Correlation-powered Information Engines and the Thermodynamics of Self-Correction

Alexander B. Boyd,1,∗ Dibyendu Mandal,2,† and James P. Crutchfield1,‡

1Complexity Sciences Center and Physics Department, University of California at Davis, One Shields Avenue, Davis, CA 95616
2Department of Physics, University of California, Berkeley, CA 94720, U.S.A.
(Dated: August 13, 2016)

Information engines can use structured environments as a resource to generate work by randomizing ordered inputs and leveraging the increased Shannon entropy to transfer energy from a thermal reservoir to a work reservoir. We give a broadly applicable expression for the work production of an information engine, generally modeled as a memoryful channel that communicates inputs to outputs as it interacts with an evolving environment. The expression establishes that an information engine must have more than one memory state in order to leverage input environment correlations. To emphasize this functioning, we designed an information engine powered solely by temporal correlations and not by statistical biases, as employed by previous engines. Key to this is the engine’s ability to synchronize—the engine automatically returns to a desired dynamical phase when thrown into an unwanted, dissipative phase by corruptions in the input—that is, by unanticipated environmental fluctuations. This self-correcting mechanism is robust up to a critical level of corruption, beyond which the system fails to act as an engine. We give explicit analytical expressions for both work and critical corruption level and summarize engine performance via a thermodynamic-function phase diagram over engine control parameters. The results reveal a new thermodynamic mechanism based on nonergodicity that underlies error correction as it operates to support resilient engineered and biological systems.

PACS numbers: 05.70.Ln 89.70.-a 05.20.-y 05.45.-a

Keywords: Maxwell’s Demon, Maxwell’s refrigerator, detailed balance, entropy rate, Second Law of Thermodynamics

I. INTRODUCTION

Intriguing connections between statistical mechanics and information theory have emerged repeatedly since the latter’s introduction in the 1940s. Thermodynamic entropy in the canonical ensemble is the Shannon information of the Boltzmann probability distribution [1]. Entropy production along a dynamical trajectory is given by the relative entropy [2,3], an information-theoretic quantity, of the forward trajectories with respect to the time-reversed trajectories [4]. Perhaps the most dramatic connection, though, appears in the phenomenon of Maxwell’s demon, a thought experiment introduced by James C. Maxwell [5]. This is a hypothetical, intelligent creature that can reverse the spontaneous relaxation of a thermodynamic system, as mandated by the Second Law of thermodynamics, by gathering information about the system’s microscopic fluctuations and accordingly modifying its constraints, without expending any net work. A consistent physical explanation can be obtained only if we postulate, following Szilard [6], a thermodynamic equivalent of information processing: Writing information has thermodynamic benefits whereas erasing information has a minimum thermodynamic cost, $k_B T \ln 2$ for the erasure of one bit of information. This latter is Landauer’s celebrated principle [7,8].

The thermodynamic equivalent of information processing has the surprising implication that we can treat the carrying capacity of an information storage device as a thermodynamic fuel. This observation has led to a rapidly growing literature exploring the potential design principles of nanoscale, autonomous machines that are fueled by information. References [9,10], for example, introduced a pair of stochastic models that can act as an engine without heat dissipation and a refrigerator without work expenditure, respectively. These strange thermal devices are achieved by writing information on a tape of “bits”—that is, on a tape of two-state, classical systems. A more realistic model was suggested in Ref. [11]. These designs have been extended to enzymatic dynamics [12], stochastic feedback control [13], and quantum information processing [14,15].

The information tape in the above designs can be visualized as a sequence of symbols where each symbol is chosen from a fixed alphabet, as shown in Fig. 1 for binary tape symbols. There is less raw information in the tape if the symbols in the sequence are statistically correlated with each other. For example, the sequence ...101010..., consisting of alternating 0s and 1s, encodes
only a single bit of information on the whole since there are only two such sequences (differing by a phase shift). Whereas, a sequence of \(N \) random binary symbols encodes \(N \) bits of information. The thermodynamic equivalent of information processing, therefore, says that we can treat the former (ordered) sequence as a thermodynamic fuel. This holds even though it contains equal numbers of 0s and 1s on average as in the fully random sequence, which provides no such fuel.

The design principles of information engines \([16]\) explored so far, however, are not generally geared towards temporally correlated information tapes \([9, 11, 17, 21]\) since, by and large, only a tape’s single-letter frequencies have been considered. However, the existence of statistical correlations among the symbols—that is, between environmental stimuli—is the rule, not an exception in Nature. Even technologically, producing a completely correlation-free (random) sequence of letters is a significant challenge \([22, 24]\). The thermodynamic value of statistical correlations \([25, 26]\) and quantum entanglement \([27, 35]\) have been discussed widely in the literature. Our goal here is to extend the design of tape-driven information engines to accommodate this more realistic scenario—information engines that leverage temporally correlated environments to convert thermal energy to useful work.

Other studies have taken a somewhat different approach to the description and utilization of the thermodynamic equivalent of information processing. References \([20, 26, 36–49]\) explored active feedback control of a stochastic system by external means, involving measurement and feedback or measurement, control, and erasure. While Refs. \([54, 55]\) explored a multiparticle framework involving a set of interacting, stochastic subsystems and Refs. \([17, 54]\) studied steady-state models of Maxwell’s demon involving multiple reservoirs. And, finally, Refs. \([55, 57]\) indicated how several of these approaches can be combined into single framework.

Here, we use computational mechanics \([58]\) for thermal information ratchets \([59]\) to derive a general expression for work production that takes into account temporal correlations in the environment as well as correlations created in the output by the information engine’s operation. The functional form of the work expression establishes that memoryless information ratchets cannot leverage anything more than single-symbol frequencies in their input and are, therefore, insensitive to temporal correlations. Thus, to the extent that it is possible to leverage temporally correlated environments, memoryful information engines are the only candidates. This indicates, without proof, that the memory of an information engine must reflect the memory of its environment to most efficiently leverage structure in its input.

Adding credence to this hypothesis, we introduce an ergodic information engine that is driven solely by temporal correlations in the input symbols to produce work. The states of the engine wind up reflecting the memory states of the generator of the input process. This makes good on the conjecture \([59]\) as to why one observes thermodynamically functional ratchets in the real world that support memory \([59]\): Only Demons with memory can leverage temporally correlated fluctuations in their environment.

Similar behavior was demonstrated by Maxwell’s refrigerator \([9]\), when Ref. \([15]\) showed it to be a nonergodic refrigerator when driven by a nonergodic process that is statistically unbiased over all realizations. However, we focus on our ergodic engine, since ergodicity leads to robust and reliable work production. This contrast is notable. Without ergodicity, an engine does not function during many realizations, from trial to trial. In this sense, a “nonergodic engine” is unreliable in performing its intended task, such as being an engine (converting thermal energy to work), generating locomotion, and the like. During one trial it functions; on another it does not.

If one is willing to broaden what one means by “engine”, then one can imagine constructing an “ensemble engine” composed of a large collection of nonergodic engines and then only reporting ensemble-averaged performance. Observed over many trials, the large trial-by-trial variations in work production are masked and so the ensemble-average work production seems a fair measure of its functionality. However, as noted, this is far from the conventional notion of an engine but, perhaps, in a biological setting with many molecular “motors” it may be usefuly considered functional.

Our design of an ergodic engine that can operate solely on temporal correlations should also be contrasted with a recent proposal \([60]\) that utilizes mutual information between two tapes, i.e., spatial correlations, as a thermodynamic fuel.

The overarching thermodynamic constraints on functioning at all are analyzed in a companion work \([49]\). The following, in contrast, focuses on the particular functionality of self-correcting Demons in the presence of temporally correlated environments and on analyzing the thermodynamic regimes that support them. First, we review the information engine used and give a synopsis of our main results so that they are not lost in the more detailed development. Second, the technical development begins as we introduce the necessary tools from computational mechanics and stochastic thermodynamics. Third, using them, we analyze the engine’s behavior and functioning in the presence of a correlated input, calling out the how the Demon recognizes (or not) correlations in the input and either (i) responds constructively by using
them to convert thermal energy to work or (ii) dissipates energy as it attempts to re-synchronize and regain engine functioning. Fourth, we note how these two dynamical modes represent a type of dynamical nonergodicity over the ratchet’s state space when the ratchet cannot re-synchronize, which leads to temporary nonergodicity in the work production. However, with re-synchronization, these two dynamical modes become accessible from each other, which leads to ergodicity of the engine and its work production. And, finally, we derive the physical consequences for the costs of self-correction and its operational limits.

II. A SELF-CORRECTING INFORMATION ENGINE: SYNOPSIS

Figure 1 shows our model [10, 59] of an information engine implemented as a thermal ratchet consisting of four elements: a thermal reservoir, a work reservoir (mass in a gravitational field), an information tape (or reservoir), and a ratchet controlled by the values in the input tape cells. The ratchet acts as the communication medium between the three reservoirs as it moves along the tape and transforms the input information content. In the process, it mediates energy exchange between the heat and work reservoirs.

