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Abstract� We investigate the ability of a genetic algorithm to design cellular au�
tomata that perform computations� The computational strategies of the resulting
cellular automata can be understood using a framework in which �particles� embed�
ded in space�time con�gurations carry information and interactions between particles
e�ect information processing� This structural analysis can also be used to explain the
evolutionary process by which the strategies were designed by the genetic algorithm�
More generally� our goals are to understand how machine�learning processes can design
complex decentralized systems with sophisticated collective computational abilities and
to develop rigorous frameworks for understanding how the resulting dynamical systems
perform computation�
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�� Introduction

From the earliest days of computer science� researchers have been interested in making
computers and computation more like information�processing systems in nature� In the
��
�s and ��	
�s� von Neumann viewed the new �eld of �automata theory� as closely related
to theoretical biology� and asked questions such as �How are computers and brains alike��
��	� and �What is necessary for an automaton to reproduce itself�� ����� Turing was deeply
interested in the mechanical roots of human�like intelligence ����� and Weiner looked for
links among the functioning of computers� nervous systems� and societies ����� More recently
work on biologically and sociologically inspired computation has received renewed interest�
researchers are borrowing information�processing mechanisms found in natural systems such
as brains ��� ��� ���� immune systems ���� ���� insect colonies ��� ���� economies ���� �
�� and
biological evolution ��� ��� 
�� The motivation behind such work is both to understand how
systems in nature adaptively process information and to construct fast� robust� adaptive
computational systems that can learn on their own and perform well in many environments�

Although there are some commonalities� natural systems di�er considerably from tradi�
tional von Neumann�style architectures�� Biological systems such as brains� immune systems�

�It should be noted that although computer architectures with central control� random access memory�
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and insect societies consist of myriad relatively homogeneous components that are extended
in space and operate in parallel with no central control and with only limited communication
among components� Information processing in such systems arises from coordination among
large�scale patterns that are distributed across components �e�g�� distributed activations of
neurons or activities of antibodies�� Such decentralized systems� being highly nonlinear� of�
ten exhibit complicated� di�cult�to�analyze� and unpredictable behavior� The result is that
they are hard to control and �program�� It seems clear that in order to design and under�
stand decentralized systems and to develop them into useful technologies� engineers must
extend traditional notions of computation to encompass these architectures� This has been
done to some extent in research on parallel and distributed computing �e�g�� ��
�� and with
architectures such as systolic arrays ���� However� as computing systems become more par�
allelized and decentralized and employ increasingly simple individual processors� it becomes
harder and harder to design and program such systems�

Cellular automata �CAs� are a simple class of systems that captures some of the features
of systems in nature listed above� large numbers of homogeneous components �simple �nite
state machines� extended in space� no central control� and limited communication among
components� Given that there is no programming paradigm for implementing parallel com�
putations in CAs� our research investigates how genetic algorithms �GAs� can evolve CAs
to perform computations requiring coordination among many cells� In other words� the
GA�s job is to design ways in which the actions of simple components with local information
and communication give rise to coordinated global information processing� In addition� we
have adapted a framework��computational mechanics��that can be used to discover how
information processing is embedded in dynamical systems ���� and thus to analyze how com�
putation emerges in evolved CAs� Our ultimate motivations are two�fold� �i� to understand
collective computation and its evolution in natural systems and �ii� to explore ways of auto�
matically engineering sophisticated collective computation in decentralized multi�processor
systems�

In previous work we described some of the mechanisms by which genetic algorithms
evolve cellular automata to perform computations� and some of the impediments faced by the
GA �	��� We also brie�y sketched our adaptation of the computational mechanics approach
to understanding computation in the evolved CAs ���� ��� �
�� In this paper we give a more
fully developed account of our research to date on these topics� report on new results� and
compare our work with other work on GAs� CAs� and distributed computing�

This paper is organized as follows� In Sec� ��� we review cellular automata� de�ne
a computational task for CAs��density classi�cation��that requires global coordination�
and describe how we used a GA to evolve cellular automata to perform this task� In Sec� 	���
we describe the results of the GA evolution of CAs� We �rst describe the di�erent types of
CA computational strategies discovered by the GA for performing the density classi�cation
task� We then make the notion of computational �strategies� more rigorous by de�ning
them in terms of embedded particles� particle interactions� and geometric �subroutines�
consisting of these components� This high�level description enables us to explain how the
space�time con�gurations generated by the evolved CAs give rise to collective computation
and to predict quantitatively the CAs�s computational performance� We then use embedded�

and serial processing have been termed �von Neumann style�� von Neumann was also one of the inventors
of �non von Neumann�style� architectures such as cellular automata�
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Figure �	 The components of one�dimensional� binary�state� r 
 �
��elementary�� CA �� shown iterated one time step on a con�gura�
tion with N 
 �� lattice sites and periodic boundary conditions �i�e��
sN 
 s���

particle descriptions to explain the evolutionary stages by which the successful CAs were
produced by the GA� Finally� in Sec� � we compare our research with related work�

�� Cellular Automata

An one�dimensional cellular automaton consists of a lattice of N identical �nite�state ma�
chines �cells�� each with an identical topology of local connections to other cells for input and
output� along with boundary conditions� Let � denote the set of states in a cell�s �nite�state
machine and let k  j�j denote the number of states per cell� Each cell is indexed by its
site number i  
� �� � � � � N � �� A cell�s state at time t is denoted by sti� where s

t
i � ��

The state sti of cell i together with the states of the cells to which it is connected is called
the neighborhood �ti of cell i� Each cell obeys the same transition rule ���

t
i�� that gives the

update state st��i  ���ti� for cell i as a function of �
t
i � We will drop the indices on s

t
i and �

t
i

when we refer to them as general �local� variables�

We use st to denote the con�guration of cell states�

st  st�s
t
� � � � s

t
N���

A CA f�N � �g thus speci�es a global map ! of the con�gurations�

! � �N � �N �

with
st��  !�st��
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Figure �	 A space�time diagram illustrating the typical behavior of
elementary CA �ECA� ��� The lattice of ��� sites� displayed horizon�
tally at the top� starts with s� being an arbitrary initial con�guration�
Cells in state � are displayed as black and cells in state  are displayed
as white� Time increases down the page�

In some cases in the discussion below� ! will also be used to denote a map on subcon�gura�
tions of the lattice� Whether ! applies to global con�gurations or subcon�gurations should
be clear from context�

In a synchronous CA� a global clock provides an update signal for all cells� at each t all
cells synchronously read the states of the cells in their neighborhood and then update their
own states according to sti  ���ti��

The neighborhood � is often taken to be spatially symmetric� For one�dimensional
CAs� �i  si�r� � � � � s�� � � � � si�r� where r is the CA�s radius� Thus� � � �	r�� � �� For
small�radius� binary�state CAs� in which the number of possible neighborhoods is not too
large� � is often displayed as a look�up table� or rule table� that lists each possible � together
with its resulting output bit st���

The architecture of a one�dimensional� �k� r�  ��� �� CA is illustrated in Fig� �� Here�
the neighborhood of each cell consists of itself and its two nearest neighbors and the boundary
conditions are periodic� sN  s��

The �	� one�dimensional� �k� r�  ��� �� CAs are called elementary CAs �ECAs�� Wol�
fram ���� introduced a numbering scheme for one�dimensional CAs� The output bits can
be ordered lexicographically� as in Fig� �� and are interpreted as the binary representation
of an integer between 
 and �		 with the leftmost bit being the least�signi�cant digit and
the rightmost the most�signi�cant digit� In this scheme� the elementary CA pictured here is
number ��
�

In this paper we will restrict our attention to synchronous� one�dimensional� �k� r�  
��� �� CAs with periodic boundary conditions� This choice of parameters will be explained
below� For ease of presentation� we will sometimes refer to a CA by its transition rule �
�e�g�� as in �the CA � � � � ���

The behavior of CAs is often illustrated using space�time diagrams in which the con�

	



�gurations st on the lattice are plotted as a function of time� Fig� � shows a space�time
diagram of the behavior of ECA ��
 on a lattice of N  �� sites and periodic boundary
conditions� starting from an arbitrary initial con�guration �the lattice is displayed horizon�
tally� and iterated over �� time steps with time increasing down the �gure� A variety of
local structures are apparent to the eye in the space�time diagram� They develop over time
and move in space and interact�

ECAs are among the simplest spatial dynamical systems� discrete in time� space� and
local state� Despite this� as can be seen in Fig� �� they generate quite complicated� even
apparently aperiodic behavior� The architecture of a CA can be modi�ed in many ways�
increasing the number of spatial dimensions� the number k of states per cell� and the neigh�
borhood size r� modifying the boundary conditions� making the local CA rule � probabilistic
rather than deterministic� making the global update ! asynchronous� and so on�

CAs are included in the general class of �iterative networks� or �automata networks��
�See ��
� for a review�� They are distinguished from other architectures in this class by their
homogeneous and local �r � N� connectivity among cells� homogeneous update rule across
all cells� and �typically� relatively small k�

For quite some time� due to their appealingly simple architecture� CAs have been suc�
cessfully employed as models of physical� chemical� biological� and social phenomena� such
as �uid �ow� galaxy formation� earthquakes� chemical pattern formation� biological morpho�
genesis� and vehicular tra�c dynamics� They have been considered as mathematical objects
about which formal properties can be proved� They have been used as parallel computing
devices� both for the high�speed simulation of scienti�c models and for computational tasks
such as image processing� In addition� CAs have been used as abstract models for studying
�emergent� cooperative or collective behavior in complex systems� For discussions of work
in all these areas� see� e�g�� �� �	� �
� ��� �� 	�� � 		� ��� ����

�� A Computational Task for Cellular Automata

It has been shown that some CAs are capable of universal computation� see� e�g�� ��� 	
� ����
The constructions either embed a universal Turing machine�s tape states� read"write head
location� and �nite�state control in a CA�s con�gurations and rule or they design a CA rule�
supporting propagating and interacting particles� that simulates a universal logic circuit�
These constructions are intended to be in�principle demonstrations of the potential compu�
tational capability of CAs� rather than implementations of practical computing devices� they
do not give much insight about the computational capabilities of CAs in practice� Also� in
such constructions it is typically very di�cult to design initial con�gurations that perform
a desired computation� Moreover� these constructions amount to using a massively parallel
architecture to simulate a serial one�

Our interest in CA computation is quite di�erent from this approach� In our work� CAs
are considered to be massively parallel and spatially extended pattern�forming systems� Our
goal is to use machine�learning procedures� such as GA stochastic search� to automatically
design CAs that implement parallel computation by taking advantage of the patterns formed
via collective behavior of the cells�
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To this end� we chose a particular computation for a one�dimensional� binary�state CA�
density classi�cation�that requires collective behavior� The task is to determine whether
��� the fraction of �s in the initial con�guration �IC� s�� is greater than or less than a critical
value �c� If �� � �c� the entire lattice should relax to a �xed point of all �s �i�e�� !��

N �  �N�
in a maximum of Tmax time steps� otherwise it should relax to a �xed point of all 
s ��i�e��
!�
N�  
N� within that time� The task is unde�ned for ��  �c� In our experiments we set
�c  ��� and Tmax  �N � The performance PI

N ��� of a CA � on this task is calculated by
randomly choosing I initial con�gurations on a lattice of N cells� iterating � on each IC for
a maximum of Tmax time steps� and determining the fraction of the I ICs that were correctly
classi�ed by ��a �xed point of all �s for �� � �c� and a �xed point of all 
s otherwise� No
partial credit is given for �nal con�gurations that have not reached an all��s or all�
s �xed
point� As a shorthand� we will refer to this task as the ��c  ���� task� De�ning the task for
other values of �c is of course possible� e�g�� Chau et al� showed that is is possible to perform
the task for rational densities �c using two one�dimensional elementary CAs in succession
����

This task is trivial for a von Neumann�style architecture that holds the IC as an array
in memory� it simply requires counting the number of �s in s�� It also trivial for a two�layer
neural network presented with each s�i on one of its N input units� all of which feed into
a single output unit� it simply requires weights set so that the output unit �res when the
activation reaches the desired threshold �c� In contrast� it is nontrivial to design a CA of our
type to perform this task� all cells must agree on a global characteristic of the input even
though each cell communicates its state only to its neighbors�

The �c  ��� task for CAs can be contrasted with the well�studied tasks known as
�Byzantine agreement� and �consensus� in the distributed computing literature �e�g�� ����
����� These are tasks requiring a number of distributed processors to come to agreement
on a particular value held initially by one of the processors� Many decentralized protocols
have been developed for such tasks� They invariably assume that the individual processors
have more sophisticated computational capabilities and memory than the individual cells in
our binary�state CAs or that the communication topologies are more complicated than that
of our CAs� Moreover� to our knowledge� none of these protocols addresses the problem of
classifying a global property �such as initial density� of all the processors�

Given this background� we asked whether a GA could design CAs in which collective
behavior allowed them to perform well above chance �� PI

N���  
�	� on this task for a
range of N � To minimize local processor and local communication complexity� we wanted to
use the smallest values of k and r for which such behavior could be obtained� Over all �	�
ECAs �� the maximum performance P���

N ��� is approximately 
�	 for N � f��� 	��� ���g�
For all CAs � evolved in �

 runs of the GA on �k� r�  ��� �� CAs� the maximum P���

N ���
was approximately 
�	� for N  �� and approximately 
�	 for N � f	��� ���g� �The GA�s
details will be given in the next section�� Increasing the radius to r  �� though� resulted in
markedly higher performance and more sophisticated collective behavior� As a result� all of
the experiments described in this paper were performed on one�dimensional �k� r�  ��� ��
CAs with N � f��� 	��� ���g and periodic boundary conditions� Note that for r  �� the
neighborhood size j�j  ��

One naive candidate solution to the �c  ��� task� which we will contrast with the
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Figure �	 Space�time diagrams for �maj� the r 
 � local�majority�vote
CA� In the left diagram� �� � ���� in the right diagram� �� � ����

GA�evolved CAs� is the r  � �majority vote� CA� This CA� denoted �maj� maps the center
cell in each ��cell neighborhood to the majority state in that neighborhood� Fig� � gives two
space�time diagrams illustrating the behavior of �maj on two ICs� one with �� � ��� and the
other with �� � ���� As can be seen� small high�density �low�density� regions are mapped
to regions of all �s �
s�� But when an all��s region and an all�
s region border each other�
there is no way to decide between them and both persist� Thus� �maj does not perform the

�c  ��� task� In particular� P���

N ��maj� was measured to be zero for N � f��� 	��� ���g� At
a minimum more sophisticated coordination in the form of information transfer and decision
making is required� And� given the local nature of control and communication in CAs� the
coordination among cells must emerge in the absence of any central processor or central
memory directing the cells�

Other researchers� building on our work� have examined variations of the �c  ��� task
that can be performed by simple CAs or by combinations of CAs� Capcarrere et al� �	� noted
that changing the output speci�cation makes the task signi�cantly easier� For example�
ECA �� classi�es densities of initial conditions within dN��e time steps by producing a
�nal con�guration of a checkerboard pattern �
��� interrupted by one or more blocks of at
least two consecutive 
s for low�density ICs or at least two consecutive �s for high�density ICs�
Fuk#s ���� noted that by using the �nal con�guration of ECA �� as the initial con�guration
of ECA ���� the correct �nal con�guration of either all�
s or all��s is obtained� Note that
Fuk#s� solution requires a central controller that counts time up to dN��e steps in order to
shift from a CA using rule �� to one using rule ����

Both solutions always yield correct density classi�cation� whereas the single�CA �c  ���
task is considerably more di�cult� In fact� it has been proven that no single� �nite�radius
two�state CA can perform the �c  ��� task perfectly for all N ���� ���

Our interest is not focused on developing a new and better parallel method for per�
forming this speci�c task� Clearly� one�dimensional� binary�state cellular automata are far
from the best architectures to use if one is interested in performing density classi�cation
e�ciently� As we have emphasized before� the task is trivial within other computational
model classes� Instead� our interest is in investigating how GAs can design CAs that have
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interesting collective computational capabilities and how we can understand those capabil�
ities� Due to our more general interest� we have been able to adapt this paradigm to other
spatial computation tasks�tasks for which the above speci�c solutions do not apply and for
which even approximate hand�designed CA solutions were not previously known �����

�� Evolving Cellular Automata with Genetic Algorithms

Genetic algorithms are search methods inspired by biological evolution �
�� In a typical
GA� candidate solutions to a given problem are encoded as bit strings� A population of such
strings ��chromosomes�� is chosen at random and evolves over several generations under
selection� crossover� and mutation� At each generation� the �tness of each chromosome
is calculated according to some externally imposed �tness function and the highest��tness
chromosomes are selected preferentially to form a new population via reproduction� Pairs of
such chromosomes produce o�spring via crossover� where an o�spring receives components
of its chromosome from each parent� The o�spring chromosomes are then subject at each bit
position to a small probability of mutation �i�e�� being �ipped�� After several generations�
the population often contains high��tness chromosomes�approximate solutions to the given
problem� �For overviews of GAs� see ��	� 	���

We used a GA to search for �k� r�  ��� �� CAs to perform the �c  ��� task�
	 Each

chromosome in the population represented a candidate CA�it consisted of the output bits
of the rule table� listed in lexicographic order of neighborhood �cf� � in Fig� ��� The
chromosomes representing CAs were of length �	r��  ��� bits� The size of the space in which
the GA searched was thus ��	��far too large for exhaustive enumeration and performance
evaluation�

Our version of the GA worked as follows�

First� an initial population ofM chromosomes was chosen at random� The �tness F I
N���

of a CA � in the population was computed by randomly choosing I ICs on a lattice of N
cells� iterating the CA on each IC either until it arrived at a �xed point or for a maximum of
Tmax time steps� It was then determined whether the �nal con�guration was correct�i�e��
the all�
s �xed point for �� � ��� or the all��s �xed point for �� � ���� F I

N��� was the
fraction of the I ICs on which � produced the correct �nal behavior� No credit was given
for partially correct �nal con�gurations�

In each generation� ��� a new set of I ICs was generated� ��� F I
N��� was computed for

each CA � in the population� ��� CAs in the population were ranked in order of �tness �with
ties broken at random�� �� a number E of the highest �tness CAs �the �elite�� was copied
to the next generation without modi�cation� and �	� the remainingM �E CAs for the next
generation were formed by crossovers between randomly chosen pairs of the elite CAs� With
probability pc� each pair was crossed over at a single randomly chosen locus l� forming two
o�spring� The �rst child inherited bits 
 through l from the �rst parent and bits l$� through
��� from the second parent� vice versa for the second child� The parent CAs were chosen for
crossover from the elite with replacement�that is� an elite CA was permitted to be chosen
any number of times� The two o�spring chromosomes from each crossover �or copies of the

�The basic framework was introduced in Ref� ���	 to study issues of phase transitions� computation� and
adaptation� For a review of the original motivations and a critique of the results see Ref� �
�	�
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parents� if crossover did not take place� were mutated �
� � and �� 
� at each locus with
probability pm� This process was repeated for G generations during a single GA run� Note
that since a di�erent sample of ICs was chosen at each generation� the �tness function itself
is a random variable�

We ran experiments with two di�erent distributions for choosing theM chromosomes in
the initial population and the set of I ICs at each generation� �i� an �unbiased� distribution
in which each bit�s value is chosen independently with equal probability for 
 and �� and
�ii� a density�uniform distribution in which strings were chosen with uniform probability
over 	 � �
� �� or over �� � �
� ��� where 	 is the fraction of �s in ��s output bits and ��
is the fraction of �s in the IC� Using the density�uniform distribution for the initial CA
population and for the ICs considerably improved the GA�s ability to �nd high �tness CAs
on any given run� �That is� we could use 	
% fewer generations per GA run and still �nd
high performance CAs�� The results we report here are from experiments in which density�
uniform distributions were used�

The experimental parameters we used were M  �

� I  �

� E  �
� N  ���
Tmax  �N � pc  ��
 �i�e�� crossover was always performed�� pm  
�
��� and G  �

� Ex�
periments using variations on these parameters did not result in higher performance solutions
or faster convergence to the best�performance solutions�

To test the quality of the evolved CAs we used P���

N with N � f��� 	��� ���g� This
performance measure is a more stringent quality test than the �tness F ���

N used in the GA
runs� under P���

N the ICs are chosen from an unbiased distribution and thus have �� close to
the density threshold �  ���� Such ICs are the hardest cases to classify� Thus� P���

N gives
a lower bound on other performance measures� In machine learning terms� the ICs used to
calculate F ���

��
 are the training sets for the CAs and the ICs used to calculate P
���

N are larger
and harder test sets that probe the evolved CA�s generalization ability�

�� Results of Experiments

In this section we describe the results from �

 independent runs of this GA� with di�erent
random number seeds�

In each of the �

 runs� the population converged to CAs implementing one of three
types of computational strategies� The term �strategy� here refers to the mechanisms by
which the CA attains some level of �tness on the �c  ��� task� These three strategy types�
�default�� �block expanding�� and �particle�� are illustrated in Figures ��� In each �gure�
each row contains two space�time diagrams displaying the typical behavior of a CA � that
was evolved in a GA run� Thus� CAs from six di�erent runs are shown� In each row� �� � ���
in the left space�time diagram and �� � ��� in the right� The rule tables and measured P���

N

values for the six CAs are given in Table ��

��� Default Strategies

In �� out of the �

 runs� the highest performance CAs implemented �default� strategies�
which on almost all ICs iterate to all 
s or all �s� respectively� The typical behavior of two

�




such CAs� �adef and �
b
def� is illustrated in Figures �a� and �b�� Default strategies each have

PI
N ��� � 
�	� since each classi�es one density range �e�g�� � � ���� correctly and the other
�� � ���� incorrectly� Since the initial CA population is generated with uniform distribution
over 	 it always contains some CAs with very high or low 	� And since 	 is the fraction
of �s in the output bits of the look�up table� these extreme�	 CAs tend to have one or the
other default behavior�

��� Block�Expanding Strategies

In most runs ���
 out of �

 in our experiments� the GA evolved CAs with strategies like
those shown in Figures 	�a� and 	�b�� �aexp in Fig� 	�a� defaults to an all��s �xed point �right
diagram� unless there is a su�ciently large block of adjacent �or almost adjacent� 
s in the

IC� In this case it expands that block until 
s �ll up the entire lattice �left diagram�� �bexp
in Fig� 	�b� has the opposite strategy� It defaults to the all�
s �xed point unless there is a
su�ciently large block of �s in the IC� The meaning of �su�ciently large block� depends on
the particular CA� but is typically close to the neighborhood size �r$ �� For example� �aexp
will expand blocks of � or more 
s and �bexp will expand blocks of � or more �s�

These �block�expanding� strategies rely on the presence or absence of blocks of �s or

s in the IC� blocks of adjacent 
s ��s� are more likely to appear in low� �high�� density
ICs� Since the occurrence of such blocks is statistically correlated with ��� recognizing and
then expanding them leads to �tnesses above those for the default strategy� The strength
of this correlation depends on the initial density �� and on the lattice size N � Typical
block�expanding strategies have F ���

��
 � 
�� and P
���

��
 � 
��� The block�expanding strategies
designed by the GA are adapted to N  ��� their performances do not scale well to larger
lattice sizes� This occurs since the probability of a block of� say� seven adjacent �s appearing
for a given �� increases with N and this means that the correlation between the occurrence
of this block and density decreases� This can be seen in the measured values of P���

N for �aexp
and �bexp for longer lattices given in Table ��

��� Embedded�Particle Strategies

The block�expanding strategies are not examples of the kind of sophisticated coordination
and information transfer that we claimed must be achieved for robust performance on the
�c  ��� task� Under these strategies all the computation is done locally in identifying
and then expanding a �su�ciently large� block� Moreover� the performance on N  ��
does not generalize to larger lattices� Clearly� the block�expanding strategies are missing
important aspects required by the task� The third class of strategies evolved by the GA� the
�embedded�particle� strategies� do achieve the coordination and communication we alluded
to earlier� Typical space�time behaviors of two particle strategies� �apar and �

b
par� are given in

Figures ��a� and ��b�� It can be seen that there is a transient phase during which the spatial
and temporal transfer of information about the local density takes place� Such strategies
were evolved in � out of the �

 runs�

�apar�s behavior is somewhat similar to that of �maj in that local high�density regions
are mapped to all �s and local low�density regions are mapped to all 
s� In addition� a

��
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Figure �	 Space�time behavior of �default� strategy CAs evolved on
two di�erent GA runs� �a� �adef with �� 
 ��� �left� and �� 
 ���
�right�� On almost all ICs this CA iterates to a �xed point of all s�

correctly classifying only low�� ICs� �b� �bdef with �� 
 ��� �left� and
�� 
 ��� �right�� On almost all ICs this CA iterates to a �xed point
of all �s� correctly classifying only high�� ICs�

��



(a)

148Site0

0

Time

148
148Site0

ρ = 0.46
0

ρ = 0.55
0

 Φ exp
a

(b)

148Site0

0

Time

148
148Site0

ρ = 0.44
0

ρ = 0.52
0

 Φ exp
b

Figure �	 Space�time behavior of two �block expanding� CAs evolved
on di�erent GA runs� �a� �aexp with �� 
 ��� �left� and �� 
 ���
�right�� This CA defaults to a �xed point of all �s unless the IC
contains a su�ciently large block of adjacent s� in which case� that
block is expanded� �b� �bexp with �� 
 ��� �left� and �� 
 ���
�right�� This CA defaults to a �xed point of all s unless the IC
contains a su�ciently large block of adjacent �s� in which case� that
block is expanded� The classi�cation of the IC is correct in each of
these four cases�
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vertical stationary boundary separates these regions� The set of local spatial con�gurations
that make up this boundary is speci�ed in formal language terms by the regular expression
����
��
��� where �w�� means a positive number of repetitions of the word w ����

The stationary boundary appears when a region of �s on the left meets a region of 
s on
the right� However� there is a crucial di�erence from �maj� when a region of 
s on the left
meets a region of �s on the right� a checkerboard region �
��� grows in size with equal speed
in both directions� A closer analysis of its role in the overall space�time behavior shows that
the checkerboard region serves to decide which of the two adjacent regions �
s and �s� is the
larger� It does this by simply cutting o� the smaller region and so the larger �
 or �� region
continues to expand� The net decision is that the density in the region was in fact below or
above �c  ���� The spatial computation here is largely geometric� there is a competition
between the sizes of high� and low�density regions�

For example� consider the right�hand space�time diagram of Fig� ��a�� The large low�
density region between the lines marked �boundary �� and �boundary �� is smaller than
the large high�density region between �boundary �� and �boundary �� �moving left from
boundary � and wrapping around�� The left�hand side of the checkerboard region �centered
around boundary �� collides with boundary � before the right�hand side does� The result is
that the collision cuts o� the inner white region� letting the outer black region propagate�

In this way� �apar uses local interactions and simple geometry to determine the relative
sizes of adjacent low� and high�density regions that are larger than the neighborhood size�
As is evident in Figures ��a� and ��b�� this type of size competition over time happens across
increasingly larger spatial scales� gradually resolving competitions between larger and larger
regions�

The black�white boundary and the checkerboard region can be thought of as signals
indicating �ambiguous� density regions� Each of these boundaries has local density exactly
at �c  ���� Thus� they are not themselves �classi�ed� by the CA as low or high density�
The result is that these signals can persist over time� The creation and interaction of these
signals can be interpreted as the locus of the computation being performed by the CA�they
form its emergent �algorithm�� what we have been referring to as the CA�s �strategy��

�bpar �Fig� ��b�� follows a similar strategy� but with a vertically striped region playing
the role of the checkerboard region in �apar� However� in this case there are asymmetries in

the speeds of the propagating region boundaries� This di�erence yields a lower P���

N � as can
be seen in Table ��

These descriptions of the computational strategies evolved by the GA are informal� A
major goal of our work is to make terms such as �computation�� �computational strategy��
and �emergent algorithm� more rigorous for cellular automata� In the next section we will
describe how we are using the notions of domains� particles� and particle interactions to
do this� We will use these notions to answer questions such as� How� precisely� is a given
CA performing the task� What structural components are used to support this information
processing� How can we predict PI

N and other computational properties of a given CA� Why
is PI

N greater for one CA than for another� What types of mistakes does a given CA make
in performing the �c  ��� task� These types of questions are di�cult� if not impossible� to
answer in terms of local space�time notions such as the bits in a CA�s look�up table or even
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CA Name Rule Table �Hexadecimal� P���

��
 P���

�

 P���






�adef ���������������D 
�	

 
�	

 
�	


�����������B��BF

�bdef �BF	D	�AF��F�F�B 
��� 
��� 
�	
�
F�FF���F�B���DF�

�aexp �������������F	B 
��	� 
�	�� 
�	

�FD�D	DF��F��FFF

�bexp �����A�B�������� 
��� 
�	�� 
�	
�
��D�
�C�CD
��B�F

�apar ������
������F�� 
���	 
��
 
����
������
��BFFB��F

�bpar ��������A�A����� 
���� 
���� 
���
��EFEFFFFBFFAAFE

Table �	 CA chromosomes �look�up table output bits� given in hex�
adecimal and P���

N for the six CAs illustrated in Figures ���� on lat�
tices of sizes N 
 ���� N 
 ���� and N 
 ���� To recover the ����bit
string giving the CA look�up table outputs� expand each hexadecimal
digit �left to right� top row followed by bottom row� to binary� This
yields the neighborhood outputs in lexicographic order of neighbor�
hood� with the leftmost bit of the ����bit string giving the output bit
for neighborhood ��������� and so on� Since P���

N is measured on a
randomly chosen sample of ICs� it is a random variable� This table
gives its mean over � trials for each CA� Its standard deviation over
the same � trials is approximately �� for each CA for all three
values of N � For comparison� the best known �k� r� 
 ��� �� CAs for
the �c 
 ��� task have P���

��
 � ��� �see Sec� ��� This appears to be
close to the upper limit of P���

��
 for this class of spatial architectures�

the raw space�time con�gurations produced by the CA� A higher�level description is needed�
one that incorporates computational structures�

�� Understanding Collective Computation in Cellular Automata

In this section we will describe our approach to formalizing the notion of computational
strategy in cellular automata and in other spatially extended systems� This approach is
based on the computational mechanics framework of Crutch�eld ����� as applied to cellular
automata by Crutch�eld and Hanson ��	� ��� ���� This framework comprises a set of methods
for classifying the di�erent patterns that appear in CA space�time behavior� using concepts
from computation and dynamical systems theories� These methods were developed as a way
of analyzing the behavior of cellular automata and other dynamical systems� They extend
more traditional geometric and statistical analyses by revealing the intrinsic information�
processing structures embedded in dynamical processes�
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Figure �	 Space�time behavior of two �particle� CAs evolved on dif�
ferent GA runs� �a� �apar with �� 
 ��� �left� and �� 
 ��� �right��

�b� �bpar with �� 
 ��� �left� and �� 
 ��� �right�� These CAs
use the boundaries between homogeneous space�time regions to e�ect
information transmission and processing� Again� the classi�cation of
the IC is correct in each of these four cases�
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Figure �	 �a� Space�time diagram illustrating the typical behavior
of ECA ���a CA exhibiting apparently random behavior� i�e�� the
set of length�L spatial words has a positive entropy density as L �
�� �b� The same diagram with the regular domains�instances of
words in ����ltered out� leaving only the embedded particles P 

f���n�� n 
 � �� �� � � �g� �After ������

��� Computational Mechanics of Cellular Automata

As applied to cellular automata� the purpose of computational mechanics is to discover an
appropriate �pattern basis� with which to describe the structural components that emerge
in a CA�s space�time behavior� A CA pattern basis consists of a set � of formal languages
f&i� i  
� �� � � �g in terms of which a CA�s space�time behavior can be decomposed concisely
and in a way constrained by the temporal dynamics� Once such a pattern basis is found�
those cells in space�time regions that are described by the basis can be seen as forming
background �domains� against which coherent structures�defects� walls� etc��not �tting
the basis move� In this way� structural features above and beyond the domains can be
identi�ed and their dynamics analyzed and interpreted on their own terms�

For example� consider the space�time diagram of Fig� ��a�� illustrating the apparently
random behavior of ECA ��� This example is a useful illustration of embedded information
processing since the coherent structures are not immediately apparent to the eye� The
computational mechanics analysis ��� ��� of ECA �� uses a pattern basis consisting of the
single domain language �  f&�  �
���g� where �  f
� �g� That is� over most regions in
ECA ���s con�gurations� every other site is a 
 and the remaining sites are wildcards� either

 or �� �Often this type of formal�language description of a set of con�guration features can
be discovered automatically via the �
�machine reconstruction� algorithm ���� �����

Crutch�eld and Hanson de�ne a regular domain &j as a space�time region that �i� is
a regular language and �ii� is space� and time�translation invariant� Regular domains can
be represented by either the set &i of con�gurations or by the minimal �nite�state machine
M�&i� that recognizes &i� More speci�cally� let f&ig be the pattern basis for CA �� Then
the regular domain &i describes the space�time regions of f!t�s�� � t  
� �� �� � � �g whose
con�gurations are words in &i� Formally� then� a regular domain &i is a set that is
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�� temporally invariant�the CA always maps a con�guration in &i to another con�gu�
ration in &i� !�s�  s�� s� s� � &i� and

�� spatially homogeneous�the same pattern can occur at any site� the recurrent states
in the minimal �nite automaton M�&i� recognizing &i are strongly connected�

Once a CA�s regular domains are discovered� either through visual inspection or by
an automated induction method� and proved to satisfy the above two conditions� then the
corresponding space�time regions are� in a sense� understood� Given this level of discovered
regularity� the domains can be �ltered out of the space�time diagram� leaving only the
�unmodeled� deviations� referred to as domain �walls�� whose dynamics can then be studied
in and of themselves� Sometimes� as is the case for the evolved CA we analyze here� these
domain walls are spatially localized� time�invariant structures and so can be considered to
be �particles��

In ECA �� there is only one regular domain &�� It turns out that it is stable and so
is called a regular �attractor��the stable invariant set to which con�gurations tend over
long times� after being perturbed away from it by� for example� �ipping a site value ��� ����
Although there are random sites in the domain� its basic pattern is described by a simple
rule� all con�gurations are allowed in which every other site value is a 
� If these �xed�value
sites are on even�numbered lattice sites� then the odd�numbered lattice sites have a wild card
value� being 
 or � with equal probability� The boundaries between these �phase�locked�
regions are �defects� in the spatial periodicity of &� and� since they are spatially localized
in ECA ��� they can be thought of as particles embedded in the raw con�gurations�

To locate a particle in a con�guration generated by ECA ��� assuming one starts in a
domain� one scans across the con�guration� from left to right say� until the spatial period��
phase is broken� This occurs when a site value of � is seen where the domain pattern indicates
a 
 should be� Depending on a particle�s structure� it can occur� as it does with ECA ���
that scanning the same con�guration in the opposite direction �right to left� may lead to the
detection of the broken domain pattern at a di�erent site� In this case the particle is de�ned
to be the set of local con�gurations between these locations�

Due to this ECA ���s particles are manifest in spatial con�gurations as blocks in the set
P  f��

�n�� n  
� �� �� � � �g� a de�nition that is left�right scan invariant� Fig� ��b� shows
a �ltered version of Fig� ��a� in which the cells participating in &� are colored white and the
cells participating in P are colored black� The spatial structure of the particles is re�ected in
the triangular structures� which are regions of the lattice in which the particle�the breaking
of &��s pattern�is localized� though not restricted to a single site�

In this way� ECA ���s con�gurations can be decomposed into natural� �intrinsic� struc�
tures that ECA �� itself generates� viz�� its domain &� and its particle P� These structures
are summarized for a CA in what we call a particle catalog� The catalog is particularly simple
for ECA ��� cf� Table �� The net result is that ECA ���s behavior can be redescribed at the
higher level of particles� It is noteworthy that� starting from arbitrary initial con�gurations�
ECA ���s particles have been shown to follow a random walk in space�time on an in�nite
lattice� annihilating in pairs whenever they intersect ��� ���� One consequence is that there
is no further structure� such as coherent particle groupings� to understand in ECA ���s dy�
namics� Thus� one moves from the deterministic dynamics at the level of the CA acting
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Regular Domain
&�  f�
�
 $ ����g

Particle
� � &� &�  f��

�n�� n  
� �� �� � � �g

Interaction �annihilation�
� $ �� � �&��

Table �	 ECA ���s catalog of regular domains� particles� and particle
interactions� The notation p � �i�j means that p is the particle
forming the boundary between domains �i and �j�

on raw con�gurations to a level of stochastic particle dynamics� The result is that ECA ��
con�gurations� such as those in Fig� ��a�� can be analyzed in a much more structural way
than by simply classifying ECA �� as �chaotic��

In the computational mechanics view of CA dynamics� embedded particles carry various
kinds of information about local regions in the IC� Given this� particle interactions are the
loci at which this information is combined and processed and at which decisions are made�
In general� these structural aspects�domains� particles� and interactions�do not appear
immediately� As will be seen below� often there is a initial disordered period� after which the
con�gurations condense into well�de�ned regular domains� particles� and interactions� To
capture this relaxation process we de�ne the condensation time tc as the �rst iteration at
which the �ltered space�time diagram contains only well�de�ned domains in � and the walls
between them� In other words� at tc� every cell participates in either a regular domain� of
width at least �r$�� in a wall between them� or in an interaction between walls� �See Refs�
���� and ��� for a more detailed discussion of the condensation phase and its consequences��

��� Computational Mechanics of Evolved Cellular Automata

This same methodology is particularly useful in understanding and formalizing the computa�
tional strategies that emerged in the GA�evolved CA� Fortunately� in the following exposition
most of the structural features in the evolved CA are apparent to the eye� Fig� ��a� sug�
gests that an appropriate pattern basis for �apar is �  f&�  

