
A Genetic Algorithm Discovers Particle-Based

Computation in Cellular Automata

Rajarshi Das1, Melanie Mitchell1, and James P. Crutchfield2

1 Santa Fe Institute, 1660 Old Pecos Trail, Suite A, Santa Fe, New Mexico, U.S.A. 87501.
2 Physics Department, University of California, Berkeley, CA, U.S.A. 94720.

In Y. Davidor, H.-P. Schwefel, and R. Männer (editors), Parallel Problem Solving from

Nature—PPSN III. Berlin: Springer-Verlag.

Abstract. How does evolution produce sophisticated emergent computation in systems

composed of simple components limited to local interactions? To model such a process, we

used a genetic algorithm (GA) to evolve cellular automata to perform a computational task

requiring globally-coordinated information processing. On most runs a class of relatively

unsophisticated strategies was evolved, but on a subset of runs a number of quite sophisti-

cated strategies was discovered. We analyze the emergent logic underlying these strategies in

terms of information processing performed by “particles” in space-time, and we describe in

detail the generational progression of the GA evolution of these strategies. Our analysis is a

preliminary step in understanding the general mechanisms by which sophisticated emergent

computational capabilities can be automatically produced in decentralized multiprocessor

systems.

1. Introduction

Natural evolution has created many systems in which the actions of simple, locally-
interacting components give rise to coordinated global information processing. Insect
colonies, economic systems, the immune system, and the brain have all been cited as
examples of systems in which “emergent computation” occurs (e.g., see [5, 8]). In the
following, “emergent computation” refers to the appearance in a system’s temporal be-
havior of information-processing capabilities that are neither explicitly represented in
the system’s elementary components or their couplings nor in the system’s initial and
boundary conditions. Our interest is in phenomena in which many locally-interacting
processors, unguided by a central control, result in globally-coordinated information
processing that is more powerful than can be done by individual components or linear
combinations of components. More precisely, “emergent computation” signifies that
the global information processing can be interpreted as implementing (or approximat-
ing) a computation [1].

While observations of the behavior of such a decentralized, multicomponent sys-
tem might suggest that a computation is taking place, understanding the emergent
logic by which the computation is performed is typically very difficult. It is also not
well understood how evolution creates the capacity for emergent computation in such
systems. In this paper we report work addressing both these questions in a simplified
model in which emergent computational capabilities in cellular automata are evolved
under a genetic algorithm (GA). We apply a framework, called “computational me-
chanics”, for analyzing the emergent logic embedded in the spatiotemporal behavior
of spatially-extended systems such as cellular automata [3]. The results demonstrate
how globally-coordinated information processing is mediated by “particles” and “par-
ticle interactions” in space-time. We also analyze in detail the evolutionary history
over which a GA evolved such emergent computation in cellular automata. Though

1

our model is simplified, the results are relevant to understanding the evolution of
emergent computation in more complicated systems.

2. Cellular Automata

One of the simplest systems in which emergent computation can be studied is a one-
dimensional binary-state cellular automaton (CA)—a one-dimensional lattice of N
two-state machines (“cells”), each of which changes its state as a function only of
the current states in a local neighborhood. The lattice starts out with an initial
configuration of cell states (0s and 1s) and this configuration changes in discrete time
steps according to the CA “rule”. We use the term “state” to refer to a local state
si—the value of the single cell at site i. The term “configuration” will refer to the
pattern of local states over the entire lattice.

A CA rule φ can be expressed as a look-up table (“rule table”) that lists, for
each local neighborhood, the update state for the neighborhood’s central cell. In a
one-dimensional CA, a neighborhood consists of a cell and its r (“radius”) neighbors
on either side. A sample rule (the “majority” rule) for a one-dimensional binary CA
with r = 1 is the following. Each possible neighborhood η is given along with the
“output bit” s = φ(η) to which the central cell is updated. (The neighborhoods are
listed in lexicographic order.)

η 000 001 010 011 100 101 110 111
s 0 0 0 1 0 1 1 1

At time step t, the look-up table is applied to each neighborhood in the current
lattice configuration, respecting the choice of boundary conditions, to produce the
configuration at t + 1.

