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Minimized state complexity of quantum-encoded cryptic processes
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The predictive information required for proper trajectory sampling of a stochastic process can be more
efficiently transmitted via a quantum channel than a classical one. This recent discovery allows quantum
information processing to drastically reduce the memory necessary to simulate complex classical stochastic
processes. It also points to a new perspective on the intrinsic complexity that nature must employ in generating
the processes we observe. The quantum advantage increases with codeword length: the length of process sequences
used in constructing the quantum communication scheme. In analogy with the classical complexity measure,
statistical complexity, we use this reduced communication cost as an entropic measure of state complexity in
the quantum representation. Previously difficult to compute, the quantum advantage is expressed here in closed
form using spectral decomposition. This allows for efficient numerical computation of the quantum-reduced state
complexity at all encoding lengths, including infinite. Additionally, it makes clear how finite-codeword reduction
in state complexity is controlled by the classical process’s cryptic order, and it allows asymptotic analysis of
infinite-cryptic-order processes.
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I. INTRODUCTION

To efficiently synchronize predictions of a given process
over a classical communication channel two observers, call
them Alice and Bob, must know the process’ internal structure
and communicate the relevant history. In particular, leveraging
common knowledge of the process’ dynamic, what is the
minimal amount of information that Alice must communicate
to Bob so that he can make the same probabilistic prediction
as Alice? The answer is given by the process’ internal state
information or statistical complexity Cμ [1].

A closely related question immediately suggests itself: is
it more efficient to synchronize via a quantum communica-
tion channel that transmits qubits instead of bits? Extending
early answers [2,3], a sequence of constructions (q-machines)
was recently introduced that offers substantial message-
size reduction below Cμ [4]. In these constructions, each
codeword length L yields a quantum communication cost
Cq(L) � Cμ that decreases with increasing L. Moreover,
the maximum-compression complexity, Cq(∞) = Cq(k), is
achieved at a codeword length called the cryptic order k [5,6]:
a recently discovered classical, topological property that is a
cousin to the Markov order familiar from stochastic process
theory.

Reference [4] pointed out that the new efficiency in synchro-
nization comes with a tradeoff. Bob can only make predictions
that are more specialized than Alice’s: those consistent with
Alice’s but also consistent with a probabilistically generated
extension of the codewords Alice uses to construct the qubits
she sends. These constraints lead to a seemingly odd way for
Alice and Bob to synchronize, but there is no way around
this. The constraints of this tradeoff are more apparent if we
consider the related scenario of “Alice Past” synchronizing
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to “Alice Future” (aka Bob) as she generates a realization of
the process and updates her state. To generate a process the
future possibilities must be synchronized with the past in just
such a way that information shared between past and future is
channeled through the present without violating the process’
causality or time order.

One consequence is that the quantum communication cost
Cq(L) demands a more refined interpretation: it is the average
state information that must be remembered to generate the
process. Another is that Cq(L) decreases with increasing
L since codewords merge, yielding increasingly coincident
predictions. The conclusion is that a process’s correlational
structure controls the degree of quantum compression.

There are both theoretical and practical implications. On the
one hand, the theory of minimized quantum-state complexity
greatly broadens our notions of the structural complexity in-
herent in processes; for example, allowing us to quantitatively
compare classical- and quantum-state memories [7]. In an
applied setting, on the other, it identifies significantly re-
duced memory requirements for simulating complex classical
stochastic processes via a quantum device.

Reduced memory requirements for stochastic simulation
were recognized previously for Markov order-1 processes,
whose quantum advantage saturates at Cq(1) [2]. For ex-
ample, it was shown that the classical nearest-neighbor one-
dimensional Ising model has a less complex quantum rep-
resentation [8]. Recently, the quantum advantage of reduced
state complexity was experimentally demonstrated for a simple
Markovian dynamic [9].

The increasing quantum advantage discovered in Ref. [4],
as encapsulated by Cq(L), was challenging to calculate, ana-
lytically and numerically. This was unfortunate since for most
complex processes, the optimal state complexity reduction is
only achieved asymptotically as codeword length L → ∞.
Moreover, without a comprehensive theory, few conclusions
could be rigorously drawn about Cq(L)’s convergence and
limits. The following removes the roadblocks. It delivers
closed-form expressions, yielding both numerical efficiency
and analytic insight.
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Our first contribution is the introduction of the quantum
pairwise-merger machine (QPMM). The QPMM contains, in
a compact form, all of the information required for efficient
calculation of the signal-state overlaps used in the q-machine
encoding. In particular, we derive closed-form expressions for
overlaps in terms of the QPMM’s spectrum and projection
operators.

This leads to our second contribution: a decomposition of
the quantum state complexity Cq(L) into two qualitatively
distinct parts. The first part is present for codeword lengths
only up to a finite-horizon equal to the index of the QPMM
dynamic which, for the case of finite cryptic order, is equal
to the process’ cryptic order. This provides a nearly complete
understanding of Cq(L) for finite-cryptic-order processes. The
second part asymptotically decays with an infinite-horizon and
is present only in infinite-cryptic order processes. Moreover,
we show that Cq(L) oscillates under an exponentially decaying
envelope and explain the relevant rates and frequencies in
terms of the QPMM’s spectral decomposition.

Our third contribution comes in analyzing how computing
Cq(L) requires efficiently manipulating quantum-state over-
laps. The technique for this presented in Ref. [4] required
constructing a new density matrix that respects overlaps.
However, it is known that overlaps may be monitored much
more directly via a Gram matrix. Here we adapt this to improve
calculational efficiency and theoretical simplicity, and we
improve matters further by introducing a new form of the
Gram matrix.

Our final contribution follows from casting Cq(L)’s calcu-
lation in its spectral form. This has the distinct advantage that
the limit of the overlaps, and thus Cq(∞), can be calculated
analytically. Illustrative examples are placed throughout to
ground the development.

II. TWO REPRESENTATIONS OF A PROCESS

The objects of interest are discrete-valued, stationary,
stochastic processes. A process consists of a bi-infinite
sequence X−∞:∞ = . . . X−2X−1X0X1X2 . . . of random vari-
ables Xt that take on one or another value in a discrete
alphabet: xt ∈ A. For each time t and subsequent contiguous
block length L, a process assigns a particular probability
Pr(w) to each length-L word w = xt . . . xt+L−1. For stationary
processes, these probabilities are independent of t . A stationary
process’ language is that set of words w = x0 . . . xL−1 of any
length L generated with positive probability.

In particular, we consider processes that can be generated
by finite hidden Markov models (HMMs). For edge-output
HMMs (i.e., Mealy HMMs), introduced more formally in
Appendix A, the observed symbol is generated on transitions
between states.

We next consider two representations of a given process,
first a canonical classical representation and then a newer
quantum representation. Each utilizes the concept of a process’
causal states, which are equivalence classes of histories that
yield the same conditional probability distributions over future
trajectories. Specifically, causal states are the equivalence
classes induced by the predictive equivalence relation ∼ε

applied to observable histories x−∞:0:
←−
x ∼ε

←−
x ′ ⇔

Pr(X0:L|X−∞:0 = ←−
x ) = Pr(X0:L|X−∞:0 = ←−

x ′),

for all L ∈ {1,2, . . . }. Said another way, causal states are the
minimal sufficient statistic of the past X−∞:0 for predicting the
future X0:∞. (We use indexing Xa:b that is left inclusive, but
right exclusive.)

A. ε-Machine: optimal, minimal predictor

While a given process generally has many alternative HMM
representations, there exists a unique, canonical form: the
process’s ε-machine [1], which is a process’s minimal optimal
predictor. Causal states, which are by definition predictive
equivalence classes of histories, are the latent states of the
ε-machine.

Definition 1. A process’s ε-machine is the 4-tuple
{S,A, {T (x)}x∈A,π}, where S is the set {σ0,σ1, . . .} of the
process’ causal states, A is the set of output symbols x,
{T (x) : T

(x)
i,j = Pr(σj ,x|σi)}x∈A consists of the symbol-labeled

state transition matrices, and π is the stationary distribution
over states.

The probability that a word w = x0x1 . . . xL−1 is generated
by an ε-machine is given in terms of the labeled transition
matrices and the initial state distribution:

Pr(w) = π

L−1∏
i=0

T (xi )1,

where 1 = [1, . . . ,1]	. These probabilities are constructed to
agree with those of the words in a given process language.

The ensemble temporal evolution of internal state proba-
bility μ = (μ0, . . . ,μ|S|−1), with μi = Pr(σi), is given by

μ(t + 1) = μ(t)T ,

where the transition matrix T is the sum over all output
symbols:

T ≡
∑
x∈A

T (x).

Transition probabilities are normalized. That is, the transition
matrix T is row-stochastic:

|S|∑
j=1

Ti,j =
|S|∑
j=1

∑
x∈A

Pr(σj ,x|σi) = 1.

Its component matrices T
(x)
ij are said to be substochastic. Under

suitable conditions on the transition matrix, limt→∞ μ(t) = π .
Unifilarity, a property derived from the ε-machine equiva-

lence relation [1], means that for each state σi , each symbol x

may lead to at most one successor state σj [10]. In terms of the
labeled transition matrices, for each row i and each symbol x

the row T
(x)
ij has at most one nonzero entry. We also will have

occasion to speak of a counifilar HMM, which is the analogous
requirement of unique labeling on transitions coming into each
state.

One of the most important informational properties of a
process, directly calculable from its ε-machine, is its statistical
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complexity Cμ [1]. Used in a variety of contexts, it quantifies
the size of a process’s minimal description.

Definition 2. A process’s statistical complexity Cμ is the
Shannon entropy of the stationary distribution over its causal
states:

Cμ = H(π )

= −
|S|∑
i=1

πi log2 πi.

The statistical complexity has several operational mean-
ings. For example, it is the average amount of information one
gains upon learning a process’ current causal state. It is also
the minimal amount of information about the past that must be
stored to predict the future as well as could be predicted if the
entire past were stored. Most pertinent to our purposes, though,
it also quantifies the communication cost of synchronizing two
predicting agents through a classical channel [4].

B. q-Machine

The q-machine is a quantum representation of a classical
stochastic process. Introduced in Ref. [4], it offers the largest
reduction in state complexity known so far among quantum
models capable of generating classical processes.

