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Abstract� We analyze the population dynamics of a broad class of �tness functions
that exhibit epochal evolution�a dynamical behavior� commonly observed in both
natural and arti�cial evolutionary processes� in which long periods of stasis in an
evolving population are punctuated by sudden bursts of change	 Our approach�
statistical dynamics�combines methods from both statistical mechanics and dy
namical systems theory in a way that o�ers an alternative to current �landscape�
models of evolutionary optimization	 We describe the population dynamics on the
macroscopic level of �tness classes or phenotype subbasins� while averaging out
the genotypic variation that is consistent with a macroscopic state	 Metastability
in epochal evolution occurs solely at the macroscopic level of the �tness distribu
tion	 While a balance between selection and mutation maintains a quasistationary
distribution of �tness� individuals di�use randomly through selectively neutral sub
basins in genotype space	 Sudden innovations occur when� through this di�usion�
a genotypic portal is discovered that connects to a new subbasin of higher �tness
genotypes	 In this way� we identify innovations with the unfolding and stabilization
of a new dimension in the macroscopic state space	 The architectural view of sub
basins and portals in genotype space clari�es how frozen accidents and the resulting
phenotypic constraints guide the evolution to higher complexity	
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� Evolutionary Computation Theory

The recent mixing of evolutionary biology and theoretical computer science
has resulted in the phrase �evolutionary computation� taking on a variety of
related but clearly distinct meanings�

In one view of evolutionary computation we ask whether Neo�Darwinian
evolution can be productively analyzed in terms of how biological information
is stored� transmitted� and manipulated� That is� Is it helpful to see the
evolutionary process as a computation�
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Instead of regarding evolution itself as a computation� one might ask if
evolution has produced organisms whose internal architecture and dynam�
ics are capable in principle of supporting arbitrarily complex computations�
Landweber and Kari argue that� yes� the information processing embedded
in the reassembly of fragmented gene components by unicellular organisms
is quite sophisticated� perhaps these organisms are even capable of universal
computation 	
��� It would appear� then� that evolved systems themselves
must be analyzed from a computational point of view�

Alternatively� from an engineering view we can ask� Does Neo�Darwinian
evolution suggest new approaches to solving computationally dicult prob�
lems� This question drives much recent work in evolutionary search�a class
of stochastic optimization algorithms� loosely based on processes believed to
operate in biological evolution� that have been applied successfully to a vari�
ety of di�erent problems� see� for example� Refs� 	������������������
��

� and
references therein�

Naturally enough� there is a middle ground between the scienti�c desire to
understand how evolution works and the engineering desire to use nature for
human gain� If evolutionary processes do embed various kinds of computation�
then one can ask� Is this biological information processing of use to us� That
is� can we use biological nature herself to perform computations that are of
interest to us� A partial� but armative answer was provided by Adelman�
who mapped the combinatorial problem of Directed Hamiltonian Paths onto
a macromolecular system that could be manipulated to solve this well known
hard problem 	���

Whether we are interested in this middle ground or adopt a scienti�c or
an engineering view� one still needs a mathematical framework with which to
analyze how a population of individuals �or of candidate solutions� compete
through replication and so� possibly� improve through natural �or arti�cial�
selection� This type of evolutionary process is easy to describe� In the Neo�
Darwinian view each individual is speci�ed by a genotype and replicates �i�
according to its �tness and �ii� subject to genetic variation� During the pas�
sage from the population at one generation to the next� an individual is trans�
lated from its genotypic speci�cation into a form� the phenotype� that can be
directly evaluated for �tness and so selected for inclusion in the next genera�
tion� Despite the ease of describing the process qualitatively� the mechanisms
constraining and driving the population dynamics of evolutionary adaptation
are not well understood�

In mathematical terms� evolution is described as a nonlinear population�
based stochastic dynamical system� The complicated dynamics exhibited by
such systems has been appreciated for decades in the �eld of mathematical
population genetics 	���� For example� the e�ects on evolutionary behavior of
the rate of genetic variation� the population size� and the genotype�to��tness
mapping typically cannot be analyzed separately� there are strong� nonlinear
interactions between them� These complications make an empirical approach
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to the question of whether and how to use evolutionary optimization in engi�
neering problematic� They also make it dicult to identify the mechanisms
that drive behavior observed in evolutionary experiments� In any case� one
would like to start with the basic equations of motion describing the evo�
lutionary process� as outlined in the previous paragraph� and then predict
observable features�such as� the time to �nd an optimal individual�or� at
a minimum� identify mechanisms that constrain and guide an evolving pop�
ulation�

Here we review our recent results that address these and similar ques�
tions about evolutionary dynamics� Our approach derives from an attempt
to unify and extend theoretical work that has been done in the areas of evolu�
tionary search theory� molecular evolution theory� and mathematical popula�
tion genetics� The eventual goal is to obtain a more general and quantitative
understanding of the emergent mechanisms that control the population dy�
namics of evolutionary adaptation and that govern other population�based
dynamical systems�

� Epochal Evolution

To date we have focused on a class of population�dynamical behavior that
we refer to as epochal evolution� In epochal evolution� long periods of stasis
�epochs� in the average �tness of the population are punctuated by rapid
innovations to higher �tness� These innovations typically re�ect an increase
of complexity�that is� the appearance of new structures or novel functions
at the level of the phenotype� One central question then is� How does epochal
evolutionary population dynamics facilitate or impede the emergence of such
complexity�

Engineering issues aside� there is a compelling biological motivation for a
focus on epochal dynamics� There is the common occurrence in natural evolu�
tionary systems of �punctuated equilibria��a process �rst introduced to de�
scribe sudden morphological changes in the paleontological record 	�
�� Sim�
ilar behavior has been recently observed experimentally in bacterial colonies
	��� and in simulations of the evolution of t�RNA secondary structures 	����
This class of behavior appears suciently general that it occurs in arti�cial
evolutionary systems� such as evolving cellular automata 	���
�� and popu�
lations of competing self�replicating computer programs 	��� In addition to
the increasing attention paid to this type of epochal evolution in the theoret�
ical biology community 	���������
��������� recently there has also been an
increased interest by evolutionary search theorists 	������ More directly� Chen
et al� recently proposed to test our original theoretical predictions in an ex�
perimental realization of a genetic algorithm that exhibits epochal evolution
	���
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��� Local Optima versus Neutral Subbasins

How are we to think of the mechanisms that cause epochal evolutionary be�
havior� The evolutionary biologist Wright introduced the notion of �adaptive
landscapes� to describe the �local� stochastic adaptation of populations to
themselves and to environmental �uctuations and constraints 	���� This geo�
graphical metaphor has had a powerful in�uence on theorizing about natural
and arti�cial evolutionary processes� The basic picture is that of a gradient�
following dynamics moving over a �landscape� determined by a �tness �po�
tential�� In this view an evolving population stochastically crawls along a
surface determined� perhaps dynamically� by the �tness of individuals� mov�
ing to peaks and very occasionally hopping across �tness �valleys� to nearby�
and hopefully higher �tness� peaks�

More recently� it has been proposed that the typical �tness functions
of combinatorial optimization and biological evolution can be modeled as
�rugged landscapes� 	���
��� These are �tness functions with wildly �uctu�
ating �tnesses even at the smallest scales of single�point mutations� Conse�
quently� it is generally assumed that these �landscapes� possess a large num�
ber of local optima� With this picture in mind� the common interpretation of
punctuated equilibria in evolving populations is that of a population being
�stuck� at a local peak in the landscape� until a rare mutant crosses a valley
of relatively low �tness to a higher peak� a picture more or less consistent
with Wright�s�

At the same time� an increasing appreciation has developed� in contrast
to this rugged landscape view� that there are substantial degeneracies in the
genotype�to�phenotype and the phenotype�to��tness mappings� The history
of this idea goes back to Kimura 	���� who argued that on the genotypic
level� most genetic variation occurring in evolution is adaptively neutral with
respect to the phenotype� Even today� the crucial role played by neutrality
continues to �nd important applications in molecular evolution� for example�
see Ref� 	���� During neutral evolution� when degeneracies in the genotype�
phenotype map are operating� di�erent genotypes in a population fall into a
relatively small number of distinct �tness classes of genotypes with approxi�
mately equal �tness� Due to the high dimensionality of genotype spaces� sets
of genotypes with approximately equal �tness tend to form components in
genotype space that are connected by paths made of single�mutation steps�

Additionally� due to intrinsic or even exogenous e�ects �e�g�� environ�
mental�� there simply may not exist a deterministic ��tness� value for each
genotype� In this case� �uctuations can induce variation in �tness such that
genotypes with similar average �tness values are not distinct at the level of
selection� Thus� genotype�to��tness degeneracies can� to a certain extent� be
induced by noise in the �tness evaluation of individuals�

When these biological facts are taken into account we end up with an
alternative view to both Wright�s �adaptive landscapes� and the more re�
cent �rugged landscapes�� That is� the genotype space decomposes into a set
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of neutral networks� or subbasins of approximately iso�tness genotypes� that
are entangled with each other in a complicated fashion� see Fig� �� As illus�
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Fig� �� Subbasin and portal architecture underlying epochal evolutionary dynamics	
A population�a collection of individuals fStg with distribution Pr�St��di�uses in
the subbasins �large sets� until a portal �tube� to a higher�tness subbasin is found	

trated in Fig� �� the space of genotypes is broken into strongly and weakly
connected sets with respect to the genetic operators� Equal��tness genotypes
form strongly connected neutral subbasins� Moreover� since subbasins of high
�tness are generally much smaller than subbasins of low �tness� a subbasin
tends to be only weakly connected to subbasins of higher �tness�

Since the di�erent genotypes within a neutral subbasin are not distin�
guished by selection� neutral evolution�consisting of the random sampling
and genetic variation of individuals�dominates� This leads to a rather di�er�
ent interpretation of the processes underlying punctuated equilibria� Instead
of the population being pinned at a local optimum in genotype space as sug�
gested by the �landscape� models� the population drifts randomly through
neutral subbasins of iso�tness genotypes� A balance between selection and
deleterious mutations leads to a �meta�� stable distribution of �tness �or of
phenotypes�� while the population is searching through these spaces of neutral
genotypic variants� Thus� there is no genotypic stasis during epochs� As was
�rst pointed out in the context of molecular evolution in Ref� 	���� through
neutral mutations� the best individuals in the population di�use over the



� James P	 Crutch�eld and Erik van Nimwegen

neutral network of iso�tness genotypes until one of them discovers a connec�
tion to a neutral network of even higher �tness� The fraction of individuals on
this network then grows rapidly� reaching a new equilibrium between selection
and deleterious mutations� after which the new subset of most��t individuals
di�uses again over the newly discovered neutral network�

Note that in epochal dynamics there is a natural separation of time scales�
During an epoch selection acts to establish an equilibrium in the proportions
of individuals in the di�erent neutral subspaces� but it does not induce adap�
tations in the population� Adaptation occurs only in a short burst during an
innovation� after which equilibrium on the level of �tness is re�established in
the population� On a time scale much faster than that between innovations�
members of the population di�use through subbasins of iso�tness genotypes
until a �typically rare� higher��tness genotype is discovered� Long periods of
stasis occur because the population has to search most of the neutral subspace
before a portal to a higher �tness subspace is discovered�

In this way� we shift our view away from the geographic metaphor of
evolutionary adaptation �crawling� along a �landscape� to the view of a dif�
fusion process constrained by the subbasin�portal architecture induced by de�
generacies in the genotype�to�phenotype and phenotype�to��tness mappings�
Moreover� our approach is not simply a shift towards an architectural view�
but it also focuses on the dynamics of populations as they move through the
subbasins to �nd portals to higher �tness�

��� Epochal Evolution�An Example

In our analysis 	������� we view the subbasin�portal mechanism sketched
above as the main source of epochal behavior in evolutionary dynamics� We
will now discuss a simple example of epochal evolution that illustrates more
speci�cally the mechanisms involved and allows us to introduce several con�
cepts used in our analysis�

Figure � shows the �tness dynamics of an evolving population on a sam�
ple �tness function that exhibits large degeneracies in the genotype��tness
mapping� This �tness function is an example of the class of Royal Road �t�
ness functions explained in Sec� 
 below� The genotype space consists of all
bit�strings of length 
� and contains neutral subbasins of �tnesses �� �� ��
and 
� There is only one genotype with �tness 
� 
��� genotypes have �t�
ness �� 
���� ��� have �tness �� and all others have �tness �� The evolving
population consists of ��� individuals that at each generation are selected in
proportion to their �tness and then mutated with probability ����� per bit�
Figure ��a� shows the average �tness hfi in the population �lower curve� and
the best �tness in the population �upper curve� as a function of generation
t�

At time t � � the population starts out with ��� random genotypes� As
can be seen from Fig� ��a�� during the �rst few generations all individuals
are located in the largest subbasin with �tness �� since both average and
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Fig� �� Dynamics of �a� the average �tness �lower curve� and best �tness �upper
curve� and �b� the �tness distribution for a population evolving under a Royal
Road �tness function	 The �tness function has N � � constellations of K � ��
bits each	 The population size is M � ��� and the mutation rate � � �����	 In �b�
the location of the �tness distribution at each generation is shown by a dot	 The
dashed lines there indicate the direction in which the �tness distribution moves
from metastable to metastable state through the population�s �tnessdistribution
state space �a simplex�	 The times at which the di�erent metastable states are �rst
reached are indicated as well	

best �tness are �� The population randomly di�uses through this subbasin
until� around generation ��� a �portal� is discovered into the subbasin with
�tness �� The population is quickly taken over by genotypes of �tness �� until
a balance is established between selection and mutation� selection expanding
and deleterious mutations �from �tness � to �� decreasing the number of
individuals with �tness �� The individuals with �tness � continue to di�use
through the subbasin with �tness �� until a portal is discovered connecting
to the subbasin with �tness �� This happens around generation t � �� and
by t � �� a new selection�mutation equilibrium is established� Individuals
with �tness � continue di�using through their subbasin until the globally
optimal genotype with �tness 
 is discovered some time around generation
t � ���� Descendants of this genotype then spread through the population
until around t � ���� when a �nal equilibrium is reached�

The same dynamics is plotted in Fig� ��b�� but from the point of view

of the population�s �tness distribution �P � �P�� P�� P�� P��� In the �gure the
P� axis indicates the proportion of �tness � genotypes in the population�
P� the proportion of �tness � genotypes� and P� the proportion of �tness �
genotypes� Of course� since �P is a distribution� P� � �� P� � P� � P�� Due
to this� the space of possible �tness distributions forms a three�dimensional
simplex� We see that initially P� � � and the population is located in the
lower�left corner of the simplex� Later� between t � �� and t � ��� the
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population is located at a metastable �xed point on the line P��P� � � and
is dominated by �tness�� genotypes �P� � P��� Some time around generation
t � �� a genotype with �tness � is discovered and the population moves into
the plane P� �P� �P� � ��the front plane of the simplex� From generation
t � �� until generation t � ��� the population �uctuates around a metastable
�xed point in this plane� Finally� a genotype of �tness 
 is discovered and
the population moves to the asymptotically stable �xed point in the interior
of the simplex� It reaches this �xed point around t � ��� and remains there
�uctuating around it for the rest of the evolution�

This example illustrates the general qualitative dynamics of epochal evo�
lution� It is important to note that the architecture of neutral subbasins and
portals is such that a higher��tness subbasin is always reachable from the
current best��tness subbasin� Metastability is a result of the fact that the
connections �portals� to higher��tness subbasins are very rare� These por�
tals are generally only discovered after the population has di�used through
most of the subbasin� Additionally� at each innovation� the �tness distribu�
tion expands into a new dimension of the simplex� Initially� when all members
have �tness �� the population is restricted to a point� After the �rst innova�
tion it moves on a one�dimensional line� after the second it moves within a
two�dimensional plane� and �nally it moves into the interior of the full three�
dimensional simplex� One sees that� when summarizing the population with
�tness distributions� the number of components needed to describe the pop�
ulation grows dynamically each time a higher��tness subbasin is discovered�
We will return to this observation when we describe the connection of our
analytical approach to the theory of statistical mechanics�

� The Terraced Labyrinth Fitness Functions

As just outlined� the intuitive view of phenotypically constrained� genotype�
space architectures�as a relatively small number of weakly interconnected
neutral subbasins�is the one we have adopted in our analyses� We will now
de�ne a broad class of �tness functions that captures these characteristics�
The principal motivation for this is to illustrate the generality of our existing
results via a wider range of �tness functions than previously analyzed�

We represent genotypes in the population as bit�strings of a �xed length
L� For any genotype there is a certain subset of its bits that are �tness

constrained� Mutations in any of the constrained bits lowers an individual�s
�tness� All the other bits are considered free bits� in the sense that they may
be changed without a�ecting �tness� Of all possible con�gurations of free bits�
there is a small subset of portal con�gurations that lead to an increased �tness�
A portal consists of a subset of free bits� called a constellation� that is set to
a particular �correct� con�guration� A constellation may have more than one
�correct� con�guration� When a constellation is set to a portal con�guration�
the �tness is increased� and the constellation�s bits become constrained bits�
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That is� via a portal free bits of an incorrectly set constellation become the
constrained bits of a correctly set constellation�

The general structure of the �tness functions we have in mind is that
�tness is conferred on individuals by having a number of constellations set
to their portal con�gurations� Mutations in the constrained bits of the cor�
rect constellations lower �tness� while setting an additional constellation to
its portal con�guration increases �tness� A �tness function is speci�ed by
choosing sets of constellations� portal con�gurations� and assigning the �t�
ness that each constellation confers on a genotype when set to one of its
portal con�gurations�

��� A Simple Example

Let�s illustrate our class of �tness functions by a simple example that uses
bit�strings of length L � ��� The example is illustrated in Fig� 
� Initially�
when no constellation is set correctly the strings have �tness f � The �rst con�
stellation� denoted c� consists of the bits � through �� This constellation can
be set to two di�erent portal con�gurations� either �� � ����� or �� � ������
When c � �� or c � �� the genotypes obtain �tnesses f� and f�� respectively�
Once constellation c � ��� say� there is a constellation c�� consisting of bits �
through ��� that can be set correctly to portal con�guration ���� � ��������
in which case the genotype obtains �tness f���� The constellation c� might
also be set to con�guration ���� � �������� leading to a �tness of f���� Finally�
once constellation c� � ����� there is a �nal con�guration c���� consisting of
bits � through �� that can be set correctly� With c � �� and c� � ���� con�
�guration c��� needs to be set to con�guration ������ � ��� in order to reach
�tness f������ If instead c� � ����� the �nal constellation c��� needs to be set
to portal ������ � ���� giving �tness f������

Alternatively� if constellation c � ��� the next constellation c� consists of
bits � through ��� which have portal con�guration ���� � ���� Setting c� to
���� leads to �tness f���� Once c� is set correctly� there is a constellation c���
consisting of bits �
 through ��� which has portal con�guration ������ � ���
and �tness f������ Finally� there is the constellation c����� consisting of bits ��
�� ��� and ��� The portal con�guration for this constellation is �������� � �����
leading to �tness f��������

Generally� the hierarchical ordering of constellations and their connec�
tions via portals can be most easily represented as a tree� as in Fig� 
� Each
tree node represents a subbasin of equal��tness genotypes� The tree branches
represent the portals that connect a lower��tness subbasin to a higher��tness
subbasin� The �tness and structure of genotypes within a subbasin are also
shown at each node� Stars ��� indicate the free bits within a subbasin� The
constellations at each node indicate which subset of bits needs to be set to
a portal con�guration in order to proceed further up the tree� Thus� setting
a constellation to a portal con�guration leads one level up the tree� while
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Fig� �� Tree representation of a Terraced Labyrinth �tness function	 The nodes of
the tree represent subbasins of genotypes with equal �tness	 They are represented
by strings that have ��s for the free bits	 The �tness f of the genotypes in the
subbasins is indicated as well	 The constellation c inside each node indicates the
subset of bits that needs to be set correctly in order to move up a level in the tree
to a higher�tness subbasin	 The portal con�gurations � that connect subbasins to
higher�tness subbasins are shown as branches	

mutating one or more of the constrained bits leads down the tree� In fact� a
single point�mutation might lead all the way back to the root node�

We assume that setting a new constellation correctly leads to an increase
in �tness� That is� f� and f� are larger than f � f��� is larger than f�� and
so on� For simplicity in this example� we chose the constellation bits con�
tiguously� except for c������ Since our genetic algorithm� introduced shortly�
does not employ crossover� the population dynamics remains the same under
arbitrary permutations of the bits in the genome� Note further that we chose
the portal con�gurations rather arbitrarily� In cases where a constellation
has only a single portal� this con�guration can be chosen arbitrarily without
e�ecting the dynamics� When a constellation has more than one portal� the
evolutionary dynamics can be a�ected by the Hamming distances between
the di�erent portal con�gurations� A key assumption is that portal con�gu�
rations such as �� and �� are mutually exclusive� Once evolution follows a
certain branch up the tree� it is very unlikely to revert later on� We discuss
in Sec� � how di�erent evolutionary paths through the tree formalize such
notions as historical accident and structural phenotypic constraints�
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Finally� in this setting the genotype�to�phenotype map is nonexistent�
since �tness is evaluated directly on the genotypes� without an intervening
developmental process�

��� De�nitions

We will now generalize this example by way of de�ning the class of Terraced
Labyrinth �tness functions� As we saw in the example� constellations and
portals form a hierarchy that can be most easily represented as a tree� Thus�
we de�ne Terraced Labyrinth �tness functions using trees� similar to the one
illustrated in Fig� 
� as follows�

�� The genotypes are bit strings s � s�s�s� � � � sL�� of length L with bits
si � A � f�� �g�

�� The hierarchy of subbasins� constellations� and portals form a tree� con�
sisting of nodes f��g and branches f���g�

�a� Tree nodes �� are speci�ed by a set of indices� �� � fi�� i�� i�� � � � � ing�
The number n of indices denotes ���s tree level� A particular setting of
the indices labels the path from the root to ��� That is� one reaches ��
by taking branch i� at the root� branch i� at node i�� and so on� The
tree nodes represent both subbasins of genotypes with equal �tness
and constellations of bits that� when set correctly� lead out of one
subbasin to the next higher��tness subbasin�

�b� Tree branches represent portal con�gurations that connect the sub�
basins of equal��tness genotypes to each other� Branch ��� points to
node ���


� A constellation is a subset of s�s bits� Constellation c�� is located at node��
and corresponds to the subset of bits that must be set to a portal con�g�
uration in order to move from subbasin B�� to a higher �tness subbasin�
The number of bits in a constellation c�� is denoted K���

�� A portal ����j is one particular con�guration of the K�� bits in constellation
c�� out of the �K�� possible con�gurations� The indices �� of a portal ����j
indicate the node to which it points�

�� The subbasin Bi��i������in is the set of genotypes that have constellations
c through ci������in�� set to portals �i� through �i������in � respectively� but
do not have constellation ci������in set to any of its portal con�gurations�

�� All genotypes in the subbasin B�� have a �tness f���
�� A leaf�node �� in the tree represents a set of equal��tness genotypes that

form a local optimum of the �tness function� The �tness of these geno�
types is f���

The trees that de�ne the hierarchy of constellations� subbasins� and portals
are not entirely arbitrary� They have the following constraints�

�� The number of branches leaving node �� is at most �K�� �
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�� A constellation is disjoint from the root constellation c and all other
constellations that connect it to the root� That is� the set ci��i������in is
disjoint from the sets c� ci� � ci��i� � and so on�

This class of Terraced Labyrinth �tness functions incorporates and extends
the previously studied Royal Road �tness functions of Refs� 	��� and 	��� and
the Royal Staircase �tness functions of Ref� 	�
�� In those �tness functions� all
constellations had the same number of de�ning bits K� and there was only a
single portal con�guration � � �K for each constellation� A Royal Staircase
�tness function corresponds to a Terraced Labyrinth �tness function whose
tree is a simple linear chain� Additionally� in the Royal Road �tness functions�
constellations were allowed to be set in any arbitrary order�

The architectural approach we have taken here should be contrasted with
the use of randomized �tness functions that have been modi�ed to have
neutral networks� These include the NKp landscapes of Ref� 	�� and the dis�
cretized NK �tness functions of Ref� 	
��� The popularity of random �tness
functions seems motivated by the idea that something as complicated as a bio�
logical genotype�phenotype mapping can only be statistically described using
a randomized structure� Although this seems sensible in general� the results
tend to be strongly dependent on the speci�c randomization procedure that is
chosen� the results might be biologically misleading� For instance� NK models
create random epistatic interactions between bits� mimicking spin�glass mod�
els in physics� In the context of spin glasses this procedure is conceptually
justi�ed by the idea that the interactions between the spins were randomly
frozen in when the magnetic material formed� However� in the context of
genotype�phenotype mappings� the interactions between di�erent genes are
themselves the result of evolution� This can lead to very di�erent kinds of
�random� interactions� as shown in Ref� 	
��

At a minimum� though� the most striking di�erence between our choice of
�tness function class and randomized �tness functions� is that the population
dynamics of the randomized classes is very dicult� if not impossible� to an�
alyze at present� In contrast� the population dynamics of the class of �tness
functions just introduced can be analyzed in some detail� Moreover� for bio�
logical systems it could very well be that structured �tness functions� like the
Terraced Labyrinth class� may contain all of the generality required to cover
the phenomena claimed to be addressed by the randomized classes� Several
limitations and generalizations of the Terraced Labyrinth �tness functions
are discussed in Sec� ����

� A Simple Genetic Algorithm

For our analysis of epochal evolutionary dynamics we chose a simpli�ed form
of a genetic algorithm �GA� that does not include crossover and that uses
�tness�proportionate selection� A population of M individuals� each speci�
�ed by a genotype of length L bits reproduces in discrete non�overlapping
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generations� Each generation� M individuals are selected �with replacement�
from the population in proportion to their genotype�s �tness� Each selected
individual is placed into the population at the next generation after mutating
each genotype bit with probability ��

This GA e�ectively has two parameters� the mutation rate � and the
population size M � A given evolutionary optimization problem is speci�ed�
of course� by the �tness function parameters as given by the constellations�
portals� and their �tness values� Stated most prosaically� then� our central
goal is to analyze the population dynamics� as a function of � and M � for
any given �tness function in the Terraced Labyrinth class� Here we review
the essential aspects of the population dynamics analysis�

� Statistical Dynamics of Evolutionary Search

Refs� 	��� and 	��� developed an approach� which we called statistical dynam�

ics� to analyze the behavioral regimes of a GA searching �tness functions
that lead to epochal dynamics� Here we can only brie�y review the mathe�
matical details of this approach to evolutionary dynamics� emphasizing the
motivations and the main ideas and tools from statistical mechanics and dy�
namical systems theory� The reader is referred to Ref� 	��� for an extensive
and mathematically detailed exposition� There� the reader will also �nd a
review of the connections and similarities of our work with the alternative
methodologies for GA theory developed by Vose and collaborators 	
���������
by Pr ugel�Bennett� Rattray� and Shapiro 	
�!
��� in the theory of molecular
evolution 	�
����� and in mathematical population genetics 	����

��� Statistical Mechanics

Our approach builds on ideas from statistical mechanics 	�������� and adapts
its equilibrium formulation to apply to the piecewise steady�state dynamics of
epochal evolution� The microscopic state of systems that are typically stud�
ied in statistical mechanics�such as� a box of gas molecules�is described
in terms of the positions and momenta of all particles� What is of physi�
cal interest� however� are observable �and reproducible� quantities� such as�
the gas�s pressure P � temperature T � and volume V � The goal is to predict
the relationships among these macroscopic variables� starting from knowl�
edge of the equations of motion governing the particles and the space of the
entire system�s possible microscopic states� A given setting of macroscopic
variables�e�g� a �xed P � V � and T�is often referred to as a macrostate�
whereas a snapshot of the positions and momenta of all particles is called a
microstate�

There are two kinds of assumptions that allow one to connect the mi�
croscopic description �collection of microstates and equations of motion� to
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observed macroscopic behavior� The �rst is the assumption of maximum en�

tropy which states that all microscopic variables� unconstrained by a given
macrostate� are as random as possible�

The second is the assumption of self�averaging� In the thermodynamic

limit of an in�nite number of particles� self�averaging says that the macro�
scopic variables are expressible only in terms of themselves� In other words�
the macroscopic description does not require knowledge of detailed statistics
of the microscopic variables� For example� at equilibrium the macroscopic
variables of an ideal gas of noninteracting particles are related by the equa�

tion of state� PV � kNT � where k is a physical constant� and N is the total
number of particles in the box� Knowing� for instance� the frequency with
which molecules come within ��� nanometers of each other does not improve
this macroscopic description�

Varying an experimental control parameter of a thermodynamic system
can lead to a sudden change in its structure and in its macroscopic properties�
This occurs� for example� as one lowers the temperature of liquid water below
the freezing point� The liquid macrostate undergoes a phase transition and
the water turns to solid ice� The macrostates �phases� on either side of the
transition are distinguished by di�erent sets of macroscopic variables� That
is� the set of macrovariables that is needed to describe ice is not the same
as the set of macrovariables that is needed to describe water� The di�erence
between liquid water and solid ice is captured by a sudden reduction in the
freedom of water molecules to move� While the water molecules move equally
in all directions� the frozen molecules in the ice�crystal possess a relatively
de�nite spatial location� Passing through a phase transition can be thought
of as creating� or destroying� macroscopic variables and making or breaking

the symmetries associated with them� In the liquid to solid transition� the
rotational symmetry of the liquid phase is broken by the onset of the rigid
lattice symmetry of the solid phase� As another example� in the Curie tran�
sition of a ferromagnet� the magnetization is the new macroscopic variable
that is created with the onset of magnetic�spin alignment as the temperature
is lowered�

��� Evolutionary Statistical Mechanics

The statistical mechanical description can also be applied to evolutionary
processes� From a microscopic point of view� the exact state of an evolving
population is only fully described when a list S of all genotypes with their
frequencies of occurrence in the population is given� On the microscopic level�
the evolutionary dynamics is implemented as a Markov chain with the condi�
tional transition probabilities Pr�S �jS� that the population at the next gen�
eration will be the �microscopic� collection S �� see Refs� 	��� and 	
�� for the
microscopic formulation in the context of mathematical population genetics
and genetic algorithms� respectively� For any reasonable genetic representa�
tion� however� there is an enormous number of these microscopic states S
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and so too of their transition probabilities� The large number of parameters�
O��L"�� makes it almost impossible to quantitatively study the dynamics at
this microscopic level�

More practically� a full description of the dynamics on the level of mi�
croscopic states S is neither useful nor typically of interest� One is much
more likely to be concerned with relatively coarse statistics of the dynamics�
such as the evolution of the best and average �tness in the population or
the waiting times for evolution to produce a genotype of a certain quality�
The result is that quantitative mathematical analysis faces the task of �nding
a macroscopic description of the microscopic evolutionary dynamics that is
simple enough to be tractable numerically or analytically and that� moreover�
facilitates predicting the quantities of interest to an experimentalist�

With these issues in mind� we specify the macrostate of the population
at each time t by some relatively small set of macroscopic variables fX �t�g�
Since this set of variables intentionally ignores vast amounts of detail in the
microscopic variables fx�t�g� it is generally impossible to exactly describe the
evolutionary dynamics in terms of these macroscopic variables� To achieve the
bene�ts of a coarser description� we assume that the population has equal
probabilities to be in any of the microscopic states consistent with a given
macroscopic state� That is� we assume maximum entropy over all microstates
fx�t�g that are consistent with the speci�c macrostate fX �t�g�

Additionally� in the limit of in�nite�population size� we assume that the
resulting equations of motion for the macroscopic variables become closed�
That is� for in�nite populations� we assume that we can predict the state of
the macroscopic variables at the next generation� given the present state of
only the macroscopic variables� This in�nite population limit is analogous to
the thermodynamic limit in statistical mechanics� The corresponding assump�
tion is analogous to self�averaging of the macroscopic evolutionary dynamics
in this limit�

We use the knowledge of the microscopic dynamics together with the
maximum entropy assumption to predict the next macrostate fX �t � ��g
from the current one fX �t�g� Then we re�assume maximum entropy over
the microstates fx�t � ��g given the new macrostate fX �t � ��g� Since this
method allows one to relax the usual equilibrium constraints and so account
for the dynamical change in macroscopic variables� we refer to this extension
of statistical mechanics as statistical dynamics� A similar approach has been
developed in some generality for non�equilibrium statistical mechanics by
Streater and� not surprisingly� it goes under the same name 	����

��� Evolutionary Macrostates

The key� and as yet unspeci�ed step� in developing such a statistical dynamics
framework of evolutionary processes is to �nd an appropriate set of macro�
scopic variables that satisfy the above assumptions of maximum entropy and
self�averaging� In practice� this is dicult� Ultimately� the suitability of a set
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of macroscopic variables has to be veri�ed by comparing theoretical predic�
tions with experimental measurements� In choosing such a set of macroscopic
variables one is guided by knowledge of the �tness function and the genetic
operators� Although not reduced to a procedure� this choice is not made in
the dark�

First� there might be symmetries in the microscopic dynamics� Imagine�
for instance� that genotypes can have only two possible values for �tness� fA
and fB� Assume also that under mutation all genotypes of type A are equally
likely to turn into type�B genotypes and that all genotypes of type B have
equal probability to turn into genotypes of type A� In this situation� it is easy
to see that we can take the macroscopic variables to be the relative propor�
tions of A genotypes and B genotypes in the population� The reason one can
do this is that all microstates with a certain proportion of A and B types
give rise to exactly the same dynamics on the level of proportions of A and
B types� That is� the dynamics is symmetric under any transformation of the
microstates that leaves the proportions of A and B types unaltered� Neither
selection nor mutation distinguish di�erent genotypes within the sets A and
B on the level of the proportions of A�s and B�s that they produce in the
next generation� Obviously� one wants to take advantage of such symmetries
in a macroscopic description� However� for realistic cases� such symmetries
are not often abundant� Simply taking them into account� while important�
does not typically reduce the complexity of the description suciently�

One tends to make more elaborate assumptions in developing a macro�
scopic description� Assume that the A and B genotypes are not all equally
likely to turn from type A to B and vice versa� but do so only on average� For
example� it might be the case that not all A types behave exactly the same
under mutation� but that the dominant subset of A�s that occurs in a pop�
ulation typically behaves like the average over the set of all A types� This is
a much weaker symmetry than the exact one mentioned above� Importantly�
it still leads to an accurate description of the dynamics on the level of A and
B types under the maximum entropy assumption�

The Neo�Darwinian formalism of biological evolution suggests a natural
decomposition of the microscopic population dynamics into a part that is
guided by selection and a part that is driven by genetic diversi�cation� Sim�
ply stated� selection is an ordering force induced by the environment that
operates on the level of the phenotypic �tness in a population� In contrast�
genetic diversi�cation is a disordering and randomizing force that drives a
population to an increased diversity of genotypes� Thus� it seems natural to
choose as macrostates the proportion of genotypes in the di�erent �tness
classes �subbasins� and to assume that� due to random genetic diversi�cation
within each subbasin� genetic variation can be approximated by the maximum
entropy distribution within each subbasin� This intuition is exactly the one
we use in our statistical dynamics analysis of the Terraced Labyrinth �tness
functions� Speci�cally� we describe the population in terms of the proportions
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P�� that are located in each of the subbasins B��� The maximum entropy as�
sumption entails that within subbasin B��� individuals are equally likely to be
any of the genotypes in B��� In other words� we assume that all free bits in a
constellation are equally likely to be in any of their nonportal con�gurations�

The essence of our statistical dynamics approach is to describe the pop�
ulation state at any time during a GA run by a relatively small number of
macroscopic variables�variables that �i� in the limit of in�nite populations
self�consistently describe the dynamics at their own level and �ii� can change
over time� After obtaining the dynamics in the limit of in�nite populations
explicitly� one then uses this knowledge to solve for the GA�s dynamical be�
haviors with �nite populations�

� Evolutionary Dynamical Systems

Up to this point we have described our approach in terms of its similarities
with statistical mechanics� We appealed intuitively to macroscopic �dynam�
ics�� which can be derived in terms of the microscopic equations of motion �of
selection and mutation on genotypes� and the maximum entropy assumption�
Now we �ll in the other half of the story� the half that clari�es what �dynam�
ics� is and that draws out the similarities of our approach with dynamical
systems theory�

As we just explained� we approximate the complete �nite�population dy�
namics in two steps� First� we use the maximum entropy assumption to�
gether with the microscopic equations of motion to construct an in�nite�
population ��ow� that describes the deterministic �macroscopic� dynamics
of the subbasin distribution of an in�nite population� Then� we construct the
�nite�population dynamics by accounting for the �nite�population sampling
at each generation� The net result is a stochastic nonlinear dynamical system�
We now explain these two steps in more detail�

��� In�nite Populations

Consider an in�nite population with subbasin distribution �P � where compo�
nent P�� � 	�� �� is the proportional of individuals in the subbasin B��� Note that

the number of components in �P is equal to the number of nodes in the con�
stellation tree that describes the Terraced Labyrinth �tness function� Given
this� the question is how selection and mutation� acting on the distribution
�P �t�� create the distribution �P �t� �� at the next generation�

The e�ects of selection are simple� since all genotypes in subbasin B�� have
the same �tness� If hfi is the average �tness in the population� we simply have
that after selection the components are P select

�� � f��P���t��hfi� To calculate
the e�ects of mutation we have to use our maximum entropy assumption� The
probability that a genotype in subbasin B�� turns into a genotype in subbasin
B�� is simply given by the average probability of a mutation from a genotype
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in B�� to any genotype in B��� The average is taken with equal weights over all
genotypes in B��� Putting the e�ects of selection and mutation together� we
obtain a generation operator G that speci�es the macroscopic evolutionary
dynamical system�

�P �t� �� � G	�P �t�� � ���

The in�nite population dynamics on the level of subbasin distributions is sim�
ply given by iterating the operator G� Following the terminology introduced
in molecular evolution theory we call �P �t� the phenotypic quasispecies�

The expected� change hd�P i in the �tness distribution over one generation
is given by�

hd�P i � G	�P �� �P � ���

We visualize the �ow induced by the macroscopic equations of motion by
plotting hd�P i at a number of states in the simplex of populations� This is
shown in Fig� �� after Ref� 	���� The �tness function and evolution parameters
of Fig� � are those of Fig� �� The temporal behavior of the system� starting
in an initial condition �P �t � ��� is simply given by following the �ow arrows�

For large �M � �L� populations the dynamics of the subbasin distribu�
tion is simple� hfi increases smoothly and monotonically to an asymptote
over a small number of generations� �See Fig� 
 of Ref� 	����� That is� there
are no epochs� The reason for this is simple� for an in�nite population� all
genotypes� and therefore all subbasins� are represented in the initial popula�
tion� Instead of the evolutionary dynamics discovering �tter genotypes over
time� it essentially only expands the proportion of globally optimal genotypes
already present in the initial population at t � ��

��� Finite Populations

In spite of the qualitatively di�erent dynamics for in�nite and �nite popu�
lations� we showed in Ref� 	��� that the �in�nite population� operator G is
the essential ingredient for describing the �nite�population dynamics with its
epochal dynamics as well� Beyond the di�erences in observed behavior� there
are two important mathematical di�erences between the in�nite�population
dynamics and that with �nite populations� The �rst is that with �nite pop�
ulations the components P�� cannot take on continuous values between � and
�� Since the number of individuals in subbasin B�� is necessarily an integer�
the values of P�� are quantized in multiples of ��M � Thus� the continuous
simplex of allowed in�nite�population �tness distributions turns into a reg�
ular� discrete lattice with spacing of ��M � Second� due to �nite�population
sampling �uctuations� the dynamics of the subbasin distribution is no longer
deterministic� as described by Eq� ���� In general� we can only determine the

conditional probabilities Pr	 �Qj�P � that a given �tness distribution �P leads to

another �Q in the next generation�

� It will become clear shortly why we call this change an expected change	



The Evolutionary Unfolding of Complexity ��

P0

P1

P2

Fig� �� Fitness distribution �ow hd�P i in the simplex for the Royal Road �tness
function with N � � constellations with K � �� bits each and for the simple GA
with mutation rate � � ������ cf	 Fig	 �	 Fixed points of the �ow are shown as
large balls	 The grey ball is the stable� asymptotic �xed point inside the simplex	
The white balls indicate the locations of the unstable �xed points that are outside
the simplex	 The latter do not represent valid populations� but nonetheless they
can a�ect the dynamics of allowed populations within the simplex by slowing down
�short arrows� the �ow near them	

