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Epochal dynamics� in which long periods of stasis in an evolving population are punctuated by a
sudden burst of change� is a common behavior in both natural and arti�cial evolutionary processes�
We analyze the population dynamics for a class of �tness functions that exhibit epochal behavior
using a mathematical framework developed recently� In the latter the approximations employed
led to a population�size independent theory that allowed us to determine optimal mutation rates�
Here we extend this approach to include the destabilization of epochs due to �nite�population
�uctuations and show that this dynamical behavior often occurs around the optimal parameter
settings for e�cient search� The resulting� more accurate theory predicts the total number of �tness
function evaluations to reach the global optimum as a function of mutation rate� population size�
and the parameters specifying the �tness function� We further identify a generalized error threshold�
smoothly bounding the two�dimensional regime of mutation rates and population sizes for which
evolutionary search operates e�ciently�
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I� DESIGNING EVOLUTIONARY SEARCH

Evolutionary search algorithms are a class of stochas�
tic optimization procedures inspired by biological evolu�
tion� e�g see Refs� ����������
�� a population of candidate
solutions evolves under selection and random �genetic�
diversi�cation operators� Evolutionary search algorithms
have been successfully applied to a diverse variety of opti�
mization problems� see� for example Refs� ���	������ and
references therein� Unfortunately� and in spite of a fair
amount of theoretical investigation� the mechanisms con�
straining and driving the dynamics of evolutionary search
on a given problem are often not well understood�

There are very natural di�culties that are responsible
for this situation� In mathematical terms evolutionary
search algorithms are population�based discrete stochas�
tic nonlinear dynamical systems� In general� the con�
stituents of the search problem� such as the structure of
the �tness function� selection� �nite�population �uctua�
tions� and genetic operators� interact in complicated ways
to produce a rich variety of dynamical behaviors that
cannot be easily understood in terms of the constituents
individually� These complications make a strictly empir�
ical approach to the question of whether and how to use
evolutionary search problematic�

The wide range of behaviors exhibited by nonlinear
population�based dynamical systems have been appreci�
ated for decades in the �eld of mathematical population
genetics� Unfortunately� this appreciation has not led to
a quantitative predictive theory that is applicable to the
problems of evolutionary search� something desired� if
not required� for the engineering use of stochastic search
methods�
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We believe that a general� predictive theory of the dy�
namics of evolutionary search can be built incrementally�
starting with a quantitative analytical understanding of
speci�c problems and then generalizing to more complex
situations� In this vein� the work presented here contin�
ues an attempt to unify and extend theoretical work in
the areas of evolutionary search theory� molecular evolu�
tion theory� and mathematical population genetics� Our
strategy is to focus on a simple class of problems that�
nonetheless� exhibit some of the rich behaviors encoun�
tered in the dynamics of evolutionary search algorithms�
Using analytical tools from statistical mechanics� dynam�
ical systems theory� and the above mentioned �elds we
developed a detailed and quantitative understanding of
the search dynamics for a class of problems that exhibit
epochal evolution� On the one hand� this allows us to
analytically predict optimal parameter settings for this
class of problems� On the other hand� the detailed un�
derstanding of the behavior for this class of problems
provides valuable insights into the emergent mechanisms
that control the dynamics in more general settings of evo�
lutionary search and in other population�based dynami�
cal systems�

In a previous paper� Ref� ��
�� we showed how a de�
tailed dynamical understanding� announced in Ref� ����
and expanded in Ref� ����� can be turned to practical
advantage� Speci�cally� we determined how to set the
mutation rate to reach� in the fewest number of �tness
function evaluations� the global optimum in a wide class
of �tness functions� Due to certain cancellations at the
level of approximation used� the resulting theory lead to
population�size independent predictions�

Here we extend this theory to include additional impor�
tant e�ects� such as the increased search e�ort caused by
the dynamical destabilization of epochs� to be explained
below� which reintroduce the dependence on population
size� The result is a more accurate theory that analyt�
ically predicts the total number of �tness function eval�
uations needed on average for the algorithm to discover
the global optimum of the �tness function�

In addition� we develop a detailed understanding of the
operating regime in parameter space for which the search
is performed most e�ciently� We believe this will provide
useful guidance on how to set search algorithm parame�
ters for more complex problems� In particular� our theory
explains the marginally stable behavior of the dynamics
when the parameters are set to minimize search e�ort�
Most simply put� the optimal parameter setting occurs
when the dynamics is as stochastic as possible without
corrupting information stored in the population about
the location of the current best genotypes� The results
raise the general question of whether it is desirable for
optimal search to run in dynamical regimes that are a
balance of stability and instability� The mechanisms we
identify suggest how this balance is� in fact� useful�

II� ROYAL STAIRCASE FITNESS FUNCTIONS

Choosing a class of �tness functions to analyze is a
delicate compromise between generality� mathematical
tractability� and the degree to which the class is rep�
resentative of problems often encountered in evolution�
ary search� A detailed knowledge of the �tness function
is very atypical of evolutionary search problems� If one
knew the �tness function in detail� one would not have to
run an evolutionary search algorithm to �nd high �tness
solutions in the �rst place� The other extreme of assum�
ing complete generality� however� cannot lead to enlight�
ening results either� since averaged over all problems� all
optimization algorithms perform equally well �or badly��
see Ref� ����� We thus focus on a speci�c subset of �tness
functions� somewhere between these extremes� that we
believe at least have ingredients typically encountered in
evolutionary search problems and that exhibit widely ob�
served dynamical behaviors in both natural and arti�cial
evolutionary processes�
In our preceding paper� Ref� ��
�� we justi�ed in some

detail our particular choice of �tness function both in
terms of biological motivations and in terms of optimiza�
tion engineering issues� In short� many biological sys�
tems and optimization problems have highly degenerate
genotype�to�phenotype maps� that is� the mapping from
genetic speci�cation to �tness is a many�to�one function�
Consequently� the number of di�erent �tness values that
genotypes can take is much smaller than the number of
di�erent genotypes�
Additionally� due to the many�to�one mapping and

since genotype spaces are generally of very high dimen�
sionality� the genotype space tends to break into net�
works of �connected� sets of equal��tness genotypes that
can reach each other via elementary genetic variation
steps such as point mutations� These connected subsets
of iso�tness genotypes are generally referred to as �neu�
tral networks� in molecular evolution theory� see Refs�
��
�����	�������� This leads us to posit that the geno�
type space for general search problems decomposes into
a number of such neutral networks� We also assume that
higher �tness networks are smaller in volume than low
�tness networks� Finally� we assume that from any neu�
tral network there exist connections to higher �tness net�
works such that� taken as a whole� the �tness landscape
has no local optima other than the global optimum�
Under these assumptions� genotype space takes on a

particular type of architecture� �subbasins� of the neu�
tral networks are connected by �portals� leading between
them and so to higher or lower �tness� Stated in the sim�
plest terms possible� the evolutionary population dynam�
ics then becomes a type of di�usion constrained by this
architecture� For example� individuals in a population
di�use over neutral networks until a portal to a network
of higher �tness is discovered and the population moves
onto this network�
In order to model the behavior associated with the
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subbasin�portal architecture� we de�ned the class of
Royal Staircase �tness functions that capture the essen�
tial elements sketched above� Importantly� this class of
�tness functions is simple enough to admit a fairly de�
tailed quantitative mathematical analysis of the associ�
ated epochal evolutionary dynamics�
The Royal Staircase �tness functions are de�ned as

follows�

�� Genomes are speci�ed by binary strings s �
s�s� � � � sL� si � f
� �g� of length L � NK�

�� Reading the genome from left to right� the number
I�s� of consecutive �s is counted�

�� The �tness f�s� of string s with I�s� consecutive
ones� followed by a zero� is f�s� � � � bI�s��Kc�
The �tness is thus an integer between � and N ���

Four observations are in order�

�� The �tness function has two parameters� the num�
berN of blocks and the numberK of bits per block�
Fixing them determines a particular optimization
problem or �tness �landscape��

�� There is a single global optimum� the genome
s � �L�namely� the string of all �s�with �tness
f�s� � N � ��

�� The proportion �n of genotype space �lled by
strings of �tness n is given by�

�n � ��K�n���
�
�� ��K

�
� ���

for n � N � Thus� high �tness strings are exponen�
tially more rare than low �tness strings�

�� For each block of K bits� the all��s pattern is the
one that confers increased �tness on a string� With�
out loss of generality� any of the other �K � � con�
�gurations could have been chosen as the �correct�
con�guration� including di�erent patterns for each
of the N blocks� Furthermore� since the GA here
does not use crossover� arbitrary permutations of
the L bits in the �tness function de�nition leave
the evolutionary dynamics unchanged�

The net result is that the Royal Staircase �tness func�
tions implement the intuitive idea that increasing �tness
is obtained by setting more and more bits in the genome
�correctly�� One can only set correct bit values in sets
of K bits at a time� creating an �aligned� block� and
in blocks from left to right� A genome�s �tness is pro�
portional to the number of such aligned blocks� And
since the �n � ��st block only confers �tness when all n
previous blocks are aligned as well� there is contingency
between blocks� This realizes our view of the underlying
architecture as a set of iso�tness genomes that occur in
nested neutral networks of smaller and smaller volume�
�Cf� Figs� � and � of Ref� ��
���

III� THE GENETIC ALGORITHM

For our analysis of evolutionary search we have chosen
a simpli�ed form of a genetic algorithm �GA� that does
not include crossover and that uses �tness�proportionate
selection� The GA is de�ned by the following steps�

�� Generate a population of M bit strings of length
L � NK with uniform probability over the space
of L�bit strings�

�� Evaluate the �tness of all strings in the population�

�� Stop� noting the generation number topt� if a string
with optimal �tness N�� occurs in the population�
Else� proceed�

�� Create a new population of M strings by select�
ing� with replacement and in proportion to �tness�
strings from the current population�

	� Mutate� i�e� change� each bit in each string of the
new population with probability q�

�� Go to step ��

When the algorithm terminates there have been E �
Mtopt �tness function evaluations�
In Ref� ��
� we motivated our excluding crossover and

discussed at some length the reasons that crossover�s role
in epochal evolution is not expected to be signi�cant due
to population convergence e�ects�
This GA e�ectively has two parameters� the mutation

rate q and the population size M � A given optimization
problem is speci�ed by the �tness function in terms of N
and K� Stated most prosaically� then� the central goal of
the following analysis is to �nd those settings of M and
q that minimize the average number hEi of �tness func�
tion queries for given N and K required to discover the
global optimum� Our approach is to develop analytical
expressions for E as a function of N � K� M � and q and
then to study the search�e�ort surface E�q�M� at �xed
N and K� Before beginning the analysis� however� it is
helpful to develop an appreciation of the basic dynami�
cal phenomenology of evolutionary search on this class of
�tness functions� Then we will be in a position to lay out
the evolutionary equations of motion and analyze them�

IV� OBSERVED POPULATION DYNAMICS

The typical behavior of a population evolving on a �t�
ness �landscape� of connected neutral networks� such as
de�ned above� alternates between long periods �epochs�
of stasis in the population�s average �tness and sudden
increases �innovations� in the average �tness� �See� for
example� Fig� � of Ref� ���� and Fig� � of Ref� ��
���
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We now brie�y recount the experimentally observed
behavior of typical Royal Staircase GA runs in which the
parameters q andM are set close to their optimal setting�

The reader is referred to Ref� ���� for a detailed discus�
sion of the dynamical regimes this type of GA exhibits
over a range of di�erent parameter settings�
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FIG� 	� Examples of the Royal Staircase GA population dynamics with di�erent parameter settings� The four plots show
best �tness in the population �upper lines
 and average �tness in the population �lower lines
 as a function of time� measured
in generations� The �tness function and GA parameters are given in each plot� In each case we have chosen q and M in the
neighborhood of their optimal settings �see later
 for each of the four values of N and K�

Figure � illustrates the GA�s behavior at four di�erent
parameter settings� Each individual �gure plots the best
�tness in the population �upper lines� and the average
�tness hfi in the population �lower lines� as a function of
the number of generations� Each plot is produced from a
single GA run� In all of these runs the average �tness hfi
in the population goes through stepwise changes early in
the run� alternating epochs of stasis with sudden innova�
tions in �tness� Later in each run� especially for those in
Figs� ��b� and ��d�� hfi tends to have higher �uctuations
and the epochal nature of the dynamics becomes unclear�

In the GA runs the population starts out with strings
that only have relatively low �tness� say �tness n �in all
four plots of Fig� � we have n � ��� Selection and mu�
tation then establish an equilibrium in the population
until a string aligns the nth block� and descendants of

this string with �tness n�� spread through the popula�
tion� A new equilibrium is then established until a string
of �tness n � � is discovered and so on� until �nally� a
string of �tness N � � is discovered�

Notice that hfi roughly tracks the epochal behavior of
the best �tness in the population� Every time a newly
discovered higher �tness string has spread through the
population� hfi reaches a new� higher equilibrium value
around which it �uctuates� As a run progresses to higher
epochs� hfi tends to have higher �uctuations and the
epochal nature of the dynamics is obscured� This is a re�
sult of the fact that for the highest epochs the di�erence
between hfi in consecutive epochs is smaller than the av�
erage �tness �uctuations induced by the �nite�population
sampling� see Ref� �����

Notice� too� that often the best �tness shows a series of
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brief jumps to higher �tness during an epoch� When this
occurs strings of higher �tness are discovered but� rather
than spreading through the population� are lost within a
few generations�
For each of the four settings of N and K we have cho�

sen the values of q and M such that the average total
number hEi of �tness function evaluations to reach the
global optimum for the �rst time is minimal� Thus� the
four plots illustrate the GA�s typical dynamics close to
optimal �q�M��parameter settings�
Despite what appears at �rst blush to be relatively

small variations in �tness function and GA parameters�
there is a large range� almost a factor of �
� in times to
reach the global optimum across the runs� Thus� there
can be a strong parameter dependence in search times� It
also turns out that the standard deviation � of the mean
total number hEi of �tness function evaluations is of the
same order as hEi� �See Table I�� Thus� there are large
run�to�run variations in the time to reach the global op�
timum� This is true for all parameter settings with which
we experimented� of which only a few are reported here�
Having addressed the commonalities between runs� we

now turn to additional features that each illustrates� Fig�
ure ��a� shows the results of a GA run with N � � blocks
of K � � bits each� a mutation rate of q � 
�

	� and a
population size of M � �

� During the epochs� the best
�tness in the population hops up and down several times
before it �nally jumps up and the new more��t strings
stabilize in the population� This transition is re�ected in
the average �tness also starting to move upward� In this
particular run� it took the GA approximately �����
� �t�
ness function evaluations ���

 generations� to discover
the global optimum for the �rst time� Over 	

 runs� the
GA takes on average 	�� � �
� �tness function evalua�
tions to reach the global optimum for these parameters�
The inherent large per�run variation means in this case
that some runs take less than �
� function evaluations
and that others take many more than �
��
Figure ��b� plots a run with N � � blocks of length

K � � bits� a mutation rate of q � 
�
��� and a popula�
tion size ofM � �	
� The GA discovered the global opti�
mum after approximately ���� �
� �tness function eval�
uations ���	 generations�� For these parameters� the GA
uses approximately 	�	� �
� �tness function evaluations
on average to reach the global �tness optimum� Notice
that the global optimum is only consistently present in
the population between generations 	�
 generation 	�
�
After that� the global optimum is lost again until after
generation �

� As we will show� this is a typical fea�
ture of the GA�s behavior for parameter settings close to
those that give minimal hEi� The global �tness optimum
often only occurs in relatively short bursts after which it
is lost again from the population� Notice also that there
is only a small di�erence in hfi depending whether the
best �tness is either � or � �the optimum��
Figure ��c� shows a run for a small number �N � ��

of large �K � �
� blocks� The mutation rate is q � 
�
��
and the population size is againM � �	
� As in the three

other runs we see that hfi goes through epochs punctu�
ated by rapid increases in hfi� We also see that the best
�tness in the population jumps several times before the
population �xes on a higher �tness string� The GA takes
about �����
� �tness function evaluations on average to
discover the global optimum for these parameter settings�
In this run� the GA �rst discovered the global optimum
after ��� � �
� �tness function evaluations� Notice that
the optimum never stabilized in the population�
Finally� Fig� ��d� shows a run with a large number

�N � �
� of small �K � 	� blocks� The mutation rate is
q � 
�

� and the population size is M � �

� Notice
that in this run� the best �tness in the population alter�
nates several times between �tnesses �� �� and �
 before
it reaches ��eetingly� the global �tness optimum of ���
Quickly after it has discovered the global optimum� it
disappears again and the best �tness in the population
largely alternates between � and �
 from then on� It is
notable that this intermittent behavior of the best �tness
is barely discernible in the behavior of hfi� It appears to
be lost in the �noise� of the average �tness �uctuations�
The GA takes about ��� � �
� �tness function evalua�
tions on average at these parameter settings to reach the
global optimum� while in this particular run the GA took
���� �
� �tness function evaluations ����
 generations�
to brie�y reach the optimum for the �rst time�

V� STATISTICAL DYNAMICS OF

EVOLUTIONARY SEARCH

In Refs� ���� and ���� we developed the statistical dy�
namics of genetic algorithms to analyze the behavioral
regimes of a GA searching the Royal Road �tness func�
tions� which are closely related to the Royal Staircase
�tness functions just de�ned� The analysis here builds
on those results and� additionally� is a direct extension
of the optimization analysis and calculations in Ref� ��
��
We brie�y review the essential points from these previ�
ous papers� We refer the reader to Ref� ���� for a detailed
description of the similarities and di�erences of our the�
oretical approach with other theoretical approaches such
as the work by Pru gel�Bennett� Rattray� and Shapiro�
Refs� ��	����� the di�usion equation methods developed
by Kimura� Refs� �������� and the quasispecies theory�
Ref� ����
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TABLE I� Mean hEi and standard deviations � of the ex�
pected number of �tness function evaluations for the Royal
Staircase �tness functions and GA parameters shown in the
runs of Fig� 	� The estimates were made from �

 GA runs�

	



A� Macrostate Space

Formally� the state of a population in an evolutionary
search algorithm is only speci�ed when the frequency of
occurrence of each of the �L genotypes is given� Thus� the
dimension of the corresponding microscopic state space is
very large� One immediate consequence is that the evo�
lutionary dynamic� on this level� is given by a stochastic
�Markovian� operator of size O��L � �L�� Generally� us�
ing such a microscopic description makes analytical and
quantitative predictions of the GA�s behavior unwieldy�
Moreover� since the practitioner is generally interested in
the dynamics of some more macroscopic statistics� such
as best and average �tness� a microscopic description is
uninformative unless an appropriate projection onto the
desired macroscopic statistic is found�
With these di�culties in mind� we choose to describe

the macroscopic state of the population by its �tness dis�

tribution� denoted by a vector �P � �P�� P�� � � � � PN����
where the components 
 � Pf � � are the propor�
tions of individuals in the population with �tness f �

�� �� � � � � N � �� We refer to �P as the phenotypic quasis�
pecies� following its analog in molecular evolution theory�

see Refs� ������ Since �P is a distribution� it is normalized�

N��X
f	�

Pf � �� ���

The average �tness hfi of the population is given by�

hfi �
N��X
f	�

fPf � ���

B� The Evolutionary Dynamic

The �tness distribution �P does not uniquely specify
the microscopic state of the population� that is� there
are many microstates with the same �tness distribution�
An essential ingredient of the statistical dynamics ap�
proach is to assume a maximum entropy distribution of
microstates conditioned on the macroscopic �tness distri�
bution� Note that our approach shares a focus on �tness
distributions and maximum entropy methods with that
of Pru gel�Bennett� Rattray� and Shapiro� Refs� ��	�����
In our case� the maximum entropy assumption entails

that� given a �tness distribution �P �t� at generation t�
each microscopic population state with this �tness distri�
bution is equally likely to occur� Given this assumption�
we can construct a generation operator G that acts on
the current �tness distribution to give the expected �tness
distribution of the population at the next time step� �See
�P �t�� G��P �t�� illustrated in Fig� ��� In the limit of in��
nite populations� which is similar to the thermodynamic
limit in statistical mechanics� this operator G maps the

current �tness distribution �P �t� deterministically to the

�tness distribution �P �t � �� at the next time step� that
is�

�P �t� �� � G��P �t�� � ���

Simulations indicate that for very large populations
�M � �L� the dynamics on the level of �tness distri�
butions is indeed deterministic and given by the above
equation� thereby justifying the maximum entropy as�
sumption in this limit�
The operator G consists of a selection operator S and

a mutation operator M�

G �M � S� �	�

The selection operator encodes the �tness�level e�ect of
selection on the population� and the mutation operator�
the �tness�level e�ect of mutation� Appendixes A and
B review the construction of these operators for our GA
and the Royal Staircase �tness functions�
For now� we note that the in�nite population dynam�

ics can be obtained by iteratively applying the operator

G to the initial �tness distribution �P �
�� Thus� the so�
lutions to the macroscopic equations of motion� in the
limit of in�nite populations� are formally given by

�P �t� � G�t���P �
�� � ���

Recalling Eq� ���� it is easy to see that the initial �tness

distribution �P �
� is given by�

Pn�
� � ��K�n���
�
�� ��K

�
� � � n � N � ���

and

PN���
� � ��KN � ���

As shown in Refs� ���� and ����� despite G�s nonlinearity�
it can be linearized such that the tth iterate G�t� can
be directly obtained by solving for the eigenvalues and
eigenvectors of the linearized version �G� This leads to a
closed�form solution of the in�nite�population dynamics
speci�ed by Eq� ����

C� Finite Population Sampling

For large �M � �L� and in�nite populations the dy�
namics of the �tness distribution is qualitatively very
di�erent from the behavior shown in Fig� �� hfi in�
creases smoothly and monotonically to an asymptote
over a small number of generations� That is� there are
no epochs� The reason is that for an in�nite popula�
tion� all genotypes are present in the initial population�
Instead of the evolutionary dynamics discovering �tter
strings over time� it essentially only expands the propor�
tion of globally optimal strings already present in the
initial population at t � 
� In spite of the qualitatively
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di�erent dynamics for large populations� we showed in
Ref� ���� that the �in�nite population� operator G is the
essential ingredient for describing the �nite�population
dynamics with its epochal dynamics as well�
There are two important di�erences between the

in�nite�population dynamics and that with �nite popu�
lations� The �rst is that with �nite populations the com�
ponents Pn cannot take on continuous values between 

and �� Since the number of individuals with �tness n in
the population is necessarily an integer� the values of Pn
are quantized in multiples of ��M � Thus� the space of
allowed �nite population �tness distributions turns into
a regular lattice in N �� dimensions with a lattice spac�
ing of ��M within the simplex speci�ed by normalization
�Eq� �����
Second� due to the sampling of members in the �nite

population� the dynamics of the �tness distribution is no
longer deterministic� In general� we can only determine

the conditional probabilities Pr� �Qj�P � that a given �tness

distribution �P leads to another �Q � �Q�� � � � � QN��� in
the next generation�

P
→

G(P)
→

Pr(Q|P)
→→ ∝1/M

FIG� �� Illustration of the stochastic dynamics involved in
going from one generation to the next starting with �nite pop�
ulation �P � moving to the next �expected
 population G��P ��
and then sampling to obtain the distribution Pr� �Qj�P � of ��
nite populations at the next time� The width of the latter
distribution is inversely proportional to the population size
M � Note that the underlying state space is a discrete lattice
with spacing 	�M �

It turns out that the probabilities Pr� �Qj�P � are given

by a multinomial distribution with mean G��P ��

Pr� �Qj�P � � M !

N��Y
n	�

�
Gn��P �

�mn
mn!

� ���

where Qn � mn�M � with 
 � mn � M integers� �The
stochastic e�ects of �nite sampling are illustrated in Fig�

��� For any �nite�population �tness distribution �P the
�in�nite population� operator G gives the GA�s average

dynamics over one time step� since by Eq� ��� the ex�

pected �tness distribution at the next time step is G��P ��

Note that the components Gn��P � need not be multiples

of ��M � Therefore� the actual �tness distribution �Q at

the next time step is not G��P �� but is instead one of the
allowed lattice points in the �nite�population state space�

Since the variance around the expected distributionG��P �

is proportional to ��M � �Q tends to be one of the lattice

points close to G��P ��

D� Epochal Dynamics

For �nite populations� the expected change hd�P i in the
�tness distribution over one generation is given by�

hd�P i � G��P �� �P � ��
�

Assuming that some component hdPii is much smaller
than ��M � the actual change in component Pi is likely to
be dPi � 
 for a long succession of generations� That is�
if the size of the ��ow� hdPii in some direction i is much
smaller than the lattice spacing ���M� for the �nite pop�
ulation� we expect the �tness distribution to not change
in direction ��tness� i�
In Refs� ���� and ���� we showed this is the mechanism

by which �nite populations cause epochal dynamics� For
the Royal Staircase �tness functions� we have that when�
ever �tness n is the highest in the population� such that
Pi � 
 for all i � n� the rate at which higher �tness
strings are discovered is very small� hdPii � ��M for all
i � n and population size M not too large� A period
of stasis �an evolutionary epoch� thus corresponds to the
time the population spends before it discovers a higher
�tness string� More formally� each epoch n corresponds
to the population being restricted to a region in the n�
dimensional lower��tness subspace consisting of �tnesses
� to n of the macroscopic state space� Stasis occurs be�
cause the �ow out of this subspace is much smaller than
the �nite�population induced lattice spacing�
As the experimental runs of Fig� � illustrated� each

epoch in the average �tness is associated with a �typi�
cally� constant value of the best �tness in the popula�
tion� More detailed experiments reveal that not only is
hfi constant on average during the epochs� in fact the en�

tire �tness distribution �P �uctuates in an approximately
Gaussian way around some constant �tness distribution
�Pn during the epoch n�the generations when n is the
highest �tness in the population�
As was shown in Ref� ����� each epoch �tness distri�

bution �Pn is the unique �xed point of the operator G
restricted to the n�dimensional subspace of strings with
� � f � n� That is� if Gn is the projection of the opera�
tor G onto the n�dimensional subspace of �tnesses from
� up to n� then we have�

Gn��Pn� � �Pn � ����

By Eq� ���� then� the average �tness fn in epoch n is
given by�

�



fn �

nX
j	�

jPn
j � ����

Thus� the �tness distributions �Pn during epoch n are ob�
tained by �nding the �xed point of G restricted to the
�rst n dimensions of the �tness distribution space� We
will pursue this further in the next section�
To summarize at this point� the statistical dynamics

analysis is tantamount to the following qualitative pic�
ture� The global dynamics can be viewed as an incre�
mental discovery of successively more �macroscopic� di�
mensions of the �tness distribution space� Initially� only
strings of low �tness are present in the initial population�
The population stabilizes on the epoch �tness distribu�

tion �Pn corresponding to the best �tness n in the initial
population� The �tness distribution �uctuates around

the n�dimensional vector �Pn until a string of �tness n��
is discovered and spreads through the population� The
population then settles into �n � ���dimensional �tness

distribution �Pn�� until a string of �tness n�� is discov�
ered� and so on� until the global optimum at �tness N��
is found� In this way� the global dynamics can be seen
as stochastically hopping between the di�erent epoch dis�

tributions �Pn� unfolding a new macroscopic dimension of
the �tness distribution space each time a higher �tness
string is discovered�
Whenever mutation creates a string of �tness n � ��

this string may either disappear before it spreads� seen
as the transient jumps in best �tness in Fig� �� or it
may spread� leading the population to �tness distribution
�Pn��� We call the latter process an innovation� Through
an innovation� a new �macroscopic� dimension of �tness
distribution space becomes stable� Fig� � also showed
that it is possible for the population to fall from epoch
n �say� down to epoch n � �� This happens when� due
to �uctuations� all individuals of �tness n are lost from
the population� We refer to this as a destabilization of
epoch n� Through a destabilization� a dimension can� so
to speak� collapse� For some parameter settings� such as
shown in Figs� ��a� and ��c�� this is very rare� In these
cases� the time for the GA to reach the global optimum is
mainly determined by the time it takes to discover strings
of �tness n � � in each epoch n� For other parameter
settings� however� such as in Figs� ��b� and ��d�� the
destabilizations play an important role in how the GA
reaches the global optimum� In these regimes� destabi�
lization must be taken into account in calculating search
times� This is especially important in the current setting
since� as we will show� the optimized GA often operates
in this type of marginally stable parameter regime�

VI� QUASISPECIES DISTRIBUTIONS AND

EPOCH FITNESS LEVELS

During epoch n the quasispecies �tness distribution �Pn

is given by a �xed point of the operator Gn� To obtain

this �xed point we linearize the generation operator by
taking out the factor hfi� thereby de�ning a new operator
�Gn via�

Gn �
�

hfi
�Gn� ����

where hfi is the average �tness of the �tness distribution
that Gn acts upon� see App� A� The operator �Gn is just
an ordinary �linear� matrix operator and the quasispecies

�tness distribution �Pn is nothing other than the princi�
pal eigenvector of this matrix �normalized in probability��
Conveniently� one can show that the principal eigenvalue
fn of �Gn is also the average �tness of the quasispecies
distribution� In this way� obtaining the quasispecies dis�

tribution �Pn reduces to calculating the principal eigen�
vector of the matrix �Gn� Again� the reader is referred to
Ref� �����

The matrices �Gn are generally of modest size� i�e��
their dimension is smaller than the number of blocks N
and substantially smaller than the dimension of geno�
type space� Due to this we can easily obtain numerical
solutions for the epoch �tnesses fn and the epoch quasis�

pecies distributions �Pn� For a clearer understanding of
the functional dependence of the epoch �tness distribu�
tions on the GA�s parameters� however� App� C recounts
analytical approximations to the epoch �tness levels fn
and quasispecies distributions �Pn developed in Ref� ��
��
The result is that the average �tness fn in epoch n�

which is given by the largest eigenvalue� is equal to the
largest diagonal component of the analytical approxima�
tion to �Gn derived in App� C� That is�

fn � n��� q��n���K � ����

The epoch quasispecies is given by�

Pn
i �

��� ��n�n���i

n�n���i � i

i��Y
j	�

n�n�j � j

n�n���j � j
� ��	�

where � � �� � q�K is the probability that a block will
undergo no mutations� For the following� we are actually
interested in the most��t quasispecies component Pn

n in
epoch n� For this component� Eq� ��	� reduces to

Pn
n � �n��

n��Y
j	�

fn � fj
fn � �fj

� ����

where we have expressed the result in terms of of the
epoch �tness levels fj �

VII� MUTATION RATE OPTIMIZATION

In the previous sections we argued that the GA�s be�
havior can be viewed as �occasionally� stochastically hop�
ping from epoch to epoch�when the search discovers a

�



string with increased �tness that spreads in the popula�
tion� Assuming the total time to reach this global op�
timum is dominated by the time the GA spends in the
epochs� Ref� ��
� developed a way to tune the mutation
rate q such that the time the GA spends in an epoch is
minimized� We brie�y review this here before moving on
to the more general theory that includes population�size
e�ects and epoch destabilization�
Optimizing the mutation rate amounts to �nding a

balance between two opposing e�ects of varying muta�
tion rate� On the one hand� when the mutation rate is
increased� the average number of mutations in the un�
aligned blocks goes up thereby increasing the probability
of creating a new aligned block� On the other hand� due
to the increased number of deleterious mutations� the
equilibrium proportions Pn

n of individuals in the highest
�tness class during each epoch n decreases�
In Ref� ��
� we derived an expression for the probability

Cn�� to create� over one generation in epoch n� a string
of �tness n � � that will stabilize by spreading through
the population� This is given by

Cn�� �MPn
n Pa	n��� � ����

where Pa � ��� �����K � �� is the probability of align�
ing a block �App� B� and 	n��� is the probability that
a string of �tness n� � will spread� as opposed to being
lost through a �uctuation or a deleterious mutation� This
latter probability largely depends on the relative average
�tness di�erence of epoch n� � over epoch n� Denoting
this di�erence as


n �
fn�� � fn

fn
�

�
� �

�

n

�
�� �� ����

and using a di�usion equation approximation �see Ref�
������ we found�

	n��� �
�� ��� �

M

��M�n��

�� ��� Pn��
n��

��M�n��
� ����

If Pn��
n�� � ��M � this reduces to a population�size inde�

pendent estimate of the spreading probability

	n 	 �� e���n � ��
�

If one allows for changing the mutation rate between
epochs� one would minimize the time spent in each epoch
by maximizing Cn��� Note that Cn�� depends on q only
through �� The optimal mutation rate in each epoch n is
determined by estimating the optimal value �o of � for
each n� Although the optimal �o can be determined as
the solution of an algebraic equation� we found in Ref�
��
� that it is well approximated by

�o�n� 	 �� �

�n���
�
� ����

For large n this gave the optimal mutation rate as

qo 	 �

�Kn���
�
� n� � � ����

Thus� the optimal mutation rate drops as a power�law
in both n and K� This implies that if one is allowed to
adapt the mutation rate during the run� the mutation
rate should decrease as a GA run progresses so that the
search will �nd the global optimum as quickly as pos�
sible� We pursue this idea more precisely elsewhere by
considering an adaptive mutation rate scheme for a GA�
We now turn to the simpler problem of optimizing

mutation rate for the case of a constant mutation rate
throughout a GA run� In Ref� ��
� we used Eq� ���� to es�
timate the total number E of �tness function evaluations
the GA uses on average before an optimal string of �tness
N � � is found� As a �rst approximation� we assumed
that the GA visits all epochs� that the time spent in in�
novations between them is negligible� and that epochs
are always stable� By epoch stability we that mean it is
highly unlikely that strings with the current highest �t�
ness will disappear from the population through a �uctu�
ation� once such strings have spread� These assumptions
appear to hold for the parameters of Figs� ��a� and ��c��
They may hold even for the parameters of Fig� ��b�� but
they most likely do not for Fig� ��d�� For the parame�
ters of Fig� ��d�� we see that the later epochs �n � ��
and �
� easily destabilize a number of times before the
global optimum is found� Although we will develop a
generalization that addresses this more complicated be�
havior in the next sections� it is useful to work through
the optimization of mutation rate �rst�
The average number Tn of generations that the popu�

lation spends in epoch n is simply ��Cn��� the inverse of
the probability that a string of �tness n�� will be discov�
ered and spread through the population� For a popula�
tion of sizeM � the number of �tness function evaluations
per generation is M � so that the total number En of �t�
ness function evaluations in epoch n is given by MTn�
More explicitly� we have�

En � �Pn
n Pa	n�

�� � ����

That is� the total number of �tness function evaluations
in each epoch is independent of the population size M �
This is due to two facts� given our approximations� First�
the epoch lengths� measured in generations� are inversely
proportional to M � while the number of �tness function
evaluations per generation is M � Second� since for stable
epochs Pn

n � ��M � the probability 	n is also indepen�
dent of population size M � recall Eq� ��
��
The total number of �tness function evaluations E���

to reach the global optimum is simply given by substitut�
ing into Eq� ���� our analytical expressions for Pn

n and
	n� Eqs� ���� and ��
�� and then summing En��� over
all epochs n from � to N � We found that�

E��� �

NX
n	�

�

Pa	n���

n��Y
i	�

n�n�i�� � i

n�n�i � i
� ����

�



Note that in the above equation 	N � � by de�nition
because the algorithm terminates as soon as a string of
�tness N � � is found� That is� strings of �tness N � �
need not spread through the population� The optimal
mutation rate for an entire run is obtained by minimiz�
ing Eq� ���� with respect to ��
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FIG� �� Average total number hEi of �tness function eval�
uations as a function of mutation rate q� from the theory
�dashed
� Eq� ���
� and from experimental estimates �solid
�
The �tness function parameter settings are N � � blocks of
lengthK � 	
 bits� The mutation rate runs from q � 
�

	 to
q � 
�
��� Experimental data points are estimates over ��

runs� The experimental curves show four di�erent population
sizes� M � �
� M � 	�
� M � ��
� and M � ��
�

Figure � shows for N � � blocks of length K � �

bits the dependence of the average total number E�q� of
�tness function evaluations on the mutation rate q� The
dashed line is the theoretical prediction of Eq� ����� while
the solid lines show the experimentally estimated values
of hEi for four di�erent population sizes� Each experi�
mental data point is an estimate obtained from �	
 GA
runs� Figure � illustrates in a compact form the �ndings
of Ref� ��
�� which can be summarized as follows�

�� At �xed population size M � there is a smooth cost
function E�q� as a function of mutation rate q� It
has a single and shallow minimum qo� which is ac�
curately predicted by the theory�

�� The curve E�q� is everywhere concave�

�� The theory slightly underestimates the experimen�
tally obtained hEi�

�� The optimal mutation rate qo roughly occurs in the
regime where the highest epochs are marginally sta�
ble� see Fig� ��

	� For mutation rates lower than qo the experimen�
tally estimated total number of �tness function
evaluations hEi grows steadily and becomes almost
independent of the population size M � �This is
where the experimental curves in Fig� � overlap��
For mutation rates larger than qo the total number
of �tness function evaluations does depend on M �
which is not explained by the theory of Ref� ��
��

�� There is mutational error threshold in q that
bounds the upper limit in q of the GA�s e��
cient search regime� Above the threshold� which
is population�size independent� suboptimal strings
of �tnessN cannot stabilize in the population� even
for very large population sizes� This error threshold
is also correctly predicted by the theory� It occurs
around qc � 
�
�� for N � � and K � �
�

VIII� EPOCH DESTABILIZATION�

POPULATION�SIZE DEPENDENCE

We now extend the above analysis to account for E�s
dependence on population size� This not only improves
the parameter�optimization theory� but also leads us to
consider a number of issues and mechanisms that shed
additional light on how GAs work near their optimal pa�
rameter settings� Since it appears that optimal param�
eter settings often lead the GA to run in a behavioral
regime were the population dynamics is marginally sta�
ble in the higher epochs� we consider how destabilization
dynamics a�ects the time to discover the global optimum�

We saw in Figs� ��b� and ��d� that� around the opti�
mal parameter settings� the best �tness in the population
can show intermittent behavior� Apparently� �uctuations
sometimes cause an epoch�s current best strings �of �t�
ness n� in the population to disappear� The best �tness
then drops to n � �� Often� strings of �tness n are re�
discovered later on� Qualitatively� what happens during
these destabilizations is that� since the proportion Pn

n of
individuals in the highest �tness class decreases for in�
creasing n and q �Eq� ������ for small population sizes
the absolute number of individuals in the highest �tness
class approaches a single string� i�e�� MPn

n 	 � in higher
epochs� When this happens� it is likely that all individu�
als of �tness n are lost through a deleterious �uctuation
and the population falls back onto epoch n��� Somewhat
more precisely� whenever the standard deviation of �uc�
tuations in the proportion Pn of individuals with �tness
n becomes as small as their equilibrium proportion Pn

n �
destabilizations start to become a common occurrence�

Since the probability of a destabilization is sensitive to
the population size M � this dynamical e�ect introduces
population�size dependence in the average total number
hEi of �tness function evaluations�

As we just noted� the theory for E�q� used in Ref�
��
� assumed that all epochs are stable� leading to a
population�size independent theory� However� as is
clear from Fig� ��d�� one should take into account the
�population�size dependent� probability of epoch n desta�
bilizing several times to epoch n�� before the population
moves to epoch n � �� For example� if during epoch n
the population is � times as likely to destabilize to epoch
n � � compared to innovating to epoch n � �� then we
expect epoch n to disappear three times before moving

�




to epoch n��� Assuming that epoch n�� is stable� this
increases the number of generations spent in epoch n by
roughly three times the average number of generations
spent in epoch n� ��
To make these ideas precise we introduce a Markov

chain model to describe the �hopping� up and down be�
tween the epochs� The Markov chain has N � � states�
each representing an epoch� In every generation there
are probabilities p�n to innovate from epoch n to epoch
n�� and p�n to destabilize� falling from epoch n to epoch
n� �� The globally optimum state N �� is an absorbing
state� Starting from epoch � we calculate the expected
number T of generations for the population to reach the
absorbing state for the �rst time�
The innovation probabilities p�n are just given by the

Cn�� of Eq� �����

p�n � Cn�� �
M

En

� ��	�

whereEn is given by the approximation of Eq� ����� Note
that when MPn

n approaches � the spreading probability
	n� as given by Eq� ����� becomes population�size depen�
dent as well� and we use Eq� ���� rather than Eq� ��
��
To obtain the destabilization probabilities p�n we assume
that in each generation the population has an equal and
independent probability to destabilize to epoch n � ��
This probability is given by the inverse of the average
time until a destabilization occurs�
In Ref� ���� we studied the destabilization mechanism

using a di�usion equation method� We derived an analyt�
ical approximation for the average number of generations
Dn until epoch n destabilizes and falls back onto epoch
n� �� The result is�

Dn �
MPn

n

�� Pn
n

�
	

��n
er�

�s
M�nPn

n

�� Pn
n

�
erf

�s
M�n��� Pn

n �

Pn
n

�
� ����

where erf�x� is the error function and er��x� � erf�ix��i
is the imaginary error function�
In Ref� ���� we pointed out the connection between

the above formula and error thresholds in the theory of
molecular evolution� Generally� error thresholds denote
the boundary in parameter space between a regime where
a certain high �tness string� or an equivalence class of
high �tness strings� is stable in the population� and a
regime where it is unstable� In the case of a single high
�tness �master sequence� one speaks of a genotypic er�
ror threshold� see Refs� ������������ In the case of an
equivalence class of high �tness strings� one speaks of a
phenotypic error threshold� see Refs� ��������
A sharply de�ned error threshold generally only oc�

curs in the limit of in�nite populations and in�nite string
length ����� but extensions to �nite population cases have
been studied in Refs� ���������� In Ref� ����� for exam�
ple� the occurrence of a �nite�population phenotypic er�
ror threshold was de�ned by the equality of the standard

deviation and the mean of the number of individuals of
the highest �tness class� This de�nition is in accord with
Eq� ����� the argument of er��x��

p
M�nPn

n ���� Pn
n ��

is exactly the ratio between the mean proportion Pn
n

and standard deviation of the number of individuals
with �tness n� as derived in Ref� ����� The function
er��x� is a very rapidly growing function of its argu�
ment� er��x� 	 exp�x���x for x larger than �� Therefore�p
M�nPn

n ���� Pn
n � being either smaller �larger� than �

is a reasonable criterion for the instability �stability� of
an epoch� Of course� this is simply a way of summarizing
the more detailed information contained in Eq� �����
The constant �n in Eq� ���� is the average decay rate

of �uctuations in the number of individuals in the highest
�tness class around its equilibrium value Pn

n � The value
of �n for epoch n can be calculated in terms of the relative
sizes of the �uctuations in the directions of all lower�lying
epochs� This calculation was performed explicitly in Ref�
����� Formally� one needs to rotate the covariance matrix
of sampling �uctuations during epoch n to the basis of

epoch eigenvectors �P i� The covariance matrix of sam�
pling �uctuations during epoch n is approximately given
by�

hdPidPji �
Pn
i ��ij � Pn

j �

M
� ����

De�ning the matrix R such that its columns contain the

epoch distributions �P j �

Rij � P j
i � ����

we can rotate the covariance matrix to the basis of epoch

vectors by using the inverse of R� The vector �B con�
tains the diagonal components of this rotated covariance
matrix�

Bi �
�

M

n��X
k�m	�

R��
ik R

��
imP

n
k

�
�km � �Pn

m

�
� ����

The components Bi are proportional to the amplitude of
�uctuations in the direction of epoch i during epoch n�
The decay rate of �uctuations in the direction of epoch
i is given by �fn � fi��fn� The decay rate �n is then
simply given by the average decay rates of �uctuations
in the directions of the lower lying epochs� weighted by

the sampling �uctuations vector �B� That is�

�n �

Pn��
i	� �fn � fi�Bi

fn
Pn��

i	� Bi

� ��
�

Generally� �n decreases monotonically as a function of n
since �uctuations in the proportion Pn

n of individuals in
the highest �tness class n decay more slowly for higher
epochs�
Thus� we have for the destabilization probabilities�

��



p�n �
�

Dn

� ����

Finally� note that the probability to remain in epoch n is
�� p�n � p�n �
With these expressions for the transition probabilities

of the Markov chain� it is now straightforward to calcu�
late the average number T of generations before the GA
discovers the global optimum for the �rst time� see for
instance Sec� ��� of Ref� ����� The solution is�

T �

NX
n	�


n

nX
k	�

�

p�k 
k
� ����

where 
n is de�ned as�


n �

nY
k	�

p�k
p�k

� n 
 � � ����

and


� � �� ����

Since Eq� ���� gives the average number T of genera�
tions� the average number of �tness function evaluations
E�q�M� is given by�

E�q�M� � MT

� EN �EN��

�
� �

EN

MDN

�

� EN��

�
� �

EN��

MDN��

�
� �

EN

MDN

��
� � � � � ��	�

where En is given by Eq� ���� and where the last equal�
ity is obtained by rewriting the sums in Eq� ����� It
is easy to see that as epochs become arbitrarily stable
�Dn ��� this solution reduces to Eq� �����

IX� THEORY VERSUS EXPERIMENT

We can now compare this population�size dependent
approximation� Eq� ��	�� with the experimentally mea�
sured dependence on M of the average total number hEi
of �tness function evaluations� Figure � shows the depen�
dence of hEi on the population size M for two di�erent
parameter settings of N and K and for a set of mutation
rates q�
The upper �gures� Figs� ��a� and ��c�� give the depen�

dence of the experimentally estimated hEi on the pop�
ulation size M � The lower �gures� Figs� ��b� and ��d��
give the theoretical predictions from Eq� ��	�� The up�
per left �gure� Fig� ��a�� shows hEi as a function of

M for N � � blocks of length K � �
 for four di�er�
ent mutation rates� q � f
�
��� 
�
�	� 
�
��� 
�
��g� The
population size ranges fromM � 	
 toM � ��
� The to�
tal number of �tness function evaluations on the vertical
axis ranges from hEi � 
 to hEi � �	� �
�� Each data
point was obtained as an average over �	
 GA runs� Fig�
ure ��b� shows the theoretical predictions for the same
parameter settings� Figure ��c� gives the experimental
estimates for N � � blocks of length K � �� over the
range M � �
 to M � �

� for four mutation rates�
q � f
�
��� 
�
�� 
�
��� 
�
��g� The total number of �t�
ness function evaluations on the vertical axis range from
hEi � 
 to hEi � � � �
�� Figure ��d� shows the theo�
retical predictions for the same range of M and the same
four mutation rates�
We see that as the population size becomes �too small�

destabilizations make the total number of �tness func�
tion evaluations increase rapidly� The higher the mu�
tation rate� the higher the population size at which the
sharp increase in hEi occurs� These qualitative e�ects are
captured accurately by the theoretical predictions from
Eq� ��	�� Although our analysis involves several approx�
imations �e�g� as in the calculations of Dn�� the theory
does quantitatively capture the population�size depen�
dence well� both with respect to the predicted absolute
number of �tness function evaluations and the shape of
the curves as a function of M for the di�erent mutation
rates� From Figs� ��c� and ��d� it seems that the theory
overestimates the growth of hEi for the larger mutation
rates as the population size decreases� Still� the theory
correctly captures the sharp increase of hEi around a
population size of M � 	
�
As the population size increases beyond approximately

M � �

� we �nd experimentally that the average total
number of �tness function evaluations hEi starts rising
slowly as a function of M � This e�ect is not captured by
our analysis� It is also barely discernible in Figs� ��a�
and ��c�� We believe that the slow increase of hEi for
large population sizes derives from two sources�
First� by the maximum entropy assumption� our theory

assumes that all individuals in the highest �tness class are
genetically independent� apart from the sharing of their
aligned blocks� This is not true in general� The sampling
of the selection process introduces genetic correlations in
the individuals of the highest �tness class� Under our as�
sumption of independence� doubling the population size
from M to �M should reduce the number of generations
to �nd the global optimum by an equal factor of �� mak�
ing hEi independent of M � In reality� since the strings in
the highest �tness class are correlated� doubling the pop�
ulation size fromM to �M will reduce the total number of
generations by a factor somewhat less than two� thereby
increasing hEi slightly� Unfortunately� this e�ect is very
hard to address quantitatively�
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FIG� �� Average total number hEi of �tness function evaluations as a function of the population size M for two di�erent
�tness function parameters and four mutation rates each� both experimentally ��a
 and �c
� top row
 and theoretically ��b

and �d
� bottom row
� In each �gure each solid line gives E�M
 for a di�erent mutation rate� Each experimental data point
is an average over ��
 GA runs� Figures �a
 and �b
 have N � � blocks of length K � 	
� The upper �gure �a
 shows the
experimentally estimated E�M
 as a function of M for the mutation rates q � f
�
	�� 
�
	�� 
�
	�� 
�
	�g� The lower �gure �b

shows the theoretical results� as given by Eq� ���
� for the same parameter settings� In both� the population size ranges from
M � �
 to M � ��
 on the horizontal axis� Figures �c
 and �d
 have N � � blocks of length K � �� Figure �c
 shows the
experimental averages and �gure �d
 the theoretical predictions for the same parameter settings� The population sizes on the
horizontal axis run from M � �
 to M � �

� The mutation rates shown in �c
 and �d
 are q � f
�
	�� 
�
�� 
�
��� 
�
��g�

The second reason for the increase of E with increas�
ing population size comes from the time the population
spends in the short innovations between the di�erent
epochs� Up to now� we have neglected these innovation
periods� Generally� they only contribute marginally to
E� In Ref� ���� we calculated the approximate number of
generations gn that the population spends in the innova�
tion from epoch n to epoch n� � and found that�

gn �
� � 
n

n

log �M � � ����

where 
n is the �tness di�erential given by Eq� ����� The
GA thus expends a total of

I � M log �M �

N��X
n	�

� � 
n

n

� ����

�tness function evaluations in the innovations� Notice
that this number grows as M log �M �� Since the terms in
the above sum are generally much smaller than En� the
contribution of I only leads to a slow increase in hEi as
M increases�

X� SEARCH�EFFORT SURFACE AND

GENERALIZED ERROR THRESHOLDS

We summarize our theoretical and experimental �nd�
ings for the entire search�e�ort surface E�q�M� of the
average total number of �tness function evaluations in
Fig� 	�

The �gure shows the average total number E�q�M� of
�tness function evaluations for N � � blocks of length
K � �
 bits� the same �tness function as used in Figs�
��c�� �� ��a�� and ��b�� The top plot shows the theoret�
ical predictions� which now include the innovation time
correction from Eq� ����� the bottom� the experimental
estimates� The horizontal axis ranges from a population
size of M � � �M � �
� experimental� to a population
size of M � ��
 with steps of "M � � �"M � �
� ex�
perimental�� The vertical axis runs from a mutation rate
of q � 
�

� to q � 
�
�� with steps of "q � 
�


�	
in the theoretical plot and "q � 
�

� in the experi�
mental� The experimental search�e�ort surface is thus
an interpolation between ��	 data points on an equally

��



spaced lattice of parameter settings� Each experimental
data point is an average over �	
 GA runs� The contours
range from E�q�M� � 
 to E�q�M� � �� �
� with each
contour representing a multiple of �
�� Note that the
lowest values of E lie between �
� and � � �
�� Lighter
gray scale corresponds to smaller values of E�q�M��
The initial observations from Fig� 	 were already ap�

parent from Fig� � and Fig� �� First� the theory cor�
rectly predicts the relatively large region in parameter
space where the GA searches most e�ciently� Second�
the theory correctly predicts the location of the optimal
parameter settings� indicated by a dot in the upper plot
of Fig� 	� The optimum occurs for somewhat higher
population size in the experiments� as indicated by the
dot in the lower plot of Fig� 	� Due to the large vari�
ance in E from run to run �recall Table I� and the rather
small di�erences in the experimental values of hEi near
this regime� however� it is hard to infer from the exper�
imental data exactly where the optimal population size
occurs� Third� the theory underestimates the absolute
magnitude of E�q�M� somewhat� Fourth� at small mu�
tation rates E�q�M� increases more slowly for decreasing
q in the theoretical plot than in the experimental plot�
Apart from this� though� the plots illustrate the general
shape of the search�e�ort surface E�q�M��
There is a relatively large area of parameter space

around the optimal setting �qo�Mo� for which the GA
runs e�ciently� Moving away from this optimal setting
horizontally �changing M� increases E�q�M� only slowly
at �rst� For decreasingM one reaches a �wall� relatively
quickly around M � �
� For population sizes lower than
M � �
� the higher epochs become so dynamically un�
stable that it is di�cult for the population to reach the
global optimum string at all� In contrast� moving in the
opposite direction� increasing population size� E�q�M�
increases slowly over a relatively large range of M � Thus�
choosing the population size too small is far more dele�
terious than setting it too large�
Moving away from the optimal setting vertically

�changing q� the increase of E�q�M� is also slow at �rst�
Eventually� as the plots make clear� increasing q one
reaches the same �wall� as encountered in lowering M �
This occurs at q 	 
�
� in Fig� 	� For larger mutation
rates the higher epochs become too unstable in this case
as well� and the population is barely able to reach the
global optimum�
The wall in �q�M��space is the two�dimensional ana�

logue of a phenomenon known as the error threshold in
the theory of molecular evolution� As pointed out in Sec�
VIII� in our case error thresholds form the boundary be�
tween parameter regimes where epochs are stable and
unstable� Here� the error boundary delimits a regime in
parameter space where the optimum is discovered rela�
tively quickly from a regime� in the black upper left cor�
ners of the plots� where the population essentially never
�nds the optimum� For too high mutation rates or too
low population sizes� selection is not strong enough to
maintain high �tness strings�in our case those close to

the global optimum�in the population against sampling
�uctuations and deleterious mutations� Strings of �tness
N will not stabilize in the population but will almost
always be immediately lost� making the discovery of the
global optimum string of �tness N�� extremely unlikely�
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FIG� �� Contour plots of the search�e�ort surface E�q�M

of the average total number of �tness function evaluations
for the theory �upper
� Eqs� ���
 and ���
� and for experi�
mental estimates �lower
� The parameter settings are N � �
blocks of length K � 	
 bits� The population size M runs
from M � 	 to M � ��
 on the horizontal axis on the up�
per plot and from M � �
 to M � ��
 on the lower� The
mutation rate runs from q � 
�

	 to q � 
�
�� on the ver�
tical� The contours are plotted over the range E�q�M
 � 

to E�q�M
 � � � 	
� with a contour at each multiple of
	
�� The experimental surface was interpolated from 	��
equally spaced data points� 	� increments of �M � �
 on
the horizontal axis by 	� increments of �q � 
�

� on the
vertical� The theoretical surface was interpolated over a grid
using �M � 	 and �q � 
�


��� The optimal theoretical
parameter setting� �qo�Mo
 � �
�
		� �

� and the optimal
experimental parameter setting� �qo�Mo
 � �
�
		� 	�

� are
marked in their respective plots with a dot�

��



Note that the error boundary rolls over with increas�
ing M in the upper left corner of the plots� It bends all
the way over to the right� eventually running horizon�
tally� thereby determining a population�size independent

error threshold� For our parameter settings this occurs
around q 	 
�
��� Thus� beyond a critical mutation rate
of qc 	 
�
�� the population almost never discovers the
global optimum� even for very large populations�
The value of this horizontal asymptote qc can be

roughly approximated by calculating for which mutation
rate qc epoch N has exactly the same average �tness as
epoch N ��� i�e� �nd qc such that fN 	 fN��� For those
parameters� the population is under no selective pressure
to move from epoch N � � to epoch N � Thus� strings of
�tness N will generally not spread in the population� Us�
ing our analytic approximations� we �nd that the critical
mutation rate qc is simply given by�

qc � �� K

r
N � �

N
� ����

For the parameters of Fig� 	 this gives qc � 
�
���� This
asymptote is indicated there by the horizontal line in the
top plot�
Similarly� below a critical population size Mc� it is also

practically impossible to reach the global optimum� even
for low mutation rates� This Mc can also be roughly ap�
proximated by calculating the population size for which
the sampling noise is equal to the �tness di�erential be�
tween the last two epochs� We �nd�

Mc �

�
N � �

N��N � �

��

� ����

For the parameters of Fig� 	 this gives Mc 	 �� around
q � 
�
��� This threshold estimate is indicated by the
vertical line in Fig� 	�
Further� notice that for small mutation rates� at the

bottom of each plot in Fig� 	� the contours run almost
horizontally� That is� for small mutation rates relative to
the optimum mutation rate qo� the total number of �tness
function evaluations E�q�M� is insensitive to the popula�
tion size M � Decreasing the mutation rate too far below
the optimum rate increases E�q�M� quite rapidly� Ac�
cording to our theoretical predictions it increases roughly
as ��q with decreasing q� The experimental data indicate
that this is a slight underestimation� In fact� E�q�M�
appears to increase as ��q� where the exponent � lies
somewhere between � and ��
Globally� the theoretical analysis and empirical ev�

idence indicate that the search�e�ort surface E�q�M�
is everywhere concave� That is� for any two points
�q��M�� and �q��M��� the straight line connecting these
two points is everywhere above the surface E�q�M�� We
believe that this is always the case for mutation�only ge�
netic algorithms with a static �tness function that has
a unique global optimum� This feature is useful in the
sense that a steepest descent algorithm on the level of the

GA parameters q and M will always lead to the unique
optimum �qo�Mo��
Finally� it is important to emphasize once more that

there are large run�to�run �uctuations in the total num�
ber of �tness evaluations to reach the global optimum�
�Recall Table I�� Theoretically� each epoch has an expo�
nentially distributed length since there is an equal and
independent innovation probability of leaving it at each
generation� The standard deviation of an exponential
distribution is equal to its mean� Since the total time
E�q�M� is dominated by the last epochs� the total time
E�q�M� has a standard deviation close to its mean�
One conclusion from this is that� if one is only going

to use a GA for a few runs on a speci�c problem� there
is a large range in parameter space for which the GA�s
performance is statistically equivalent� In this sense� �uc�
tuations lead to a large �sweet spot� of GA parameters�
On the other hand� these large �uctuations re�ect the
fact that individual GA runs do not reliably discover the
global optimum within a �xed number of �tness function
evaluations�

XI� CONCLUSIONS

We derived explicit analytical approximations to the
total number of �tness function evaluations that a GA
takes on average to discover the global optimum as a
function of both mutation rate and population size� The
class of �tness functions so analyzed describes a very gen�
eral subbasin�portal architecture in genotype space� We
found that the GA�s dynamics consists of alternating pe�
riods of stasis �epochs� in the �tness distribution of the
population� with short bursts of change �innovations� to
higher average �tness� During the epochs the most��t in�
dividuals in the population di�use over neutral networks
of iso�tness strings until a portal to a network of higher
�tness is discovered� Then descendants of this higher
�tness string spread through the population�
The time to discover these portals depends both on the

fraction of the population that is located on the highest
neutral net in equilibrium and the speed at which these
population members di�use over the network� Although
increasing the mutation rate increases the di�usion rate
of individuals on the highest neutral network� it also in�
creases the rate of deleterious mutations that cause these
members �fall o�� the highest �tness network� The mu�
tation rate is optimized when these two e�ects are bal�
anced so as to maximize the total amount of explored
volume on the neutral network per generation� The op�
timal mutation rate� as given by Eq� ����� is dependent
on the neutrality degree �the local branching rate� of the
highest �tness network and on the �tnesses of the lower
lying neutral networks onto which the mutants are likely
to fall�
With respect to optimizing population size� we found

that the optimal population size occurs when the highest

�	



epochs are just barely stable� That is� given the opti�
mal mutation rate� the population size should be tuned
such that only a few individuals are located on the high�
est �tness neutral network� The population size should
be large enough such that it is relatively unlikely that
all the individuals disappear through a deleterious �uc�
tuation� but not much larger than that� In particular�
if the population is much larger� so that many individu�
als are located on the highest �tness network� then the
sampling dynamics causes these individuals to correlate
genetically� Due to this genetic correlation� individuals
on the highest �tness net do not independently explore
the neutral network� This leads� in turn� to a deteri�
oration of the search algorithm�s e�ciency� Therefore�
the population size should be as low as possible without
completely destabilizing the last epochs� Given this� one
cannot help but wonder how general the association of
e�cient search and marginal stability is�
It would appear that the GA wastes computational re�

sources when maintaining a population quasispecies that
contains many suboptimal �tness members� that is� those
that are not likely to discover higher �tness strings� This
is precisely the reason that the GA performs so much
more poorly than a simple hill climbing algorithm on
this particular set of �tness functions� as shown in Ref�
����� The deleterious mutations together with the na�
ture of the selection mechanism drives up the fraction of
lower �tness individuals in the quasispecies� If we allowed
ourselves to tune the selection strength� we could have
tuned selection so high that only the most��t individuals
would ever be present� As we will show elsewhere� this
leads to markedly better performance� equal to or even
slightly exceeding that of hill climbing algorithms� Thus�
the GA�s comparatively poor performance is the result
of resources being wasted on the presence of suboptimal
�tness individuals�
In contrast� the reason that only the best individuals

must be kept for optimal search is a result of the fact that
our set of �tness functions has no local optima� If there
are small �uctuations in �tness on the neutral networks
or if there is noise in the �tness function evaluation� it
might be bene�cial to keep some of the lower �tness in�
dividuals in the population� We will also pursue this
elsewhere�
For now� it su�ces to recall once more the typical dy�

namical behavior of the GA population around the opti�
mal parameter settings� The GA searches most e�ciently
when population size and mutation rate are set such that
the epochs are marginally stable� That is� the GA dy�
namics is as �stochastic� as possible without destabiliz�
ing the current and later epochs� Strings of �tness n
are �only slightly� preferentially reproduced over strings
with �tness n � �� and the population size is just large
enough to protect these �tness n strings from deleterious
sampling �uctuations�
More precisely� mutation rate� population size� and

network neutralities set a lower bound �f of �tness dif�
ferentials that can be �noticed� by the selection mech�

anism� This idea is closely related to so called �nearly
neutral� theories of molecular evolution of Refs� ��������
For optimal parameter settings� the �tness di�erential
�f � n � �n � �� � � is just barely detected by se�
lection� Imagine that during epoch n there are strings
which� given an additional K bits set correctly� obtain a
�tness f � �f � instead of f ��� As a function of n� K� q
andM we can roughly determine the minimal �tness dif�
ferential �f for these strings to be preferentially selected�
We �nd that

�f 
 n

��� q�K

�
�p
M

� �� ��� q�K
�
� ��
�

Below this �tness di�erential� strings of �tness f��f are
e�ectively neutral with respect to strings with �tness n�
The net result is that the parameters of the search� such
as q and M � determine a coarse graining of �tness levels
where strings in the band of �tness between n and n��f
are treated as having equal �tness�
In future work we explore how this coarse graining

can be turned to good use by a GA for �tness functions
that possess many shallow local optima�optima that on
a coarser scale disappear so that the resulting coarse�
grained �tness function induces a neutral network archi�
tecture like that explored here� Intuitively� it should be
possible to tune GA parameters so that local optima dis�
appear below the minimal �tness di�erentials �f and so
that the GA e�ciently searches the coarse�grained land�
scape without becoming pinned to local optima�

ACKNOWLEDGMENTS

This work was supported at the Santa Fe Institute by
NSF Grant IRI���
	��
� ONR grant N


����	���
	���
and Sandia National Laboratory contract AU������

�	� D� Alves and J�F� Fontanari� Error threshold in �nite
populations� Phys� Rev� E� ����

���
	�� 	����

��� T� Back� Evolutionary algorithms in theory and practice�

Evolution strategies� evolutionary programming� genetic

algorithms� Oxford University Press� New York� 	����
��� R� K� Belew and L� B� Booker� editors� Proceedings of the

Fourth International Conference on Genetic Algorithms�
Morgan Kaufmann� San Mateo� CA� 	��	�

��� L� Chambers� editor� Practical Handbook of Genetic Al�

gorithms� Boca Raton� 	���� CRC Press�
��� L� D� Davis� editor� The Handbook of Genetic Algorithms�

Van Nostrand Reinhold� 	��	�
��� M� Eigen� Self�organization of matter and the evolution

of biological macromolecules� Naturwissen�� �����������
	��	�

��



��� M� Eigen� J� McCaskill� and P� Schuster� The molecular
quasispecies� Adv� Chem� Phys�� ���	������� 	����

��� M� Eigen and P� Schuster� The hypercycle� A principle
of natural self�organization� Part A� Emergence of the
hypercycle� Naturwissen�� �����	����� 	����

��� L� Eshelman� editor� Proceedings of the Sixth Interna�

tional Conference on Genetic Algorithms� Morgan Kauf�
mann� San Mateo� CA� 	����

�	
� W� Fontana and P� Schuster� Continuity in evolution� On
the nature of transitions� Science� ��
�	��	��� 	����

�		� S� Forrest� editor� Proceedings of the Fifth International

Conference on Genetic Algorithms� Morgan Kaufmann�
San Mateo� CA� 	����

�	�� C� W� Gardiner� Handbook of Stochastic Methods�
Springer�Verlag� 	����

�	�� D� E� Goldberg� Genetic Algorithms in Search� Optimiza�

tion� and Machine Learning� Addison�Wesley� Reading�
MA� 	����

�	�� M� Huynen� P� F� Stadler� and W� Fontana� Smoothness
within ruggedness� The role of neutrality in adaptation�
Proc� Natl� Acad� Sci�� ��������
	� 	����

�	�� M� A� Huynen� Exploring phenotype space through neu�
tral evolution� J� Mol� Evol�� ���	���	��� 	����

�	�� M� Kimura� Di�usion models in population genetics� J�
Appl� Prob�� 	�	������� 	����

�	�� M� Kimura� The neutral theory of molecular evolution�
Cambridge University Press� 	����

�	�� J� R� Koza� Genetic programming� On the programming

of computers by means of natural selection� MIT Press�
Cambridge� MA� 	����

�	�� I� Leutha�usser� Statistical mechanics of Eigen�s evolution
model� J� Stat� Phys�� ���������
� 	����

��
� M� Mitchell� An Introduction to Genetic Algorithms� MIT
Press� Cambridge� MA� 	����

��	� M� Mitchell� J� H� Holland� and S� Forrest� When will a
genetic algorithm outperform hill climbing�� 	���� In J�
D� Cowan� G� Tesauro� and J� Alspector �editors
� Ad�
vances in Neural Information Processing Systems �� San
Mateo� CA� Morgan Kaufmann�

���� M� Nowak and P� Schuster� Error thresholds of replication
in �nite populations� Mutation frequencies and the onset
of Muller�s ratchet� J� Theo� Bio�� 	����������� 	����

���� T� Ohta� Slightly deleterious mutant substitutions in evo�
lution� Nature� ���������� 	����

���� T� Ohta and J�H� Gillespie� Development of neutral and
nearly neutral theories� Theo� Pop� Bio�� ���	���	���
	����

���� A� Pr�ugel�Bennett and J� L� Shapiro� Analysis of genetic
algorithms using statistical mechanics� Phys� Rev� Lett��
����
�	�
��	�
�� 	����

���� A� Pr�ugel�Bennett and J� L� Shapiro� The dynamics of a
genetic algorithm in simple random Ising systems� Phys�
ica D� 	
� �	
����		�� 	����

���� M� Rattray and J� L� Shapiro� The dynamics of a genetic
algorithm for a simple learning problem� J� of Phys� A�
�����
����	������ 	����

���� C� M� Reidys� C� V� Forst� and P� K� Schuster� Replica�
tion and mutation on neutral networks of RNA secondary
structures� Bull� Math� Bio�� 	���� submitted� Santa Fe
Institute Working Paper ���
�����

���� J� Swetina and P� Schuster� Self replicating with error�
A model for polynucleotide replication� Biophys� Chem��
	��������
� 	����

��
� E� van Nimwegen and J� P� Crutch�eld� Optimizing
epochal evolutionary search� Population�size indepen�
dent theory� Computer Methods in Applied Mechanics

and Engineering� special issue on Evolutionary and Ge�

netic Algorithms in Computational Mechanics and En�

gineering� D� Goldberg and K� Deb� editors� submitted�
	���� Santa Fe Institute Working Paper ���
��
���

��	� E� van Nimwegen� J� P� Crutch�eld� and M� Mitchell�
Finite populations induce metastability in evolutionary
search� Phys� Lett� A� ����	���	�
� 	����

���� E� van Nimwegen� J� P� Crutch�eld� and M� Mitchell� Sta�
tistical dynamics of the Royal Road genetic algorithm�
Theoretical Computer Science� special issue on Evolu�

tionary Computation� A� Eiben and G� Rudolph� editors�
in press� 	���� SFI working paper ���
�����

���� J� Weber� Dynamics of Neutral Evolution� A case study

on RNA secondary structures� PhD thesis� Biologisch�
Pharmazeutischen Fakult�at der Friedrich Schiller�
Universit�at Jena� 	����

���� D� H� Wolpert and W� G� Macready� No free lunch the�
orems for optimization� IEEE Trans� Evol� Comp�� 	����
��� 	����

APPENDIX A� SELECTION OPERATOR

Since the GA uses �tness�proportionate selection� the
proportion P s

i of strings with �tness i after selection is
proportional to i and to the fraction Pi of strings with �t�
ness i before selection� that is� P s

i � c i Pi� The constant
c can be determined by demanding that the distribution
remains normalized� Since the average �tness hfi of the
population is given by Eq� ���� we have P s

i � iPi�hfi�
In this way� we de�ne a �diagonal� operator S that works

on a �tness distribution �P and produces the �tness dis�

tribution �P s after selection by�

�
S � �P

�
i
�

N��X
j	�

�ijj

hfi Pj � �A��

Notice that this operator is nonlinear since the average

�tness hfi is a function of the distribution �P on which
the operator acts�

APPENDIX B� MUTATION OPERATOR

The component Mij of the mutation operator gives
the probability that a string of �tness j is turned into a
string with �tness i under mutation�
First� consider the components Mij with i � j� These

strings are obtained if mutation leaves the �rst i�� blocks
of the string unaltered and disrupts the ith block in the
string� Multiplying the probabilities that the preceding

��



i � � blocks remain aligned and that the ith block be�
comes unaligned we have�

Mij � ��� q��i���K
�
�� ��� q�K

�
� i � j � �B��

The diagonal components Mjj are obtained when mu�
tation leaves the �rst j � � blocks unaltered and does
not mutate the jth block to be aligned� The maximum
entropy assumption says that the jth block is random
and so the probability Pa that mutation will change the
unaligned jth block to an aligned block is given by�

Pa �
�� ��� q�K

�K � �
� �B��

This is the probability that at least one mutation will
occur in the block times the probability that the mu�
tated block will be in the correct con�guration� Thus�
the diagonal components are given by�

Mjj � ��� q��j���K��� Pa�� �B��

Finally� we calculate the probabilities for increasing�
�tness transitionsMij with i � j� These transition prob�
abilities depend on the states of the unaligned blocks j��
through i� Under the maximum entropy assumption all
these blocks are random� The jth block is equally likely
to be in any of �K � � unaligned con�gurations� All suc�
ceeding blocks are equally likely to be in any one of the
�K con�gurations� including the aligned one� In order for
a transition to occur from state j to i� all the �rst j � �
aligned blocks have to remain aligned� then the jth block
has to become aligned through the mutation� The latter
has probability Pa� Furthermore� the following i� j � �
blocks all have to be aligned� Finally� the ith block has
to be unaligned� Putting these together� we �nd that�

Mij � ��� q��j���KPa�
�

�K

�i�j�� �
�� �

�K

�
� i � j � �B��

The last factor does not appear for the special case of the
global optimum� i � N � �� since there is no �N � ��st
block�

APPENDIX C� EPOCH FITNESSES AND

QUASISPECIES

The generation operator G is given by the product of
the mutation and selection operators derived above� i�e�
G �M � S� The operators Gn are de�ned as the projec�
tion of the operator G onto the �rst n dimensions of the
�tness distribution space� Formally�

Gn
i ��P � � Gi��P �� i � n� �C��

and� of course� the components with i � n are zero�

The epoch quasispecies �Pn is a �xed point of the op�
erator Gn� As in Sec� VI� we take out the factor hfi
to obtain the matrix �Gn� The epoch quasispecies is now

simply the principal eigenvector of the matrix �Gn and
this can be easily obtained numerically�
However� in order to obtain analytically the form of

the quasispecies distribution �Pn during epoch n we ap�
proximate the matrix �Gn� As shown in App� B� the
components Mij �and so of �Gn� naturally fall into three
categories� Those with i � j� those with i � j� and
those on the diagonal i � j� Components with i � j
involve at least one block becoming aligned through mu�
tation� These terms are generally much smaller than the
terms that only involve the destruction of aligned blocks
or for which there is no change in the blocks� We there�
fore approximate �Gn by neglecting terms proportional to
the rate of aligned�block creation�what was called Pa in
App� B� Under this approximation for the components
of �Gn� we have�

�Gn
ij � j��� q��i���K��� ��� q�K�� i � j � �C��

and

�Gn
jj � j��� q��j���K � �C��

The components with i � j are now all zero�
Note �rst that all components of �Gn only depend on

q and K through � � �� � q�K � the probability that an
aligned block is not destroyed by mutation� Note further
that in this approximation �Gn is upper triangular� As is
well known in matrix theory� the eigenvalues of an upper
triangular matrix are given by its diagonal components�
Therefore� the average �tness fn in epoch n� which is
given by the largest eigenvalue� is equal to the largest
diagonal component �Gn� That is�

fn � n��� q��n���K � n�n�� � �C��

The principal eigenvector �Pn is the solution of the
equation�

nX
j	�

�
�Gn
ij � fn�ij

�
Pn
j � 
 � �C	�

Since the components of �Gn depend on � in such a sim�
ple way� we can analytically solve for this eigenvector�
�nding that the quasispecies components are given by�

Pn
i �

��� ��n�n���i

n�n���i � i

i��Y
j	�

n�n�j � j

n�n���j � j
� �C��

For the component Pn
n this reduces to

Pn
n �

n��Y
j	�

n�n�j � j

n�n���j � j
� �C��

The above equation can be re�expressed in terms of the
epoch �tness levels fj �

Pn
n � �n��

n��Y
j	�

fn � fj
fn � �fj

� �C��

��


