Information in Processes II

Reading for this lecture:

EIT, Chapter 4 and Secs. 5.1-5.6 and 7.1-7.7.
MET in CMech Readings.
Information in Processes ...

Entropy Growth for Stationary Stochastic Processes: \(\Pr(\vec{S}) \)

Block Entropy:

\[
H(L) = H(\Pr(s^L)) = - \sum_{s^L \in A^L} \Pr(s^L) \log_2 \Pr(s^L)
\]

Monotone increasing: \(H(L) \geq H(L - 1) \)

Adding a random variable cannot decrease entropy:

\[
H(S_1, S_2, \ldots, S_L) \leq H(S_1, S_2, \ldots, S_L, S_{L+1})
\]

No measurements, no information: \(H(0) = 0 \)

Bounds:

1. **Crude:** \(H(L) \leq L \log_2 |A| \)
2. **1-block Markov:** \(H(L) \leq LH(1) \)

Lecture 16: Natural Computation & Self-Organization, Physics 256A (Winter 2014); Jim Crutchfield
Information in Processes ...
Entropy Growth for Stationary Stochastic Processes ...

Block Entropy Curves:

\[L \log_2 |\mathcal{A}| \quad LH(1) \]

\[H(L) \]
Information in Processes ...

Entropy Growth for Stationary Stochastic Processes ...

Block Entropy ...

Example: Fair Coin

\[\Pr(s^L) = \frac{1}{2^L} \]

\[H(L) = L \]
Information in Processes ...

Entropy Growth for Stationary Stochastic Processes ...

Block Entropy ...

Example: Biased Coin \[\Pr(s^L) = p^n(1 - p)^{L-n} \]

For any IID process:

\[H(L) = LH(S_1) \]
Information in Processes ...

Entropy Growth for Stationary Stochastic Processes ...

Block Entropy ...

Example: Period-2 Process

\[\Pr(0) = \Pr(1) = \frac{1}{2} \]
\[\Pr(01) = \Pr(10) = \frac{1}{2} \]
\[\Pr(101) = \Pr(010) = \frac{1}{2} \]
\[\Pr(s^L) = 0, \text{ otherwise} \]
\[H(1) = H(2) = H(L \geq 1) = 1 \]

Period-P Process: \[H(L \geq P) = \log_2(P) \]
Entropy Rates for Stationary Stochastic Processes:

Entropy per symbol is given by the **Source Entropy Rate**:

\[
h_\mu = \lim_{L \to \infty} \frac{H(L)}{L}
\]

(When limits exists.)

Interpretations:
- Asymptotic growth rate of entropy
- Irreducible randomness of process
- Average description length (per symbol) of process

Use: **Typical sequences** have probability: \(\Pr(s_L^L) \approx 2^{-L \cdot h_\mu} \)

(Shannon-MacMillian-Breiman Theorem)
Length-L Estimate of Entropy Rate:
\[\hat{h}_\mu(L) = H(L) - H(L - 1) \]
\[\hat{h}_\mu(L) = H(s_L|s_1 \cdots s_{L-1}) \]

Boundary condition:
\[
\hat{h}_\mu(0) = \log_2 |A| : \text{no measurements, all events possible} \\
\hat{h}_\mu(1) = H(1)
\]

Monotonic decreasing: \[\hat{h}_\mu(L) \leq \hat{h}_\mu(L - 1) \]

Conditioning cannot increase entropy:
\[H(s_L|s_1 \cdots s_{L-1}) \leq H(s_L|s_2 \cdots s_{L-1}) = H(s_{L-1}|s_1 \cdots s_{L-2}) \]
Entropy Rates for Stationary Stochastic Processes:

Entropy rate ...

\[\hat{h}_\mu = \lim_{L \to \infty} \hat{h}_\mu(L) = \lim_{L \to \infty} H(s_0|\overleftarrow{s}^L) = H(s_0|\overleftarrow{s}) \]

Interpretations:
- Uncertainty in next measurement, given past
- A measure of unpredictability
- Asymptotic slope of block entropy

Alternate entropy rate definitions agree:
\[\hat{h}_\mu = h_\mu \]

Lecture 16: Natural Computation & Self-Organization, Physics 256A (Winter 2014); Jim Crutchfield
Information in Processes ...