A process’ q-machine is constructed by first selecting a
codeword length L. The q-machine (at L) consists of a set
{|ηi(L)〉}|S|

i=1 of pure quantum signal states that are in one-to-
one correspondence with the classical causal states σi ∈ S.
Each signal state |ηi(L)〉 encodes the set of length-L words
{w : Pr(w|σi) > 0} that may follow causal state σi , as well as
the corresponding conditional probability:

|ηi(L)〉 ≡
∑

w∈AL

∑
σj ∈S

√
Pr(w,σj |σi)|w〉|σj 〉, (1)

where {|w〉}w∈AL denotes an orthonormal basis in the “word”
Hilbert space with one dimension for each possible word w of
length L. Similarly, {|σj 〉}|S|

j=1 denotes an orthonormal basis in
the “state” Hilbert space with one dimension for each classical
causal state. The ensemble of length-L quantum signal states
is then described by the density matrix:

ρ(L) =
|S|∑
i=1

πi |ηi(L)〉〈ηi(L)|. (2)

The ensemble’s von Neumann entropy is defined in terms
of its density matrix: S(ρ) = −tr[ρ log2(ρ)], where tr[·] is
the trace of its argument. Paralleling the classical statistical
complexity, the quantity

Cq(L) ≡ S(ρ(L))

= −tr[ρ(L) log2 (ρ(L))] (3)

has the analogous operational meaning of the communi-
cation cost to send signal states over a quantum channel.
Von Neumann entropy decreases with increasing signal-state
overlap. It is generically smaller than the classical cost [4]:
Cq(L) � Cμ. In fact, Cμ = Cq if and only if the process’
ε-machine is counifilar: there are no states with (at least)
two similarly labeled incoming edges [2]. Notably, as we

increase state number, processes with counifilar ε-machines
represent a vanishing proportion of all possible processes [11].
The consequence is that almost all classical processes can
be more compactly represented using quantum mechanics.
This presents an opportunity to use quantum encoding to more
efficiently represent processes.

Quantifying a process’ quantum-reduced state complexity
via the von Neumann entropy of Eq. (3) is rooted in the
existence of optimal quantum compression algorithms, such
as Schumacher compression [12]. The advantage of smaller
state complexity with larger L, though, is not a consequence
of the well developed theory of quantum compression. Rather
it derives from carefully harnessing a model’s coincident pre-
dictions by constructing a process’s nonorthogonal quantum
signal states. This is a new kind of quantum information
processing. Notably, this quantum reduction, of requisite state
memory in the simulation of a classical stochastic process, was
recently experimentally verified using nonorthogonal photon
polarization signal states [9], though only for codeword length
L = 1. Leveraging both technological and theoretical ad-
vancements, the significant reduction in memory requirements
quantified by Cq(L) should enable efficient simulation of
important complex systems whose dynamics were previously
prohibitively memory intensive.

Calculating a process’s quantum cost function Cq(L) is
challenging, however. The following shows how to circumvent
the difficulties. Beyond practical calculational concerns, the
theory leads to a deeper appreciation of quantum structural
complexity.

III. QUANTUM OVERLAPS

Reference [4] showed that the reduction Cμ − Cq(L) in
state complexity is determined by quantum overlaps between
signal states in the q-machine. Accordingly, calculation of
these overlaps is a primary task. Intuitively, nonorthogonal
signal states correspond to causal states that yield “similar”
predictions, in a sense to be explained. More rigorously, the
overlap between nonorthogonal signal states is determined by
words whose causal-state paths merge.

To illustrate, we compute several overlaps for the (R–k)-
Golden Mean Process, showing how they depend on L. (See
Fig. 1 for its ε-machine state transition diagram.) This process
was designed to have tuneable Markov order R and cryptic
order k; here we choose R = 4 and k = 3. (Refer to Ref. [11]
for more on this process and a detailed discussion of Markov
and cryptic orders.)

At length L = 0, each signal state is simply the basis state
corresponding to its causal state: |ηi(0)〉 = |σi〉. Since the ε-
machine is minimal, there are no overlaps in the state vectors.

At length L = 1 codewords, we find the first nontrivial

overlap. This corresponds to paths A
1−→ A and G

1−→ A

merging at state A, and we have

|ηA(1)〉 = √
p|1A〉 +

√
1 − p|0B〉 and

|ηG(1)〉 = |1A〉.
This yields the overlap:

〈ηA(1)|ηG(1)〉 = √
p.
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1:p

1:1 0:1 − p

:1

1 :1

0:1

0:1

0:1

R = 4
k = 3

1

FIG. 1. ε-Machine for the (4–3)-Golden Mean Process: The
cycle’s red segment (labeled R = 4) indicates the “Markov” portion,
and the green (labeled k = 3) the “cryptic” portion. The length scales
R and k are tuned by changing the lengths of these two components,
respectively. Edges labeled x:p denote taking the state-to-state
transition with probability p while emitting symbol x ∈ A.

Going on to length L = 2 codewords, more overlaps arise
from mergings of more state paths. The three quantum signal
states

|ηA(2)〉 = p|11A〉 +
√

p(1 − p)|10B〉 +
√

(1 − p)|00C〉,
|ηF (2)〉 = |11A〉, and

|ηG(2)〉 = √
p|11A〉 +

√
1 − p|10B〉

interact to yield the overlaps:

〈ηA(2)|ηF (2)〉 = p,

〈ηF (2)|ηG(2)〉 = √
p, and

〈ηA(2)|ηG(2)〉 = p
√

p + (1 − p)
√

p = √
p.

The overlaps between (A,F ) and (F,G) are new. The (A,G)
overlap has the same value as that for (F,G); however,
its calculation at L = 2 involved two terms instead of one.
This is because no new merger has occurred; the L = 1
merger, effected by symbol 1, was simply propagated forward
along two different state paths having prefix 1. There are

two redundant paths: A
10−→ B overlaps G

10−→ B and A
11−→

A overlaps G
11−→ A. A naive calculation of overlaps must

contend with this type of redundancy.

IV. QUANTUM PAIRWISE-MERGER MACHINE

To calculate signal-state overlaps, we introduce the quan-
tum pairwise-merger machine, a transient graph structure that
efficiently encapsulates the organization of state paths. As we
saw in the example, calculation of overlaps amounts to tracking

state path mergers. It is important that we do this in a systematic
manner to avoid redundancies. The new machine does just this.

We begin by first constructing the pairwise-merger machine
(PMM), previously introduced to compute overlaps [4]. There,
probabilities were computed for each word found by scanning
through the PMM. This method significantly reduced the
number of words from the typically exponentially large
number in a process’ language and also gave a stopping
criterion for PMMs with cycles. This was a vast improvement
over naive constructions of the signal-state ensemble (just
illustrated) and over von Neumann entropy calculation via
diagonalization of an ever-growing Hilbert space.

Appropriately weighting PMM transitions yields the quan-
tum PMM (QPMM), which then not only captures which
states merge given which words, but also the contribution
each merger makes to a quantum overlap. The QPMM has
one obvious advantage over the PMM. The particular word
that produces an overlap is ultimately unimportant; only
the amount of overlap generated is important. Therefore,
summing over symbols in the QPMM to obtain its internal
state transitions removes this combinatorial factor. There
are additional significant advantages to this matrix-based
approach. Appreciating this requires more development.

To build the QPMM from a given process’ ε-machine:
(1) Construct the set of (unordered) pairs of (distinct)

ε-machine states: (σi,σj ). We call these pair states. To this
set, add a special state called SINK (short for “sink of
synchronization”) which is the terminal state.

(2) For each pair state (σi,σj ) and each symbol x ∈ A,
there are three cases to address:

(a) If at least one of the two ε-machine states σi or σj has
no outgoing transition on symbol x, then do nothing.
(b) If both ε-machine states σi and σj have a transition
on symbol x to the same state σm, then connect pair state
(σi,σj ) to SINK with an edge labeled x. This represents a
merger.
(c) If both ε-machine states σi and σj have a transition on
symbol x to two distinct ε-machine states σm and σn where
m �= n, then connect pair state (σi,σj ) to pair state (σm,σn)
with an edge labeled x. (There are no further restrictions
on m and n.)
(3) Remove all edges that are not part of a path that leads

to SINK.
(4) Remove all pair states that do not have a path to SINK.
This is the PMM. Now, add information about transition

probabilities to this topological structure to obtain the QPMM:
(5) For each pair state (σi,σj ) in the PMM, add to each

outgoing edge the weight
√

Pr(x|σi) Pr(x|σj ), where x is the
symbol associated with that edge. Note that two states in
QPMM may be connected with multiple edges (for different
symbols).

Returning to our example, Fig. 2 gives the QPMM for
the (4–3)-Golden Mean Process. Using it, we can easily
determine the length at which a contribution is made to a
given overlap. We consider codeword lengths L = 1,2, . . . by
walking up the QPMM from SINK. For example, pair (A,G)
receives a contribution of

√
p at L = 1. Furthermore, (A,G)

receives no additional contributions at larger L. Pairs (A,F )
and (F,G), though, receive contributions p = √

p × √
p and√

p = √
p × 1 at L = 2, respectively.
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1:11:
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√
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FIG. 2. Quantum pairwise-merger machine for the (4–3)-Golden
Mean Process. Its depth is related to the cryptic order k.

The QPMM is not a HMM, since the edge weights do
not yield a stochastic matrix. However, like a HMM, we can
consider its labeled “transition” matrices {ζ (x)}, x ∈ A. Just
as for their classical ε-machine counterparts, we index these
matrices such that ζ (x)

u,v indicates the edge going from pair
state u to pair state v. Since the overlap contribution, and
not the inducing word, is of interest, the important object
is simply the resulting state-to-state substochastic matrix
ζ = ∑

x∈A ζ (x). The matrix ζ is the heart of our closed-form
expressions for quantum coding costs, which follow shortly.
As we noted above, it is this step that greatly reduces the
combinatorial growth of paths that would otherwise make
calculations unwieldy.

To be explicit, our (4–3)-Golden Mean Process has

ζ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

AE EG EF AF FG AG SINK

AE 0 0 0
√

p 0 0 0

EG 0 0 0 1 0 0 0

EF 0 0 0 0 1 0 0

AF 0 0 0 0 0
√

p 0

FG 0 0 0 0 0 1 0

AG 0 0 0 0 0 0
√

p

SINK 0 0 0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

V. OVERLAPS FROM THE QPMM

As we saw in the example, overlaps accumulate contribu-
tions as “probability amplitude” is pushed through the QPMM
down to SINK. Each successive overlap augmentation can thus
be expressed in terms of the next iterate of ζ :

〈ηi(L)|ηj (L)〉− 〈ηi(L− 1)|ηj (L− 1)〉= 〈(σi,σj )|ζL|SINK〉.

The general expression for quantum overlaps follows imme-
diately:

〈ηi(L)|ηj (L)〉 = 〈(σi,σj )|
L∑

n=0

ζ n|SINK〉, (4)

which is true for all processes by design of the QPMM. This
form makes clear the cumulative nature of quantum overlaps
and the fact that overlap contributions are not labeled.