To precisely specify the kinds of temporal correlation in the ratchet’s environment, we represent the generator of the sequences on the information tape via a hidden Markov model (HMM), a technique introduced in Ref. [59]. This has several advantages. One is that the full distribution over infinite sequences of the input tape Pr(Y) is represented in a compact way. The most extreme case of this comes in recalling that finite-state HMMs can finitely represent infinite-order Markov processes [61]. And so, HMMs give a desirable flexibility in the kinds of environments we can analyze, from memoryless to finite- and infinite-order Markovian. Another is that many statistical and informational properties can be directly calculated, as we discuss shortly. In this setup, the ratchet is a transducer in the sense of computational mechanics [62]. And this, in turn, allows exact analysis of informational bounds on work production [21, 59]. Here, though, in Sec. III C we go further, expanding the toolset of the HMM-transducer formalism by deriving a general work production expression for any finite-state input HMM driving a finite-state thermal ratchet.

With this powerful new expression for work production, Sec. IV A then considers the case of a perfectly correlated information tape. Though nominally simple, this case is of particular interest since previous single-symbol entropy bounds erroneously suggest this class of input should generate nonpositive work. Our entropy rate bounds, in contrast, suggest it is possible to generate net positive work. And, indeed, we see that the single-symbol bounds are violated, as our ratchet produces positive work. In examining this concrete model, moreover, we realize that the ratchet’s synchronizing to the correlations in its input is an essential part of work production: Synchronization is how the ratchet comes to leverage the thermodynamic “fuel” in a memorable input process.

This result emphasizes a key feature of our ratchet design: Useful thermodynamic functioning is driven purely by the temporal correlations in the input tape. That is, if the symbols are perfectly correlated—a sequence with temporal memory, e.g., with 1s always following 0s and vice versa—the ratchet acts as an engine, writing new information on the output tape and transferring energy from the heat to the work reservoir. However, if the correlation is not perfect, depending on engine parameters, the ratchet can act as an information-eraser or dud, converting work into heat. Thus, there exists a critical level of corrupted input correlation beyond which engine functionality is no longer possible. Our tools allow us to give explicit expressions for work in all these cases, including the parameter limits of thermodynamic functioning.

Perhaps most importantly, the analysis reveals a novel mechanism underlying the functioning and its disappearance. This can be explained along the following lines. An exclusive feature of the ratchet design is the presence of...
a synchronizing state, denoted C in the (state \otimes bit)-transition diagram of Fig. 1. Absent C and for perfectly correlated input, the ratchet is equally likely to be in two stable dynamical modes: “clockwise” in which heat is converted into work and “counterclockwise” in which work is converted into heat. (See Fig. 1.) Since the counterclockwise mode dissipates more per cycle than can be compensated by the clockwise mode, without C the ratchet cannot function as an engine. With C, though, the counterclockwise mode becomes a transient and the clockwise mode an attractor, making possible the net conversion of heat into work (engine mode). The phenomenon of an observer (ratchet) coming to know the state of its environment (phase of the memoryful input tape) is referred to as synchronization [63]. (For a rather different notion of synchronization and its thermodynamic interpretation see Ref. [64].)

In contrast, when the input symbols are not perfectly correlated due to phase slips, say, the ratchet is randomly thrown into the dissipative counterclockwise mode. Nonetheless, repeated re-synchronization may compensate, allowing the engine mode, if the transition probabilities into C are enhanced, up to a level. This is a form of dynamical error correction. Beyond a certain level of corruption in the input correlations, however, dynamical error correction is not adequate to resynchronize to the input phase. The Demon cannot act as an engine, no matter how large the transition probabilities into C. This critical corruption level is shown in the thermodynamic-function diagram of Fig. 12 by the vertical dotted line, where the horizontal axis denotes level of corruption as the frequency of phase slips.

The current situation must be contrasted with the usual error correction schemes in communication theory and biological copying. In the former context, redundancy is built into the data to be transmitted so that errors introduced during transmission can be corrected by comparing to redundant copies, up to a certain capacity. In the biological context of copying, as in DNA replication [65], error correction corresponds to the phenomenon of active reduction of errors by thermodynamic means [66–68]. In the current context, we use the term self-correction to refer to the fact the proposed information engine can predict and synchronize itself with the state of the information source to produce positive work even when the engine is initiated in or driven by fluctuations to a dissipative mode. Section V discusses this self-correcting behavior of the engine in detail.

To analyze how dynamical error correction operates quantitatively, the following shows how the presence of state C renders the counterclockwise phase transient. This reveals a novel three-way tradeoff between synchronization rate (transition probability from C to the clockwise phase), work produced during synchronization, and average extracted work per cycle. Section V then turns to analyze re-synchronization, considering the case of imperfectly correlated information tape with phase slips. It demonstrates how the ratchet dynamically corrects itself and converts heat into work over certain parameter ranges. The section closes by giving the expression for maximum work and the parameter combinations corresponding to achieving optimum conversion.

Throughout the exploration, several lessons stand out. First, to effectively predict bounds on a input-driven ratchet’s work production, one must consider Shannon entropy rates of the input and output strings; and not single-variable entropies. Second, the expression for the work production shows that correlations coming from memoryful environments can only be leveraged by memoryful thermodynamic transformations (Demons). While it remains an open question how to design ratchets to best leverage memoryful inputs, the particular ratchet presented here demonstrates how important it is for the ratchet’s structure to “match” that of the input correlations. In short, the ratchet only produces work when its internal states are synchronized to the internal states of the input sequence generator. Otherwise, it is highly dissipative. And last, synchronization has energetic consequences that determine the effectiveness of dynamical error correction and the tradeoffs between average work production, work to synchronize, and synchronization rate.

III. THERMAL RATCHET PRINCIPLES

Our finite-state ratchet, shown above in Fig. 1, moves along the information tape unidirectionally, interacting with each symbol sequentially. The ratchet interacts with each symbol for time τ and possibly switches the symbol value contained in the cell. We refer to time period τ as the interaction interval and the transitions that happen in the joint state space as interaction transitions. Through this process, the ratchet transduces a semi-infinite input string, expressed by random variable $Y_{0:}\infty = Y_0 Y_1 \ldots$, into an output string $Y_{0:}\infty = Y_0' Y_1' \ldots$. Here, the symbols Y_N and Y_N' realize the elements y_N and y'_N, respectively, over the same information alphabet \mathcal{Y}.

For example, as in Fig. 1, the alphabet consists of just 0 and 1. Consider the case in which the ratchet was initiated at the leftmost end at time $t = 0$. At time $t = N\tau$ the entire tape is described by the random variables $Y_{0:N} Y_{N:}\infty = Y_0' Y_1' \ldots Y_{N-2}' Y_{N-1}' Y_N Y_{N+1} \ldots$, because in N time-steps N input symbols have been transduced into N output symbols. The state of the ratchet at time $t = N\tau$ is denoted by the random variable X_N, which realizes...
an element $x_N \in \mathcal{X}$, where \mathcal{X} is the ratchet’s state space.

Since we chose the input alphabet to consist of just two symbols 0 and 1, we refer to the values in the tape cells as *bits*. That this differs from the information unit “bit” should be clear from context. *Tape* generally refers to the linear chain of cells and *string* to the stored sequence of symbols or cell values.

Finally, the ratchet is connected with two, more familiar reservoirs—a thermal reservoir and a work reservoir. The state of the thermal reservoir at time $t = N\tau$ is denoted by Z_N. We assume that the thermal reservoir is at absolute temperature T K. The work reservoir consists of a mass being pulled down by gravity, but kept suspended by a pulley. Certain, specified ratchet transitions lower and raise the mass, exchanging work.

To set up the analysis, we must first review how to measure information, structure, and energy as they arise during the ratchet’s operation.

A. Ratchet Informatics: Computational Mechanics

To monitor information generation and storage, computational mechanics views the sequence of symbols from the left of the input tape $Y_{0: \infty}$ as the temporal output of a kind of HMM, called an ϵ-machine [58]. The latter provides the most compact way to represent the statistical distribution of symbol sequences. In particular, many types of long-range correlation among the symbols are encoded in the ϵ-machine’s finite-state hidden dynamics. The correlations appear as the *memory*, characterized by its internal-state entropy or *statistical complexity* C_μ.

Specifically, if the input can be produced by an HMM with a single hidden state, the input generator is memoryless and there cannot be any correlation among the symbols [69].

The ratchet functions as a memoryful communication channel that sequentially converts the input symbols into values in $Y'_{0: \infty}$, the output tape. Naturally, the output tape itself can be considered in terms of another HMM, as emphasized by the schematic in Fig. 2. There, the ratchet acts as an information transducer between two information sources represented by respective input and output HMMs [62].

