified. 



Figure 1 - Plots of the convergence of boid positions and velocities. (a) The differences in 
position between individual boids and the center of mass of the flock as a function of time. 
(b) The differences in velocity between individual boids and the center of mass of the flock as a 
function of time. (c) The differences in velocity between the individual boids  and the center of 
mass of the flock as a function of time smoothed over 500 t imes teps. All plots are for the x-
coordinate data only, a similar trend is  observed with t he y-coordinate due t o the symmetry of the 
system. The posit ions of t he individual boids are seen to converge to t he pos ition of t he center of 
mass quickly (i.e. the boids come together in a flock), but the velocity convergence is observed 
only with the smoothed data. 
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Figure 2 - Divergence Plots, with walls. (a) Plot of the net position displacement between two 
flocks with similar sets of initial conditions as a function of time. (b) P lot of t he Lyapunov 
characteristic exponent calculated from this displacement as a function of time. In the simulation 
both flocks were confined to a rectangular grid by imposed walls. 
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Figure 3 - Divergence Plots, no walls . (a) Plot of the net position displacement between two 
flocks with similar sets of initial conditions as a function of time. (b) Plot of t he Lyapunov 
characteristic exponent calculated from this displacement as a function of time. The simulation 
did not involve any walls or boundaries to contain the flock motion.
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