Note that there are two trivial overlap types. Self-overlaps
are always 1; this follows from Eq. (4) since 〈(σi,σi)| =
〈SINK|. Overlaps with no corresponding pair state in the
QPMM are defined to be zero for all L.

Now, we show that there are two behaviors that contribute
to overlaps: a finite-horizon component and an infinite-horizon
component. Some processes have only one type or the other,
while many have both. We start with the familiar (R–k)-GM,
which has only finite-horizon contributions.

A. Finite horizon: (R–k)-Golden Mean Process

Overlap matrices are Hermitian, positive-semidefinite ma-
trices and can therefore be represented as the product ALA

†
L.

Let us use the general expression Eq. (4) to compute the matrix
elements (ALA

†
L)i,j = 〈ηi(L)|ηj (L)〉 for lengths L = 1,2,3,4

for the (R–k)-Golden Mean Process. We highlight in blue
(and bold) the matrix elements that have changed from the
previous length. All overlaps begin with the identity matrix,
here I7 as we have seven states in the ε-machine (Fig. 1).
Then, at L = 1 we have one overlap. The overlap matrix, with
elements 〈ηi(1)|ηj (1)〉, is

A1A
†
1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

A B C D E F G

A 1 0 0 0 0 0
√

p

B 0 1 0 0 0 0 0

C 0 0 1 0 0 0 0

D 0 0 0 1 0 0 0

E 0 0 0 0 1 0 0

F 0 0 0 0 0 1 0

G
√

p 0 0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Next, for L = 2 we find two new overlaps. The overlap matrix,
with elements 〈ηi(2)|ηj (2)〉, is

A2A
†
2 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

A B C D E F G

A 1 0 0 0 0 p
√

p

B 0 1 0 0 0 0 0

C 0 0 1 0 0 0 0

D 0 0 0 1 0 0 0

E 0 0 0 0 1 0 0

F p 0 0 0 0 1
√

p

G
√

p 0 0 0 0
√

p 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.
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For L = 3, there are three new overlaps. The overlap matrix,
with elements 〈ηi(3)|ηj (3)〉, is

A3A
†
3 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

A B C D E F G

A 1 0 0 0
√

p3
p

√
p

B 0 1 0 0 0 0 0

C 0 0 1 0 0 0 0

D 0 0 0 1 0 0 0

E
√

p3 0 0 0 1
√

p p

F p 0 0 0
√

p 1
√

p

G
√

p 0 0 0 p
√

p 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Finally, for L = 4, we find the same matrix as L = 3:
〈ηi(4)|ηj (4)〉 = 〈ηi(3)|ηj (3)〉 for all i and j . And, in fact, this
is true for all L � 3. Therefore, all overlap information has
been uncovered at codeword length L = 3.

Looking at the QPMM in Fig. 2, we recognize that the
saturation of the overlap matrix corresponds to the finite
state depth d of the directed graph: the number of states in
longest path through the QPMM that ends in the SINK state.
Equivalently, the depth corresponds to the nilpotency of ζ :

d = min{n ∈ N : ζ n = 0}. (5)

Note that the (4 − 3)-Golden Mean Process QPMM is a tree
of state depth d = 4.

Whenever the QPMM is a tree or, more generally, a
directed-acyclic graph (DAG), the overlaps will similarly have
a finite-length horizon equal to the depth d. The nilpotency
of ζ for finite-depth DAGs allows for a truncated form of the
general overlap expression [Eq. (4)]:

〈ηi(L)|ηj (L)〉 = 〈(σi,σj )|
min(L,d−1)∑

n=0

ζ n |SINK〉. (6)

This form is clearly advantageous for any process whose
QPMM is a finite DAG. Naturally then, we are led to ask:
What property of a process leads to a finite DAG? To answer
this question, we reconsider how overlap is accumulated via
the merging of state paths.

Paths through the QPMM represent causal-state path
mergers. To make this more precise, we introduce the concept
of an L-merge, which is most intuitively understood through
Fig. 3:

Definition 3. An L-merge consists of a length-L word w

and two state paths each of length L + 1 that each allow
the word w to terminate in the same state F . We denote the
word w = x0 . . . xL−1 and state paths (a0, . . . ,aL−1,F ) and

a0 a1 a2 aL−2 aL−1

b0 b1 b2 bL−2 bL−1

x0 x1 xL−2

x0 x1 xL−2

F

xL−1

xL−1

FIG. 3. L-merge: Two causal state paths, (a0, . . . ,aL−1,F ) and
(b0, . . . ,bL−1,F ) where states ai �= bi , for all i ∈ {0, . . . ,L − 1},
generate the same word w = x0 x1 . . . xL−1 and merge only on the
last output symbol xL−1 into a common final state F .

(b0, . . . ,bL−1,F ) where states ai �= bi , for all i ∈ {0, . . . ,L −
1} and, trivially, F = F , the final state in which the paths end.

Immediately, we see that every labeled path of length-L
through the QPMM that ends in SINK is precisely an L-merge.

Such causal state path merging not only contributes to
quantum overlap, but also contributes to a process’s crypticity.
Let SL denote the random variable for the particular causal
state σ ∈ S at time L. Then the crypticity of a process, the
average uncertainty about the present causal state S0 given
perfect observation of the entire infinite future x0:∞, but
not knowing the history of observations prior to the present
moment, can be written as H[S0|X0:∞], which is accumulated
at all lengths up to the cryptic order [13].

Definition 4. A process’ cryptic order k is the minimum
length L for which H[SL|X0:∞] = 0.

That is, given knowledge of the entire infinite future of
observations, the cryptic order quantifies how far back into the
past one must remember to always know the present causal
state.

By way of comparison, a process’s Markov order is

R = min{L : H[SL|X0:L] = 0}.
That is, given knowledge (e.g., the ε-machine) of which
process is being observed but without knowing future obser-
vations, the Markov order quantifies how far back into the past
one must remember to always know the present causal state. A
more familiar length scale characterizing historical correlation,
R depends on both path merging and path termination due
to disallowed transitions. The cryptic order, in contrast,
effectively ignores the termination events and is therefore
upper-bounded by the Markov order: k � R. This bound is
also easy to see given the extra conditional variable XL:∞ in
the definition of crypticity (X0:∞ = X0:LXL:∞) [5,6].

The following lemma states a helpful relation between
cryptic order and L-merges.

Lemma 1. Given an ε-machine with cryptic order k: for
L � k, there exists an L-merge; for L > k, there exists no
L-merge.

Proof 1. See Appendix B.
Each L-merge corresponds with a real, positive contribution

to some quantum overlap. By Lemma 1, for a cryptic-order
k process there is at least one L-merge at each length L ∈
{1, . . . ,k} and none beyond k. Therefore, at least one overlap
receives a real, positive contribution at each length up until
k, where there are no further contributions. This leads to our
result for overlap accumulation and saturation in terms of the
cryptic order.

Theorem 1. Given a process with cryptic order k, for each
L ∈ {0, . . . ,k}, each quantum overlap is a nondecreasing
function of L:

〈ηi(L + 1)|ηj (L + 1)〉 � 〈ηi(L)|ηj (L)〉.
Furthermore, for each L ∈ {1, . . . ,k}, there exists at least
one overlap that is increased as a result of a corresponding
L-merge. For all remaining L � k, each overlap takes the
constant value 〈ηi(k)|ηj (k)〉.

Proof 2. See Appendix B.
Evidently, the cryptic order is an important length scale not

only for classical processes, but also when building efficient
quantum encoders.
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As an important corollary, this theorem also establishes the
relation between a process’s cryptic order and the depth of its
QPMM:

d = k + 1. (7)

Thus, we have discovered that the process property corre-
sponding to a finite DAG QPMM is finite cryptic order.
Moreover, the cryptic order corresponds to a topological
feature of the QPMM, the depth d, responsible for saturation
of the overlaps.

This leads to rephrasing the truncated form of the overlaps
sum in Eq. (4):

〈ηi(L)|ηj (L)〉 = 〈(σi,σj )|
min(L,k)∑

n=0

ζ n |SINK〉. (8)

This form is advantageous for any process that is finite
cryptic order. This, of course, includes all finite Markov-order
processes: processes used quite commonly in a variety of
disciplines.

Since the quantum-reduced state complexity Cq(L) is a
function only of π and quantum overlaps, the preceding
development also gives a direct lesson about the Cq(L)
saturation.

Corollary 1. Cq(L) has constant value Cq(k) for L � k.
Proof 1. The entropy of an ensemble of pure signal states

{pi,|ψi〉} is a function of only probabilities pi and overlaps
{〈ψi |ψj 〉}. The result then follows directly from Theorem 1.

Having established connections among depth, cryptic order,
and saturation, we seem to be done analyzing quantum overlap,
at least for the finite-cryptic case. To prepare for going beyond
finite horizons, however, we should reflect on the spectral
origin of the nilpotency of ζ .

A nilpotent matrix, such as ζ in the finite-cryptic case, has
only the eigenvalue zero. This can perhaps be most easily
seen if the pair states are ordered according to their distance
from SINK, so that ζ is triangular with only zeros along the
diagonal.

Notably, for finite DAGs with depth d > 1, the stan-
dard eigenvalue-eigenvector decomposition is insufficient to
form a complete basis: the corresponding ζ is necessarily
nondiagonalizable due to the geometric multiplicity of the
zero eigenvalue being less than its algebraic multiplicity.
Generalized eigenvectors must be invoked to form a complete
basis [14]. Intuitively, this type of nondiagonalizability can
be understood as the intrinsic interdependence among pair
states in propagating probability amplitude through a branch
of the DAG. When ζ is rendered into Jordan block form via a
similarity transformation, the size of the largest Jordan block
associated with the zero eigenvalue is called the index ν0 of
the zero eigenvalue. It turns out to be equal to the depth for
finite DAGs.

Summarizing, the finite-horizon case is characterized by
several related features: (i) the QPMM is a DAG (of finite
depth), (ii) the depth of the QPMM is one greater than the
cryptic order, (iii) the matrix ζ has only the eigenvalue zero,
and (iv) the depth is equal to the index of this zero eigenvalue,
meaning that ζ has at least k generalized eigenvectors. More
generally, ζ can have nonzero eigenvalues and this corresponds
to richer structure that we explore next.

B. Infinite horizon: Lollipop Process

Now we ask, what happens when the QPMM is not a
directed acyclic graph? That is, what happens when it contains
cycles?

It is clear that the depth d diverges, implying that the cryptic
order is infinite. Therefore, the sum in Eq. (4) may no longer be
truncated. We also know that infinite-cryptic processes become
ubiquitous as ε-machine state size increases [11]. Have we lost
our calculational efficiencies? No, in fact, there are greater
advantages yet to be gained.

