
A Genetic Algorithm Discovers Particle�Based Computation

in Cellular Automata

Rajarshi Das�� Melanie Mitchell�� and James P� Crutch�eld�

Submitted to the Third Parallel Problem�Solving From Nature Conference

March �� ����

Abstract

How does evolution produce sophisticated emergent computation in systems composed of
simple components limited to local interactions� To model such a process� we used a ge�
netic algorithm �GA	 to evolve cellular automata to perform a computational task requiring
globally�coordinated information processing
 On most runs a class of relatively unsophis�
ticated strategies was evolved� but on a subset of runs a number of quite sophisticated
strategies was discovered
 We analyze the emergent logic underlying these strategies in
terms of information processing performed by �particles� in space�time� and we describe in
detail the generational progression of the GA evolution of these strategies
 Our analysis is a
preliminary step in understanding the general mechanisms by which sophisticated emergent
computational capabilities can be automatically produced in decentralized multiprocessor
systems


�� Introduction

Natural evolution has created many systems in which the actions of simple� locally�interacting
components give rise to coordinated global information processing
 Insect colonies� economic
systems� the immune system� and the brain have all been cited as examples of systems in
which �emergent computation� occurs �e
g
� see �� ��	
 In the following� �emergent compu�
tation� refers to the appearance in a system�s temporal behavior of information�processing
capabilities that are neither explicitly represented in the system�s elementary components
or their couplings �e
g
� individual insects� economic agents� immune�systems cells� or neu�
rons	 nor in the system�s initial and boundary conditions
 Our interest is in phenomena in
which many locally�interacting processors� unguided by a central control� result in globally�
coordinated information processing that is more powerful than can be done by individual
components or linear combinations of components
 More precisely� �emergent computa�
tion� signi�es that the global information processing can be interpreted as implementing �or
approximating	 a computation �� ��


While observations of the behavior of such a decentralized� multicomponent systemmight
suggest that a computation is taking place� understanding the emergent logic by which the
computation is performed is typically very di�cult
 It is also not well understood how
evolution creates the capacity for emergent computation in such systems
 In this paper

�Santa Fe Institute� ���� Old Pecos Trail� Suite A� Santa Fe� New Mexico� U�S�A� ������
Email	 raja
santafe�edu� mm
santafe�edu

�Physics Department� University of California� Berkeley� CA� U�S�A� �����
Email	 chaos
gojira�berkeley�edu

�



we report work addressing both these questions in a simpli�ed model in which emergent
computational capabilities in cellular automata are evolved under a genetic algorithm �GA	

We apply a framework� called �computational mechanics�� for analyzing the emergent logic
embedded in the spatiotemporal behavior of spatially�extended systems such as cellular
automata �� ��
 The results demonstrate how globally�coordinated information processing
is mediated by �particles� and �particle interactions� in space�time
 We also analyze in
detail the evolutionary history over which a GA evolved such emergent computation in
cellular automata
 Though our model is simpli�ed� the results are relevant to understanding
the evolution of emergent computation in more complicated systems


�� Cellular Automata

One of the simplest systems in which emergent computation can be studied is a one�
dimensional binary�state cellular automaton �CA	�a one�dimensional lattice of N two�state
machines ��cells�	� each of which changes its state as a function only of the current states
in a local neighborhood
 The lattice starts out with an initial con�guration of cell states ��s
and �s	 and this con�guration changes in discrete time steps according to the CA �rule�

We use the term �state� to refer to a local state si�the value of the single cell at site i
 The
term �con�guration� will refer to the pattern of local states over the entire lattice


A CA rule � can be expressed as a look�up table ��rule table�	 that lists� for each local
neighborhood� the update state for the neighborhood�s central cell
 In a one�dimensional
CA� a neighborhood consists of a cell and its r ��radius�	 neighbors in either side
 A sample
rule �the �majority� rule	 for a one�dimensional binary CA with r � � is the following
 Each
possible neighborhood � is given along with the �output bit� s � ���	 to which the central
cell is updated
 �The neighborhoods are listed in lexicographic order
	

� ��� ��� ��� ��� ��� ��� ��� ���
s � � � � � � � �

In words� this rule says that for each neighborhood of three adjacent cells� the new state is
decided by a majority vote among the three cells
 At time step t� the look�up table is applied
to each neighborhood in the current lattice con�guration� respecting the choice of boundary
conditions� to produce the con�guration at t� �


Cellular automata have been studied extensively as mathematical objects� as models of
natural systems� and as architectures for fast� reliable parallel computation �for overviews
of CA theory and applications� see� e
g
� ��� ���	
 However� the di�culty of understanding
the emergent behavior of CAs or of designing CAs to have desired behavior has up to now
severely limited their applications in science and engineering� and for general computation


