
G����� Computer Science Application� Evolving Cellular
Automata to Perform Computations

Melanie Mitchell
Santa Fe Institute

���� Hyde Park Road
Santa Fe� NM �����
mm	santafe
edu

James P
 Crutch�eld�

Santa Fe Institute
���� Hyde Park Road
Santa Fe� NM �����
jpc	santafe
edu

Rajarshi Das�

Santa Fe Institute
���� Hyde Park Road
Santa Fe� NM �����
raja	santafe
edu

To appear in B�ack� T
� Fogel� D
� and Michalewicz� Z
 Eds
�� Handbook of Evolutionary
Computation
 Oxford� Oxford University Press


Abstract

We describe an application of genetic algorithms GAs� to the design of cellular automata
CAs� that can perform computations requiring global coordination
 A GA was used to
evolve CAs for two computational tasks� density classi�cation and synchronization
 In
both cases� the GA discovered rules that gave rise to sophisticated emergent computational
strategies
 These strategies can be analyzed using a �computational mechanics� framework
in which �particles� carry information and interaction between particles e�ects information
processing
 This framework can also be used to explain the process by which the strategies
are designed by the GA
 This work is a �rst step in employing GAs to engineer useful
emergent computation in decentralized multi�processor systems


Project overview

An example of automatic programming by genetic algorithms GAs� is found in our work on
evolving cellular automata to perform computations Mitchell� Hraber� and Crutch�eld �����
Mitchell� Crutch�eld� and Hraber ����� Crutch�eld and Mitchell ����� Das� Mitchell� and
Crutch�eld ����� Das� Crutch�eld� Mitchell� and Hanson� ����� these papers can be obtained
on the World Wide Web URL http���www
santafe
edu�projects�evca�
 This project has
elements of both engineering and scienti�c modeling
 One motivation is to understand how
natural evolution creates systems in which �emergent computation� takes place�that is� in
which the actions of simple components with local information and communication give rise
to coordinated global information processing
 Insect colonies� economic systems� the immune
system� and the brain have all been cited as examples of systems in which such emergent
computation occurs Forrest ����� Langton �����
 However� it is not well understood how

these natural systems perform computations
 Another motivation is to �nd ways to engineer
sophisticated emergent computation in decentralized multi�processor systems
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Figure �� Illustration of a one�dimensional� binary�state� nearest�neighbor r � �� cellular
automaton with N � ��
 Both the lattice and the rule table � for updating the lattice are
illustrated
 The lattice con�guration is shown over one time step
 The cellular automaton
has spatially periodic boundary conditions� the lattice is viewed as a circle� with the leftmost
cell being the right neighbor of the rightmost cell� and vice versa


One of the simplest decentralized� spatially extended systems in which emergent compu�
tation can be studied is a one�dimensional binary�state cellular automaton CA��a one�
dimensional lattice of N two�state machines �cells��� each of which changes its state as
a function only of the current states in a local neighborhood
 The well�known �game of
Life�� Berlekamp� Conway� and Guy ����� is an example of a two�dimensional CA
� As is
illustrated in �gure �� the lattice starts out with an initial con�guration IC� of cell states �s
and �s� and this con�guration changes in discrete time steps in which all cells are updated
simultaneously according to the CA �rule� �
 Here we use the term �state� to refer to the
value of a single cell
 The term �con�guration� will refer to the collection of local states over
the entire lattice
�

A CA�s rule � can be expressed as a lookup table �rule table�� that lists� for each local
neighborhood� the state which is taken on by the neighborhood�s central cell at the next time
step
 For a binary�state CA� these update states are referred to as the �output bits� of the
rule table
 In a one�dimensional CA� a neighborhood consists of a cell and its r �radius��
neighbors on either side
 In �gure �� r � �
� Here we describe CAs with periodic boundary
conditions�the lattice is viewed as a circle


Cellular automata have been studied extensively as mathematical objects� as models of
natural systems� and as architectures for fast� reliable parallel computation
 For overviews
of CA theory and applications� see Wolfram ���� and To�oli and Margolus ����
� However�
the di�culty of understanding the emergent behavior of CAs or of designing CAs to have
desired behavior has up to now severely limited their use in science and engineering and
for general computation
 Here we describe work on using GAs to engineer CAs to perform
computations


Typically� a CA performing a computation means that the input to the computation is
encoded as the IC� the output is decoded from the con�guration reached at some later time
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Figure �� Space�time diagram for a randomly generated r � � binary�state cellular automa�
ton� iterating on a randomly generated initial con�guration
 N � ��� sites are shown� with
time increasing down the page
 Here cells with state � are white and cells with state � are
black
 This and the other space�time diagrams given here were generated using the program
�la�d� written by James P
 Crutch�eld
�

step� and the intermediate steps that transform the input to the output are taken as the
steps in the computation
 The computation emerges from the CA rule being obeyed by
each cell
 Note that this use of CAs as computers di�ers from the impractical� though
theoretically interesting� method of constructing a universal Turing machine in a CA� see
Mitchell� Hraber� and Crutch�eld ���� for a comparison of these two approaches
�

The behavior of one�dimensional binary�state CAs is often illustrated by a �space�time
diagram��a plot of lattice con�gurations over a range of time steps� with �s given as black
cells and �s given as white cells and with time increasing down the page
 Figure � shows such
a diagram for a binary�state r � � CA in which the rule table�s output bits were �lled in at
random
 The CA is shown iterating on a randomly generated IC
 Apparently structureless
con�gurations� such as those shown in �gure �� are typical for the vast majority of CAs
 To
produce CAs that can perform sophisticated parallel computations� the GA must search for
CAs in which the actions of the cells� taken together� is coordinated so as to produce the
desired behavior
 This coordination must� of course� happen in the absence of any central
processor or central memory directing the coordination


Some early work on evolving CAs with GAs was done by Packard and colleagues Packard
����� Richards� Meyer� and Packard �����
 Koza ����� also applied genetic programming
to evolve CAs for simple random�number generation


Our work builds on that of Packard �����
 In preliminary work� we have used a form of the
GA to evolve one�dimensional� binary�state r � � CAs to perform a density�classi�cation task
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Crutch�eld and Mitchell ����� Das� Mitchell� and Crutch�eld ����� and a synchronization
task Das� Crutch�eld� Mitchell� and Hanson �����


Design Process

For the density classi�cation task� the goal was to �nd a CA that decides whether or not
the IC contains a majority of �s i
e
� has high density�
 If it does� the whole lattice should
eventually produce an unchanging con�guration of all �s� otherwise it should eventually go
to all �s
 More formally� we call this task the ��c �

�

�
� task
 Here � denotes the density

of �s in a binary�state CA con�guration and �c denotes a �critical� or threshold density for
classi�cation
 Let �� denote the density of �s in the IC
 If �� � �c� then within M time
steps the CA should go to the �xed�point con�guration of all �s i
e
� all cells in state � for
all subsequent iterations�� otherwise� within M time steps it should produce the �xed�point
con�guration of all �s
 M is a parameter of the task that depends on the lattice size N 


Designing an algorithm to perform the �c �
�

�
task is trivial for a system with a central

controller or central storage of some kind� such as a standard computer with a counter
register or a neural network in which all input units are connected to a central hidden unit

However� the task is nontrivial for a small�radius r � N� CA� since a small�radius CA
relies only on local interactions
 It has been argued that no �nite�radius� �nite�state CA
with periodic boundary conditions can perform this task perfectly across all lattice sizes
Land and Belew� ����� Das� ������ but even to perform this task well for a �xed lattice
size requires more powerful computation than can be performed by a single cell or any linear
combination of cells
 Since the �s can be distributed throughout the CA lattice� the CA must
transfer information over large distances � N�
 To do this requires the global coordination
of cells that are separated by large distances and that cannot communicate directly
 How
can this be done� Our interest was to see if the GA could devise one or more methods