We first observe that a QPMM’s ζ breaks into two pieces.
One has a finite horizon reminiscent of the finite cryptic order
just analyzed, and the other has an infinite horizon, but is, as
we now show, analytically quite tractable.

In general, a linear operator A may be decomposed using
the Dunford decomposition [15] (also known as the Jordan-
Chevalley decomposition) into

A = D + N , (9)

where D is diagonalizable, N is nilpotent, and D and N
commute. In the current setting, N makes the familiar finite-
horizon contribution, whereas the new D term has an infinite
horizon: Dn �= 0, for all n < ∞. In the context of infinite
cryptic processes, the finite horizon associated with N is
no longer simply related to QPMM depth nor, therefore, the
cryptic order which is infinite.

The systematic way to address the new diagonalizable part
is via a spectral decomposition [16], where the persistent
leaky features of the QPMM state probability evolution are
understood as independently acting modes. It is clear that
ζ always has a nilpotent component associated with a zero
eigenvalue, due to the SINK state. Assuming that the remaining
eigenspaces are diagonalizable, the form of the overlaps
becomes

〈ηi(L)|ηj (L)〉 =
∑

ξ∈�ζ \{0}

1 − ξL+1

1 − ξ
〈(σi,σj )|ζξ |SINK〉

+
min{L, ν0−1}∑

m=0

〈(σi,σj )|ζmζ0|SINK〉, (10)

where �ζ is the set of the eigenvalues of ζ , ζξ are the projection
operators corresponding to each eigenvalue, and ν0 is the index
of the zero eigenvalue, which is the size of its largest Jordan
block. We refer to this as the almost-diagonalizable case since
all eigenspaces, besides possibly the zero-eigenvalue space,
are diagonalizable. This case covers all processes with generic
parameters. Here ν0 is still responsible for the length of the
finite-horizon component, but is no longer directly related to
QPMM depth or process cryptic order.

Note that in the finite-cryptic order case, the only projector
ζ0 is necessarily the identity. Therefore, Eq. (10) reduces to
the previous form in Eq. (8).

The spectral decomposition yields a new level of tractability
for the infinite-cryptic case. The infinite-horizon piece makes
contributions at all lengths, but in a regular way. This allows
for direct calculation of its total contribution at any particular
L, including L → ∞.
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FIG. 4. ε-Machine for the (7–4)-Lollipop Process. The cycle of
0s on the right leads to infinite Markov and cryptic orders.

To highlight this behavior, consider the (7–4)-Lollipop
Process, whose ε-machine is shown in Fig. 4. It is named
for the shape of its QPMM; see Fig. 5. This process is a simple
example of one where the cryptic order is infinite and the
finite-horizon length of the nilpotent contribution is tunable.
Roughly speaking, the diagonalizable component comes from
the “head” of the lollipop (the cycle), and the nilpotent part
comes from the “stick.”

It is straightforward to construct the general QPMM and
thereby derive ζ for the (N–M)-Lollipop Process. Its QPMM
has N pair states in a cyclic head. The M remaining pair states
constitute a finite-horizon “stick.” We find

det(ζ − ξI ) = (−ξ )M
[
(−ξ )N − (1 − p)(1 − q)

]
,

yielding

�ζ = {0, [(1 − p)(1 − q)]1/Nein2π/N }N−1
n=0 , (11)

with ν0 = M .
For concreteness, consider the (7–4)-Lollipop Process

with transition parameters p = q = 1/2 and r ∈ (0,1). It has
eigenvalues �ζ = {0,aeinθ } and ν0 = 4, where a = (1/4)1/7,
θ = 2π/7, and n ∈ {0,1,2,3,4,5,6}.

Each ξ = aeinθ eigenvalue has algebraic multiplicity 1 and
associated left eigenvector,

〈ξ | = [2
√

2ξ 6,
√

2ξ 5,ξ 4,ξ 3,ξ 2,ξ 1,ξ 0,
√

2ξ 5,
√

2ξ 4,
√

2ξ 3,
√

2(1 − r)ξ 2],

and right eigenvector,

|ξ 〉 =
[

1

2ξ
,1,

√
2ξ,

√
2ξ 2,

√
2ξ 3,

√
2ξ 4,

√
2ξ 5,0,0,0,0

]	
.

3,4

2,3
1,2

0,1

6,0
5,6

4,5

0:1

0:1
0:1

0:
√

1 − p

0: (1 − p)(1 − q)

0 :
√

1 − q

0:1

7,108,119,12SINK
1:
√

pq1:11:1
1:

√
1 − r

FIG. 5. Quantum pairwise-merger machine for the (7–4)-
Lollipop Process.

The general relationship among left and right eigenvec-
tors, left and right generalized eigenvectors, and projection
operators, and their reduction in special cases is discussed
in Ref. [17]. In the present case, notice that, since ζ is not
a normal operator, the right eigenvectors are not simply the
conjugate transpose of their left counterparts. (Normal oper-
ators by definition commute with their conjugate transpose;
e.g., Hermitian operators.) The left and right eigenvectors are
fundamentally different, with the differences expressing the
QPMM’s directed causal architecture.

Since each of these eigenvalues has algebraic multiplicity
1, the corresponding projection operators are defined in terms
of right and left eigenvectors,

ζξ = |ξ 〉〈ξ |
〈ξ |ξ 〉 .

The zero eigenvalue has algebraic multiplicity 4 and
geometric multiplicity 1, meaning that while there is only one
eigenvector there are three generalized eigenvectors. The left
and right eigenvectors are

[0,0,0,0,0,0,0,0,0,0,1] and

[0,1,0,0,0,0,0,−1,0,0,0]	.

The three generalized left eigenvectors are

[0,0,0,0,0,0,0,1,0,0,0],

[0,0,0,0,0,0,0,0,1,0,0], and

[0,0,0,0,0,0,0,0,0,1,0];

and the three generalized right eigenvectors are

[0,0,
√

2,0,0,0,0,0,−1,0,0]	,

[0,0,0,
√

2,0,0,0,0,0,−1,0]	, and

[0,0,0,0,
√

2(1 − r),0,0,0,0,0,−1]	.

Since the index of the zero eigenvalue is larger than 1 (ν0 =
4), the projection operator ζ0 for the zero eigenvalue includes
the contributions from both its standard and generalized
eigenvectors:

ζ0 =
3∑

n=0

|0n〉〈0n|
〈0n|0n〉 , (12)

where |00〉 is the standard eigenvector and |0n〉 is the nth
generalized eigenvector for n � 1. More generally, when the
geometric multiplicity is greater than one, this sum goes
over all standard and all generalized eigenvectors of the zero
eigenvalue.

Since all projection operators must sum to the identity, the
projection operator for the zero eigenvalue can be obtained
alternatively from

ζ0 = I −
∑

ξ∈�ζ \0

ζξ , (13)

which is often useful during calculations.
This very efficient procedure allows us to easily probe the

form of quantum advantage for any process described by a
finite ε-machine.

052317-8



MINIMIZED STATE COMPLEXITY OF QUANTUM-ENCODED . . . PHYSICAL REVIEW A 93, 052317 (2016)

Finally, we jump directly to the asymptotic overlap using
the following expression:

〈ηi(∞)|ηj (∞)〉 = 〈(σi,σj )|
( ∞∑

n=0

ζ n

)
|SINK〉

= 〈(σi,σj )|(I − ζ )−1|SINK〉. (14)

Note that I − ζ is invertible, since ζ is substochastic. Hence, its
spectral radius is less than unity, 1 /∈ �ζ , and so det(1I − ζ ) �=
0. Moreover, (I − ζ )−1 is equal to the convergent Neumann
series

∑∞
n=0 ζ n by Theorem 3 of Ref. [18, Ch. VIII, Sec. 2].

Yielding an important calculational efficiency, the form of
Eq. (14) does not require spectral decomposition of ζ and
so immediately provides the asymptotic quantum-reduction of
state complexity. Finally, this form does not depend on the
previous assumption of ζ being almost-diagonalizable.

VI. QUANTUM REDUCED STATE COMPLEXITY

The preceding development focused on computing overlaps
between quantum signal states for q-machine representations
of a given process. Let us not forget that the original goal
was to compute the von Neumann entropy of this ensemble:
the quantum-reduced state complexity Cq(L), which is the
memory that must be transferred about the state of the process
to synchronize compatible predictions.

The naive approach to calculating Cq(L) constructs the
signal states directly and so does not make use of overlap
computation. This involves working with a Hilbert space of
increasing dimension, exponential in codeword length L. This
quickly becomes intractable, for all but the simplest processes.

The second approach, introduced in Ref. [4], made use
of the PMM to compute overlaps. These overlaps were then
used to construct a density operator with those same overlaps,
but in a Hilbert space of fixed size |S|, essentially obviating
the high-dimensional embedding of the naive approach. And,
we just showed how to calculate overlaps in closed form.
The elements of the resulting density matrix, however, are
nonlinear functions of the overlaps. Besides the computational
burden this entails, it makes it difficult to use the overlap
matrix to theoretically infer much about the general behavior
of Cq(L).

Here we present two markedly improved approaches that
circumvent these barriers. We are ultimately interested in the
von Neumann entropy, which depends only on the spectrum
of the density operator. It has been pointed out that the Gram
matrix of an ensemble shares the same spectrum [19]. The
Gram matrix for our ensemble of pure quantum signal states
is

G =

⎡⎢⎣
√

π1π1〈η1|η1〉 · · · √
π1π|S|〈η1|η|S|〉

...
. . .

...√
π|S|π1〈η|S||η1〉 · · · √π|S|π|S|〈η|S||η|S|〉

⎤⎥⎦. (15)

If we define Dπ ≡ diag(π), then G = D
1/2
π AA†D1/2

π .
Given that it is only a small step from the overlap matrix

AA† to the Gram matrix G, we see the usefulness of the
thoroughgoing overlap analysis above. The spectrum of G is

FIG. 6. Quantum costs Cq (L) for the (R–k)-Golden Mean Pro-
cess with R ∈ {1, . . . ,6} and k ∈ {1, . . . ,R}. R and k are indicated
with line width and color, respectively. The probability of the
self-loop is p = 0.7. Cq (L) roughly linearly decreases until L = k

where it is then constant. Note that (R–k)-GM agrees exactly with
((R + 1)–(k − 1))-GM for L � k, as explained in Appendix D.

then computed using standard methods, either symbolically or
numerically.

There is another surrogate matrix that shares the spectrum
but is simpler, yet again, for some calculations. We call this
matrix G̃ the left-consolidated Gram matrix:

G̃ =

⎡⎢⎣ π1〈η1|η1〉 · · · π1〈η1|η|S|〉
...

. . .
...