Entropy Rate for a Markov chain: \(\{V, T\} \)

\[
\begin{align*}
 h_\mu &= \lim_{L \to \infty} h_\mu(L) \\
 &= \lim_{L \to \infty} H(v_L | v_1 \cdots v_{L-1}) \\
 &= \lim_{L \to \infty} H(v_L | v_{L-1})
\end{align*}
\]

Assuming asymptotic state distribution:
- Process in statistical equilibrium
- Process running for a long time
- Forgotten its initial distribution

Closed-form:

\[
 h_\mu = - \sum_{v \in V} p_v(\infty) \sum_{v' \in V} T_{vv'} \log_2 T_{vv'}
\]

Lecture 16: Natural Computation & Self-Organization, Physics 256A (Winter 2014); Jim Crutchfield
Entropy Rate for Markov chains

Examples:

1. **Fair Coin:**
 - $h_\mu = 1$ bit per symbol
 ![Fair Coin Diagram]

2. **Biased Coin:**
 - $h_\mu = H(p)$ bits per symbol
 ![Biased Coin Diagram]

3. **Period-2 Process:**
 - $h_\mu = 0$ bits per symbol
 ![Period-2 Process Diagram]
Entropy Rate for Unifilar Hidden Markov Chain:

Internal: \(\{V, T\} \)

Observed: \(\{T^{(s)} : s \in A\} \)

Closed-form for entropy rate:

\[
h_\mu = - \sum_{v \in V} p_v(\infty) \sum_{s \in A} \sum_{v' \in V} T_{vv'}^{(s)} \log_2 T_{vv'}^{(s)}
\]

Due to unifilarity:

Observed sequences are (effectively) unique paths in UHMC
Entropy Rate for Unifilar Hidden Markov Chain ...

Example: Why are modems noisy?

Recall previous prefix code example

Distribution: \[p(a) = \frac{1}{2} \]
\[p(b) = \frac{1}{4} \]
\[p(c) = \frac{1}{8} \]
\[p(d) = \frac{1}{8} \]

\[H(X) = 1.75 \text{ bits} \]

Codebook: \[C(a) = 0 \]
\[C(b) = 10 \]
\[C(c) = 110 \]
\[C(d) = 111 \]

\[R(C) = 1.75 \text{ bits per message} \]

What is entropy rate (per output bit) of encoded stream?
Entropy Rate for Deterministic Hidden Markov Chain ...

Example: Why are modems noisy?

How often are codewords generated?

\[
\begin{align*}
C(a) &= 0 \\
C(b) &= 10 \\
C(c) &= 110 \\
C(d) &= 111
\end{align*}
\]

Encoding (output of channel) is a hidden Markov chain:
Leaves connect to top tree node
Information in Processes ...

Entropy Rate for Deterministic Hidden Markov Chain ...

Example: Why are modems noisy?

Identify tree nodes with states of a hidden Markov chain

\[C(a) = 0 \]
\[C(b) = 10 \]
\[C(c) = 110 \]
\[C(d) = 111 \]
Information in Processes ...

Entropy Rate for Deterministic Hidden Markov Chain ...

Example: Why are modems noisy?

Equivalent hidden Markov chain

\[
T = \begin{pmatrix}
\frac{1}{2} & \frac{1}{2} & 0 \\
\frac{1}{2} & 0 & \frac{1}{2} \\
1 & 0 & 0
\end{pmatrix}
\]

\[p_V(\infty) = (p_A, p_B, p_C) = (\frac{4}{7}, \frac{2}{7}, \frac{1}{7})\]

It’s unifilar:

\[
T^{(0)} = \begin{pmatrix}
\frac{1}{2} & 0 & 0 \\
\frac{1}{2} & 0 & 0 \\
\frac{1}{2} & 0 & 0
\end{pmatrix}
\quad T^{(1)} = \begin{pmatrix}
0 & \frac{1}{2} & 0 \\
0 & 0 & \frac{1}{2} \\
\frac{1}{2} & 0 & 0
\end{pmatrix}
\]
Entropy Rate for Deterministic Hidden Markov Chain...

Example: Why are modems noisy?

Calculate entropy rate directly:

\[
\begin{align*}
 h_\mu &= - \sum_{v \in V} p_v(\infty) \sum_{s \in A} \sum_{v' \in V} T_{vv'}^{(s)} \log_2 T_{vv'}^{(s)} \\
 &= \frac{4}{7} \cdot 1 + \frac{2}{7} \cdot 1 + \frac{1}{7} \cdot 1 \\
 &= 1 \text{ bit}
\end{align*}
\]

Encoding provides \textit{full} utilization of binary channel.
Information in Processes ...

Entropy Rate for Deterministic Hidden Markov Chain ...

Example: Why are modems noisy?

Compare:

4-symbol source is redundant:

\[R = \log_2 |A| - H(X) \]
\[= 2 - 1.75 = 0.25 \text{ bits} \]

Does not use all of 4-symbol channel.

Prefix code mapped 4-symbol, suboptimal source into a new source that uses all available capacity.

Modems do the same: Maximize use of capacity by sending a code stream that is as close to maximum entropy as possible.
Information in Processes ...