�� Details of Experiments

We used a form of the GA to evolve one�dimensional� binary state CAs to perform a density
classi�cation task� the �c � ��� task ���
 A successful CA for this task will decide whether
or not the initial con�guration �IC	 contains more than half �s
 Let � denote the density
of �s in a con�guration and let �� denote the density of �s in the initial con�guration
 If

�



�� � �c� then within M time steps the CA should relax to the �xed�point con�guration of
all �s� otherwise within M time steps it should relax to the �xed point con�guration of all
�s
 M is a parameter of the task that depends on the lattice size N 


The CAs in our experiments had r � �� with spatially periodic boundary conditions�
si � si�N 
 The �c � ��� task is nontrivial for a small�radius �r� N	 CA� since density is a
global property of a con�guration� whereas a small�radius CA relies only on local interactions
mediated by the cell neighborhoods
 The minimum amount of memory required for the �c �
��� task is proportional to log�N	� since the equivalent of a counter register is required to
track the excess of �s in a serial scan of the IC
 In other words� the task requires computation
which corresponds to the recognition of a non�regular language
 It has been argued that no
�nite radius CA can perform this task perfectly across all lattice sizes ���� but even to
perform this task well for a �xed lattice size requires more powerful computation than can
be performed by a single cell or any linear combination of cells� such as the majority rule

Since the �s can be distributed throughout the CA lattice� the CA must transfer information
over large space�time distances �� N	


The GA begins with a population of P randomly generated �chromosomes��bit strings
listing the rule�table output bits in lexicographic order of neighborhood patterns
 For binary
r � � rules� the chromosomes representing rules are of length ��r�� � ���
 The size of the
rule space the GA searches is thus �����far too large for any kind of exhaustive search
 The
�tness of a rule in the population is calculated by� �i	 randomly choosing I ICs that are
uniformly distributed over � � ���� ����� with exactly half with � � �c and half with � � �c�
�ii	 running the rule on each IC either until it arrives at a �xed point or for a maximum of
M time steps� �iii	 determining whether or not the �nal pattern is correct�i
e
� N �s for
�� � �c and N �s for �� � �c
 The initial density �� is never exactly ���� since N is chosen
to be odd
 The rule�s �tness FI��	 is the fraction of the I ICs on which the rule produces
the correct �nal pattern
 No partial credit is given for partially correct �nal con�gurations


It should be pointed out that sampling ICs with uniform distribution over � � ���� ����
is highly skewed with respect to an unbiased distribution of ICs� which is binomially dis�
tributed over � � ���� ���� and very strongly peaked at � � ���
 However� preliminary
experiments indicated a need for such a biased distribution in order for the GA to make
progress in early generations
 This biased distribution turns out to impede the GA in later
generations because� as increasingly �tter rules are evolved� the IC sample becomes less and
less challenging for the GA ���


In each generation the GA goes through the following steps
 �i	 A new set of I ICs is
generated
 �ii	 FI��	 is calculated for each rule � in the population
 �iii	 The population is
ranked in order of �tness
 �iv	 A number E of the highest �tness ��elite�	 rules is copied
without modi�cation to the next generation
 �v	 The remaining P � E rules for the next
generation are formed by single�point crossovers between randomly chosen pairs of elite
rules
 The parent rules are chosen from the elite with replacement
 The o�spring from each
crossover are each mutated m times� where mutation consists of �ipping a randomly chosen
bit in a string
 This de�nes one generation of the GA� it is repeated G times for one run of
the GA
 This method is similar to that used by Packard to evolve CAs for the �c � ��� task
���
 �For a discussion of Packard�s experiment� see ���
	

The �tness function FI is a rough estimate of the �exhaustive performance��the perfor�

�



CA Rule Table N � ��� N � ��� N � ���
Majority �maj ����� ����� �����
Expand ��Blocks ��a ���� ����� �����
Particle�Based ��b ����� ����� ���
Particle�Based ��c ���� ����� �����
Particle�Based ��d ����� ���� �����
GKL �GKL ����� ����� �����

Table �� Measured values of PN
���

at various values of N for six di�erent r � � rules	 the majority rule�

the four rules discovered by the GA in di�erent runs ���a���d�� and the GKL rule� The subscripts for

the discovered rule tables indicate the pair of space�time diagrams illustrating their behavior in Figure ��

The standard deviation of P���

���
� when calculated ��� times for the same rule� is approximately ������ The

standard deviations for PN
���

for larger N are higher� �This table is similar to that given in ���� where the

complete look�up tables for these rules are also given��

mance that would be measured by exhaustively testing a CA on all �N ICs
 FI is a random
variable� since the precise value it returns for a given rule depends on the particular set of
I ICs used to test the rule
 Thus� a rule�s �tness can vary stochastically from generation
to generation
 For this reason� at each generation the entire population� including the elite
rules� is re�evaluated on a new set of ICs


The parameter values we used were the following
 For each CA in the population� N �
��� and I � ���
 Each time a CA was simulated�M was chosen from a Poisson distribution
with mean ��� �slightly greater than �N	
 Varying M prevents over�tting of rules to a
particular M � see ���
 Allowing M to be larger�up to ten times the lattice size�did
not change the qualitative results of the experiments ���
 The chromosomes in the initial
population were not chosen with uniform probability at each bit as is common practice�
but rather were uniformly distributed over the fraction of �s in the string
 �This restriction
for the initial population was made for reasons related to previous research questions� see
���
 A smaller set of subsequent experiments with unbiased randomly generated initial
populations indicated that this restriction is not likely to signi�cantly in�uence the results
of the experiments
	 We set P � ���� E � ��� m � �� and G � �� �in some runs G
was set to ���� no signi�cant di�erence in the �nal results was observed	
 For a more
detailed justi�cation of these parameter settings and the results of parameter�modi�cation
experiments� see ��� ���


�� Results of Experiments

��� Previous Results

We performed ��� runs of the GA with the parameters given above� each run had a
di�erent random�number seed
 On most runs� the GA proceeded through roughly the same
sequence of four �epochs� of innovation� each of which was marked by the discovery of a
signi�cantly improved new strategy for performing the �c � ��� task
 As reported in ��� ����
on most runs the GA evolved one of two strategies� ��	 Relax to the �xed point of all �s
unless there is a su�ciently large block of adjacent �or almost adjacent	 �s in the IC
 If so�
expand that block
 ��	 Relax to the �xed point of all �s unless there is a su�ciently large

�



block of adjacent �or almost adjacent	 �s in the IC
 If so� expand that block
 The meaning
of �su�ciently large� depends on the particular rule implementing one of these strategies�
but typically it is close to the neighborhood size


A rule implementing strategy ��	�here called ��a �is illustrated in Figure ��a	
 The
�gure gives two �space�time diagrams��plots of lattice con�gurations over a range of time
steps� with �s given as black cells� �s given as white cells� and time increasing down the page

The left space�time diagram has �� � ��� and the right one has �� � ���
 Strategies ��	 and
��	 rely on the appearance or absence of blocks of �s or �s in the IC to be good predictors
of ��
 For example� high�� ICs are more likely to have blocks of adjacent �s than low�� ICs
�cf
 the right diagram in Figure ��a		
 The size of blocks that are expanded was tuned by
the GA to be a good predictor of high or low density for N � ��� given the distribution of
ICs on which the rules were tested


The block�expanding rules evolved by the GA do not count as sophisticated examples of
computation in CAs� all the computation is done locally in identifying and then expanding a
�su�ciently large� block
 Under F��� these strategies obtained �tnesses between �
� and �
�
for di�erent sets of ICs
 A more indicative performance measure is �unbiased performance��
PN

I
��	� de�ned as the fraction of I ICs chosen from an unbiased distribution over � on

which rule � produces the correct �nal pattern after ����N time steps
 �With an unbiased
distribution� most ICs chosen have � � ���	
 After each run of the GA we measured P���

���
for

the elite rules in the �nal generation
 The highest measured P���

���
��	 for the block�expanding

rules was approximately �
���
 The performance of these rules decreased dramatically for
larger N since the size of block to expand was tuned by the GA for N � ���
 The second
row of Table � gives PN

���
���a	 for three values of N 
 It is interesting to note that one naive

solution to the �c � ��� task�the r � � �majority� rule� in which the new state of each cell
is decided by a majority vote among the �r� � cells in the neighborhood�has P���

���
� � for

all three values of N ��rst row of Table �	


Mitchell� Crutch�eld� and Hraber ��� described in detail the typical progression of the
GA through the four epochs of innovation and the evolutionary mechanisms by which each
new strategy was discovered on the way to a block�expanding CA
 They also discussed a
number of impediments that tended to keep the GA from discovering �tter� more general
strategies� primary among them was the GA�s breaking of the �c � ��� task�s symmetries
in early generations for short�term gain by specializing exclusively on ��block or ��block
expansion
 On most runs this symmetry breaking was an important factor in preventing the
GA from progressing to more sophisticated rules


��� The New Strategies Discovered by the GA

Despite the impediments discussed in ��� and the unsophisticated rules evolved on most
runs� on seven di�erent runs the GA discovered rules with signi�cantly higher performance
and more sophisticated computational properties
 Three such rules �each from a di�erent
run	 are illustrated in Figures ��b	��d	
 For each of these rules����b� ��c� and ��d�F���

was between �
� and �
�� depending on the set of ��� ICs
 Some PN

���
values for these three

rules are given in Table �
 As can be seen� P���

���
is signi�cantly higher for these rules than for

the typical block�expanding rule ��a
 In addition� the performances of ��c and ��d remain

�


