Communicated by Murray Gell-Mann to the SFI Technical Report 94-03-012
Proceedings of the National Academy of Sciences

PNAS Classification: Computer Science

The Evolution
of
Emergent Computation

James P. Crutchfield”

Physics Department
University of California
Berkeley, CA, U.SA. 94720
Email: chaos@gojira.berkeley.edu

Melanie Mitchell

Santa Fe Institute
1399 Hyde Park Road
Santa Fe, NM, U.SA. 87501
Email: mm@santafe.edu

A simple evolutionary process can discover sophisticated methods for emergent information-
processing in decentralized spatially-extended systems. The mechanisms underlying the
resulting emergent computation are explicated by a novel technique for analyzing particle-based
logic embedded in pattern-forming systems. Understanding how globally-coordinated
computation can emerge in evolution is relevant both for the scientific understanding of natural

information processing and for engineering new forms of paralel computing systems.

" Correspondence author.



Many systems in nature exhibit sophisticated collective information-processing abilities that
emerge from the individual actions of simple components interacting via restricted communica-
tion pathways. Some often-cited examples include efficient foraging and intricate nest-building
in insect societies (1), the spontaneous aggregation of a reproductive multicellular organism
from individual amoeba in the life cycle of the Dictyosteliumslime mold (2), the paralel and
distributed processing of sensory information by assemblies of neurons in the brain (3), and the
optimal pricing of goods in an economy arising from agents obeying local rules of commerce (4).
Allowing global coordination to emerge from a decentralized collection of simple components
has important advantages over explicit central control in both natural and human-constructed
information-processing systems. There are substantial costs incurred in having centralized coor-
dination, not the least being (i) speed (a central coordinator can be a bottleneck to fast information
processing); (ii) robustness (if the central coordinator is injured or lost, the entire system col-
lapses); and (iii) equitable resource allocation (a central controller must be allocated a lion's
share of system resources that otherwise could go to other agents in the system); e.g. see (5).
However, it is difficult to design a collection of individual components and their local interactions
in a way that will give rise to useful globa information processing. It is not well understood
how such apparent complex global coordination emerges from simple individual actions in nat-
ural systems, nor how such systems are produced by biological evolution. This paper reports
the application of new methods for detecting computation in nonlinear processes to a smple
evolutionary model that allows us to directly address these questions. The main result is the
evolutionary discovery of methods for emergent global computation in a spatially distributed

system consisting of locally interacting processors.

We use the general term “emergent computation” to describe the appearance of global
information-processing in such systems (cf. (6,7)). Our godl is to understand the mechanisms by
which evolution can discover methods of emergent computation. We are studying this question
in a theoretical framework that, while simplified, still captures the essence of the phenomena
of interest. This framework requires (i) an idealized class of decentralized system in which
global information-processing can arise from the actions of simple, locally-connected units;

(if) a computational task that necessitates global information processing; and (iii) an idealized
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computational model of evolution.

One of the simplest systems in which emergent computation can be studied is a one-
dimensional binary-state cellular automaton (CA) (8) — a one-dimensional spatial lattice of
N identical two-state machines (“cells’), each of which changes its state as a function only
of the current states in a local neighborhood of radius ». The lattice starts out with an initial
configuration (IC) of N cell states (0s and 1s). This configuration changes in discrete time steps
according to the CA “rule” — a look-up table mapping neighborhood state configurations to
update states. At each time step all cells examine their local neighborhoods (subject to specified
boundary conditions), consult the look-up table, and update their states smultaneously. The CA’s
radius places an upper bound on the speed of information transmission through the lattice. It
also limits the sophistication of the local dynamics: the number of look-up table entriesis 227 +1.

Thus fixing » < N constrains the sophistication of a CA’s explicit information processing.

A simple-to-define computational task for CAs that requires global information-processing is
deciding whether or not the IC contains more than half 1s. We call this the p. = 1/2 task, with
p. denoting a threshold density of 1sin the input. If p, denotes the density of 1sin the IC, the
desired behavior is for al cells to quickly change to state 1 if pg > p. and to quickly change to
state 0 if py < p.. Thep. = 1/2 task requires global communication, since p, isaglobal property
of the entire lattice; no linear combination of local computations — such as the cells computing
the mgjority of 1sin their neighborhood — can solve this problem. Designing an algorithm to
perform the p. = 1/2 task istrivial for systems with a central controller of some kind, such as a
standard computer with a counter register or a neural network with global connectivity. But it is
difficult to design a decentralized, spatially-extended system such as a CA to perform this task,
since there is no central counter or global communication built in. It can be shown that no finite
radius CA can perform this task perfectly across all lattice sizes (9,10) but even to perform this
task well for afixed lattice size requires more powerful computation than can be performed by a
single cell or any linear combination of cells. Since the 1s can be distributed throughout the CA
lattice, the CA must transfer information over large space-time distances (=~ V), and information
from distant parts of the lattice must interact so as to perform the computation. With » < N,

such information transmission and interaction can be accomplished only through the coordination
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of emergent high-level signals. Thus this task is well suited for investigating the ability of an

evolutionary process to design CAs with sophisticated emergent computational abilities.

One class of computational models of evolution are genetic algorithms (GAs) (11), which
evolve a population of candidate solutions to an optimization problem by propagating the most
“fit” candidates to the next generation via genetic modifications. We carried out a set of
experiments in which a GA was used to evolve one-dimensional, binary-state » = 3 CAs
(with spatially-periodic boundary conditions) to perform the p. = 1/2 task. This GA, while
highly idealized, contained the rudiments of selection and variation: crossover and mutation
worked on the genotype (the 128-bit string encoding the CA look-up table) whereas selection
was according to the fithess of the phenotype (the CA’s spatiotemporal behavior onan N = 149
cell lattice). The GA started out with an initial population of 100 strings (“rules’) randomly
generated with a uniform distribution over fraction of 1s in the string. The “fitness’ of each
rule was computed by iterating the corresponding CA on 100 randomly chosen ICs uniformly
distributed over p, € [0, 1], half with py < p. (correct classification: all 0s) and half with py > p,.
(correct classification: all 1s), and recording the fraction of correct classifications performed in
a maximum of dlightly more than 2N time steps. The fittest strings in the population were
selected to survive, and were randomly paired to produce offspring by crossover, with each bit
in the offspring subject to a small probability of mutation. This process was iterated for 100
“generations” — a “run” — with fitnesses estimated from a new set of ICs at each generation.
300 runs were performed starting with different random-number seeds. Details and justification

of the experimental procedure are given in (9).

As reported previously (9,12) the GA evolution proceeded through a succession of compu-
tationally distinct epochs. On most runs the end result was one of two computational strategies.
Settle to a fixed point of al 0s (1s) unless there is a sufficiently large block of adjacent, or almost
adjacent, 1s (0s) in the IC; if so, expand that block. These strategies rely on the presence or
absence of blocks as predictors of py. They do not count as sophisticated examples of emergent
computation in CAs. al the computation is done locally in identifying and then expanding a
sufficiently large (= 2r + 1) block. After each run we computed a measure of the quality of the

best rules in the final generation: the “unbiased performance” P49 101(¢), Which is the fraction



CA Rule Table
Symbol | Pyag 10t | Psoor0t | Pooo 10t
(r=3) Hexadecimal Code
00010117 01171777 0,000 0,000 0.000
Majorit ; . . .
Aoy 01171777 177f 7 f f Omaj
GA-Discovered 05054083 05¢90101
bexp 0.652 0.515 0.503
Expand 1-Blocks 200b0Oef b 94c7cff7
GA-Discovered 10000224 41170231
_ d11102 0.742 0.718 0.701
Particle-Based 155f 57dd 734bffff
GA-Discovered 03100100 1f a00013
. ?17083 0.755 0.696 0.670
Particle-Based 331fof ff 5975ffff
GA-Discovered 05040587 05000f 77
. ®100 0.769 0.725 0.714
Particle-Based 03775583 7bf f b77f
005f 005f 005f 005f
GKL OCKL 0.816 0.766 0.757
005f f f 5f 005f f f 5f

Table 1 Measured values of Py 144(#) a various N for six different r = 3 rules; the middle four discovered during different
runs of the GA. For N = 149, the standard deviation is 0.004; it is higher for larger N. ¢exp expands blocks of 1S; ¢maj
computes the magjority of 1s in the neighborhood; all the other rules implement more sophisticated strategies involving particle
interactions. To recover the 128-hit string giving the CA look-up table outputs, expand each hexadecimal digit to binary. The
neighborhood outputs then are given in lexicographic order starting from neighborhood 0000000 at the first bit in the 128-bit
binary string.

of correct classifications performed by rule ¢ within approximately 2N time steps with N = 149
over 10* 1Cs randomly chosen from an unbiased distribution over p. The unbiased distribution
meant that most I1Cs had py ~ 1/2. These are the most difficult cases, and thus Py 1:(¢) gives
a lower bound on other measures of a rule’'s performance. The highest measured P49 19+(¢)
for block-expanding rules was 0.685 + 0.004. Performance decreased dramatically for larger N
since the size of the block to expand and the velocity of expansion was tuned by the GA for
N = 149 (see (9)). In general, any rule that relies on spatially local properties will not scale well
with lattice size on the p. = 1/2 task. This is shown in Table 1 for a typical block-expanding
rule ¢.x, discovered by the GA.

A major impediment for the GA was an early breaking of symmetries in the p. = 1/2 task
for short-term gain in fitness by specialization for high or low density (9,12) This and other

impediments seemed to indicate that this evolutionary system was incapable of discovering
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Figure 1 Space-time diagrams showing the behavior of two CAs, discovered by the genetic algorithm on different runs, that
employ embedded particles for the nonlocal computation required in density classification. Each space-time diagram plots lattice
configuration iterates over a range of time steps, with 1s given as black cells, 0s as white cells; time increases down the page.
Both start with the same initial configuration (po = 0.483). (8) ¢170s3 correctly classifies this low-p configuration by going to
a fixed all-0s configuration by time 250 (not shown) after the gray regions dies out. (b) In contrast, CA ¢100 misclassifies it
by going to al 1s, despite its better average performance.

higher performance CA. However, we subsequently discovered that in seven out of 300 runs
the GA evolved significantly more sophisticated methods of emergent computation. Again, the
evolution proceeded via a series of epochs connected by distinct computational innovations. (A
detailed analysis of the evolutionary history will be presented elsewhere.) Py 10:(¢) values
for three values of N are shown in Table 1 for the best rules (¢11102, 917083, ¢100) IN three of
these runs. The higher Py 10:(¢) values and the improved scaling with increasing N indicates
anew level of computational sophistication above that of the block-expanding rules. Also given
for comparison are two human-designed CAs. ¢,,; computes the local majority of 1s in the
neighborhood and, since it maps almost all configurations to small stationary blocks of 1s and
0s, has Py 19:(¢) = 0.000 for al N; écgxr, one of the best performing rules known, has
the highest performance listed, though it was constructed not for the p. = 1/2 task but for a
study of ergodicity and reliable computation in CAs (13). Space-time diagrams illustrating the
behavior of ¢17033 and #19p are given in Figures 1(a) and 1(b). ¢19’S Space-time behavior is
remarkably similar to that of ¢qxy, (cf. (12)). Its lower performance arises from factors such

as asymmetries in the rule table.



How are we to understand the emergent computation these more successful CAs are
performing? In previous work (14-16) we developed automated methods for discovering
computational structures embedded in space-time behavior. Like many spatially-extended natural
processes, cellular automata configurations often organize over time into spatial regions that
are dynamically homogeneous. Typically, the discovery of the underlying regularities requires
automated inference methods. Sometimes, though (e.g., Figure 1), these regions are obvious
to the eye as “domains’: regions in which the same recurring “pattern” appears. In order
to understand this phenomenon and to automate its discovery, the notion of “domain” was
formalized in (15) by adapting computation theory to CA dynamics. There, adomain’s “pattern”
is described using the minimal deterministic finite automaton (DFA) (17) that accepts al and
only those configurations that appear in the domain. Such domains are called “regular” since
their configurations are members of the regular language recognized by the DFA. More precisely,
aregular domain A is a set of configurations that on an infinite lattice is temporally-invariant,

A = ¢(A), and whose DFA has a single recurrent set of states that is strongly connected.