The net result is that the probabilities Pr	 �Qj�P � are determined by a multi�

nomial distribution with mean G	�P ��

Pr	 �Qj�P � �M "
Y
��

�
G��	�P �

�m��

m��"
� �
�

where Q�� � m���M � with � � m�� � M integers and the product runs over
all subbasins ��� �The stochastic e�ects of �nite�population sampling are il�

lustrated in Fig� ��� For any �nite�population subbasin distribution �P the
operator G gives the evolution�s average dynamics over one time step� since
by Eq� �
� the expected subbasin distribution at the next time step is G	�P ��

Note that the components G��	�P � need not be multiples of ��M � Therefore�

the actual subbasin distribution �Q at the next time step is not G	�P �� but is
instead one of the allowed lattice points in the �nite�population state space
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P
→

G(P)
→

Pr(Q|P)
→→ ∝1/M

1/M
Fig� �� Illustration of the stochastic dynamics that maps from one generation to
the next	 Starting with �nite population �P � the arrow indicates the expected next
population G��P �	 Due to sampling� the probability that the actual next popula
tion is �Q is given by a multinomial distribution Pr� �Qj�P �� Eq	 ���	 Note that the
underlying state space is a discrete lattice with spacing ��M 	

consistent with the distribution Pr	 �Qj�P �� Since the variance around the ex�

pected distribution G	�P � is proportional to ��M � �Q tends to be one of the

lattice points close to G	�P ��
Putting both the in�nite�population dynamical system and the stochastic

sampling e�ects induced by �nite populations together� we arrive at the our
basic model of evolutionary population dynamics� We can now begin to draw
out some consequences�

� Metastability and the Unfolding of Macrostates

Assume that there are no individuals in a certain subbasin B�� and that the
component hdP��i is much smaller than ��M � In that case� the actual change in
component P�� is likely to be dP�� � � for a long succession of generations� That
is� if there are no individuals in subbasin B�� and the rate of creation of such
individuals is much smaller than ��M � then subbasinB�� is likely to stay empty
for a considerable number of generations� Consequently� there is no movement
to increase �tness to level f�� during this time� More generally� if the size of
the �ow hdP��i �and its variance� in some direction �� is much smaller than the
lattice spacing ���M� of allowed �nite populations� we expect the subbasin
distribution to not change in direction��� In Refs� 	��� and 	��� we showed this
is the mechanism that causes epochal dynamics for �nite populations�

More formally� an epoch corresponds to the population being restricted
to a region of an n�dimensional subsimplex of the macroscopic state space�
Stasis occurs because the �ow out of this subspace is much smaller than
the �nite�population induced lattice spacing� In particular� for the Terraced
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Labyrinth �tness functions� an epoch corresponds to the time during which
the highest �tness individuals are located in subbasin Bi��i������in � During this
time� an equilibrium subbasin distribution is established in the population� Its
components are nonzero only for subbasins B� Bi� � Bi��i� � through Bi������in �
That is� they are nonzero for all of the lower �tness subbasins that connect
B�� to the root� Since the discovery of a portal con�guration of constellation
ci������in is rare� the population remains in this n�dimensional subsimplex for
a considerable number of generations� The number of generations it remains
in this epoch is� of course� directly dependent on the number of portals out
of the subbasin B�� and the number of bits K�� in constellation c���

Recall the example of epochal behavior of Sec� ��� and Fig� �� Initially� the
population was located in the zero�dimensional macrostate corresponding to
all genotypes located in the root subbasin� Then the �rst portal con�guration
was discovered and the population moved onto the line of population states
that have some individuals in the root subbasin and some in the basin B��
After this epoch� a genotype in subbasin B��� was discovered and the popu�
lation moved to a steady�state in the plane of proportions P � P�� and P����
�These were labeled according to their �tnesses�P�� P�� and P��in Fig� ���
Finally� the global optimum string in subbasin B����� was discovered� and the
population moved to its �nal �xed point in the three�dimensional simplex�

The global evolutionary dynamics can be viewed as an incremental dis�
covery �an unfolding� of successively more �macroscopic� dimensions of the
subbasin distribution space� In most realistic settings� it is typically the case
that population sizes M are much smaller than �L� Initially� then� the pop�
ulation consists only of genotypes in subbasins of low �tness� Assume� for
instance� that genotypes in subbasin B��� are the highest �tness ones in the
initial population� Mutation and selection establish an equilibrium pheno�
typic quasispecies �P ���� consisting of nonzero proportions of genotypes in the
subbasin B� B�� and B���� and zero proportions of genotypes in all other sub�
basins� Individuals and their descendants drift through subbasin B���� The

subbasin distribution �uctuates around �P ��� until a portal con�guration �����i
of the constellation c��� is discovered and genotypes of �higher� �tness f����i
spread through the population� The population then settles into subbasin
distribution �P ����i with average �tness hfi����i until a portal �����i�j of con�
stellation c����i is discovered� and so on� until a local optimum corresponding
to a leaf of the �tness function tree is found� In this way� the macroscopic
dynamics can be seen as stochastically hopping between the di�erent epoch
distributions �P�� of subbasins B�� that are connected to each other in the �tness
function tree�

Note that at each stage �P i������in has only n�� �nonzero� components� each
corresponding to a subbasin connecting B�� to the tree root� All other subbasin
components are zero� The selection�mutation balance maintains a constant
proportion of genotypes with correct con�gurations in all constellations that
de�ne the epoch� By the maximum entropy assumption� the action of the



�� James P	 Crutch�eld and Erik van Nimwegen

generation operator G is symmetric with respect to all remaining nonportal
constellation con�gurations� That is� G�s action is indi�erent to the various
proportions of particular incorrect constellations con�gurations� The sym�
metry among constellation c���s incorrect con�gurations is broken dynamically

when a �typically� rare� portal con�guration is discovered� This symmetry
breaking adds a new macroscopic variable�a new �active� dimension of the
phenotype� This symmetry breaking and stabilization of a new phenotypic
dimension is the dynamical analogue of a phase transition�

As alluded to earlier� much of the attractiveness of the Terraced Labyrinth
class of �tness functions lies in the fact that� to a good approximation� ana�
lytical predictions can be obtained for observable quantities� such as� average
epoch �tness hfi�� and the epoch subbasin distribution �P�� in terms of the
evolutionary and �tness function parameters� For instance� assume that the
highest �tness genotypes are in subbasin Bi��i������in and that the population

resides in the steady�state distribution �P i��i������in � Denote by

Li��i������im � K �Ki� �Ki��i� � � � ��Ki��i������im�� � ���

the number of constrained bits in each of the subbasins that have nonzero
proportions during this epoch� �Note that L � � for the root subbasin�� Then�
up to some approximation�� the average epoch �tness is simply given by

hfi�� � f�� ��� ��L�� � ���

One can also derive the subbasin distribution �P��� In order to express the
results most transparently� we introduce the �tness�level ratio using Eq� ����

	���� �
f��
f��
��� ��L���L�� ���

Then we have for the highest��tness component of the subbasin distribution
P�� that

P���� �
Y
�m���

�� 	���m
�� 	���m��� ��K�m

� ���

where �m 
�� indicates the set of all nodes lying along the path between �� and
the tree�s root� including the root� For the other components of P�� we have
that

P���� �
��� ��L��

�
�� ��� ��K��

�

�� 	������� ��K��

Y
�m���

�� 	���m
�� 	���m��� ��K�m

� ���

Describing the dynamics in and between epoch distributions �P�� using di�u�
sion approximations and then invoking �dynamical systems� concepts�such

� The approximation here is that� during an epoch� the back mutations from lower
�tness subbasins to higher subbasins can be neglected	 This assumption is gen
erally valid for constellation lengths K�� that are not too small	
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as� stable and unstable manifolds� Jacobian eigenvalues� and their eigenvectors�
a number of additional properties of epochal evolution can be derived ana�
lytically and predicted quantitatively� The reader is referred to Refs� 	��� and
	�
� for the detailed analysis of the distribution of epoch �uctuations� the
stability of epochs� and the average waiting times for portal discovery�

� Frozen Accidents	 Phenotypic Structural

Constraints	 and the Subbasin
Portal Architecture

The subbasin�portal architecture� whose population dynamics we are ana�
lyzing� suggests a natural explanation for the occurrence and longevity of
frozen accidents� Generally speaking� frozen accidents refer to persistent phe�
notypic characters that are selected out of a range of possible� structurally
distinct alternatives by speci�c random events in the evolutionary past� One
imagines an arbitrary event� such as a sampling �uctuation� promoting one
or another phenotype� which then comes to dominate the population and
thereby excludes alternatives that could be equally or even more �t in the
long term�

Within the class of Terraced Labyrinth �tness functions frozen accidents

occur via a simple mechanism� In particular� a given evolutionary path through
the �tness�function tree can be regarded as a sequence of frozen accidents�
Since di�erent portals of the same constellation are mutually exclusive� their
subbasins are separated by a �tness barrier� Across a wide range of parame�
ter settings� the crossing of such �tness barriers takes much longer than the
discovery of new portals� via neutral evolution� in the current subbasin� Once
evolution has taken a certain branch up the tree� it is therefore unlikely� that
it will ever return� That is� once a subbasin B�� is discovered� the further
course of evolution is restricted to the subtree with its root at ��� In this way�
the genotypic constellations up to �� become installed in the population�

The alternative evolutionary paths are not merely a case of genetic book�
keeping� Di�erent portals of a constellation c�� may be associated with very
di�erent phenotypic innovations� Once a particular phenotypic innovation has
occurred� the phenotype determines which range of future phenotypic inno�
vations can occur� This contingency�how evolutionary futures depend on
current phenotypic constraints�goes under the name of structural pheno�
typic constraints� In the Terraced Labyrinth this phenomenon is re�ected in
the possibility that �tness�function trees have very dissimilar subtrees� For
instance the subtrees rooted at nodes � and � in Fig� 
 are very dissimilar�
This dissimilarity re�ects the fact that evolutionary futures starting from
the phenotype corresponding to node � are very di�erent from those starting
from the phenotype associated with node ��

Naturally� the Terraced Labyrinth class of �tness functions does not in�
dicate which kind of tree structures� re�ecting structural constraints� are
appropriate or biologically realistic� This will ultimately be decided by ex�
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periment� The generality of this class of �tness functions� however� illustrates
that qualitative concepts�such as� frozen accidents and structural pheno�
typic constraints�are very easily represented and analyzed within the sta�
tistical dynamics framework�

� Concluding Remarks

	�� Summary

We introduced a generalized subbasin�portal architecture by way of de�ning
a new class of �tness functions�the Terraced Labyrinth� The detailed math�
ematical analysis of the population dynamics that we introduced previously
can be adapted straightforwardly to this generalized setting� In this way� sta�
tistical dynamics was shown to have a wider applicability and its results on
epochal evolution are seen to have wider ranging consequences than the �rst
analyses in Refs� 	��� and 	��� might have suggested�

We described this more general view of epochal evolution� attempting to
clarify the connections to both statistical mechanics and dynamical systems
theory� The result is a dynamical picture of a succession of �phase transitions�
in which microscopic symmetries are broken and new macroscopic dimensions
are discovered and then stabilized� These new macroscopic dimensions then
become the substrate and historical context for further evolution�

	�� Extensions and Generalizations

There are a number of extensions to more complex evolutionary processes
that should now be possible� Here we mention a few limitations of the class
of �tness functions analyzed and several generalizations�

First� constellations do not overlap constellations higher in the tree� Sec�
ond� all the subbasins have a similar regular architecture� there is a set of
constrained bits �in the portals� that de�ne the subbasin and all other bits
are free�This is undoubtedly not the case generally� Di�erent subbasins can
have distinct irregular architectures and di�erent kinds of portals� Moreover�
the di�usion dynamics through distinct subbasins might be di�erent� For in�
stance� subbasins might also be de�ned with respect to more complicated
genetic operations�such as� gene duplication� unequal crossovers� and gene
conversion�

Third� all of a subbasin�s portals correspond to con�gurations of a single
constellation� This insures that the topology of the subbasin hierarchy forms
a tree� as opposed to the more general topologies suggested by Fig� �� Ex�
tending the analysis to more complicated subbasin architectures is formally
straightforward� but becomes considerably more complicated to carry out�
For very complicated architectures� the approximations in our analysis may
have to be reworked�
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Fourth� one would like to extend statistical dynamics to open�ended mod�
els in which �say� the genotype length can grow over time� allowing the tree to
dynamically grow new branches as well� perhaps along the lines investigated
in Ref� 	
�� One would hope to see how the evolutionary dynamics adapts as
the mutation�genome length error threshold is approached 	�
�� As long as
such open�ended models adhere to the tree topology of the subbasin�portal
hierarchy� it would appear that our analyses could easily be extended to them�

Finally� the maximum entropy assumption only holds to some degree of
approximation� For instance� whenever a new macrodimension unfolds� the
population is initially concentrated around the portal genotype in the neu�
tral network� this is a type of founder e�ect� The population then spreads
out randomly from there� but the genotypes never completely decorrelate due
to �nite�population sampling �uctuations 	���� Moreover� as we have shown
in Ref� 	���� the population members in lower��tness subbasins are closely
genetically related to members in the subbasin of currently highest �tness�
These facts �atly contradict the maximum entropy assumption that individ�
uals are randomly and independently spread through the subbasins� Since
these complications do not generally alter the rate of deleterious mutations
from subbasins to lower��tness subbasins� theoretical predictions�such as�
the epoch distributions �P���are not much a�ected� However� as shown in
Ref� 	���� statistics�such as� the average waiting time for the discovery of a
portal�may be signi�cantly a�ected� This leaves open the question of how
to extend the set of macroscopic variables to account for these complications�
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