These choices make it rather straightforward to measure ratchet *memory*. If the size of its state space is unity ($|\mathcal{X}| = 1$), then we say it is memoryless. Otherwise ($|\mathcal{X}| > 1$), we say it is memoryful. With memory, the ratchet at time $t = N\tau$ can store information about the past input symbols $y_{0:N}$ with which it has interacted, as well as past outputs $y'_{0:N}$. Similarly, the output HMM can have memory (its own positive statistical complexity $C_\mu > 0$) even when the input HMM does not. This was the case, for example in Refs. [9–11, 59]. Critically, the transducer formalism has the benefit that we can exactly calculate the distribution $\Pr(Y'_{0: \infty})$ of output tapes for any finite-memory ratchet with a finite-memory input process. Shortly, we add to this set of tools, introducing a method to calculate the work production by any finite-memory ratchet operating on a finite-memory input.

B. Ratchet Energetics: The First Law of Thermodynamics

Interactions between ratchet states and input symbols have energetic consequences. The internal states and symbols interact with a thermal reservoir at temperature T, whose configuration at time step N is denoted by the random variable Z_N, and with a work reservoir, that holds no information and so need not have an associated random variable. Through its operation, the current input symbol facilitates or inhibits energy flows between the work and thermal reservoirs.

The joint dynamics of the ratchet and incoming symbol occur over two alternating steps: a *switching* transition and an *interaction* transition. At time $t = N\tau$, the ratchet switches the tape cell with which it interacts from the $(N-1)$th output symbol y'_{N-1} to the Nth input symbol y_N. This is followed by the interaction transition between the ratchet, which is in the x_N state, and the symbol y_N. Together, they make a stochastic transition
in their joint state space according to the Markov chain:

\[M_{x_N \otimes y_N \rightarrow x_{N+1} \otimes y'_N} = \Pr(X_{N+1} = x_{N+1}, Y'_N = y'_N | X_N = x_N, Y_N = y_N) . \]

\(M \) has detailed balance, since transitions are activated by the thermal reservoir. Energy changes due to these thermal interaction transitions are given by the Markov chain:

\[\Delta E_{x_N \otimes y_N \rightarrow x_{N+1} \otimes y'_N} = k_B T \ln \frac{M_{x_{N+1} \otimes y'_N \rightarrow x_N \otimes y_N}}{M_{x_N \otimes y_N \rightarrow x_{N+1} \otimes y'_N}} . \]

These energies underlie the heat and work flows during the ratchet’s operation. Through interaction, the input symbol \(y_N \) is converted into the output symbol \(y'_N \) and written to the output tape cell as the ratchet switches to the next input bit \(y_{N+1} \) to start the next interaction at time \(t = (N + 1)\tau \).

Notably, previous treatments \[9, 10, 59\] of information engines associated the energy change during an interaction transition with work production by coupling the interaction transitions to work reservoirs. While it is possible to construct devices that have this work generation scheme, it appears to be a difficult mechanism to implement in practice. We avoid this difficulty, designing the energetics in a less autonomous way, not attaching the work reservoir to the ratchet directly.

So, instead of the ratchet effortlessly stepping along the tape unidirectionally on its own, it is driven. (And, an energetic cost can be included for advancing the ratchet without loss of generality.) In this way, heat flow happens during the interaction transitions and work flow happens during the switching transitions. Appendix A shows how this strategy gives an exact asymptotic average work production per time step:

\[\langle W \rangle = \sum_{x,x' \in \mathcal{X}, y,y' \in \mathcal{Y}} \pi_{x \otimes y} M_{x \otimes y \rightarrow x' \otimes y'} \Delta E_{x \otimes y \rightarrow x' \otimes y'} , \quad (1) \]

where \(\pi_{x \otimes y} \) is the asymptotic distribution over the joint state of the Demon and interaction cell at the beginning of any interaction transition:

\[\pi_{x \otimes y} = \lim_{N \rightarrow \infty} \Pr(X_N = x, Y_N = y) . \quad (2) \]

It is important to note that \(\pi \) is not \(M \)'s stationary distribution and, moreover, it is highly dependent on the input HMM. Despite calculating work production for a different mechanism, the asymptotic power calculated here is the same as in previous examinations \[10, 21, 59\].

From the expression of work given in Eq. (1), we see that memoryless ratchets have severe limitations in their ability to extract work from the heat reservoir. In this case, the ratchet state space \(\mathcal{X} \) consists of a single state and \(\pi \) in Eq. (2) is just the single symbol distribution of the input string:

\[\pi_{x \otimes y} = \Pr(Y_0 = y) . \]

As a result, the calculation of work depends only on the single-symbol statistics of the input string, producing work from the string as if the input were independent and identically distributed (IID). Regardless of whether there are correlations among the input symbols, the work production of a memoryless ratchet is therefore the same for all inputs having the same single-symbol statistics. For example, a memoryless ratchet cannot distinguish between input strings 01010101... and 00110011... as far as work is concerned. Thus, for the ratchet to use correlations in the input string to generate work, it must have nonzero memory. This is in line with previous examinations of autonomous information engines \[21, 59\]. In any case, the general form for the work production here allows one to calculate it for any finite memoryful channel operating on any input tape generated by a finite HMM.

C. Ratchet Entropy Production: The Second Law of Thermodynamics

Paralleling Landauer’s Principle \[7, 8\] on the thermodynamic cost of information erasure, several extensions of the Second Law of thermodynamics have been proposed for information processing. We refer to them collectively as the thermodynamic equivalents of information processing. For ratchets, these bounds on the thermodynamic costs of information transformation can be stated either in terms of the input and the output HMMs’ single-symbol entropy (less generally applicable) or entropy rate (most broadly applicable). Let’s review their definitions for the sake of comparison.

Consider the probability distribution of the symbols \(\{0, 1\} \) in the output sequence of an HMM. If the single-symbol probabilities are \(\{p, 1 - p\} \), respectively, the single-symbol entropy \(H_1 \) of the HMM is given by the binary entropy function \(H(p) \) \[70\]:

\[H_1 = H(p) \equiv -p \ln p - (1 - p) \ln (1 - p) . \quad (3) \]

By definition, single-symbol entropy ignores sequential symbol-symbol correlations.

The entropy rate, in contrast, is the asymptotic per-symbol uncertainty. To define it, we need to first in-
roduce the concept of a word in the output sequence generated by an HMM. A word w is a subsequence of symbols of length ℓ over the space \mathcal{Y}^ℓ. For example, a binary word of length $\ell = 2$ consists of a pair of consecutive symbols; an event in the space $\mathcal{Y}^2 = \{00, 01, 10, 11\}$. Thus, there are 2^ℓ possible length-ℓ words or elements in \mathcal{Y}^ℓ. The Shannon entropy rate of the process generated by an HMM is then given by \cite{70}:

$$h_\mu = - \lim_{\ell \to \infty} \frac{1}{\ell} \sum_{w \in \mathcal{Y}^\ell} \Pr(w) \ln \Pr(w),$$

(4)

where $\Pr(w)$ denotes the probability of $w \in \mathcal{Y}^\ell$. Entropy rate h_μ captures the effects of correlations in the symbols at all lengths.

For memoryless processes, $H_1 = h_\mu$. Otherwise, $H_1 > h_\mu$, with h_μ being the correct measure of information per symbol and H_1 being an overestimate. One relevant extreme case arises with exactly periodic processes with period greater than 1: $h_\mu = 0$; whereas $H_1 > 0$, it’s magnitude being determined by the single-symbol frequencies.

We can now state two specific forms of the thermodynamic equivalent of information processing for information engines:

$$\langle W \rangle \leq k_B T \ln 2 \Delta H_1,$$

(5)

$$\langle W \rangle \leq k_B T \ln 2 \Delta h_\mu,$$

(6)

where ΔH_1 and Δh_μ denote, respectively, the change in single-symbol entropy and in entropy rate from the input HMM to the output HMM \cite{9, 10, 18, 21, 56, 59, 71, 72}.

Let’s compare them. Equation (5) says that correlations in the input string beyond single symbols cannot be used to produce work, while Eq. (6) suggests the opposite. As long as the output process has some uncertainty in sequential symbols, then $\Delta h_\mu > 0$. We also introduce a ratchet with three memory states that produces positive work and even appears to be nearly optimal for certain parameter ranges \cite{19}. In short, a memoryful ratchet with a memoryful input process violates Eq. (5), demonstrating that bound’s limited range of application.

IV. FUNCTIONAL RATCHETS IN PERFECTLY CORRELATED ENVIRONMENTS

Let’s consider the case of a correlated environment and then design a thermal ratchet adapted to it.

A. The Period-2 Environment

Take the specific case of a period-2 input process. The state transition diagram for its HMM is given in Fig. 3. There are three internal states. D is a transient state from which the process starts. From D, the process transitions to either E or F with equal probabilities. If the system transitions to E, a 0 is emitted, and if the system transitions to F, a 1 is. Afterwards, the process switches between E and F with $E \to F$ transitions emitting 1 and $F \to E$ transitions emitting 0. As a result, the input HMM generates two possible sequences that drive the ratchet: $y_{0:\infty} = 010101\ldots$ or $y_{0:\infty} = 101010\ldots$. Note that these two sequences differ by a single phase shift.

The period-2 process is an ideal base case for analyzing how ratchets extract work out of temporal correlations. First, its sequences have no bias in the frequencies of 0’s and 1’s, as they come in equal proportions; thereby removing any potential gain from an initial statistical bias. And, second, the symbols in the sequence are perfectly correlated—a 0 is followed by 1 and a 1 by 0.

More to the point, previous information engines cannot extract work out of such periodic sequences since those engines were designed to obtain their thermodynamic advantage purely from statistical biases in the inputs \cite{9, 10, 18, 21, 59}. By way of contrast, we now in-
introduce and analyze the performance of a ratchet design that extracts work out of such perfectly correlated, unbiased input sequences. The following section then considers the more general case in which input correlations are corrupted by environmental fluctuations.

Let’s explain the information-theoretic reasoning that motivates this. For a period-2 process, the single-symbol entropy H_1 is maximal: $H[Y_N] = 1$. However, its entropy rate $h_\mu = 0$ due to its perfect predictability as soon as any symbol is known. This, on the one hand, implies $\Delta H_1 \equiv H[Y_N^{\infty}] - H[Y_N] \leq 0$. Equation (5), in turn, says that work cannot be extracted regardless of the realizations of the output string: no matter the design of the information engine. For the period-2 input, though, $\Delta h_\mu = h'_\mu \geq 0$. And, Eq. (6) indicates that work can be extracted as long as the output string has nonzero entropy rate h'_μ. This is achievable with appropriate thermal ratchet design. In other words, Eq. (5) suggests that it is impossible to extract work from input correlations beyond single-symbol bias, while Eq. (6) suggests it is possible. We resolve this disagreement in favor of Eq. (6) by explicit construction and exact analysis.

B. Memoryful Ratchet Design

Figure 4 gives a ratchet design that can extract work out of a period-2 process. As explained above in Sec. III, the ratchet interacts with one incoming symbol at a time. As a result, the ratchet’s transducer specifies both ratchet internal states and the states of the input tape cell being read. In the figure, A, B, and C denote the ratchet’s internal states and $x \otimes y$ denotes the joint transducer state of the ratchet state and interacting cell value, with the ratchet being in state $x \in \{A, B, C\}$ and the interacting cell with value $y \in \{0, 1\}$. Arrows denote the allowed transitions and their labels the transition probabilities in terms of the ratchet control parameters δ and γ. The parameters δ and γ satisfy the following constraint: $0 \leq \delta, \gamma \leq 1$. The Markov chain matrix M corresponding to the transition dynamics depicted in Fig. 4 is given in App. A. Due to the repetitive nature of the dynamics, the transducer reaches an asymptotic state (App. A) such that its probability distribution does not change from one interaction interval to another.

Now, consider the transducer’s response when driven by a period-2 input process. Appendix B calculates the work and entropy changes in the asymptotic limit, find-
\[\langle W \rangle = \frac{1 - \delta}{e} k_B T \ln 2 , \]
(7)

\[\Delta H_1 = 0 , \]
and

\[\Delta h_\mu = H \left(\frac{1 - \delta}{e} \right) . \]
(9)

The work expression follows from the definition in Eq. (1). The single-symbol entropy difference \(\Delta H_1 \) vanishes since the output tape consists of random, but still equal, mixtures of 0’s and 1’s, as did the input tape. The entropy rate change \(\Delta h_\mu \), though, is generally positive since, although the input entropy rate vanishes, the ratchet adds some randomness to the output.

From Eq. (9), we have a clear violation of Eq. (5). Whereas, Eq. (6) still holds:

\[0 = \Delta H_1 < \frac{\langle W \rangle}{k_B T \ln 2} \leq \Delta h_\mu . \]
(10)

Since Ref. [59] established Eq. (6) for all finite ratchets, this difference in the bounds is expected. Nonetheless, it worth calling out in light of recent discussions in the literature [73]. In any case, these results confirm the conclusion that to properly bound all finite information ratchets, including memoryful ratchets driven by memoryful inputs, we must use Eq. (10) rather than Eq. (5).

C. Dynamical Ergodicity and Synchronization

To provide intuition behind the work expression of Eq. (7), let’s now analyze the ratchet’s operation. This reveals a novel synchronization mechanism that’s responsible for nonzero work production. First, consider the case in which the engine parameters \(\delta \) and \(\gamma \) are zero; that is, the state \(C \) is disconnected from \(A \) and \(B \). This effectively deletes \(C \) from the joint dynamic, as shown in Fig. 5. This restricted model has the topology considered in our previous work [59].

It turns out that the ratchet has two equally likely dynamical modes, let’s call them clockwise and counterclockwise. When in each mode, the ratchet behavior is periodic in time. The modes are depicted in Fig. 6 with the clockwise mode on the left and the clockwise mode on the right. The dashed (red) arrows show the paths taken through the joint state space due to an interaction transition followed by a switching transition when the switching transition is driven by input 0. And, the solid (blue) arrows show the paths taken when the switching transition is driven by input 1. The labels on the arrows indicate the amount of work done in the associated transitions. The clockwise mode extracts \(k_B T/\epsilon \) amount of work per bit, while the counterclockwise mode expends \(k_B T \) amount of work per bit.

There is a simple way to understand the existence and work performance of the two modes. Consider the clockwise mode first. The left state-transition diagram in Fig. 6 shows this mode arises when \(A \otimes 0 \) or \(B \otimes 1 \) happens to be the initial joint state. First, there is a horizontal interaction transition to a lower energy state. The energy difference \(k_B T \) is fully dissipated in the thermal reservoir with no exchange of energy with the work reservoir. Then, there is a vertical switching transition to a higher-energy state. The required energy
$k_B T$ is taken from the work reservoir with no exchange of energy with the thermal reservoir. This energy is then dissipated as heat in the thermal reservoir at the next horizontal transition. The net amount of work produced per symbol—the net amount of energy supplied to the work reservoir—is $\langle W \rangle = -k_B T$.

Similarly, consider the clockwise mode. The right-hand state-transition diagram in Fig. 6 shows that this mode arises when $A \otimes 1$ or $B \otimes 0$ is the initial joint state. First, there is an interaction transition along either the horizontal or diagonal paths of the Markov chain. (The horizontal transitions are opposite to those of the counterclockwise mode.) From microscopic reversibility, the horizontal interaction transitions lead to $k_B T$ energy taken from the thermal reservoir in order to move into higher energy states. No energy is exchanged with the work reservoir. On the diagonal transitions, on the other hand, no energy is exchanged with either reservoir. Then, there is a switching transition, which corresponds to a vertical transition to a lower energy state if the horizontal interaction transition was made just before. The energy difference $k_B T$ is given to the work reservoir. However, if the diagonal transition was made, then the switching transition does not change the state and there is no work done. As shown in the figure, there are two possible paths the system can take between $A \otimes 1$ and $B \otimes 0$ in one operation cycle of the ratchet: $\{A \otimes 1 \rightarrow B \otimes 1 \rightarrow B \otimes 0\}$ and $\{A \otimes 1 \rightarrow B \otimes 0 \rightarrow B \otimes 0\}$. The same is true of transitions from $B \otimes 0$ to $A \otimes 1$: $\{B \otimes 0 \rightarrow A \otimes 0 \rightarrow A \otimes 1\}$ and $\{B \otimes 0 \rightarrow A \otimes 1 \rightarrow A \otimes 1\}$. Averaging over the probabilities of the two fundamental paths, the net average work produced is $\langle W \rangle = k_B T/e$. (See App. B for details.)

If the initial ratchet state is uncorrelated with the input HMM state, the clockwise and the counterclockwise modes occur with equal probability. Once in a particular mode, the ratchet cannot switch over to the other mode. In this sense, the two modes act as two different attractors for the Demon’s joint state-symbol dynamics. In other words, the system is dynamically nonergodic, leading to nonergodic work production: either time-averaged $-k_B T$ or $k_B T/e$. In this case, the ratchet dissipates on average $k_B T(1 - 1/e)/2$ units of energy from the work reservoir into the thermal reservoir as heat.

Comparing this ergodic ratchet, in which nonergodicity plays a dynamic and transient role, to the nonergodic engine discussed earlier is in order. Nonergodic engines (those driven by nonergodic input processes) can exhibit functional behavior when averaged over an ensemble of input realizations. As shown in Ref. [15], Maxwell’s refrigerator [9] can refrigerate when driven by the nonergodic process consisting of two infinitely long realizations, one of all 0s and the other of all 1s. Similar to our ratchet driven by (ergodic) period-2 sequences, the refrigerator has two principle modes: the ratchet is driven by all 0s and refrigerates versus the ratchet is driven by all 1s and dissipates. However, one of these two modes is chosen at random in the beginning of a ratchet trial and remains fixed. This yields refrigeration that differs from the ensemble average (over the nonergodic input realizations). However, we can achieve robust and functional work production in our period-2 ratchet, by coupling modalities dynamically via the C state. Then, on every trial, the engine functions.

Let’s explain how its emergent nonergodicity makes this function robust. For $\delta \neq 0$ and $\gamma \neq 0$, state C becomes accessible to the ratchet, changing the stability of the counterclockwise attractor. And, this allows positive work production. (From here on we consider the original, full ratchet in Fig. 4.) We make a heuristic argument as to why the ratchet can generate positive net work using state C.