π|S|〈η|S||η1〉 · · · π|S|〈η|S||η|S|〉

⎤⎥⎦. (16)

Note that G̃ = DπAA†—i.e., Dπ has been consolidated on
the left. A right-consolidated Gram matrix would work just as
well for the calculation of Cq(L).

Since the spectra are identical, we can calculate Cq(L)
directly from the density matrix ρ(L), Gram matrix G(L), or
consolidated Gram matrix G̃(L):

Cq(L) = −
∑

λ∈�ρ(L)

λ log2 λ

= −
∑

λ∈�
G(L)

λ log2 λ

= −
∑

λ∈�
G̃(L)

λ log2 λ.

For further discussion, see Appendix C.
Using the Gram matrix as described, we illustrate the

behavior of Cq(L) for the (R–k)-Golden Mean (Fig. 6) and
(N–M)-Lollipop (Fig. 7). For each of the two process families,
we compute several instances by varying R and k and by
varying N and M while holding fixed their transition param-
eters. Comparing the two figures, we qualitatively confirm
the difference between a process with only a finite-horizon
contribution and one with an infinite-horizon contribution. The
(R–k)-Golden Mean reaches its encoding saturation at L = k
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FIG. 7. Quantum costs Cq (L) for the Lollipop process for N ∈
{3,4,5,6}, M ∈ {2,3,4,5,6}, p = q = 0.5, and r = 0.1. N and M are
indicated with line width and color, respectively. After a fast initial
decrease, these curves approach their asymptotic values more slowly.

the cryptic order. The (N–M)-Lollipop only approaches this
limit asymptotically.

In contrast to the customary approach in quantum compres-
sion [12], in which an entire message is to be compressed with
perfect fidelity, the compression advantage here is obtained by
throwing away information that is not relevant for simulating a
process, with the goal of correctly sampling from a conditional
future distribution.

Recall that the quantum-reduced state complexity Cq(L)
quantifies a communication cost. Specifically, it is the amount
of memory about a process’s state that must be queried to
move the system forward in time. However, to avoid misinter-
pretation, we note that this cost does not have a simple
relationship to the “quantum communication cost” as the
phrase is sometimes used in the distributed computing setting
of communication complexity theory [20].

To supplement the details already given, annotated an-
alytic derivations of several example processes are given
in Appendix D. These examples serve as a pedagogical
resource, with comparison and discussion of various analytical
techniques.

VII. COSTS USING LONG CODEWORDS

The preceding discussed quantum state overlaps exten-
sively. We found that the behavior of the overlaps with L

is completely described through the spectral decomposition of
ζ . And, we showed that, for any L, the von Neumann entropy
Cq(L) can be found from the eigenvalues of the Gram matrix:
a direct transformation of the overlap matrix. This is all well
and good and key progress. But, can we use this machinery to
directly analyze the behavior of Cq(L) as a function of L? For
infinite-cryptic processes, the answer is an especially pleasing
affirmative.

This section derives the asymptotic behavior of Cq(L) for
large L; viz., ν0 < L � k = ∞. We show that a periodic
pattern, exponentially decaying at the rate of the largest

ζ -eigenvalue magnitude, dominates the deviation of Cq(L)
from Cq(∞) for large L. In particular, we show two things:
First, the asymptotic behavior of Cq(L) − Cq(∞) is, to first
order, exponentially decreasing as rL

1 , where r1 is the spectral
radius of ζ . Second, this exponential defines an envelope for a
�-periodic asymptotic structure, where � is the least common
multiple of slowest-decaying QPMM cycle lengths.

Recall that the minimal known upper bound on state
complexity is given by the asymptotic von Neumann entropy:

Cq(∞) = −
∑

λ(∞)∈�
G(∞)

λ(∞) log2(λ(∞)).

We will show that when L is large, (δG)(L) ≡ G(L) − G(∞) can
be treated as a perturbation to G(∞). From the corresponding
small variations {(δλ)(L)}λ∈�G

, direct calculation of the first
differential yields the approximate change in the von Neumann
entropy:

(δS)(L) = −
∑
λ∈�G

[log2 (λ(∞)) + 1] (δλ)(L), (17)

so long as no zero eigenvalues of G(∞) prematurely vanish at
finite L. Our task, therefore, is to find (δλ)(L) from (δG)(L) in
terms of the spectral properties of ζ .

For easy reference, we first highlight our notation:
(1) G(L) is a Gram matrix at length L corresponding to

ρ(L).
(2) λ(L) ∈ �G(L) is any one of its eigenvalues.
(3) |λ(L)〉 and 〈λ(L)| are the right and left eigenvectors of

G(L) corresponding to λ(L), respectively.
(4) (δG)(L) ≡ G(L) − G(∞) is the perturbation to G(∞)

investigated here.
(5) ξ ∈ �ζ is an eigenvalue of the QPMM transition

dynamic ζ .
If using G’s symmetric version, the right and left eigenvec-

tors are simply transposes of each other: 〈λ(L)| = (|λ(L)〉)	.
For simplicity of the proofs, we assume nondegeneracy of
G(L)’s eigenvalues, so that the projection operator associated
with λ(L) is |λ(L)〉〈λ(L)|/〈λ(L)|λ(L)〉, where the denominator
assures normalization. Nevertheless, the eigenbasis of G(L)

is always complete and the final result, Theorem 3, retains
general validity.

Here, we show that the matrix elements of (δG)(L) are
arbitrarily small for large enough L, such that first-order
perturbation is appropriate for large L, and give the exact
form of (δG)(L) for use in the calculation of (δλ)(L).

Proposition 1. For L � ν0, the exact change in Gram
matrix is

(δG)(L) = −
∑

ξ∈�ζ \0

ξL+1

1 − ξ
Cξ ,

where Cξ is independent of L and has matrix elements:

(Cξ )i,j = √
πiπj 〈(σi,σj )|ζξ |SINK〉.

Proof 1. We calculate

(δG)(L)
i,j = G

(L)
i,j − G

(∞)
i,j

= √
πiπj

(〈
η

(L)
i

∣∣η(L)
j

〉− 〈
η

(∞)
i

∣∣η(∞)
j

〉)
= −√

πiπj 〈(σi,σj )|ζL+1(1 − ζ )−1|SINK〉.
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If we assume that all nonzero eigenvalues of ζ correspond
to diagonalizable subspaces, then for L � ν0, the elements of
(δG)(L) have the spectral decomposition:

(δG)(L)
i,j = −

∑
ξ∈�ζ \0

ξL+1

1 − ξ

√
πiπj 〈(σi,σj )|ζξ |SINK〉.

Since this decomposition is common to all matrix elements,
we can factor out { ξL+1

1−ξ
}
ξ
, leaving the L-independent set of

matrices:

{Cξ : (Cξ )i,j = √
πiπj 〈(σi,σj )|ζξ |SINK〉}ξ∈�ζ

,

such that

(δG)(L) = −
∑

ξ∈�ζ \0

ξL+1

1 − ξ
Cξ .

Proposition 2. At large L, the first-order correction to λ(∞)

is

(δλ)(L) = −
∑

ξ∈�ζ \0

ξL+1

1 − ξ

〈λ(∞)|Cξ |λ(∞)〉
〈λ(∞)|λ(∞)〉 . (18)

Proof 2. Perturbing G(∞) to G(∞) + (δG)(L), the first-order
change in its eigenvalues is given by

(δλ)(L) = 〈λ(∞)|(δG)(L)|λ(∞)〉
〈λ(∞)|λ(∞)〉 , (19)

which is standard first-order nondegenerate perturbation the-
ory familiar in quantum mechanics, with the allowance for
unnormalized bras and kets. Proposition 2 then follows directly
from Eq. (19) and Proposition 1.

Theorem 2. At large L, such that ν0 < L � k = ∞, the
first-order correction to Cq(∞) is

Cq(L) − Cq(∞) ≈ (δS)(L)

=
∑

ξ∈�ζ \0

ξL+1

1 − ξ

∑
λ(∞)∈�

G(∞)

〈Cξ 〉[log2(λ(∞)) + 1], (20)

where

〈Cξ 〉 ≡ 〈λ(∞)|Cξ |λ(∞)〉
〈λ(∞)|λ(∞)〉 .

Proof 1. This follows directly from Eq. (17) and Proposi-
tion 2.

The large-L behavior of Cq(L) − Cq(∞) is a sum of
decaying complex exponentials. And, to first order, we can
even calculate the coefficient of each of these contributions.

Notice that the only L-dependence in Proposition 2 and
Theorem 2 comes in the form of exponentiating eigenvalues
of the QPMM transition dynamic ζ . For very large L, the
dominant structure implied by Proposition 2 and Theorem 2
can be teased out by looking at the relative contributions from
the first- and second-largest magnitude sets of eigenvalues
of ζ .

Let r1 be the spectral radius of ζ , shared by the largest
eigenvalues �(r1): r1 ≡ max{|ξ | : ξ ∈ �ζ }. And let �(r1) ≡
arg max{|ξ | : ξ ∈ �ζ }. Then let r2 be the second-largest mag-
nitude of all of the eigenvalues of ζ that differs from r1: r2 ≡
max{|ξ | : ξ ∈ �ζ \ �(r1)}. And let �(r2) ≡ arg max{|ξ | : ξ ∈

�ζ \ �(r1)}. Multiple eigenvalues can belong to �(r1). Simi-
larly, multiple eigenvalues can belong to �(r2).

Then, 0 � (r2/r1) < 1, if ζ has at least one nonzero
eigenvalue. This is the case of interest here since we are
addressing those infinite-horizon processes with k = ∞ > ν0.
Hence, as L becomes large, (r2/r1)L vanishes exponentially, if
it is not already zero. This leads to a corollary of Proposition 2.

Corollary 2. For L � ν0, the leading deviation from
λ(∞) is

(δλ)(L) = −rL+1
1

∑
ξ∈�(r1)

(ξ/|ξ |)L+1

1 − ξ
〈Cξ 〉

{
1 + O

[(
r2

r1

)L]}
.

Notice that ξ/|ξ | lies on the unit circle in the complex
plane. Due to their origin in cyclic graph structure, we expect
each ξ ∈ �(r1) to have a phase in the complex plane that is
a rational fraction of 2π . Hence, there is some n for which
(ξ/|ξ |)n = 1, for all ξ ∈ �(r1). The minimal such n, call it �,
will be of special importance:

� ≡ min{n ∈ N : (ξ/|ξ |)n = 1 for all ξ ∈ �(r1)}. (21)

Since all ξ ∈ �(r1) originate from cycles in ζ ’s graph, we have
the result that � is equal to the least common multiple of the
cycle lengths implicated in �(r1).