The chromosomes evolved by the GA were bit strings representing CA rule tables with
r � �
 Each chromosome consisted of the output bits of a rule table� listed in lexicographic
order of neighborhood cf
 � in �gure ��
 The chromosomes representing rules were thus of
length ��r�� � ���
 The size of the rule space in which the GA worked was thus �����far
too large for any kind of exhaustive evaluation


In our main set of experiments� we set N � ���� a reasonably large but still computa�
tionally tractable odd number odd� so that the task will be well�de�ned on all ICs�
 The
GA began with a population of ��� randomly generated chromosomes generated with some
initial biases�see Mitchell� Crutch�eld� and Hraber ����� for details�
 The �tness of a rule
in the population was computed by �� randomly choosing ��� ICs that are uniformly dis�
tributed over � � ����� ����� with exactly half with � � �c and half with � � �c� �� iterating
the CA on each IC either until it arrives at a �xed point or for a maximum of M � �N time
steps� and �� determining whether the �nal behavior is correct�i
e
� ��� �s for �� � �c and
��� �s for �� � �c
 The initial density� ��� was never exactly

�

�
� since N was chosen to be

odd
 The rule�s �tness� F���� was the fraction of the ��� ICs on which the rule produced the
correct �nal behavior
 No partial credit was given for partially correct �nal con�gurations
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A few comments about the �tness function are in order
 First� the number of possible
input cases ���� for N � ���� was far too large for �tness to be de�ned as the fraction
of correct classi�cations over all possible ICs
 Instead� �tness was de�ned as the fraction
of correct classi�cations over a sample of ��� ICs
 A di�erent sample was chosen at each
generation� making the �tness function stochastic
 In addition� the ICs were not sampled
from an unbiased distribution i
e
� equal probability of a � or a � at each site in the IC��
but rather from a  at distribution across � � ��� �� i
e
� ICs of each density from � � � to
� � � were approximately equally represented�
 This  at distribution was used because the
unbiased distribution is binomially distributed and thus very strongly peaked at � � �

�

 The

ICs selected from such a distribution will likely all have � � �

�
� the hardest cases to classify


Using an unbiased sample made it very di�cult for the GA to discover high��tness CAs


Our version of the GA worked as follows
 In each generation� �� a new set of ��� ICs was
generated� �� F��� was computed for each rule in the population� �� CAs in the population
were ranked in order of �tness� �� the �� highest �tness �elite�� rules were copied to the
next generation without modi�cation� and �� the remaining �� rules for the next generation
were formed by single�point crossovers between randomly chosen pairs of elite rules
 The
parent rules were chosen from the elite with replacement�that is� an elite rule was permitted
to be chosen any number of times
 The o�spring from each crossover were each mutated at
exactly two randomly chosen positions
 This process was repeated for ��� generations for a
single run of the GA
 More details of the implementation are given in Mitchell� Crutch�eld�
and Hraber ����
�

Our selection scheme� in which the top ��! of the rules in the population are copied
without modi�cation to the next generation and the bottom ��! are replaced� is similar
to the � " 	� selection method used in some evolution strategies see B�ack� Ho�meister�
and Schwefel ����� and section B�
�� this volume�
 Selecting parents by relative �tness rank
rather than in proportion to absolute �tness helps to prevent initially stronger individuals
from too quickly dominating the population and driving the genetic diversity down too
early
 Also� since testing a rule on ��� ICs provides only an approximate gauge of the rule�s
performance over all ���� possible ICs� saving the top ��! of the rules was a good way of
making a ��rst cut� and allowing rules that survive to be tested over di�erent ICs
 Since a
new set of ICs was produced every generation� rules that were copied without modi�cation
were always retested on this new set
 If a rule performed well and thus survived over a large
number of generations� then it was likely to be a genuinely better rule than those that were
not selected� since it was tested with a large set of ICs