C’s addition creates a “path” for the ratchet to shift from the dissipative, counterclockwise mode to the generative, clockwise mode. And, the latter becomes the only attractor in the system. In other words, the counterclockwise dynamical mode becomes a purely transient mode and the system becomes dynamically ergodic. The situation is schematically shown in Fig. 7, where the arrows denote allowed transitions in the dynamical sense. Heat and probability values of the transitions are shown there along each arrow. Recall that in the counterclockwise mode, the joint state is either $A \otimes 0$ or $B \otimes 1$ at the beginning of each interaction interval. According to the Markov model, both these states have probability δ of transitioning to a C state during interaction transitions. Thus, as depicted, δ is the probability of transitioning from the counterclockwise mode to C.

Once in state C, the ratchet cannot return to the counterclockwise mode, despite the fact there is probability γ of transitioning back to either $A \otimes 0$ or $B \otimes 1$ in an inter-

\[\langle Q \rangle = -k_B T \ln \left(\frac{1}{2} \right) \]

\[k_B T \ln \gamma/\delta \]

\[0 \]

\[k_B T \ln \delta/\gamma \]

\[\text{clockwise} \]
action transition. This is because the following switching transition immediately changes $A \otimes 0$ to $A \otimes 1$ and $B \otimes 1$ to $B \otimes 0$. That is, the system is in the clockwise mode at the beginning of the next interaction interval. Thus, with probability γ the system makes a transition to the clockwise mode. After this transition, the system is necessarily synchronized, and it is impossible to transition out of the synchronized dynamic. In this way, the ratchet asymptotically extracts a positive amount of average heat from the environment, $\langle Q \rangle = k_B T(1 - \delta)/e$ per symbol. Asymptotic heat extraction is the same as the work production for finite ratchets, confirming Eq. (7). Since the ratchet must move through C to arrive at the recurrent, clockwise, work-producing dynamic, we decide to start the ratchet in C. C serves as a synchronization state in that it is necessary for the ratchet state to synchronize to the input tape: once the ratchet transitions out of the C state, its internal states are synchronized with the input HMM states such that it produces work.

D. Trading-off Work Production Against Synchronization Rate and Work

With Fig. 4 in mind, we can define and calculate several quantities that are central to understanding the ratchet’s thermodynamic functionality as functions of its parameters δ and γ: the synchronization rate R_{sync} and the synchronization heat Q_{sync} absorbed during synchronization. R_{sync} is the inverse of the average number of time steps until transitioning into the clockwise mode. It simplifies to the probability γ of transitioning into the clockwise mode:

$$R_{\text{sync}}(\delta, \gamma) = \frac{1}{\langle \tau \rangle} = \frac{1}{\gamma \sum_{i=0}^{\infty} (i+1)(1-\gamma)^i} = \gamma.$$

The heat Q_{sync} absorbed when synchronizing is the change in energy of the joint state as the ratchet goes from the synchronizing states ($C \otimes 0$ or $C \otimes 1$) into the recurrent synchronized states ($A \otimes 0$ or $B \otimes 1$):

$$Q_{\text{sync}}(\delta, \gamma) = k_B T \ln \frac{\delta}{\gamma}.$$

This is minus the energy dissipation required for synchronization.

Much like the speed, energy cost, and fidelity of a computation [74–77], these two quantities and the average extracted work per symbol obey a three-way tradeoff in which each pair is inversely related, when holding the third constant. This is expressed most directly by combining the expressions above into a single relation that is independent of δ and γ:

$$Q_{\text{sync}} + k_B T \ln R_{\text{sync}} - k_B T \ln \left(1 - \frac{e\langle W \rangle}{k_B T}\right) = 0.$$

Figure 8 illustrates this trade-off. Analytically, the same interdependence appears when taking the partial derivatives of the quantities with respect to each other:

$$\frac{\partial Q_{\text{sync}}}{\partial \langle W \rangle} = -\frac{k_B T e}{k_B T - e\langle W \rangle},$$

$$\frac{\partial Q_{\text{sync}}}{\partial R_{\text{sync}}} = \frac{-k_B T}{R_{\text{sync}}},$$

$$\frac{\partial \langle W \rangle}{\partial R_{\text{sync}}} = -\frac{k_B T - e\langle W \rangle}{eR_{\text{sync}}}.$$

These all turn out to be negative over the physical range of parameters: $\langle W \rangle \in (-\infty, 1/e]$, $R_{\text{sync}} \in [0, 1]$, and $Q_{\text{sync}} \in (-\infty, \infty)$. The ratchet’s successful functioning derives from the fact that it exhibits a dynamical mode that “resonates” with the input process correlation in terms of work pro-
FIG. 9. Noisy phase-slip period-2 (NPSP2) process: As with the exact period-2 process of Fig. 3, its HMM has a transient start state D and two recurrent causal states E and F. Starting from D, the process makes a transition either to E or F with equal probabilities while outputting 0 or 1, respectively. Once in state E, the process either stays with probability c and outputs a 0 or makes a transition to state F with probability $1 - c$ and outputs a 1. If in state F, the process either stays with probability c and outputs a 1 or makes a transition to state E with probability $1 - c$ and outputs a 0. For small nonzero c, the output is no longer a pure alternating sequence of 0s and 1s, but instead randomly breaks the period-2 phase. For $c = 1/2$, the generated sequences are flips of a fair coin. The process reduces to that in Fig. 3 if $c = 0$.

This suggests there is a critical level of input errors where a transition from a functional to nonfunctional ratchet occurs. This section analyzes the transition, giving an exact expression for the critical phase-slip frequency at which the ratchet stops producing work.

To explore the ratchet’s response to such errors, we introduce phase slips into the original period-2 input process. They occur with a probability c, meaning that after every transition, there is a probability c of emitting the same symbol again and remaining in the same hidden state rather than emitting the opposite symbol and transitioning to the next hidden state. An HMM corresponding this period-2 phase-slip dynamics is shown in Fig. 7—the noisy phase-slip period-2 (NPSP2) process. It reduces to the original, exactly periodic process generated by the HMM in Fig. 3 when $c = 0$.

It is now straightforward to drive the ratchet (Fig. 4) inputs with the NPSP2 process (Fig. 9) and calculate exactly the average work production per symbol using Eq. 1. Appendix B does this for all values of δ, γ, and c. Here, let’s first consider the special case of $\gamma = 1$. This is the regime in which the ratchet is most functional as an engine since, if the ratchet produces positive work, then $\gamma = 1$ maximizes that work production.

With $\gamma = 1$, once the ratchet is in state C, it immediately synchronizes in the next interaction interval. In this case, δ parametrizes the relationship between the average work done when synchronized and the rate of synchronization. The higher δ is, the less work the ratchet extracts while synchronized, but the more often it transitions to the synchronizing state—recall Fig. 7—allowing it to recover from phase slips. The calculation for $\gamma = 1$ yields an average work rate (App. B):

\[
\langle W \rangle (\delta, c) = \frac{(1 - \delta)[\delta + c - c(2\delta + e)]}{2ce + \delta c(1 - c)}. \tag{12}
\]

Thus, over the whole parameter space $c, \delta \in [0, 1]$, the average work varies over the range:

\[
\langle W \rangle (\delta, c) \in \frac{k_B T}{e} \left[-\frac{e - 1}{2}, 1 \right].
\]

Figure 10 shows how the work production varies with δ for different values of c. No matter the value of c, at $\delta = 0$ the average work attains its lower limit of
\(-k_B T(e-1)/2e\), which is the average work produced when both clockwise and counterclockwise modes have equal probability. As \(\delta\) increases, there is an increase in the the average work until it reaches 0 at a particular value \(\delta^*(c)\). Below \(\delta^*(c)\)—i.e., within the range \(0 \leq \delta \leq \delta^*(c)\)—the system consumes work; whereas above \(\delta^*(c)\), the system acts as an engine, producing net positive work. Figure 10 shows that \(W\) increases as \(\delta\) increases, starting with 0 and ending up at 1 as \(\delta\) tends to unity.

The dependence is nonlinear, with sharp changes near \(c = 0\) and saturating near \(c = 1\). Since the average work vanishes as \(\delta\) tends to 1 independent of \(c\), there is a value of \(\delta_{\text{max}}(c)\) where the engine’s work production is maximum. This maximum work \(W_{\text{max}}(c)\) is closer to its upper limit \(k_B T/e\) for smaller values of \(c\). As we increase \(c\), there is a decrease in \(W_{\text{max}}(c)\) until it vanishes at \(\delta = 1\).

Figure 11 shows the dependence of \(W_{\text{max}}(c)\) as a function of error rate \(c\), revealing a critical value \(c^* = 1/1 + e\) beyond which \(W_{\text{max}}(c)\) vanishes. Thus, if the phase-slip frequency is too high, the ratchet cannot produce net positive work regardless of how quickly it synchronizes. This special value \(c^*\) actually partitions the expressions for \(\delta^*(c)\), \(\delta_{\text{max}}(c)\), and \(W_{\text{max}}(c)\) into piecewise functions:

\[
\delta^*(c) = \begin{cases}
\frac{(1-e)t}{2c} & \text{if } c \leq \frac{1}{1+e} \\
1 & \text{if } c > \frac{1}{1+e}
\end{cases}
\]

(13)

\[
\delta_{\text{max}}(c) = \begin{cases}
\frac{4c^2 + a - 2c}{2c^2 - 3c + 1} & \text{if } c \leq \frac{1}{1+e} \\
1 & \text{if } c > \frac{1}{1+e}
\end{cases}
\]

(14)

\[
W_{\text{max}}(c) = \begin{cases}
\frac{k_B T}{e} - \frac{2a + c(e - (5+e)c) + 1}{e(c-1)^2} & \text{if } c \leq \frac{1}{1+e} \\
0 & \text{if } c > \frac{1}{1+e}
\end{cases}
\]

(15)

where \(a = \sqrt{c(2e^2 + c - 1) + (3+e)c - e - 1}\).

The results in Fig. 11 should not be too broadly applied. They do not imply that positive net work cannot be extracted for the case \(c > c^*\) for any information ratchet. On the contrary, there exist alternatively designed ratchets that can extract positive work even at \(c = 1\). However, the design of such ratchets differs substantially from the current one. Sequels will take up the task of designing and analyzing this broader class of information engines.

Figure 12 combines the results in Figs. 10 and 11 into phase diagram summarizing the ratchet’s thermodynamic functionality. It illustrates how the \(\delta-c\) parameter space splits into two regions: the leftmost (red) region where the ratchet produces work, behaving as an engine, and the lower right (gray) region where the ratchet consumes work, behaving as either an information eraser (using work to erase information in the bit string) or a dud (dissipating work without any erasure of information). It also shows that \(c^* = 1/(1 + e)\) corresponds to both the point at which \(\delta_{\text{max}}(c)\) reaches 1 and the point at which it is no longer possible to extract work from the input, independent \(\delta\). This is the point where phase slips happen so often that the ratchet finds it impossible to synchronize for long enough to extract any work.

VI. CONCLUSION

We extended the functionality of autonomous Maxwellian Demons by introducing a new design for information engines that is capable of extracting work purely out of temporal correlations in an information source, characterized by an input HMM. This is in marked contrast with previous designs that can only...
leverage a statistically biased information source or the mutual, instantaneous correlation between a pair of information sources [9, 10, 18, 21, 59]. Our new design is especially appropriate for actual physical construction of information engines since physical, chemical, and biological environments (information sources) almost always produce temporally correlated signals.

The new design was inspired by trying to resolve conflicting bounds on the work production for information engines. On the one hand, Eq. (5) for monitoring information content only of isolated symbols suggests that no work can be produced from temporal correlations in input string; whereas, on the other, using entropy rates Eq. (6) indicates these correlations are an excellent resource. We showed, in effect, that this latter kind of correlational information is a thermodynamic fuel.

To disambiguate the two bounds, we described the exact analytical procedure to calculate the average work production for an arbitrary memoryful channel and a HMM input process. The result is that it is now abundantly clear which bounds hold for correlated input processes.

We considered the specific example of a period-2 process for the input tape (Fig. 3), since it has structure in its temporal correlations, but no usable single-symbol information content. The ratchet we introduced to leverage this input process requires three memory states (Fig. 4) to produce positive work. This memoryful ratchet with a memoryful input process violates Eq. (5), establishing Eq. (6) as the proper information processing Second Law of thermodynamics.

FIG. 12. Ratchet thermodynamic-function phase diagram: In the leftmost (red) region, the ratchet behaves as an engine, producing positive work. In the lower right (gray) region, the ratchet behaves as either an eraser (dissipating work to erase information) or a dud (dissipating energy without erasing information). The solid (red) line indicates the parameter values that maximize the work output in the engine mode. The dashed (black) line indicates the critical value of c above which the ratchet cannot act as an engine.

It is intuitively appealing to think that ratchet memory must be in consonance with the input process’ memory to generate positive work. In other words, the ratchet must be memoryful and be able to synchronize itself to the structured memory of the input HMM to be functional. We confirmed that this is indeed the case in general with our expression for work. If the ratchet has no memory, the only “structure” of consequence in the input process is simply, provably, the isolated-symbol statistical bias.

We see this nascent principle more concretely in the operation of the ratchet as it responds to the period-2 process. Critical to its behaving as an engine is the presence of state C (Fig. 4) through which the ratchet synchronizes itself to the input. As shown in Fig. 7 the synchronizing state C allows the system to make an irreversible transition from the counterclockwise, dissipative mode into the generative, clockwise mode. It demonstrates how key it is that the ratchet’s effective memory match that of the input process generator.

We also discovered an intriguing three-way tradeoff (Fig. 8) between synchronization rate, synchronization heat (that absorbed during synchronization), and asymptotic average work production. For example, if the Demon keeps the synchronization rate fixed and increases the synchronization heat, there is a decrease in the average work production. In other words, if the Demon becomes greedy and tries to extract energy from the thermal reservoir even during synchronization, on the one hand, it is left with less work in the end. If, on the other hand, the Demon actually supplies heat during the synchronization step, it gains more work in the end! Similarly, if it keeps the synchronization heat fixed, a slower rate of synchronization is actually better for the average work production. If the Demon waits longer for the ratchet to synchronize with its environment, it is rewarded more in terms of the work production. Thus, the Demon is better off in terms of work, by being patient and actually supplying more energy during synchronization. This three-way tradeoff reminds one of a recently reported tradeoff between the rate, energy production, and fidelity of a computation [76].

We then considered the robustness of our design in a setting in which the input process is not perfectly periodic, but has random phase slips (Fig. 9). As a result, the dissipative regime is no longer strictly tran-
sient. Every so often, the ratchet is thrown into the dissipative regime induced by the phase slips, after which the ratchet attempts to resynchronize to the generative mode. Thus, the ratchet seems remarkably robust with respect to the phase-slip errors, being able to dynamically correct its estimation of the input’s hidden state due to the synchronization mechanism. This is true, however, only up to a certain probability of phase slips, beyond which the dissipative regime is simply too frequent for the ratchet to generate any work. For the region in which the ratchet is capable of generating work, we found the parametric combination for its optimal functionality for a given probability of phase slips (Fig. 11). Finally, we gave a phase diagram of the maximum net work that the ratchet can produce (Fig. 11). We also determined the maximum net work that the ratchet can produce (Fig. 11). Finally, we gave a phase diagram of the ratchet’s thermodynamic functionality over the control parameter space formed by δ and c for $\gamma = 1$ (Fig. 12).

In this way, we extended the design of information engines to include memoryful input processes and memoryful ratchets. The study suggests, via synchronization and dynamical self-correction, there are general principles that determine how autonomous devices and organisms can leverage arbitrary structure in their environments to extract thermodynamic benefits.

Physical systems that demonstrate the thermodynamic equivalent of information processing are by now numerous. Most, in contrast to the present design, restrict themselves to single-step information processing. Moreover, many only consider information processing comprising the erasure of a single bit, staying within the setting of Landauer’s Principle. The information-processing equivalence principle strongly suggests a much wider set of computational possibilities that use the capacity of stored information as a thermodynamic resource.

Practically implementing an information engine on the nanoscale, say, will require delicate control over system and materials properties. To achieve this in a convincing way will demand an unprecedented ability to measure heat and work. This has become possible only recently using single-electron devices [78], nano electronic mechanical systems (NEMS) [79, 80], and Bose-Einstein Condensates (BECs) [81–83]. The results and methods outlined here go some distance to realizing these possibilities by pointing to designs that are functionally robust and resilient, by identifying efficient information engines and diagnosing their operation, and by giving exact analytical methods for the quantitative predictions necessary for implementation.

ACKNOWLEDGMENTS

The authors thank the Telluride Science Research Center for its hospitality during this work’s completion. As an External Faculty member, JPC thanks the Santa Fe Institute for its hospitality during visits. This work was supported in part by the U. S. Army Research Laboratory and the U. S. Army Research Office under contracts W911NF-13-1-0390 and W911NF-12-1-0234.

Appendix A: Ratchet Energetics: General Treatment

Here, we lay out the detailed calculations of the thermodynamic contributions made by the ratchet’s transducer and the environmental input process.

1. Transducer Thermodynamic Contributions

We consider the case where the ratchet exchanges energy only with the work reservoir during the switching transitions and only with the heat reservoir during the interaction transitions. During the N-th switching transition, the ratchet “exhausts” the N-th input bit Y_N as the N-th output bit Y'_N and couples with the input bit Y_{N+1}. The joint state of the ratchet and the interacting bit changes from $X_{N+1} \otimes Y'_N$ to $X_{N+1} \otimes Y_{N+1}$. The corresponding decrease in energy is supplied to the work reservoir. So, the work output at the N-th switching transition W_N is given by:

$$W_N = E_{X_{N+1} \otimes Y'_N} - E_{X_{N+1} \otimes Y_{N+1}},$$ \hspace{1cm} (A1)

where $E_{x \otimes y}$ denotes the energy of the joint state $x \otimes y$. Via a similar argument, we write the heat absorbed by the ratchet during the N-th interaction transition Q_N:

$$Q_N = E_{x_{N+1} \otimes y'_N} - E_{x_{N+1} \otimes y_N}.$$

The main interest is in determining the asymptotic rate of work production:

$$\langle W \rangle = \lim_{N \to \infty} W_N \text{Pr}(W_N)$$

$$= \lim_{N \to \infty} \sum_{x_{N+1}, y_{N+1}, y'_N} (E_{X_{N+1} \otimes Y'_N} - E_{X_{N+1} \otimes Y_{N+1}}) \times \text{Pr}(X_{N+1} = x_{N+1}, Y_{N+1} = y_{N+1}, Y'_N = y'_N)$$

$$= \sum_{x', y'} E_{x' \otimes y'} \lim_{N \to \infty} \text{Pr}(X_{N+1} = x', Y'_N = y')$$

$$- \sum_{x, y} E_{x \otimes y} \lim_{N \to \infty} \text{Pr}(X_{N+1} = x, Y_{N+1} = y),$$
where the second line uses Eq. \((A1)\) and the third relabels the realizations in the sum \(x\) and \(x'\), since these are dummy variables in separate sums.

Assuming the stationary distribution over the input variable and ratchet variable exists, the asymptotic probability \(\lim_{N \to \infty} \Pr(X_{N+1} = x, Y_{N+1} = y)\) is the same as the asymptotic probability \(\lim_{N \to \infty} \Pr(X_N = x, Y_N = y)\), which was defined as \(\pi_{x\otimes y}\). In addition, note that the Markov matrix \(M\) controlling the joint ratchet-bit dynamic is stochastic, requiring \(\sum_{x',y'} M_{x\otimes y \to x'\otimes y'} = 1\) from probability conservation. As a result, the second summation in Eq. \((A2)\) is equal to:

\[
- \sum_{x,y} E_{x\otimes y} \lim_{N \to \infty} \Pr(X_{N+1} = x, Y_{N+1} = y) = - \sum_{x,y} E_{x\otimes y} \pi_{x\otimes y} = - \sum_{x,y} E_{x\otimes y} \pi_{x\otimes y} \sum_{x',y'} M_{x\otimes y \to x'\otimes y'} = - \sum_{x,y,x',y'} E_{x\otimes y} \pi_{x\otimes y} M_{x\otimes y \to x'\otimes y'}.
\]

To compute the first term in Eq. \((A2)\), we do a similar decomposition. Note that \(X_{N+1}\) and \(Y_N'\) are determined from \(X_N\) and \(Y_N\) by iterating with the joint Markov dynamic \(M\), and so:

\[
\Pr(X_{N+1} = x', Y_N' = y') = \sum_{x,y} \Pr(X_N = x, Y_N = y) M_{x\otimes y \to x'\otimes y'} .
\]

Using Eq. \((A3)\) we rewrite the first summation in Eq. \((A2)\) as:

\[
\sum_{x',y'} E_{x'\otimes y'} \lim_{N \to \infty} \Pr(X_{N+1} = x', Y_N' = y') = \sum_{x,y,x',y'} E_{x'\otimes y'} \lim_{N \to \infty} \Pr(X_N = x, Y_N = y) M_{x\otimes y \to x'\otimes y'} = \sum_{x,y,x',y'} E_{x'\otimes y'} \pi_{x\otimes y} M_{x\otimes y \to x'\otimes y'}.
\]

Combining the above, the resulting work production rate is:

\[
\langle W \rangle = \sum_{x,x',y,y'} (E_{x'\otimes y'} - E_{x\otimes y}) \pi_{x\otimes y} M_{x\otimes y \to x'\otimes y'}.
\]

The same logic leads to the average heat absorption, which turns out to be the same as the work production:

\[
\langle Q \rangle = \langle W \rangle.
\]

The intuition for this is that these equalities depend on the existence of the stationary distribution \(\pi_{x\otimes y}\) over the ratchet and bit. This is guaranteed for a finite ratchet with mixing dynamics. Only a finite amount of energy can be stored in a finite ratchet, so the heat energy flowing in must be the same as the work flowing out, on the average, to conserve energy. This, however, may break down with infinite-state ratchets—an important and intriguing case that our sequels address.

2. Input Process Contributions

The results above are expressed in terms of the ratchet, except for the stationary joint distribution over the input variable and ratchet state:

\[
\pi_{x\otimes y} = \lim_{N \to \infty} \Pr(X_N = x, Y_N = y).
\]

This quantity is dependent on the input process, as we now describe. We describe the process generating the input string by an HMM with transition probabilities:

\[
T^{(y)}_{s_{N} \to s_{N+1}} = \Pr(Y_N = y_N, S_{N+1} = s_{N+1} | S_N = s_N),
\]

where \(s_i \in S\) are the input process’ hidden states \([59]\). Given that the input HMM is in internal state \(s_N\), \(T^{(y)}_{s_{N} \to s_{N+1}}\) gives the probability to make a transition to the internal; state \(s_{N+1}\) and produce the symbol \(y_N\). The dependence between \(X_N\) and \(Y_N\) is determined by hidden state \(S_N\). So, we rewrite:

\[
\Pr(X_N = x, Y_N = y) = \sum_s \Pr(X_N = x, Y_N = y, S_N = s) = \sum_s \Pr(Y_N = y | S_N = s) \Pr(X_N = x, S_N = s) = \sum_{s,s'} \Pr(Y_N = y, S_{N+1} = s' | S_N = s) \Pr(X_N = x, S_N = s) = \sum_{s,s'} T^{(y)}_{s \to s'} \Pr(X_N = x, S_N = s),
\]

The second line used the fact that \(Y_N\) depends on only \(S_N\), as illustrated in Fig. \([13]\) The last line used Eq. \((A4)\).

Combining the above equations gives:

\[
\pi_{x\otimes y} = \lim_{N \to \infty} \Pr(X_N = x, Y_N = y) = \lim_{N \to \infty} \sum_{s,s'} T^{(y)}_{s \to s'} \Pr(X_N = x, S_N = s) = \sum_{s,s'} T^{(y)}_{s \to s'} \pi_{x\otimes s}, \text{ and}
\]

\[
\pi'_{x\otimes s} = \lim_{N \to \infty} \Pr(X_N = x, S_N = s).
\]
Thus, evaluating \(\pi_{x \otimes y} \) requires knowing the input process \(T_{s \rightarrow s'}^{(y)} \), which is given, and the stationary joint distribution \(\pi_{x \otimes s} \) over the hidden states and the ratchet states.

To calculate \(\pi_{x \otimes s} \), we must consider how \(X_{N+1} \) and \(S_{N+1} \) are generated from past variables. We notice that the output process is specified by an HMM whose hidden variables are composed of the hidden variable of the input HMM and the states of the transducer. In other words, the output HMM’s hidden states belong to the product space \(\mathcal{X} \otimes \mathcal{S} \). As a result, the transition probability of the output HMM is:

\[
T'_{x \otimes s \rightarrow x' \otimes s'} = \sum_{y} T'_{x \otimes s \rightarrow x' \otimes s'} \sum_{y} M_{x \otimes y \rightarrow x' \otimes y'} T_{s \rightarrow s'}^{(y)}
\]

where the fourth used the facts that \(Y' \) and \(X_{N+1} \) are independent of \(S_{N} \) and \(S_{N+1} \), if \(Y_N \) and \(X_N \) are known, and \(Y_N \) and \(S_{N+1} \) are independent of \(X_N \), if \(S_N \) is known \([59, 62]\). Thus, summing over the output variable \(Y' \) yields a Markov dynamic over \(\mathcal{X} \otimes \mathcal{S} \):

\[
T'_{x \otimes s \rightarrow x' \otimes s'} = \sum_{y} T'_{x \otimes s \rightarrow x' \otimes s'} \sum_{y} M_{x \otimes y \rightarrow x' \otimes y'} T_{s \rightarrow s'}^{(y)}.
\]

The stationary distribution \(\pi'_{x \otimes s} \) is this dynamics’ asymptotic distribution:

\[
\sum_{x,s} \pi'_{x \otimes s} T'_{x \otimes s \rightarrow x' \otimes s'} = \pi'_{x \otimes s'}.
\]

\(\pi' \) existence—that is, for a finite state Markov process like \(T' \)—is guaranteed by the Perron-Frobenius theorem and it is unique when \(T' \) is ergodic \([53]\). In short, we see that \(\pi_{x \otimes y} \) is computable given the ratchet \(M_{x \otimes y \rightarrow x' \otimes y'} \) and the input process generator \(T_{s \rightarrow s'}^{(y)} \).

In this way, we derived an expression for the asymptotic work production of an arbitrary memoryful ratchet with an arbitrary memoryful input process in terms of HMM generator of the input and the Markovian dynamic over the input bit and ratchet state. Only a single assumption was made: there is an asymptotic distribution over the the input bit and ratchet state \(\pi_{x \otimes y} \). In summary, there are three steps to calculate the average work production:

1. Calculate the stationary distribution \(\pi'_{x \otimes s} \) over the hidden states of the output process \(T'_{x \otimes s \rightarrow x' \otimes s'} \).

2. Use \(\pi' \) and \(T_{s \rightarrow s'}^{(y)} \) to calculate the stationary distribution over the ratchet and input bit at the beginning of the interaction interval \(\pi_{x \otimes y} \).

3. Using this and the transducer’s Markov dynamic, calculate the work production:

\[
\langle W \rangle = k_B T \sum_{x,x',y,y'} \pi_{x \otimes y} M_{x \otimes y \rightarrow x' \otimes y'} \ln \frac{M_{x' \otimes y' \rightarrow x \otimes y}}{M_{x \otimes y \rightarrow x' \otimes y'}}.
\]

The following Appendix shows how to use this method to calculate average work production for the specific cases of the period-2 environment with and without phase-slips.
The symbol-labeled transition matrices for the noisy period-2 input process are given by:

\[
T^{(0)} = \begin{pmatrix} 0 & 0 & 0 \\ .5 & c & 1-c \\ 0 & 0 & 0 \end{pmatrix}
\]

\[
T^{(1)} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ .5 & 1-c & c \end{pmatrix}
\]

The transducer form of the ratchet \textit{M} shown in Fig. 4 is given by the four conditional symbol-labeled transition matrices:

\[
M^{(0,0)} = \begin{pmatrix} 0 & 1-\delta & 0 & 0 \\ 1-\delta & 0 & 0 \end{pmatrix}
\]

\[
M^{(0,1)} = \begin{pmatrix} 0 & 1 - \frac{1}{c} & 0 \\ 0 & 0 \end{pmatrix}
\]

\[
M^{(1,0)} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 \end{pmatrix}
\]

\[
M^{(1,1)} = \begin{pmatrix} 0 & 1 - \delta & 0 \\ 0 & 0 \end{pmatrix}
\]

where we switched to the transducer representation of the joint Markov process \(M_{x\otimes y\rightarrow x'\otimes y'} = M_{x\rightarrow x'}^{(y')}\).

To find the stationary distribution over the causal states of the input bit and the internal states of the ratchet (step 1), we calculate the output process \(T''(y') = \sum_y M^{(y')}_{x\rightarrow x'} T_{x\rightarrow y}^{(y)}\) and sum over output symbols to get the Markov dynamic over the hidden states:

\[
T' = T^{(0)} + T^{(1)} = \begin{pmatrix}
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0.5 & c & \bar{c} & 0.5\bar{c} & c\bar{c} \\
0 & 0 & 0 & 0 & 0.5\bar{c} & \bar{c}\bar{c} & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0.5\delta & \bar{c}\delta & \bar{c}\delta & 0 & 0 & 0 & 0 & 0 \\
0.5 & \bar{c} & \bar{c} & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0.5\delta & \bar{c}\delta & 0.5\bar{c}\delta & \bar{c}\bar{c} & c\beta \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0.5\delta & c\delta & \bar{c}\delta & 0 & 0 & 0 & 0 & 0 \\
0.5 & \bar{c} & \bar{c} & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0.5\delta & \bar{c}\delta & 0.5\bar{c}\delta & \bar{c}\bar{c} & c\beta \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0.5\delta & c\delta & \bar{c}\delta & 0 & 0 & 0 & 0 & 0 \\
0.5 & \bar{c} & \bar{c} & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0.5\delta & \bar{c}\delta & 0.5\bar{c}\delta & \bar{c}\bar{c} & c\beta \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\end{pmatrix}
\]

Then, we find the stationary state \(\pi'\) over the joint hidden states (step 2), which solves \(T''\pi' = \pi'\):

\[
\pi' = \begin{pmatrix}
\pi'_{A\otimes D} \\
\pi'_{A\otimes E} \\
\pi'_{A\otimes F} \\
\pi'_{B\otimes D} \\
\pi'_{B\otimes E} \\
\pi'_{B\otimes F} \\
\pi'_{C\otimes D} \\
\pi'_{C\otimes E} \\
\pi'_{C\otimes F} \\
\end{pmatrix} = \begin{pmatrix}
0 \\
\frac{\gamma(\delta + c - \delta\bar{c})}{\nu} \\
\frac{\gamma(c - \delta\bar{c})}{\nu} \\
0 \\
\frac{\gamma(c - \delta\bar{c})}{\nu} \\
\frac{\gamma(\delta + c - \delta\bar{c})}{\nu} \\
\frac{\gamma(\delta + c - \delta\bar{c})}{\nu} \\
\frac{\delta\bar{c}}{\nu} \\
\frac{\delta\bar{c}}{\nu} \\
\end{pmatrix},
\]
where $\nu = 2(\delta + \gamma(\delta + 2c - 2\delta c))$.

And, we find the stationary distribution over the reratchet state input bit by plugging into the equation

\[
\pi_{x\otimes y} = \sum_{s,s'} T_{s\rightarrow s'}^{(y)} \pi'_{x\otimes s}.
\]

The result is:

\[
\pi = \begin{pmatrix}
\pi_{A\otimes 0} \\
\pi_{A\otimes 1} \\
\pi_{B\otimes 0} \\
\pi_{B\otimes 1} \\
\pi_{C\otimes 0} \\
\pi_{C\otimes 1}
\end{pmatrix} = \begin{pmatrix}
\gamma c/\nu \\
\gamma(\delta + c - 2\delta c)/\nu \\
\gamma(\delta + c - 2\delta c)/\nu \\
\delta c/\nu \\
\delta c/\nu
\end{pmatrix}.
\]

Substituting this stationary distribution into the work expression (step 3) in Eq. (A7), we find an explicit expression for the reratchet’s work production rate:

\[
\langle W \rangle = k_B T \frac{(1-\delta)(\delta + c - 2\delta c - \nu e)}{\nu e \delta / \gamma + e(\delta + 2c - 2\delta c)}. \tag{B1}
\]

1. Period-2 Input

To restrict to period-2 input sequences with no phase slips we set $c = 0$. Then, T' has the stationary distribution:

\[
\pi'_{A\otimes E} = \pi'_{B\otimes F} = 0.5,
\]

and all other elements vanish. The reratchet is fully synchronized to the internal states of the input process. Substituting $c = 0$ into Eq. (B1) gives the work production rate when synchronized:

\[
\langle W \rangle = k_B T \frac{1-\delta}{e}.
\]

2. Noisy Period-2 Input

What happens when the environment fluctuates, generating input sequence phase slips with probability c? Consider the optimal parameter settings at which the reratchet generates work. When the reratchet behaves as an engine, the optimal setting is $\gamma = 1$, which follows from the partial derivative of the work production:

\[
\frac{\partial \langle W \rangle}{\partial \gamma} = \langle W \rangle \frac{ec\delta}{\gamma^2(ec\delta / \gamma + e(\delta + 2c(1-\delta))},
\]

which is always positive when the engine produces work. This means that it is always possible to enhance our engine’s power by increasing γ to its maximum value at $\gamma = 1$. And so, to build an optimal engine that leverages the noisy period-2 input process, we set $\gamma = 1$, yielding:

\[
\langle W \rangle(\delta, c, \gamma = 1) = k_B T \frac{(1-\delta)[\delta + c - 2\delta c + e]}{2ec + \delta e(1-c)}.
\]

3. Period-2 Input Entropy Rates

To check that the period-2 input process obeys Eq. (6), we calculate the entropy rate:

\[
\Delta h_\mu = h'_\mu - h_\mu.
\]

The entropy rate h_μ of a period-2 process is:

\[
h_\mu = \lim_{N \rightarrow \infty} \frac{H[Y_N | S_N^E]}{N} = \lim_{N \rightarrow \infty} \frac{1}{N} = 0.
\]

The entropy rate h'_μ of the output process generated by T' can be calculated using the uncertainty in the next symbol given the hidden state since T' is unifilar [63]:

\[
h'_\mu = \lim_{N \rightarrow \infty} H[Y'_N | S'_N^E] = \lim_{N \rightarrow \infty} \sum_{s'} H[Y'_N | S'_N = s'] \Pr(S'_N = s')
\]

(No such general expressions hold for nonunifilar transducers.)

For the period-2 process, $c = 0$, and we see that the stationary state consists of two states with nonzero probability: $\pi'_{A\otimes E} = \pi'_{B\otimes F} = 0.5$. These states transition back and forth between each other periodically, so the current hidden state and output uniquely determine the next hidden state, meaning this representation is unifilar. Thus, we can use our calculated output HMM for the entropy rate h'_μ.

$A \otimes E$ has probability $\frac{1-\delta}{e}$ of generating a 1 and $B \otimes F$ has probability $\frac{1-\delta}{e}$ of generating a 0. Thus, the uncertainty in emitting the next bit from either causal state is:

\[
H[Y'_N | S'_N^E = A \otimes E] = H[Y'_N | S'_N^E = B \otimes F]
\]

Thus, their entropy rates are the same and we find:

\[
\Delta h_\mu = H \left(\frac{1-\delta}{e} \right). \tag{B3}
\]