Regular domains play a key role in organizing both the dynamica behavior and the
information processing properties of CAs. Once a CA’sregular domains have been detected (i.e.,
that level of structure has been understood), nonlinear transducers (filters) can be constructed to
remove them, leaving just the deviations from those regularities. The resulting filtered space-
time diagram reveals the propagation of domain “walls’. If these walls remain spatially-localized
over time, then they are called “particles” (16). (We emphasize that such embedded particles are
qualitatively different from those exhibited by CAs that have been hand-designed to perform
computations, e.g. see (18)) Embedded particles are a primary mechanism for carrying
information (or “signals’) over long space-time distances. This information might indicate,
for example, the result of some local processing that has occurred at an early time. Logical
operations on the signals are performed when the particles interact. The collection of domains,
domain walls, particles, and particle interactions for a CA represents the basic information

processing elements embedded in the CA’s behavior — the CA’s “intrinsic” computation.

CA ¢170s3 of Figure 1(a) has three domains { A°, A', A%}, which are given in Table 2. There
are five stable particles {«, v, 6, n, 1} and one unstable “particle” {3} defined (Table 2) as walls

6



Domains
A =0* Al =17 A% = (10001)"
Particles (velocities) Graphics

a~ A'AY (1) \ B~ APAL (0) v~ AZAY (=2)
%

P AL (1) [ TR (3) e

-.l

Interactions (by type)

annihilate 5—|—’y—>@ ,u—|—77—>@
decay g —0+n Lty — «
react a+6—p n+a—-~

Table 2 The domains, particles, and particle interactions that support the emergent logic in the CA (¢170s2) shown in Figure 1(a).
(w)* meansany number of repetitions of stringw. The table includes only those structures that dominate the CA’ s spatiotemporal
behavior. Very infrequently occurring structures, such as the checkerboard domain A® = (10)* and the four dislocations within
A? are not listed since they do not contribute measurably to the CA’s classification performance. Under “Particles’, the graphic
associated with each particle provides a key to Figure 2; each particle’s velocity is given in parentheses. Note that the structure

of each particle's graphic is determined by the nonlinear transducer. @ denotes spatial configurations without particles.

between two domains. Note that, given the CA rule code (Table 1), it can be proved that the
domains are time-invariant sets and the stable particles are spatially-localized time-invariant sets
for the corresponding CA (16). Using this knowledge, the space-time diagram of Figure 1(a)
can be filtered to remove the domains. The result, shown in Figure 2, reveas the particles
and their interactions. Table 2 lists the six particle interactions that have been identified. The
filtering analysis reveals a particle-based logic that emerges over time and supports the required
computational processing — information storage and propagation over large space-time distances,
logical operations, and so on — necessary for high fitness in approximating density classification.
Roughly, ¢170s3 successively classifies “local” densities with a locality range that increases with
time. In regions where there is some ambiguity, signals (in the form of particles) are propagated,
indicating that the classification is to be made at a larger scale via particle interactions. Two
examples of such interactions are shown on the left portion of Figure 2 and explained in the
caption.

There are a number of constraints imposed by the “cellular” nature of CAs that the GA

balances in its evolutionary search for high fitness. First, classification of local configurations
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Figure 2 Analysis of the emergent logic for density classification in CA ¢170s2 (Figure 1(a)). This CA has three domains, six
particles, and six particle interactions, as noted in Table 2. This figure gives the same space-time diagram as in Figure 1(a),
except that the domains have been filtered out using an 18-state nonlinear transducer constructed according to (16). The resulting
diagram reveals the particle interactions that support the long-range spatiotemporal correlation for density classification at the
associated performance level (Table 1). The particle interaction o + § — g, shown on the upper right, implements the “logic”
of mapping a spatial configuration representing high, low, and then ambiguous densities to a high-density signa p. Similar
detail is shown for the particle interaction 1 + v — « that maps a configuration representing high, ambiguous, and then low

density to an ambiguous-density signal «.

with ambiguous density must be deferred to later times and larger spatial scales in order to
provide a context in which information is available to disambiguate the local classification.
Second, signals are required in the form of propagating particles since local operations at later
times have to be spatially local: decisions are made when particles come within an interaction
range set by the CA radius. Third, the particle interactions must be built into the look-up
table, which adds constraints that are nonlocal in the genomic representation and that must
be compatible with domain stability and particle propagation. Fourth, the particles must be
stable in order to preserve information over space-time. The result is a delicate balance that
must be maintained by the GA in a CA look-up table that supports sophisticated particle-based
information processing. Given these constraints, which are nonlocal and require specific output
bit settings in the rule table string, it is striking that the GA evolved particle-based computation
that performed nearly as well as the best-performing human-designed CA.



The particle-based computation analysis also indicates why the CAs discovered by the GA, as
well as the human-designed CA, fail to achieve higher Py 1(:(#). One reason, of coursg, is that
the emergent logic can be incorrect. Even small errors in the particle velocities or interactions,
for example, are compounded over time and lead to misclassifications. More importantly, at
the very earliest iterations, before the CA behavior has condensed into configurations consisting
only of domains and particles, local configurations larger than the neighborhood size lead to
incorrect positioning and selection of domains. The ensuing emergent logic operates on these
errors and, even if it is correct, produces a misclassification. In this way, the analysis methods
of (15) and (16) alow us to explain how particular mechanisms in CAs lead to increased fitness

and so survivahility.

From the perspective of engineering applications, the particular GA used here was not
an efficient automated designer of particle-based computation, since the rate of production of
these CAs is low, though reliable. A primary impediment is the GA’s breaking of symmetries
in early generations for short-term fitness gain. This resulted in the populations move to
asymmetric, low-performance block-expanding CAs. Repairing the broken symmetries required
an unlikely coordinated change in a large number of look-up table bits. In (9) we proposed
a number of improvements to the GA, including the design of GA fitness functions and
genomic representations that respect known task symmetries, but we aso noted that symmetry-
breaking may be a necessary part of some evolutionary pathways. On the subset of runs on
which particle-based CAs were evolved, the GA was able to respect the symmetries necessary
for higher performance and better scaling; this result and the success of our analysis of
embedded computation are encouraging for the prospect of evolving more powerful particle-
based computational systems for real-world tasks. Moreover, in work that will be reported
elsewhere, the GA discovered perfectly performing CAs, on a high fraction of runs, that used
particle-based computation on a different task: to rapidly achieve stable global synchronization

between local processors.

The main result reported here is a simplified evolutionary process's discovery of methods
for emergent global computation in a spatially distributed system consisting of locally interacting

processors. Despite numerous phenomena that indicate nature has been confronted by analogous
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design tasks and solved them, to date only human-designed CAs have been used for performing
such computations (cf. (19,20). In contrast to the engineering approach of building particles
and their interactions into CAs, a key tool in our analysis was the ability to detectstructures

embedded in CA spatiotemporal behavior that support emergent computation.

A simple, but general lesson was learned: when confronted with constraints, evolutionary
processes need to innovate qualitatively new mechanisms that transcend those constraints. The
locality of communication in CAs imposes a constraint on communication speed. The GA’s
innovation was to discover CAs that performed information processing over large space-time
distances using particles and their interactions — a wholly new level of behavior that is distinct
from the lower level of spatia configurations. In this way, our analysis of particle-based
computation demonstrated how complex global coordination can emerge within a collection of
simple individual actions. In a complementary fashion, our GA simulations demonstrated how
an evolutionary process, by taking advantage of certain nonlinear pattern-forming propensities
of CAs, can produce this new level of behavior through a succession of innovations that build

up the delicate balance necessary for effective emergent computation.
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was supported in part at the University of California at Berkeley by Air Force Office of Scientific
Research grant 91-0293 and Office of Naval Research contract NO0014-95-1-0524 and at the
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