A Genetic Algorithm Discovers Particle-Based Computation
in Cellular Automata

Rajarshi Das!, Melanie Mitchell!, and James P. Crutchfield?

Submitted to the Third Parallel Problem-Solving From Nature Conference
March 2, 1994

Abstract

How does evolution produce sophisticated emergent computation in systems composed of
simple components limited to local interactions? To model such a process, we used a ge-
netic algorithm (GA) to evolve cellular automata to perform a computational task requiring
globally-coordinated information processing. On most runs a class of relatively unsophis-
ticated strategies was evolved, but on a subset of runs a number of quite sophisticated
strategies was discovered. We analyze the emergent logic underlying these strategies in
terms of information processing performed by “particles” in space-time, and we describe in
detail the generational progression of the GA evolution of these strategies. Our analysis is a
preliminary step in understanding the general mechanisms by which sophisticated emergent
computational capabilities can be automatically produced in decentralized multiprocessor
systems.

1. Introduction

Natural evolution has created many systems in which the actions of simple, locally-interacting
components give rise to coordinated global information processing. Insect colonies, economic
systems, the immune system, and the brain have all been cited as examples of systems in
which “emergent computation” occurs (e.g., see [6, 9]). In the following, “emergent compu-
tation” refers to the appearance in a system’s temporal behavior of information-processing
capabilities that are neither explicitly represented in the system’s elementary components
or their couplings (e.g., individual insects, economic agents, immune-systems cells, or neu-
rons) nor in the system’s initial and boundary conditions. Our interest is in phenomena in
which many locally-interacting processors, unguided by a central control, result in globally-
coordinated information processing that is more powerful than can be done by individual
components or linear combinations of components. More precisely, “emergent computa-
tion” signifies that the global information processing can be interpreted as implementing (or
approximating) a computation [2, 3].

While observations of the behavior of such a decentralized, multicomponent system might
suggest that a computation is taking place, understanding the emergent logic by which the
computation is performed is typically very difficult. It is also not well understood how
evolution creates the capacity for emergent computation in such systems. In this paper

!Santa Fe Institute, 1660 Old Pecos Trail, Suite A, Santa Fe, New Mexico, U.S.A. 87501.
Email: raja@santafe.edu, mm@santafe.edu

?Physics Department, University of California, Berkeley, CA, U.S.A. 94720.
Email: chaos@gojira.berkeley.edu

we report work addressing both these questions in a simplified model in which emergent
computational capabilities in cellular automata are evolved under a genetic algorithm (GA).
We apply a framework, called “computational mechanics”, for analyzing the emergent logic
embedded in the spatiotemporal behavior of spatially-extended systems such as cellular
automata [4, 1]. The results demonstrate how globally-coordinated information processing
is mediated by “particles” and “particle interactions” in space-time. We also analyze in
detail the evolutionary history over which a GA evolved such emergent computation in
cellular automata. Though our model is simplified, the results are relevant to understanding
the evolution of emergent computation in more complicated systems.

2. Cellular Automata

One of the simplest systems in which emergent computation can be studied is a one-
dimensional binary-state cellular automaton (CA)—a one-dimensional lattice of N two-state
machines (“cells”), each of which changes its state as a function only of the current states
in a local neighborhood. The lattice starts out with an initial configuration of cell states (0s
and 1s) and this configuration changes in discrete time steps according to the CA “rule”.
We use the term “state” to refer to a local state s,—the value of the single cell at site z. The
term “configuration” will refer to the pattern of local states over the entire lattice.

A CA rule ¢ can be expressed as a look-up table (“rule table”) that lists, for each local
neighborhood, the update state for the neighborhood’s central cell. In a one-dimensional
CA, a neighborhood consists of a cell and its r (“radius”) neighbors in either side. A sample
rule (the “majority” rule) for a one-dimensional binary CA with » = 1 is the following. Each
possible neighborhood 7 is given along with the “output bit” s = ¢(n) to which the central
cell is updated. (The neighborhoods are listed in lexicographic order.)

n 000 001 010 011 100 101 110 111
s 0 0 0 1 0 1 1 1

In words, this rule says that for each neighborhood of three adjacent cells, the new state is
decided by a majority vote among the three cells. At time step ¢, the look-up table is applied
to each neighborhood in the current lattice configuration, respecting the choice of boundary
conditions, to produce the configuration at ¢ + 1.

Cellular automata have been studied extensively as mathematical objects, as models of
natural systems, and as architectures for fast, reliable parallel computation (for overviews
of CA theory and applications, see, e.g., [14, 15]). However, the difficulty of understanding
the emergent behavior of CAs or of designing CAs to have desired behavior has up to now
severely limited their applications in science and engineering, and for general computation.

3. Details of Experiments

We used a form of the GA to evolve one-dimensional, binary state CAs to perform a density
classification task: the p. = 1/2 task [10]. A successful CA for this task will decide whether
or not the initial configuration (IC) contains more than half 1s. Let p denote the density
of 1s in a configuration and let py denote the density of 1s in the initial configuration. If

po < pe, then within M time steps the CA should relax to the fixed-point configuration of
all Os; otherwise within M time steps it should relax to the fixed point configuration of all
1s. M is a parameter of the task that depends on the lattice size N.

The CAs in our experiments had r = 3, with spatially periodic boundary conditions:
si = $i+n. The p. = 1/2 task is nontrivial for a small-radius (r < N) CA, since density is a
global property of a configuration, whereas a small-radius CA relies only on local interactions
mediated by the cell neighborhoods. The minimum amount of memory required for the p. =
1/2 task is proportional to log(N), since the equivalent of a counter register is required to
track the excess of 1s in a serial scan of the IC. In other words, the task requires computation
which corresponds to the recognition of a non-regular language. It has been argued that no
finite radius CA can perform this task perfectly across all lattice sizes [12], but even to
perform this task well for a fixed lattice size requires more powerful computation than can
be performed by a single cell or any linear combination of cells, such as the majority rule.
Since the 1s can be distributed throughout the CA lattice, the CA must transfer information
over large space-time distances (~ N).

The GA begins with a population of P randomly generated “chromosomes”—bit strings
listing the rule-table output bits in lexicographic order of neighborhood patterns. For binary
r = 3 rules, the chromosomes representing rules are of length 2% t! = 128. The size of the
rule space the GA searches is thus 2'?®—far too large for any kind of exhaustive search. The
fitness of a rule in the population is calculated by: (i) randomly choosing I ICs that are
uniformly distributed over p € [0.0,1.0], with exactly half with p < p. and half with p > p.;
(ii) running the rule on each IC either until it arrives at a fixed point or for a maximum of
M time steps; (iii) determining whether or not the final pattern is correct—i.e., N 0s for
po < pe and N 1s for py > p.. The initial density pg is never exactly 1/2, since N is chosen
to be odd. The rule’s fitness Fi(¢) is the fraction of the I ICs on which the rule produces
the correct final pattern. No partial credit is given for partially correct final configurations.

It should be pointed out that sampling ICs with uniform distribution over p € [0.0,1.0]
is highly skewed with respect to an unbiased distribution of ICs, which is binomially dis-
tributed over p € [0.0,1.0] and very strongly peaked at p = 1/2. However, preliminary
experiments indicated a need for such a biased distribution in order for the GA to make
progress in early generations. This biased distribution turns out to impede the GA in later
generations because, as increasingly fitter rules are evolved, the IC sample becomes less and

less challenging for the GA [10].

In each generation the GA goes through the following steps. (i) A new set of [ICs is
generated. (ii) F7(¢) is calculated for each rule ¢ in the population. (iii) The population is
ranked in order of fitness. (iv) A number F of the highest fitness (“elite”) rules is copied
without modification to the next generation. (v) The remaining P — E rules for the next
generation are formed by single-point crossovers between randomly chosen pairs of elite
rules. The parent rules are chosen from the elite with replacement. The offspring from each
crossover are each mutated m times, where mutation consists of flipping a randomly chosen
bit in a string. This defines one generation of the GA; it is repeated GG times for one run of
the GA. This method is similar to that used by Packard to evolve CAs for the p. = 1/2 task
[13]. (For a discussion of Packard’s experiment, see [11].)

The fitness function F7 is a rough estimate of the “exhaustive performance”—the perfor-

CA Rule Table | N =149 | N =599 | N = 999
Majority Pmaj 0.000 0.000 0.000
Expand 1-Blocks D14 0.652 0.515 0.503
Particle-Based b1 0.697 0.580 0.522
Particle-Based d1c 0.742 0.718 0.701
Particle-Based d14 0.769 0.725 0.714
GKL PGKL 0.816 0.766 0.757

Table 1: Measured values of 7?%4 at various values of N for six different » = 3 rules: the majority rule,
the four rules discovered by the GA in different runs (¢1,—¢14), and the GKL rule. The subscripts for
the discovered rule tables indicate the pair of space-time diagrams illustrating their behavior in Figure 1.
The standard deviation of 7?1161?, when calculated 100 times for the same rule, is approximately 0.004. The

standard deviations for P#, for larger N are higher. (This table is similar to that given in [5], where the

104
complete look-up tables for these rules are also given.)

mance that would be measured by exhaustively testing a CA on all 2V ICs. F} is a random
variable, since the precise value it returns for a given rule depends on the particular set of
I 1Cs used to test the rule. Thus, a rule’s fitness can vary stochastically from generation
to generation. For this reason, at each generation the entire population, including the elite
rules, is re-evaluated on a new set of ICs.

The parameter values we used were the following. For each CA in the population, N =
149 and I = 100. Each time a CA was simulated, M was chosen from a Poisson distribution
with mean 320 (slightly greater than 2/V). Varying M prevents overfitting of rules to a
particular M; see [11]. Allowing M to be larger—up to ten times the lattice size—did
not change the qualitative results of the experiments [10]. The chromosomes in the initial
population were not chosen with uniform probability at each bit as is common practice,
but rather were uniformly distributed over the fraction of 1s in the string. (This restriction
for the initial population was made for reasons related to previous research questions; see
[11]. A smaller set of subsequent experiments with unbiased randomly generated initial
populations indicated that this restriction is not likely to significantly influence the results
of the experiments.) We set P = 100; £ = 20; m = 2; and G = 50 (in some runs ¢
was set to 100; no significant difference in the final results was observed). For a more
detailed justification of these parameter settings and the results of parameter-modification
experiments, see [10, 11].

4. Results of Experiments
4.1 Previous Results

We performed 300 runs of the GA with the parameters given above; each run had a
different random-number seed. On most runs, the GA proceeded through roughly the same
sequence of four “epochs” of innovation, each of which was marked by the discovery of a
significantly improved new strategy for performing the p. = 1/2 task. As reported in [10, 11],
on most runs the GA evolved one of two strategies: (1) Relax to the fixed point of all 0s
unless there is a sufficiently large block of adjacent (or almost adjacent) 1s in the IC. If so,
expand that block. (2) Relax to the fixed point of all 1s unless there is a sufficiently large

4

block of adjacent (or almost adjacent) Os in the IC. If so, expand that block. The meaning
of “sufficiently large” depends on the particular rule implementing one of these strategies,
but typically it is close to the neighborhood size.

A rule implementing strategy (1)—here called ¢, —is illustrated in Figure 1(a). The
figure gives two “space-time diagrams”—plots of lattice configurations over a range of time
steps, with 1s given as black cells, Os given as white cells, and time increasing down the page.
The left space-time diagram has py < 1/2 and the right one has pg > 1/2. Strategies (1) and
(2) rely on the appearance or absence of blocks of 1s or 0s in the IC to be good predictors
of po. For example, high-p ICs are more likely to have blocks of adjacent 1s than low-p ICs
(cf. the right diagram in Figure 1(a)). The size of blocks that are expanded was tuned by
the GA to be a good predictor of high or low density for N = 149 given the distribution of
ICs on which the rules were tested.

The block-expanding rules evolved by the GA do not count as sophisticated examples of
computation in CAs: all the computation is done locally in identifying and then expanding a
“sufficiently large” block. Under Figg these strategies obtained fitnesses between 0.9 and 1.0
for different sets of ICs. A more indicative performance measure is “unbiased performance”,
PN (¢), defined as the fraction of I ICs chosen from an unbiased distribution over p on
which rule ¢ produces the correct final pattern after 2.15N time steps. (With an unbiased
distribution, most ICs chosen have p ~ 0.5). After each run of the GA we measured 77115{? for
the elite rules in the final generation. The highest measured P[4 (¢) for the block-expanding
rules was approximately 0.685. The performance of these rules decreased dramatically for
larger NV since the size of block to expand was tuned by the GA for N = 149. The second
row of Table 1 gives P (¢1,) for three values of N. It is interesting to note that one naive
solution to the p. = 1/2 task—the r = 3 “majority” rule, in which the new state of each cell
is decided by a majority vote among the 2r 4+ 1 cells in the neighborhood—has P = 0 for
all three values of N (first row of Table 1).

Mitchell, Crutchfield, and Hraber [10] described in detail the typical progression of the
GA through the four epochs of innovation and the evolutionary mechanisms by which each
new strategy was discovered on the way to a block-expanding CA. They also discussed a
number of impediments that tended to keep the GA from discovering fitter, more general
strategies; primary among them was the GA’s breaking of the p. = 1/2 task’s symmetries
in early generations for short-term gain by specializing exclusively on 1-block or 0-block
expansion. On most runs this symmetry breaking was an important factor in preventing the
GA from progressing to more sophisticated rules.

4.2 The New Strategies Discovered by the GA

Despite the impediments discussed in [10] and the unsophisticated rules evolved on most
runs, on seven different runs the GA discovered rules with significantly higher performance
and more sophisticated computational properties. Three such rules (each from a different
run) are illustrated in Figures 1(b)—(d). For each of these rules—a1, ¢1., and ¢14—Fioo
was between 0.9 and 1.0, depending on the set of 100 ICs. Some P}, values for these three
rules are given in Table 1. As can be seen, P17 is significantly higher for these rules than for

the typical block-expanding rule ¢1,. In addition, the performances of ¢;. and ¢4 remain