Cellular automata have been studied extensively as mathematical objects, as mod-
els of natural systems, and as architectures for fast, reliable parallel computation (for
an overview of CA theory and applications, see, e.g., [12, 13]). However, the difficulty
of understanding the emergent behavior of CAs or of designing CAs to have desired
behavior has up to now severely limited their applications in science and engineering,
and for general computation.

3. Details of Experiments

We used a form of the GA to evolve one-dimensional, binary-state CAs to perform a
density classification task: the ρc = 1/2 task [9]. A successful CA for this task will
decide whether or not the initial configuration (IC) contains more than half 1s. Let ρ
denote the density of 1s in a configuration and let ρ0 denote the density of 1s in the
initial configuration. If ρ0 < ρc (ρ0 > ρc), then within M time steps the CA should
relax to the fixed-point configuration of all 0s (1s). M is a parameter of the task that
depends on the lattice size N .

The CAs in our experiments had r = 3, with spatially periodic boundary condi-
tions: si = si+N . The ρc = 1/2 task is nontrivial for a small-radius (r ¿ N) CA, since
density is a global property of a configuration, whereas a small-radius CA relies only
on local interactions mediated by the cell neighborhoods. The minimum amount of
memory required for the ρc = 1/2 task is proportional to log(N), since the equivalent
of a counter register is required to track the excess of 1s in a serial scan of the IC. In
other words, the task requires computation which corresponds to the recognition of a
non-regular language. It has been argued that no finite radius CA can perform this

2

task perfectly across all lattice sizes (C. Moore, personal communication), but even
to perform this task well for a fixed lattice size requires more powerful computation
than can be performed by a single cell or any linear combination of cells, such as the
majority rule. Since the 1s can be distributed throughout the CA lattice, the CA
must transfer information over large space-time distances (≈ N).

The GA begins with a population of P randomly generated 128-bit CA rules, each
encoded as a string of the rule-table output bits in lexicographic order of neighborhood
patterns. (There are 2128 possible rules—far too many for any kind of exhaustive
search.) The fitness of a rule in the population is calculated by: (i) randomly choosing
I ICs that are uniformly distributed over ρ ∈ [0.0, 1.0], exactly half with ρ < ρc and
half with ρ > ρc; (ii) running the rule on each IC either until it arrives at a fixed point
or for a maximum of M time steps; (iii) determining whether or not the final pattern
is correct—i.e., N 0s for ρ0 < ρc and N 1s for ρ0 > ρc. The initial density ρ0 is never
exactly 1/2, since N is chosen to be odd. Rule φ’s fitness FI(φ) is the fraction of the
I ICs on which φ produces the correct final pattern. No partial credit is given for
partially correct final configurations.

It should be pointed out that sampling ICs with uniform distribution over ρ ∈

[0.0, 1.0] is highly skewed with respect to an unbiased distribution of ICs, which is bi-
nomially distributed over ρ ∈ [0.0, 1.0] and very strongly peaked at ρ = 1/2. However,
preliminary experiments indicated a need for such a biased distribution in order for
the GA to make progress in early generations. This biased distribution turns out to
impede the GA in later generations because, as increasingly fitter rules are evolved,
the IC sample becomes less and less challenging for the GA [9].

The GA works as follows. (i) A new set of I ICs is generated. (ii) FI(φ) is calcu-
lated for each rule φ in the population. (iii) A number E of the highest fitness (“elite”)
rules is copied without modification to the next generation. (iv) The remaining P −E
rules for the next generation are formed by single-point crossovers between pairs of
elite rules randomly chosen with replacement. The offspring from each crossover are
each mutated m times, where mutation consists of flipping a randomly chosen bit in
a string. This defines one generation of the GA; it is repeated G times for one run
of the GA. This method is similar to that used by Packard to evolve CAs for the
ρc = 1/2 task [11]. (For a discussion of Packard’s experiment, see [10].) Note that
FI is a random variable, since the precise value it returns for a given rule depends
on the particular set of I ICs used to test the rule. Thus, a rule’s fitness can vary
stochastically from generation to generation. For this reason, at each generation the
entire population, including the elite rules, is re-evaluated on a new set of ICs.

The parameter values we used were the following. For each CA in the population,
N = 149 and I = 100. Each time a CA was simulated, M was chosen from a
Poisson distribution with mean 320 (slightly greater than 2N). Varying M prevents
overfitting of rules to a particular M ; see [10]. Allowing M to be larger—up to ten
times the lattice size—did not change the qualitative results of the experiments [9].
The chromosomes in the initial population were not chosen with uniform probability
at each bit as is common practice, but rather were uniformly distributed over the
fraction of 1s in the string. (This restriction for the initial population was made for
reasons related to previous research questions; see [10]. A smaller set of subsequent
experiments with unbiased randomly generated initial populations indicated that this
restriction is not likely to significantly influence the results of the experiments.) We
set P = 100; E = 20; m = 2; and G = 50 (in some runs G was set to 100; no significant

3

CA Rule Table N = 149 N = 599 N = 999
Majority φmaj 0.000 0.000 0.000
Expand 1-Blocks φ1a 0.652 0.515 0.503
Particle-Based φ1b 0.697 0.580 0.522
Particle-Based φ1c 0.742 0.718 0.701
Particle-Based φ1d 0.769 0.725 0.714
GKL φGKL 0.816 0.766 0.757

Table 1: Measured values of PN
104 at various values of N for six different r = 3 rules: the majority

rule, the four rules discovered by the GA in different runs (φ1a–φ1d), and the GKL rule. The

subscripts for the discovered rule tables indicate the pair of space-time diagrams illustrating their

behavior in Figure 1. The standard deviation of P149

104 , when calculated 100 times for the same rule,

is approximately 0.004. The standard deviations for PN
104 for larger N are higher. (This table is

similar to that given in [4], where the complete look-up tables for these rules are also given.)

difference in the final results was observed). For a more detailed justification of these
parameter settings and the results of parameter-modification experiments, see [9, 10].

4. Results of Experiments

4.1 Previous Results

We performed 300 runs of the GA with the parameters given above; each run had
a different random-number seed. On most runs, the GA proceeded through roughly
the same sequence of four “epochs” of innovation, each of which was marked by the
discovery of a significantly improved new strategy for performing the ρc = 1/2 task.
As reported in [9, 10], on most runs the GA evolved one of two strategies: (1) Relax to
the fixed point of all 0s unless there is a sufficiently large (∼ 2r +1) block of adjacent
(or almost adjacent) 1s in the IC. If so, expand that block. (2) Relax to the fixed
point of all 1s unless there is a sufficiently large block of adjacent (or almost adjacent)
0s in the IC. If so, expand that block.

A rule implementing strategy (1)—here called φ1a—is illustrated in Figure 1(a).
The figure gives two “space-time diagrams”—plots of lattice configurations over a
range of time steps, with 1s given as black cells, 0s given as white cells, and time
increasing down the page. Strategies (1) and (2) rely on the appearance or absence
of blocks of 1s or 0s in the IC to be good predictors of ρ0. For example, high-ρ ICs
are more likely to have blocks of adjacent 1s than low-ρ ICs (cf. the bottom diagram
in Figure 1(a)). The size of blocks that are expanded was tuned by the GA to be a
good predictor of high or low density for N = 149 given the distribution of ICs on
which the rules were tested.

The block-expanding rules evolved by the GA do not count as sophisticated ex-
amples of computation in CAs: all the computation is done locally in identifying and
then expanding a “sufficiently large” block. Under F100 these strategies obtained fit-
nesses between 0.9 and 1.0 for different sets of ICs. A more indicative performance
measure is “unbiased performance”, PN

I (φ), defined as the fraction of I ICs chosen
from an unbiased distribution over ρ on which rule φ produces the correct final pat-
tern after 2.15N time steps. (With an unbiased distribution, most ICs chosen have
ρ ≈ 0.5. These are the hardest cases for any rule to classify.) After each run of the
GA we measured P149

104 for the elite rules in the final generation. The highest measured
P149

104 (φ) for the block-expanding rules was approximately 0.685. The performance of
these rules decreased dramatically for larger N since the size of block to expand was

4

0 Site 149 0 Site 149 0 Site 149 0 Site 149

0

149

T
im

e

0

149

T
im

e

(a) (b) (c) (d)

Figure 1: Space-time diagrams for four different rules discovered by the GA. The top diagrams have

ρ0 < 1/2; the bottom diagrams have ρ0 > 1/2. Fitness increases from (a) to (d). (a) φ1a. (b) φ1b.

(c) φ1c. (d) φ1d. Note that the “grey” pattern in (d) consists of alternating 1s and 0s.

tuned by the GA for N = 149. The second row of Table 1 gives PN
104(φ1a) for three

values of N . It is interesting to note that one naive solution to the ρc = 1/2 task—the
r = 3 “majority” rule, in which the new state of each cell is decided by a majority
vote among the 2r + 1 cells in the neighborhood—has P149

104 = 0 for all three values of
N (first row of Table 1).

Mitchell, Crutchfield, and Hraber [9] described in detail the typical progression of
the GA through the four epochs of innovation and the evolutionary mechanisms by
which each new strategy was discovered on the way to a block-expanding CA. They
also discussed a number of impediments that tended to keep the GA from discovering
fitter, more general strategies; primary among them was the GA’s breaking of the
ρc = 1/2 task’s symmetries in early generations for short-term gain by specializing
exclusively on 1-block or 0-block expansion. On most runs this symmetry breaking
was an important factor in preventing the GA from progressing to more sophisticated
rules.

4.2 The New Strategies Discovered by the GA

Despite the impediments discussed in [9] and the unsophisticated rules evolved on
most runs, on seven different runs the GA discovered rules with significantly higher
performance and more sophisticated computational properties. Three such rules (each
from a different run) are illustrated in Figures 1(b)–(d). For each of these rules—-
φ1b, φ1c, and φ1d—F100 was between 0.9 and 1.0, depending on the set of 100 ICs.
Some PN

104 values for these three rules are given in Table 1. As can be seen, P149
104 is

significantly higher for these rules than for the typical block-expanding rule φ1a. In
addition, the performances of φ1c and φ1d remain relatively constant as N is increased,
indicating a marked improvement in generalization.

Why does φ1d, for example, perform relatively well on the ρc = 1/2 task? In
Figure 1(d) it can be seen that, although the patterns eventually converge to fixed
points, there is a transient phase during which a spatial and temporal transfer of

5

information about the density in local regions takes place. This local information
interacts with other local information to produce the desired final state. Roughly
φ1d successively classifies “local” densities with a locality range that increases with
time. In regions where there is some ambiguity, a “signal” is propagated. This is
seen either as a checkerboard pattern propagated in both spatial directions or as a
vertical black-to-white boundary. These signals indicate that the classification is to
be made at a larger scale. Note that regions centered about each signal locally have
ρ = ρc. The consequence is that the signal patterns can propagate, since the density
of patterns with ρ = ρc is neither increased nor decreased under the rule.

The discovery of these rules was first reported in [4] and methods for understanding
their emergent logic were sketched there. In the following we first briefly review the
computational mechanics approach to CAs. Using these methods, we then analyze
the strategy of φ1d—the rule with highest PN

104 found in the 300 runs—and describe
the generational progression by which it was evolved under the GA.

4.3 Computational Mechanics of Cellular Automata

Like many natural processes that are spatially-extended, cellular-automata configu-
rations often organize over time into spatial regions that are dynamically homoge-
neous. Sometimes in space-time diagrams these regions are obvious to the eye as
“domains”: regions in which the same “pattern” appears. In order to understand this
phenomenon, and also to deal with cases in which human observation is inadequate
or undesired, the notion of “domain” was formalized in [7] by adapting computation
theory to CA dynamics. There, a domain’s “pattern” is described using the minimal
deterministic finite automaton (DFA) that accepts all and only those configurations
that appear in the domain. Such domains are called “regular” since their configura-
tions are members of the regular language recognized by the DFA. More precisely, a
regular domain Λ is a set of configurations that is temporally invariant (Λ = φ(Λ))
and whose DFA has a single recurrent set of states that is strongly connected.

Regular domains play a key role in organizing both the dynamical behavior and
the information-processing properties of CA. Once a CA’s regular domains have been
detected, for example, nonlinear filters can be constructed to filter them out, leaving
just the deviations from those regularities. The resulting filtered space-time diagram
reveals the propagation of domain “walls”. If these walls remain spatially-localized
over time, then they are called “particles” [3]. Particles are one of the main mech-
anisms for carrying information over long space-time distances. This information
might indicate, for example, the result of some local processing which has occurred
at an early time. In this way particles can serve as signals. Logical operations on
the information they contain are performed when the particles interact. The collec-
tion of domains, domain walls, particles, and particle interactions for a CA represents
the basic information-processing elements embedded in the CA’s behavior—the CA’s
“intrinsic” computation.

4.4 The GA Discovery of Particle-Based Computation

In this section we apply the computational mechanics framework sketched above to
describe in detail the route by which the GA discovered φ1d.

Figure 2(a) plots best fitness (F100) in the population versus generation for the
first 50 generations of the run in which φ1d was discovered. It can be seen that,
before the GA discovers high fitness rules, the fitness of the best CA rule increases

6

b
e

s
t

 f
it
n

e
s
s

generations

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50

φ
2b

φ
2c

φ
2e

(a)

φ
2f

φ
2d

(e) (gen. 16)
2e

φ

0 Site 149

(f) φ (gen. 18)
2f

0 Site 149

(c) φ (gen. 12)
2c

0 Site 149

(b) φ (gen. 8)
2b

0 Site 149

(d) φ (gen. 13)
2d

0 Site 149

0

T
im

e

149

Figure 2: (a) Plot of the fitness of the most fit rule in the population versus generation in the run

producing φ1d. The arrows in the plot indicate the generations in which the GA discovered each new

significantly improved strategy. (b)–(f) Space-time diagrams illustrating the behavior of the best

rule at each of the five generations marked in (a).

in rapid jumps after periods of relative stasis. Qualitatively, the rise in performance
can be divided into several “epochs”, each beginning with the discovery of a new,
significantly improved strategy for performing the ρc = 1/2 task. In Figure 2(a), the
initial generations of these epochs are labeled with the name of the best rule found at
that generation.

For the first seven generations, the highest F100 value equal to 0.5 is achieved by
a number of rules that map almost all neighborhoods to the same symbol. Rules
in which almost all neighborhoods map to 1 (0) quickly settle to the all 1s (all 0s)
configuration irrespective of ρ0. Such rules are able to correctly classify exactly half
of the ICs and thus have a fitness of 0.5.

In generation 8, a new rule (φ2b) is discovered, resulting in significantly better
performance (F100 ≈ 0.61). Its strategy is illustrated by the space-time diagram in
Figure 2(b). φ2b was created by a crossover between rule that maps most neighbor-
hoods to 0 and a rule that maps most neighborhoods to 1. A closer inspection of the
behavior of this rule reveals that it always relaxes to the all 1s configuration except
when ρ0 is close to zero, in which case it relaxes to the all 0s configuration, yielding
F100 > 0.5. An analysis of particle interactions explains φ2b’s behavior. After a very
short transient phase, φ2b essentially creates three regular domains: 1∗ (denoted B),

7

0∗ (denoted W), and (10)∗
⋃

(01)∗ (denoted #). This behavior can be understood
readily from φ2b’s rule table: out of the 28 neighborhood patterns with five or more 1s
(0s), 27 (22) result in an output bit of 1 (0). Therefore in any IC, small “islands” of
length 1, 2 or 3 containing only 1s or 0s in are quickly eliminated, resulting in locally
uniform domains. To maintain a # domain, the neighborhood patterns (1010101)
and (0101010) must produce a 1 and 0 respectively, as is done in φ2b.

After the B, W , and # domains are created, the subsequent behavior of φ2b

is primarily determined by the interaction of the particles representing the domain
walls. φ2b has three domains and six particles, one for each domain wall type:
PBW , PWB, PB#, P#B, PW#, and P#W . The velocities of these particles (i.e., the slope
of the domain wall corresponding to the particle) are 2.0, 1.0, 3.0, 1.0, −1.0, and
−1.0 respectively. There are two annihilative interactions: PBW + PWB → ∅B and
PB# + P#B → ∅B (where ∅B indicates a B domain with no particles). Two interac-
tions are reactive: PBW +PW# → PB# and PB#+P#W → PBW . All these interactions
can be seen in Figure 2(b). Several particle interactions never occur as a result of the
direction and magnitude of the particle velocities. For example, the particles P#W

and PW# have the same velocity and never interact. Similarly, although P#B moves
in the same direction as PBW , the former has only half the speed of the latter, and the
two particles never have the chance to interact. For similar reasons, the # domain
and its four associated particles PB#, P#B, PW#, and P#W play no appreciable role in
the determination of the CA’s final configuration. This is easily verified by comple-
menting the output bit of one of the two neighborhood patterns necessary to maintain
the # domain and observing that very little change occurs in the rule’s fitness.

Thus, for this epoch we can focus exclusively on the boundaries between the B and
the W regions. Because PWB’s velocity is less than that of PBW , PBW soon catches
up with PWB. The interaction of these two walls results in a B domain, eliminating
the W domain. Therefore when an island of W is surrounded by B domains, the size
of the former shrinks until it vanishes from the lattice. Conversely, when an island
of B is surrounded by W domains, the B domain grows until it occupies the whole
lattice. However, an island of B must occupy at least five adjacent cells in order to
expand. Thus if any initial configuration contains a block of five 1s or results in the
creation of such a block when the rule is applied over subsequent time steps, then the
CA inevitably relaxes to the all 1s configuration. Otherwise it relaxes to the all 0s
configuration.

The explanation of φ2b’s behavior in terms of particles and particle interactions
may seem a complicated way to describe simple behavior. But the usefulness of the
computational mechanics framework for explicating computation will become clearer
as the space-time behavior becomes more complex.

The next four generations produce no new epochs (i.e., no significantly new strate-
gies) but a modest improvement in the best fitness. During this period three changes
in behavior were observed, all of which appear in the generation 12 rule φ2c (see
Figure 2(c)). First, for an island of B to expand and take over the whole lattice,
it now must contain at least seven cells. Since a seven-cell island of B is less likely
than a five-cell island in low-ρ ICs, more low-ρ ICs are correctly classified. Second,
the velocity of P#W is modified from -1.0 to -3.0, allowing the annihilative reaction:
PW# + P#W → ∅W . Thus, unlike in φ2b, an island of # domain when surrounded by
the W domain cannot persist indefinitely. Third, the velocity of PBW is decreased
to 1.5. Since the velocity of PWB remains constant at 1.0, it now takes longer to

8

eliminate W domains. (This last modification do not result in a significant change in
fitness.) Unlike the innovation that resulted in φ2b, where crossover played the major
role, we find that these modifications (and the ones that follow) are primarily due to
the mutation operator.

In generation 13, a new epoch begins with the discovery of φ2d, with a sharp jump
in F100 to 0.82 corresponding to a significant innovation. φ2d’s behavior is illustrated
in Figure 2(d). Here we use # to refer to an interesting variation of the checkerboard
((10)∗

⋃
(01)∗) domain. While the velocity of PWB is held constant at 1.0, PBW

now moves with velocity 0.5 in the same direction. Since PBW cannot catch up with
PWB, an island of W can now expand when surrounded by B, with the condition
that W has to be at least six cells in length. This means that the rule still defaults
to the all 1s configuration, but if there is a sufficiently large island of W in a low-ρ
IC (a fairly likely event), the W island expands and the IC is correctly classified.
However, misclassification is now possible for ρ0 > 0.5 due to the (less likely) chance
formation of an island of W of length six. This aspect of the strategy is similar to the
“block-expanding” strategy.

In addition to the above changes, a new interaction is allowed to take place for
the first time. The decrease in velocity of the particle PBW to 0.5 not only results in
the removal of small islands of B but it also allows P#B to interact with PBW . The
interaction results in the particle P#W with a velocity of -3.0, creating the necessary
symmetry with PB#, which has velocity +3.0. From this juncture the # domain and
its four associated particles play a major role in determining the fitness of a CA rule.

After a brief stasis over three generations, two developments result in the improved
performance seen in φ2e, the best rule in generation 16 (F100 = 0.89). First, PWB now
spontaneously creates a new # domain with two boundaries, one on each side: PW#

moving to the left with a velocity of -1.0, and P#B moving to the right with a velocity
of 1.0 (Figure 2(e)). Since PW# is moving to the left and can interact with right
moving PBW to create PB#, the rule will stop the growth of W domains of length
more than 6 cells when surrounded by larger regions of B. This prevents the “block-
expanding strategy” error of expanding W blocks when ρ0 > 0.5. This is a major
innovation in using particles to effect non-local computation.

Second, the velocity of PBW is further reduced from 0.5 to reduced to 1/3. How-
ever, an asymmetry still remains: because PBW is moving to the right with a positive
velocity, it takes longer to remove islands of B than to remove islands of W . This
asymmetry is rectified by the discovery of φ2f in generation 18, in which the velocity
of PBW is set to zero (Figure 2(f)), yielding F100 = 0.98. From generation 19 till the
end of the GA run, little change is seen in either the fitness of the best rule in the
population or its behavior. φ2f ’s behavior is almost identical to that of φ1d which was
discovered later in this run.

Interestingly, φ1d’s behavior is very similar to the behavior of the well-known Gacs-
Kurdyumov-Levin (GKL) CA, which was invented to study reliable computation and
phase transitions in one-dimensional spatially-extended systems [6]. As shown in
Table 1, φGKL has higher PN

104 than any rule found by the GA, although φGKL and
φ1d produce the same three domains B,W, #, and also result in identical particles,
particle velocities, and particle interactions. The difference in performance results,
for example, from asymmetries in φ1d not present in φGKL (see [9]); the detailed
differences will be described in future work.

9

5. Conclusion

The results presented here demonstrate how evolution can engender emergent com-
putation in a spatially-extended system. The GA found CAs that used particle-based
computation to achieve performance nearly as high as that of the best human-designed
rule on a density classification task. These discoveries are encouraging, both for using
GAs to model the evolution of emergent computation in nature and for the automatic
engineering of emergent computation in decentralized multicomponent systems. In
previous work, a number of factors have been identified that limited the GA’s per-
formance in our experiments, and suggestions have been made for overcoming these
impediments [9]. Even with these impediments, our GA was able to discover sophis-
ticated CAs reliably, though with a low frequency. We expect that these approaches
will eventually result in evolutionary-computation methods that discover sophisti-
cated particle-based computation for a wide variety of applications. For example, in
work that will be reported elsewhere, the GA discovered CAs that used particle-based
computation to rapidly achieve stable global synchronization between local processors.

Acknowledgements. This research was supported by the Santa Fe Institute, under the
Adaptive Computation and External Faculty Programs, by NSF grant IRI-9320200, and by
the University of California, Berkeley, under contract AFOSR 91-0293.

References

[1] J. P. Crutchfield. The calculi of emergence: Computation, dynamics, and induction. Physica
D, in press.

[2] J. P. Crutchfield (1994). Is anything ever new? Considering emergence. In G. Cowan, D. Pines,
and D. Melzner (editors), Complexity: Metaphors, Models, and Reality, 479-497. Reading, MA:
Addison-Wesley.

[3] J. P. Crutchfield and J. E. Hanson (1993). Turbulent Pattern Bases for Cellular Automata.
Physica D, 69:279-301.

[4] J. P. Crutchfield and M. Mitchell (1994). The Evolution of Emergent Computation. Working
Paper 94-03-012, Santa Fe Institute, Santa Fe, New Mexico.

[5] S. Forrest (1990). Emergent Computation: Self-organizing, collective, and cooperative behavior
in natural and artificial computing networks: Introduction to the Proceedings of the Ninth
Annual CNLS Conference. Physica D, 42:1–11.

[6] P. Gacs (1985). Nonergodic one-dimensional media and reliable computation. Contemporary
Mathematics, 41:125.

[7] J. E. Hanson and J. P. Crutchfield (1992). The attractor-basin portrait of a cellular automaton.
Journal of Statistical Physics, 66(5/6): 1415–1462.

[8] C. G. Langton, C. Taylor, J. D. Farmer, and S. Rasmussen (editors) (1992). Artificial Life II.
Reading, MA: Addison-Wesley.

[9] M. Mitchell, J. P. Crutchfield, and P. T. Hraber. Evolving cellular automata to perform com-
putations: Mechanisms and impediments. Physica D, in press.

[10] M. Mitchell, P. T. Hraber and J. P. Crutchfield (1993). Revisiting the edge of chaos: Evolving
cellular automata to perform computations. Complex Systems, 7:89–130.

[11] N. H. Packard (1988). Adaptation toward the edge of chaos. In J. A. S. Kelso, A. J. Mandell,
and M. F. Shlesinger (editors), Dynamic Patterns in Complex Systems, 293–301. Singapore:
World Scientific.

[12] T. Toffoli and N. Margolus (1987). Cellular automata machines: A new environment for mod-
eling. Cambridge, MA: MIT Press.

[13] S. Wolfram (1986). Theory and applications of cellular automata. Singapore: World Scientific.

10