Results

Three hundred di�erent runs were performed� each starting with a di�erent random�number
seed
 On most runs the GA evolved a rather unsophisticated class of strategies
 One example�
a CA here called �a� is illustrated in �gure �a
 This rule had F��� � ��� in the generation
in which it was discovered
 Its computational �strategy� is the following� Quickly reach the
�xed point of all �s unless there is a su�ciently large block of adjacent or almost adjacent�
�s in the IC
 If so� expand that block
 For this rule� �su�ciently large� is seven or more
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cells
� This strategy does a fairly good job of classifying low and high density ICs under
F���� it relies on the appearance or absence of blocks of �s to be good predictors of ��� since
high�density ICs are statistically more likely to have blocks of adjacent �s than low�density
ICs


Similar strategies were evolved in most runs
 On approximately half the runs� �expand �s�
strategies were evolved� and on most of the other runs� the opposite �expand �s� strategies
were evolved
 These block�expanding strategies� although successful given F��� and N � ����
do not count as sophisticated examples of emergent computation in CAs� all the computation
is done locally in identifying and then expanding a �su�ciently large� block
 There is
no notion of global coordination or interesting information  ow between distant cells�two
things we claimed were necessary to perform well on the task
 Indeed� such strategies
perform poorly under performance measures using di�erent distributions of ICs� and when
N is increased


Mitchell� Crutch�eld� and Hraber ����� analyzed the detailed mechanisms by which the
GA evolved such block�expanding strategies
 This analysis uncovered some quite interesting
aspects of the GA� including a number of impediments that� on most runs� kept the GA
from discovering better�performing CAs
 These included the GA�s breaking the �c � �

�

task�s symmetries for short�term gains in �tness� as well as �over�tting� to the �xed lattice
size N � ��� and the unchallenging nature of the IC samples
 These impediments are
discussed in detail in Mitchell� Crutch�eld� and Hraber ������ but the last point merits
some elaboration here


The biased�  at distribution of ICs over � � ��� �� helped the GA get a leg up in the early
generations
 We found that computing �tness using an unbiased distribution of ICs made
the problem too di�cult for the GA early on�it was rarely able to �nd improvements to
the CAs in the initial population
 However� the biased distribution became too easy for
the improved CAs later in a run� and these ICs did not push the GA hard enough to �nd
better solutions
 We are currently exploring a �coevolution� scheme to improve the GA�s
performance on this problem


Despite these various impediments and the unsophisticated CAs evolved on most runs� on
several di�erent runs in our initial experiment the GA discovered CAs with more sophisti�
cated strategies that yielded signi�cantly better performance across di�erent IC distributions
and lattice sizes than was achieved by block�expanding strategies
 The typical space�time
behaviors of three such rules each from a di�erent run� are illustrated in �gure �b#d


For example� �d was the best�performing rule discovered in our initial GA experiments

In �gure �d it can be seen that� under �d� there is a transient phase during which spatial
and temporal transfer of information about the density in local regions takes place
 This
local information interacts with other local information to produce the desired �nal state

Roughly� �d successively classi�es �local� densities with a locality range that increases with
time
 In regions where there is some ambiguity� a �signal� is propagated
 This is seen either
as a checkerboard pattern propagated in both spatial directions or as a vertical black�to�
white boundary
 These signals indicate that the classi�cation is to be made later at a larger
scale
 The creation and interactions of these signals can be interpreted as the locus of the

�



computation being performed by the CA�they form its emergent program


The above explanation of how �d performs the �c �
�

�
task is an informal one obtained by

careful scrutiny of many space�time diagrams
 Can we understand more rigorously how the
evolved CAs perform the desired computation� Understanding the results of GA evolution is
a general problem�typically the GA is asked to �nd individuals that achieve high �tness but
is not told what traits the individuals should have to attain high �tness
 One could say that
this is analogous to the di�culty biologists have in understanding the products of natural
evolution e
g
� us�$ We computational evolutionists have similar problems� since we do not
specify what solution evolution is supposed to create� we ask only that it �nd some good
solution
 In many cases� particularly in automatic�programming applications e
g
� genetic
programming� Koza ������ it is di�cult to understand exactly how an evolved high��tness
individual works
 The problem is especially di�cult in the case of cellular automata� since
the emergent computation performed by a given CA is almost always impossible to extract
from the bits of the rule table


A more promising approach is to examine the space�time behavior exhibited by the CA and
to �reconstruct� from that behavior what the emergent algorithm is
 Crutch�eld and Han�
son have developed a general method for reconstructing and understanding the �intrinsic�
computation embedded in space�time behavior in terms of �regular domains�� �particles��
and �particle interactions� Hanson and Crutch�eld� ����� Crutch�eld and Hanson �����

This method is part of their �computational mechanics� framework for understanding com�
putation in physical systems Crutch�eld� �����
 A detailed discussion of computational
mechanics and particle�based computation is beyond the scope of this article
 Very brie y�
for those familiar with formal language theory� regular domains are regions of space�time
consisting of words in the same regular language�in other words� they are regions that are
computationally homogeneous and simple to describe
 Particles are the localized boundaries
between those domains
 In computational mechanics� particles are identi�ed as information
carriers� and collisions between particles are identi�ed as the loci of information processing

Particles and particle interactions form a high�level language for describing computation in
spatially extended systems such as CAs
 Figure � hints at this higher level of description� to
produce it we �ltered the regular domains from the space�time behavior of a GA�evolved CA
to leave only the particles and their interactions� in terms of which the emergent algorithm
of the CA can be understood


The application of computational mechanics to the understanding of rules evolved by
the GA is discussed further in Das� Mitchell� and Crutch�eld ����� in Das� Crutch�eld�
Mitchell� and Hanson ����� and in Crutch�eld and Mitchell ����
 In the �rst two papers� we
used particles and particle interactions to describe the evolutionary epochs by which highly
�t rules were evolved by the GA
 An illustration of the succession of these epochs for the
synchronization task is given in Figure �
 The goal for the GA was to �nd a CA that� from any
IC� produces a globally synchronous oscillation between the all��s and all��s con�gurations

This is perhaps the simplest version of the emergence of spontaneous synchronization that
occurs in decentralized systems throughout nature
� The computational mechanics analysis
allowed us to understand the evolutionary innovations produced by the GA in the higher�
level language of particles and particle interactions as opposed to the low�level language of

�



CA rule tables and spatial con�gurations


Conclusions

The discoveries of rules such as �b#�d and of rules that produce global synchronization is
signi�cant� since these are the �rst examples of a GA�s producing sophisticated emergent
computation in decentralized� distributed systems such as CAs
 These discoveries made by
a GA are encouraging for the prospect of using GAs to automatically evolve computation
for more complex tasks e
g
� image processing or image compression� and in more complex
systems
 Moreover� evolving CAs with GAs also gives us a tractable framework in which
to study the mechanisms by which an evolutionary process might create complex coordi�
nated behavior in natural decentralized distributed systems
 For example� by studying the
GA�s behavior� we have already learned how evolution�s breaking of symmetries can lead
to suboptimal computational strategies Mitchell� Crutch�eld� and Hraber ������ eventually
we may be able to use such computer models to test ways in which such symmetry break�
ing might occur in natural evolution
 In general� models such as ours can provide insights
on how evolutionary processes can discover structural properties of individuals that give
rise to improved adaptation
 In our case� such structural properties�regular domains and
particles�were identi�ed via the computational mechanics framework Crutch�eld� ������
and allowed us to analyze the evolutionary emergence of sophisticated computation
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