For example, if all ξ ∈ �(r1) come from the same cycle in
the graph of ζ , then � = |�(r1)| and

�(r1) = {ξm = r1e
im2π/|�(r1)|}|�(r1)|

m=1 .

That is, {ξm/|ξm|}|�(r1)|
m=1 are the |�(r1)|th roots of unity,

uniformly distributed along the unit circle. If, however, �(r1)
comes from multiple cycles in the graph of ζ , then the least
common multiple of the cycle lengths should be used in place
of |�(r1)|.

Recognizing the �-periodic structure of (ξ/|ξ |)n yields a
more informative corollary of Proposition 2:

Corollary 3. For L � ν0, the leading deviation from λ(∞)

is

(δλ)(L) = − rL+1
1

∑
ξ∈�(r1)

(ξ/|ξ |) mod (L+1, �)

1 − ξ
〈Cξ 〉

× {1 + O[(r2/r1)L]}.
Hence:

(δλ)(L+�) ≈ r�
1 (δλ)(L). (22)

We conclude that asymptotically a pattern, of changes
in the density-matrix eigenvalues (with period �), decays
exponentially with decay rate of r�

1 per period. There are
immediate implications for the pattern of asymptotic changes
in Cq(L) at large L.

Corollary 4. For L � ν0, the leading deviation from
Cq(∞) is

Cq(L) − Cq(∞) ≈ (δS)(L)

= rL+1
1

∑
ξ∈�(r1)

(ξ/|ξ |) mod (L+1, �)

1 − ξ

×
∑

λ(∞)∈�
G(∞)

〈Cξ 〉 log2(λ(∞)){1 + O[(r2/r1)L]}.
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The most profound implication of this detailed analysis can
be summarized succinctly.

Theorem 3. For sufficiently large L,

Cq(L + �) − Cq(∞)

Cq(L) − Cq(∞)
≈ r�

1 . (23)

That is, asymptotically a pattern, of changes in Cq(L) −
Cq(∞) (with period �), decays exponentially with decay rate
of r�

1 per period [21].
While the first-order perturbation allowed us to identify

both the roles and values of r1 and � for any process and
Corollary 4 would imply Theorem 3, Theorem 3 actually
transcends the limitations of the first-order approximation.

Proof 2. Expanding log2 G(L) in powers of (G(L) −
I ), then multiplying by −G(L), shows that Cq(L) =
−tr[G(L) log2 G(L)] can be written as

Cq(L) = −
∞∑

n=0

an tr[(G(L))n], (24)

for proper an ∈ R. Using

G(L) =
∑

ξ∈�ζ \0

1 − ξL+1

1 − ξ
Cξ +

min{L, ν0−1}∑
m=0

C0,m, (25)

with appropriate constant matrices C0,m, together with
Eqs. (21) and (24), yields Theorem 3 with general validity.

In the simplest case, when ζ has only one largest eigenvalue,
then � = |�(r1)| = 1 and so Cq(L) − Cq(∞) is dominated by
a simple exponential decay at large L.

For the case of multiple largest eigenvalues originating from
the same cycle in the graph of ζ , then � = |�(r1)| > 1. And
so, the asymptotic behavior of Cq(L) − Cq(∞) is dominated
by a decaying pattern of length |�(r1)|.

For example, the Lollipop processes have an exponentially
decaying pattern of length-N that dominates Cq(L) − Cq(∞)
for L > ν0 = M:

� = |�(r1)| = N. (26)

This periodic behavior is apparent in the semilog plots of
Figs. 8 and 10 and is especially emphasized in Fig. 9, which
shows that � = N for various N . The figures demonstrate
excellent agreement with our qualitative expectations from
the above approximations.

Showing the effect of different ν0, Fig. 10 emphasizes that
the initial rolloff of Cq(L) − Cq(∞) is due to L � ν0 = M .
The dominant asymptotic behavior is reached soon after L =
ν0 in this case since the remaining (i.e., nonzero) eigenvalues
of the QPMM transition dynamic ζ are all in the largest-
magnitude set �(r1). In other words, Theorem 2’s Eq. (20)
is not only approximated by but, in this case, also equal to the
simpler expression in Corollary 4, since r2 = 0.

The slope r1 indicated in Figs. 8 and 10 corresponds to the
asymptotic decay rate of the envelope for Cq(L) − Cq(∞).
This asymptotic decay rate is a function of both N and p,
since for Lollipop:

r1 = [(1 − p)(1 − q)]1/N . (27)

Figure 8 shows that we have indeed identified the correct slope
for different p.

FIG. 8. (8,8)-Lollipop with transition parameters p ∈ [0.1,0.9],
q = 0.5, and r = 0.1. Cq (L) − Cq (∞) on semilog plot illustrates
asymptotically exponential behavior. Red dashed lines, rL

1 where r1

(no relation to r) is the spectral radius of ζ , quantify the exponential
rate of decay. The height of each red dashed line is set equal to
Cq (49); we can see that the decay is very close to exponential even
as early as L � 15. Vertical dashed line at L = M = 8 shows change
in behavior after the length of the “stick.”

The central asymptotic features of the quantum advantage
Cq(L) − Cq(∞) of reduced state complexity are all captured
succinctly by Theorem 3: First, the asymptotic behavior of
Cq(L) − Cq(∞) is exponentially decreasing at rate r1, which
is the spectral radius of ζ . Second, this exponential envelope is
modulated by an asymptotic �-periodic structure, where � is
the least common multiple of slowest-decaying QPMM cycle
lengths.

FIG. 9. Lollipop with N ∈ {3,4,5,6,7,8} and M = 8, and tran-
sition parameters p = q = 0.5 and r = 0.1. (Cq (L) − Cq (∞))/rL

1

demonstrates the periodicity of asymptotic behavior. Removing the
exponential envelope makes periodicity of the remaining deviation
more apparent. For Lollipop, the periodicity � = |�(r1)| = N .
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FIG. 10. Cq (L) − Cq (∞) on a semilog plot for Lollipop with
N = 6 and M ∈ {2, . . . ,20} and transition parameters p = q = 0.5
and r = 0.1. M determines the finite-horizon length, where the
nilpotent part of ζ vanishes. Vertical (dashed) lines indicate L = 2
and 20, the shortest and longest such length in this group.

These results summarize the expected behavior of the
L-dependent quantum reduction of state complexity for all
classical processes that can be described by a finite-state
ε-machine. Using codeword length of at least the finite-
horizon length ν0 of the process’s QPMM seems advisable
for significant reduction of memory costs in simulations that
utilize the advantage of quantum signal states discussed here.
The cost-benefit analysis of further increasing encoding length
for infinite-cryptic processes will be application-specific, but
now has theoretical grounding in the above results.

VIII. CONCLUSION

We developed a detailed analytical theory of how to
maximally reduce the state complexity of a classical, sta-
tionary finite-memory stochastic process using a quantum
channel. This required using the new quantum state machine
representation (q-machines) [4], carefully constructing its
codewords and quantitatively monitoring their overlaps (via
the quantum pairwise-merger machine), and utilizing a new
matrix formulation of the overlap density matrix (consolidated
Gram matrix). Applying spectral decomposition then lead
directly to closed-form expressions for the quantum coding
costs at any codeword length, including infinite length.

The theoretical advances give an efficient way to probe the
behavior of quantum-reduced state complexity with increasing
codeword length, both analytically and, when symbolic calcu-
lation become arduous, numerically. The efficient numerical
algorithm (linear in L) improves on previous exponential
algorithms; moreover, the infinite-L limit can now be obtained
directly in finite time. Analyzing selected example processes
illustrated the required calculations and also the range of phe-
nomena that occur when compressing memoryful processes.
We expect the results to aid understanding complex classical
stochastic systems of biological and technological importance

via efficient simulations now possible due to the quantum
reduction in memory requirements.

Particular phenomena we reported here included (i) details
of how a process’s cryptic order determines its quantum
reduction in state complexity, (ii) transient and persistent
contributions to reduced state complexity, (iii) exponential
convergence to optimum compression, and (iv) oscillations
in the convergence that reveal how a process gives up its
crypticity with increasing codeword length. Our results apply
to both finite and infinite Markov- and cryptic-order processes.

The overall result appears as a rather complete quantitative
toolkit for analyzing quantum state compressibility of classical
processes, including finite and infinite codeword closed-form
expressions. That said, many issues remain, both technical and
philosophical. We believe, however, that the approach’s math-
ematical grounding and analytical and numerical efficiency
will go some distance to solving them in the near future.

For example, one of the abiding questions is the meaning
of process crypticity χ = Cμ − E: the difference between a
process’s predictable information or excess entropy E and its
stored state information or statistical complexity Cμ [22,23].
Most directly, χ measures how much state information (Cμ)
is hidden from observation (E). Cryptic processes and even
those with infinite cryptic order dominate the space of classical
processes [11]. This means that generically we can compress
Cμ down to Cq(L). However, this begs the question of what
crypticity is in the quantum domain. Now that we can work
analytically in the infinite-length limit, we can explore the
quantum crypticity χq = Cq(∞) − E. From our studies, some
not reported here, it appears that one cannot compress the state
information all the way down to the excess entropy. Why? Why
do not quantum models exist of “size” E bits? Does this point to
a future, even more parsimonious physical theory? Or, to a fun-
damental limitation of communication that even nature must
endure, as it channels the past through the present to the future?

For another, are we really justified in comparing Shannon
bits (Cμ) to qubits (Cq)? This is certainly not a new or recent
puzzle. However, the results on compression bring it to the fore
anew. And, whatever the outcome, the answer will change our
view of what physical pattern and structure are. Likely, the
answer will have a profound effect. Assuming the comparison
is valid, why is there a perceived level of classical reality that is
more structurally complex when, as we demonstrated and now
can calculate, processes might be more compactly represented
quantum mechanically?
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APPENDIX A: MEALY HMMs

Edge-emitting hidden Markov models (HMMs) are called
Mealy HMMs. This should be contrasted with the state-
emitting HMMs, called Moore HMMs. Mealy and Moore
HMMs are different representations, but all processes that

052317-13



RIECHERS, MAHONEY, AGHAMOHAMMADI, AND CRUTCHFIELD PHYSICAL REVIEW A 93, 052317 (2016)

can be generated by finite-state Moore HMMs can also be
generated by Mealy HMMs, and vice versa; i.e., Mealy and
Moore HMMs are class equivalent. The causal equivalence
relation, however, implies that the minimal classical model of
a process, the ε-machine, is a Mealy HMM.

Definition 5. A Mealy HMM M is the 4-tuple
{R,A, {T (x)}x∈A,μ0}, where R is the set {ρ0,ρ1, . . .} of
latent states, A is the set of output symbols x, {T (x) : T

(x)
i,j =

Pr(ρj ,x|ρi)}x∈A consists of the symbol-labeled state transition
matrices, and μ0 is the initial distribution over latent states.

Certain nonstationary processes can be generated by Mealy
HMMs when the initial distribution over latent states is
not the stationary distribution. In this work, we consider
only stationary processes, so μ0 = π . In such cases, time-
independent word probabilities can be calculated as

Pr(w) = π

L−1∏
i=0

T (xi )1,

where w = x0 . . . xL−1 and 1 = [1, . . . ,1]	. When these prob-
abilities are constructed to agree with those of the words in a
given process language, the HMM is said to be a presentation
of the process.

The ε-machine is the Mealy HMM presentation of a
process, whose latent states are the process’ causal states:
R = S. The ε-machine is provably the minimal classical
unifilar generator of a process, minimal both in the number
of states and the entropy over states [1].

APPENDIX B: QUANTUM OVERLAPS
AND CRYPTIC ORDER

Lemma 1. Given an ε-machine with cryptic order k: for
L � k, there exists an L-merge; for L > k, there exists no
L-merge.

Proof 3. By definition of cryptic order k:

H[Sk|X0:∞] = 0.

This means that for any given x0: there exists a unique σk . Since
k is the minimum such length, for L = k − 1 there exists some
word x0:∞ that leaves uncertainty in causal state Sk−1. Call two
of these uncertain Sk−1 states A and B (A �= B). Tracing x0:∞
backwards from A and B, we produce two state paths. These
state paths must be distinct at each step due to ε-machine
unifilarity. If they were not distinct at some step, they would
remain so for all states going forward, particularly at Sk−1.
The next symbol xk must take A and B to the same next state
F or violate the assumption of cryptic order k. These two
state paths and the word x0:k and the final state F make up a
k-merger, meaning that cryptic order k implies the existence
of a k-merger.

By removing states from the left side of this k-merger, it is
easy to see that a k-merger implies the existence of all shorter
L-mergers.

By unifilarity again, H[Sk|X0:∞] = 0 ⇒ H[SL|X0:∞] = 0,
for all L � k. Assume there exists an L-merger for L > k with
word w. By definition of L-merger, there is then uncertainty
in the state SL−1. This uncertainty exists for any word with w

as the prefix—a set with nonzero probability. This contradicts
the definition of cryptic order.

Theorem 1. Given a process with cryptic order k, for
each L ∈ {0, . . . ,k}, each quantum overlap 〈ηi(L)|ηj (L)〉 is
a nondecreasing function of L. Furthermore, for each L ∈
{1, . . . ,k}, there exists at least one overlap that is increased
(as a result of a corresponding L-merge). For all remaining
L � k, each overlap takes a constant value 〈ηi(k)|ηj (k)〉.

Proof 4. We directly calculate

〈ηa(L)|ηb(L)〉 =
∑

w,w′ ∈ AL

jL,lL ∈ {i}Mi=1

√
T

(w)
alL

√
T

(w′)
bjL

〈w|w′〉〈σlL

∣∣σjL

〉

=
∑
w,jL

√
T

(w)
ajL

√
T

(w)
bjL

.

So we have

〈ηa(L + 1)|ηb(L + 1)〉
=

∑
w′ ∈ AL+1

jL+1

√
T

(w′)
ajL+1

√
T

(w′)
bjL+1

=
∑

w ∈ AL,s ∈ A
jL,lL,jL+1

√
T

(w)
ajn

√
T

(s)
jnjL+1

√
T

(w)
blL

√
T

(s)
lLjL+1

=
∑

w ∈ AL,s ∈ A
jL,jL+1

√
T

(w)
ajL

√
T

(s)
jLjL+1

√
T

(w)
bjL

√
T

(s)
jLjL+1

+
∑

w ∈ AL,s ∈ A
jL �= lL,jL+1

√
T

(w)
ajL

√
T

(s)
jLjL+1

√
T

(w)
blL

√
T

(s)
lLjL+1

.

The first sum represents the overlaps obtained already at length
L. To see this, we split the sum to two parts, where the first
contains ∑

w ∈ AL,s ∈ A
jL,jL+1

√
T

(w)
ajL

√
T

(s)
jLjL+1

√
T

(w)
bjL

√
T

(s)
jLjL+1

=
∑

w ∈ AL

jL

√
T

(w)
ajL

√
T

(w)
bjL

⎛⎜⎜⎜⎝∑
s ∈ A
jL+1

√
T

(s)
jLjL+1

√
T

(s)
jLjL+1

⎞⎟⎟⎟⎠
=

∑
w ∈ AL

jL

√
T

(w)
ajL

√
T

(w)
bjL

= 〈ηa(L)|ηb(L)〉.

We use Lemma 1 to analyze the second sum, which represents
the change in the overlaps, finding that∑

w ∈ AL,s ∈ A
jL �= lL,jL+1

√
T

(w)
ajL

√
T

(s)
jLjL+1

√
T

(w)
blL

√
T

(s)
lLjL+1

� 0,

with equality when L � k. Summarizing,

〈ηa(L + 1)|ηb(L + 1)〉 � 〈ηa(L)|ηb(L)〉,
with equality for L � k.
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Note that while the set of overlaps continues to be
augmented at each length up until the cryptic order, we do not
currently have a corresponding statement about the nontrivial
change in Cq(L) or its monotonicity. Although a proof has
been elusive, it would be an important extension of our work.
Nevertheless, the asymptotic analysis of Sec. VII shows an
overall decay of Cq (L) for infinite cryptic processes. Moreover,
extensive numerical exploration suggests that Cq(L) is indeed
monotonic at all scales for all orders of crypticity.

APPENDIX C: MATRICES AND THEIR ENTROPY

1. Density matrix

The density matrix can now be expressed using a fixed
|S|-by-|S| matrix, valid for all L. Using the Gram-Schmidt
procedure one can choose a new orthonormal basis. Let

|η1(L)〉 = ∣∣e(L)
1

〉
,

|η2(L)〉 = a
(L)
21

∣∣e(L)
1

〉+ a
(L)
22

∣∣e(L)
2

〉
,

|η3(L)〉 = a
(L)
31

∣∣e(L)
1

〉+ a
(L)
32

∣∣e(L)
2

〉+ a
(L)
33

∣∣e(L)
3

〉
,

...

and so on. Then

a
(L)
21 = 〈η1(L)|η2(L)〉

= 〈(σ1,σ2)|
(

L∑
n=0

ζ n

)
|SINK〉,

a
(L)
22 = (1 − |〈η1(L)|η2(L)〉|2)1/2,

a
(L)
31 = 〈η1(L)|η3(L)〉

= 〈(σ1,σ3)|
(

L∑
n=0

ζ n

)
|SINK〉,

and so on. Now, it is useful to rewrite what we can in matrix
form:⎡⎢⎢⎢⎢⎣

〈η1(L)|
〈η2(L)|
〈η3(L)|

...
〈η|S|(L)|

⎤⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0

a
(L)
21 a

(L)
22

a
(L)
31 a

(L)
32 a

(L)
33

...
. . .

a
(L)
|S|1 · · · a

(L)
|S||S|

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
︸ ︷︷ ︸

≡AL

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

〈
e

(L)
1

∣∣〈
e

(L)
2

∣∣〈
e

(L)
3

∣∣
...〈

e
(L)
|S|
∣∣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

which defines the lower-triangular matrix AL. Note that the
rightmost matrix of orthonormal basis vectors is simply the
identity matrix, since we are working in that basis.

In this new basis, we construct the |S|-by-|S| density
matrix as

ρ(L) =
|S|∑
i=1

πi |ηi(L)〉〈ηi(L)|

= [|η1(L)〉 · · · |η|S|(L)〉]

×

⎡⎢⎣π1 0
. . .

0 π|S|

⎤⎥⎦
︸ ︷︷ ︸

≡Dπ

⎡⎢⎢⎢⎢⎣
〈η1(L)|
〈η2(L)|
〈η3(L)|

...
〈η|S|(L)|

⎤⎥⎥⎥⎥⎦
= A

†
LDπAL.

Since all entries are real, the conjugate transpose is the
transpose. This more general framework may be useful,
however, if we want to consider the effect of adding phase
to the quantum states.

2. Von Neumann entropy

The quantum coding cost is

Cq(L) = −tr[ρ(L) log2 ρ(L)]

= −tr[A†
LDπAL log2(A†

LDπAL)]

= −
∑

λ∈�
A
†
L

Dπ AL

λ log2 λ.

This is relatively easy to evaluate since the density matrix ρ(L)
is only a |S|-by-|S| function of L. Thus, we calculate Cq(L)
analytically from the spectrum of ρ. This, in a curious way,
was already folded into the spectrum of ζ .

3. Gram matrix

The AL matrix is burdensome due to nonlinear dependence
on the overlap of the quantum states. We show how to avoid
this nonlinearity and instead obtain the von Neumann entropy
from a transformation that yields a linear relationship with
overlaps.

The Gram matrix, with elements G(L)
mn =√

πmπn〈ηm(L)|ηn(L)〉, can be used instead of ρ(L) to
evaluate the von Neumann entropy [19]. In particular,
G(L) has the same spectrum as ρ(L), even with the same
multiplicities: �G(L) = �ρ(L), while aλ, gλ, and νλ remain
unchanged for all λ in the spectrum. (This is a slightly stronger
statement than in Ref. [19], but is justified since ρ(L) and
G(L) are both |S|-by-|S| dimensional.)

Here we briefly explore the relationship between ρ(L) and
G(L) and, then, focus on the closed-form expression for G(L).
The result is more elegant than ρ(L), allowing us to calculate
and understand Cq(L) more directly.

Earlier we found that the density matrix can be written as

ρ(L) = A
†
LDπAL,

which can be rewritten as

ρ(L) = A
†
LD1/2

π D1/2
π AL

= (
D1/2

π AL

)†
D1/2

π AL.
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It is easy to show that

tr
[(

D1/2
π AL

)†
D1/2

π AL

] = tr
[
D1/2

π AL

(
D1/2

π AL

)†]
= tr

[
D1/2

π ALA
†
LD1/2

π

]
.

This means that the sum of the eigenvalues is conserved in transforming from A
†
LDπAL to D

1/2
π ALA

†
LD

1/2
π . It is less obvious that

the spectrum is also conserved, but this is also true and even easy to prove. [Observe that AB �v = λ�v =⇒ BAB �v = λB �v =⇒
BA(B �v) = λ(B �v).] Interestingly, the new object turns out to be exactly the Gram matrix, which was previously introduced,
although without this explicit relationship to the density matrix. We now see that

D1/2
π ALA

†
LD1/2

π = D1/2
π

⎡⎢⎣ 〈η1(L)|
...

〈η|S|(L)|

⎤⎥⎦ [|η1(L)〉 · · · |η|S|(L)〉] D1/2
π

=

⎡⎢⎣
√

π1〈η1(L)|
...√

π|S|〈η|S|(L)|

⎤⎥⎦ [
√

π1|η1(L)〉 · · · √
π|S||η|S|(L)〉]

=

⎡⎢⎣
√

π1π1〈η1(L)|η1(L)〉 · · · √
π1π|S|〈η1(L)|η|S|(L)〉

...
. . .

...√
π|S|π1〈η|S|(L)|η1(L)〉 · · · √

π1π|S|〈η|S|(L)|η|S|(L)〉

⎤⎥⎦
= G(L).

Since the spectrum is preserved, we can use the Gram matrix
directly to compute the von Neumann entropy:

Cq(L) = −
∑

λ∈�
G(L)

λ log2 λ = −tr[G(L) log2 G(L)].

4. Consolidated Gram matrix

Transforming to the Gram matrix suggests a similar and
even more helpful simplification that can be made while
preserving the spectrum. Define the left-consolidated Gram
matrix to be

G̃(L) ≡ DπALA
†
L

= Dπ

⎡⎢⎣ 〈η1(L)|
...

〈η|S|(L)|

⎤⎥⎦ [|η1(L)〉 · · · |η|S|(L)〉]

=

⎡⎢⎣ π1〈η1(L)|η1(L)〉 · · · π1〈η1(L)|η|S|(L)〉
...

. . .
...

π|S|〈η|S|(L)|η1(L)〉 · · · π|S|〈η|S|(L)|η|S|(L)〉

⎤⎥⎦.

Clearly, this preserves the same trace as the density matrix
and previous Gram matrix. It also preserves the spectrum,
and it has the advantage of not using square-roots of two
different state probabilities in each element. Rather it has a
single probability attached to each element. The same is true
for the right-consolidated Gram matrix ALA

†
LDπ .

Since the spectrum is preserved, we can use the consoli-
dated Gram matrix to compute the von Neumann entropy:

Cq(L) = −
∑

λ∈�
G̃(L)

λ log2 λ (C1)

= −tr[G̃(L) log2 G̃(L)]. (C2)

APPENDIX D: EXAMPLES

Exploring several more examples will help to illustrate the
methods and lead to additional observations.

1. Biased Coins Process

The Biased Coins Process provides a first, simple case
that realizes a nontrivial quantum state entropy [2]. There are
two biased coins, named A and B. The first generates 1 with
probability q; the second, 0 with probability p. A coin is picked
and flipped, generating outputs 0 or 1. With probability q the
other coin is used next similarly with different probability. Its
two causal-state ε-machine is shown in Fig. 11.

After constructing the QPMM for the Biased Coins Process,
as outlined in Figs. 11 and 12, we observe

ζ (0) =
[

0
√

p(1 − q)
0 0

]
,

ζ (1) =
[

0
√

q(1 − p)
0 0

]
,

and so:

ζ =
[

0 β

0 0

]
,

where we defined β ≡ √
p(1 − q) + √

q(1 − p). Let us also
define the suggestive quantity γ ≡ (1 − β2)−1/2.

A B0:p

1:1 − p

1:q

0:1 − q

FIG. 11. ε-Machine for the Biased Coins Process.
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AB

sync sink

0: p(1 − q) 1 : q(1 − p)

FIG. 12. QPMM for the Biased Coins Process.

The only overlap to consider is 〈ηA(L)|ηB(L)〉. For this, we
note that 〈(A,B)| = [1 0]. Also, |SINK〉 = [0 1]	.

Spectrally, ζ here is a nilpotent matrix with only a zero
eigenvalue with index two: �ζ = {0} and ν0 = 2. Since the
projection operators must sum to the identity, we have ζ0 = I .

ζL is the null matrix for L > 1, so either by Eq. (6) or by
Eq. (8), we have

〈ηA(L)|ηB(L)〉 =
min{L, 1}∑

m=1

〈(A,B)|ζm|SINK〉;

that is,

〈ηA(L)|ηB(L)〉 =
{

0 if L = 0,

β if L � 1.

(a) Entropy from the density matrix

For the density matrix, we turn to the L-dependent orthonor-
mal basis {|e(L)

1 〉,|e(L)
2 〉} and use the stationary distribution over

S: π = [p/(p + q) q/(p + q)].
Apparently for L = 0 we have |ηA(0)〉 = |e(0)

1 〉 and
|ηB(0)〉 = |e(0)

2 〉. Hence, ρ(0) = Dπ and Cq(0) = H2(p/(p +
q)) = Cμ qubits.

For L � 1 we have: |ηA(L)〉 = |e(L)
1 〉 and |ηA(L)〉 =

a
(L)
21 |e(L)

1 〉 + a
(L)
22 |e(L)

2 〉, where a
(L)
21 = 〈ηA(L)|ηB(L)〉 = β and

a
(L)
22 = (1 − β2)1/2 = γ −1 for L � 1. We find that

AL =
[

1 0
β γ −1

]
, for L � 1.

Hence, for L � 1 the density matrix is

ρ(L) = A
†
LDπAL

=
[

1 β

0 γ −1

] [ p

p+q
0

0 q

p+q

] [
1 0
β γ −1

]
= 1

p + q

[
p qβ

0 qγ −1

] [
1 0
β γ −1

]
= q

p + q

[p

q
+ β2 β/γ

β/γ 1 − β2

]
.

Since

det (ρ(L) − λI ) = λ2 − λ + pq

(p + q)2
(1 − β2),

we find the eigenvalues of ρ(L) eigenvalues to be

�ρ(L) =
{

1

2
± 1

2(p + q)

√
4pqβ2 + (p − q)2

}
,

which yields the von Neumann entropy for L � 1:

Cq(L) = −
∑

λ∈�ρ(L)

λ log2 λ.

(b) Entropy from the consolidated Gram matrix

The left-consolidated Gram matrix for the Biased Coins
Process is

G̃(L) = Dπ

[
〈ηA(L)|ηA(L)〉 〈ηA(L)|ηB(L)〉
〈ηB(L)|ηA(L)〉 〈ηB(L)|ηB(L)〉

]
.

Specifically, we have for L = 0

G̃(0) = 1

p + q

[
p 0
0 q

] [
1 0
0 1

]
= 1

p + q

[
p 0
0 q

]
,

and L � 1:

G̃(L) = 1

p + q

[
p 0
0 q

] [
1 β

β 1

]
= 1

p + q

[
p pβ

qβ q

]
.

G̃(0)’s eigenvalues are simply its diagonal entries. So,
Cq(0) = H2(p/(p + q)) qubits. For L � 1,

det(G̃(L) − λI ) = λ2 − λ + pq

(p + q)2
(1 − β2),

which gives the same values for eigenvalues and entropy as
we found earlier using the density matrix approach.

As the new method illustrates, there is no need to construct
the density matrix. Instead, one uses the consolidated Gram
matrix, which can be easily calculated from quantum overlaps.
Clearly, the consolidated Gram matrix method is more elegant
for our purposes. This is evident even at |S| = 2. This is even
more critical for more complex processes since AL grows as
|S| grows.

2. (R–k)-Golden Mean Process

The (R–k)-Golden Mean Process is constructed to have
Markov-order R and cryptic-order k. Its ε-machine is shown
in Fig. 13. The 0th state σ0 has probability π0 = 1/[R + k −
p(R + k − 1)] while all other states σi have probability πi =
(1 − p)π0.

Its QPMM is strictly tree-like with depth d = k + 1 and
maximal width k. All edges have a unit weight except for those
edges leaving A-paired states. The latter edges, numbering k

in total, have an associated weight of
√

p.
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0

1
R + k − 1

k

. . .
...

1 :p

1:1 0:1 − p

1:1

1:1

0:1

0:1

FIG. 13. ε-Machine for the (R–k)-Golden Mean Process.

The eigenvalues of the consolidated Gram matrix can be
obtained from det(G̃(L) − λI ) = 0, where

det(G̃(L) − λI )

= (π1 − λ)R+k−min(L,k)−1

×

∣∣∣∣∣∣∣∣∣∣∣

π0 − λ π0
√

p · · · π0
√

p
min(L,k)

π1
√

p π1 − λ π1
√

p
min(L,k)−1

...
. . .

π1
√

p
min(L,k)

π1 − λ

∣∣∣∣∣∣∣∣∣∣∣
.

This directly yields the von Neumann entropy. Note that
although the Cq(L) is not actually linear in L, it appears
approximately linear.

We observe that π is invariant under the simultaneous
change of

R′ = R + m, while k′ = k − m, (D1)

for any m ∈ Z. Although we insist on maintaining R′ � k′ � 0
for preservation of their functional roles. Furthermore, this

transformation preserves det(G̃(L) − λI ) for L � k and L �
k′. Hence, Cq(L) is invariant to the simultaneous transforma-
tion of Eq. (D1) for L � k and L � k′. This explains the
agreement noted in the caption of Fig. 6—that Cq(L) for
(R–k)-GM is the same as Cq(L) for ((R + 1)–(k − 1))-GM
for L � k.

To give an explicit example, let us consider the (4–3)-GM
Process of Fig. 1. State A has probability πA = 1/(7 − 6p)
while all other states have probability πi = (1 − p)/(7 − 6p).
Let us calculate the following:

(1) For L = 0:

det(G̃(0) − λI ) = (πB − λ)6(πA − λ),

yielding �G̃(0) = {πB,πA} (with aπB
= 6) and

Cq(0) = −6πB log2 πB − πA log2 πA.

(2) For L = 1:

det(G̃(1) − λI )

= (πB − λ)5[λ2 − (πA + πB)λ + πAπB(1 − p)],

yielding �G̃(1) = {πB,c+,c−} with c± = 1
2 (πA + πB) ±

1
2 [(πA + πB)2 − 4πAπB(1 − p)]

1/2
(and with aπB

= 5), and

Cq(1) = −5πB log2 πB − c+ log2 c+ − c− log2 c−.

(3) For L = 2:

det(G̃(2) − λI )

= (πB − λ)4

∣∣∣∣∣∣∣
πA − λ πAp1/2 πAp

πBp1/2 πB − λ πBp1/2

πBp πBp1/2 πB − λ

∣∣∣∣∣∣∣.
(4) For L � 3:

det(G̃(L) − λI )

= det(G̃(3) − λI )

= (πB − λ)3

∣∣∣∣∣∣∣∣∣∣
πA − λ πAp1/2 πAp πAp3/2

πBp1/2 πB − λ πBp1/2 πBp

πBp πBp1/2 πB − λ πBp1/2

πBp3/2 πBp πBp1/2 πB − λ

∣∣∣∣∣∣∣∣∣∣
.
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