Entropy Rate for Nonunifilar Hidden Markov Chain:

Internal: \(\{V, T\} \)

Observed: \(\{T^{(s)} : s \in \mathcal{A}\} \)

Entropy rate: **No closed-form!**

\[
\begin{align*}
 h_\mu &

\neq - \sum_{v \in V} \pi_v \sum_{s \in \mathcal{A}} \sum_{v' \in V} T^{(s)}_{vv'} \log_2 T^{(s)}_{vv'}
\end{align*}
\]

Upper and Lower Bounds:

\[
H(S_L | V_1 S_1 \cdots S_{L-1}) \leq h_\mu(L) \leq H(S_L | S_1 \cdots S_{L-1})
\]

Unrealistic for inference: Must know about internal states.

Unrealistic for analysis: Simulate chain, do empirical estimate.

Entropy rate? But there exists a way ... stay tuned!
Information Dynamics:

What is the connection between information in processes and chaotic dynamical systems?
Information in Processes ...

\[\epsilon \leftarrow \mathbf{d} \rightarrow 2^k \rightarrow \ldots 01101 \ 11001 \]

\[\mathbf{x}_t \]

\[\mathbf{Cell}_i \]

\[\epsilon \]

\[\epsilon^d \rightarrow 2^k \]

Lecture 16: Natural Computation & Self-Organization, Physics 256A (Winter 2014); Jim Crutchfield
Information in Processes ...

Degree of Instability

\[\dot{x}_t \]

\[\epsilon \]

\[\epsilon \]

\[\epsilon^{-d} \rightarrow 2^k \rightarrow \ldots 01101 \ 11001 \]
Information in Processes ...
Information in Processes ...

\[\epsilon_{-d} \rightarrow 2^k \rightarrow \ldots 01101 \ 11001 \]

Degree of Instability

\[? = ? \]

Production of Entropy

Lecture 16: Natural Computation & Self-Organization, Physics 256A (Winter 2014); Jim Crutchfield
Information Dynamics ...

Symbolic dynamics revisited ...

When are partitions good?

When symbol sequences encode orbits:

\[
\begin{align*}
M & \xrightarrow{T} M \\
\Delta & \uparrow \\
A^\mathbb{Z} & \xrightarrow{\sigma} A^\mathbb{Z}
\end{align*}
\]

Diagram commutes:

\[
T(x) = \Delta \circ \sigma \circ \Delta^{-1}(x)
\]

Good kinds of instruments:

Markov partitions
Generating partitions
Information Dynamics ...

Metric entropies and mixing:

Entropy of partition:

$$H(\mathcal{P}) = -\sum_{i=1}^{k} \Pr(\mathcal{P}_i) \log_2 \Pr(\mathcal{P}_i)$$

Metric entropy given partition:

$$h_\mu(f, \mathcal{P}) = \lim_{N \to \infty} \frac{1}{N} H \left(\bigvee_{n=0}^{N} f^{-n}(\mathcal{P}) \right)$$

How well partition cells are mixed together = Production of entropy

Theorem: $$h_\mu(f) = \sup_{\mathcal{P}} h_\mu(f, \mathcal{P})$$

Corollary:

Using generating partition, metric entropy of symbolic dynamics is that of the hidden dynamical system $$h_\mu(f) = h_\mu(f, \mathcal{P})$$.
Information Dynamics ...

Entropy rate and LCEs:

Lyapunov Characteristic Exponent Spectrum:

\[\chi = \{ \lambda_1, \lambda_2, \ldots, \lambda_n \}, \quad \lambda_i \geq \lambda_{i+1} \]

\[\lambda_i = \lim_{t \to \infty} \lim_{||\delta \vec{x}_i(0)|| \to 0} \frac{1}{t} \log_2 \frac{||\delta \vec{x}_i(t)||}{||\delta \vec{x}_i(0)||} \]

\[\{ \delta \vec{x}_1, \delta \vec{x}_2, \ldots, \delta \vec{x}_n \}, \delta \vec{x}_i \cdot \delta \vec{x}_j = 0, i \neq j \]
LCE Spectrum gives "Geometry" of Submanifolds:

\[\lambda_i < 0 \iff \text{stable manifold} \]
\[\lambda_i > 0 \iff \text{unstable manifold} \]
Entropy rate and LCE Spectrum:

\[h_\mu = \sum_{\lambda_i > 0} \lambda_i \]

Rate of information production:
Relate a geometric property (LCE spectrum) to how well subsets are mixed into each other (entropy rate).

Concrete statement of how a continuous-state dynamical system is an information source.

Dynamics and information theory are intimately related.
Information Dynamics ...
Ergodic Hierarchy:

Bernoulli system:
Most random

Kolmogorov system:
Present asymptotically independent of distant past

Mixing system:
Subsets mixed
\[
\lim_{n \to \infty} \Pr \left(A \cap f^{-n}(B) \right) = \Pr (A) \Pr (B)
\]

Ergodic system:
Time- & state-averages equal
\[
\Pr (A) = |A|^{-1}
\]

(See [MET] in CMech Readings)

Lecture 16: Natural Computation & Self-Organization, Physics 256A (Winter 2014); Jim Crutchfield
Information in Processes ...

Reading for next lecture:

CMR article RURO.