��&�  ����&	  �
���g�
corresponding to the all�white� all�black� and checkerboard regions� Similarly� Fig� ��b� sug�

gests that for �bpar we use �  f&�  

��&�  �����&�  �
����g� corresponding to the
all�white� all�black� and striped regions�

Note that a simple shortcut can be used to identify domains that are spatially and
temporally periodic� If the same �pattern� appears repeated over a su�ciently large �� r
cells by r time steps� space�time region� then it is a domain� It is also particularly easy to
prove such regions are regular domains� Exactly how the pattern is expressed as a regular
language or as a minimal �nite�state machine typically requires closer inspection�

Once identi�ed� the computational contributions of these space�time regions can be
easily understood� The contributions consist solely of the generation of words in the cor�
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Figure �	 �a� Version of Fig� ��a� with the regular domains �ltered
out� revealing the particles and their interactions� �b� Filtered version
of Fig� ��b��
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Regular Domains
&�  f
�g &� f��g &	 f�
���g

Particles �Velocities�
� � &� &� ��� � � &� &� �
�  � &� &	 ����
� � &	 &� ���� � � &� &	 ��� � � &	 &� ���

Interactions
decay ��  $ �
react � $  � �� �$ � � �� � $ � � �

annihilate � $ �� � �&���  $ � � � �&��

Table �	 �apar�s catalog of regular domains� particles �including veloc�
ities in parentheses�� and particle interactions� Note that this catalog
leaves out possible three�particle interactions�

responding regular language� Since this requires only a �nite amount of spatially localized
memory� its direct contribution to the global computation required by the task is minimal�
�The density of memory vanishes as the domain increases in size�� The conclusion is that the
domains themselves� while necessary� are not the locus of the global information processing�

Fig� � is a version of Fig� � with �apar�s and �bpar�s regular domains �ltered out� The

result reveals the walls between them� which for �apar and �
b
par are several kinds of embedded

particles� The particles in Fig� � are labeled with Greek letters� This �ltering is performed
by a building a transducer that reads in the raw con�gurations and can recognize when
sites are in which domain� The transducer used for Fig� ��a�� for example� outputs white
at each site in one of �apar�s domains and black at each site participating in a domain wall�
�The particular transducer and comments on its construction and properties can be found
in Appendix A� The general construction procedure is given in Ref� ��	���

Having performed the �ltering� the focus of analysis shifts away from the raw con�g�
urations to the new level of embedded�particle structure� The questions now become� Are
the computational strategies explainable in terms of particles and their interactions � Or� is
there as yet some unrevealed information processing occurring that is responsible for high
performance�

Tables � and  list all the di�erent particles that are observed in the space�time behavior
of �apar and �

b
par� along with their velocities and the interactions that can take place between

them� Note that these particle catalogs do not include all possible structures� for example�
possible three�particle interactions� The computational strategies of �apar and �bpar can now
be analyzed in terms of the particles and their interactions as listed in the particle catalogs�

��� Computational Strategy of �apar

In a high�performance CA such as �apar� particles carry information about the density of local
regions in the IC� and their interactions combine and process this information� rendering a
series of decisions about ��� How do these presumed �functional� components lead to the
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&�  f
�g &�  f��g &	  f�
����g

Particles �Velocities�
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� � � &� &� ���  � &� &	 �
�
� � &	 &� ���� � � &� &	 ��� � � &	 &� ��"��

Interactions
decay ��  $ �
react � $  � �� �$ � � �� � $ � � �

annihilate � $ �� � �&���  $ � � � �&��

Table �	 �bpar�s catalog of regular domains� particles �including their
velocities in parentheses�� and particle interactions�

observed �tness and computation performance�

Referring to Table � and Fig� ��a�� �apar�s � particle is seen to consist of the zero�velocity
black�to�white boundary� � carries the information that it came from a region in the IC in
which the density is locally ambiguous� the density of �k
k� when determined at its center�
is exactly �c� The ambiguity cannot be resolved locally� It might be� however� at a later
time� when more information can be integrated from other regions of the IC�

Likewise� the � �particle� consists of the white�to�black boundary� but unlike the �
particle� � is unstable and immediately decays into two particles  �white�checkerboard
boundary� and � �checkerboard�black boundary�� Like �� � indicates local density ambiguity�
The particles into which it decays�  and �� carry this information and so they too are
�ambiguous density� signals�  carries the information that it borders a white �low density�
region and � carries the information that it borders a black �high density� region� The two
particles also carry the mutual information of having come from the same ambiguous density
region where the transient � was originally located� They carry this positional information
about ��s location by virtue of having the same speed �	���

To see how these elements work together over a space�time region consider the left side
of the left�hand ��� � ���� diagram in Fig� ��a�� Here� � decays into a  and a � particle�
The � then collides with a � before its companion  �wrapping around the lattice� does�
This indicates that the low�density white region� whose right border is the � is larger than
the black region bordered by the �� The ��� collision creates a new particle� a �� that carries
this information ��low�density domains�� to the left� producing more low�density area� ��
a fast moving particle� catches up with the  ��low density�� and annihilates it� producing
&� over the entire lattice� The result is that the white region takes over the lattice before
the maximum number of iterations has passed� In this way� the classi�cation of the �low
density� IC has been correctly determined by the spatial algorithm�the steps we have just
described� In the case of �apar� this �nal decision is implemented by ��s velocity being three
times that of �s�

On the right side of the right�hand ��� � ���� diagram in Fig� ��a�� a converse situation
emerges�  collides with � before � does� The e�ective decision indicates that the black
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region bordered by � is larger than the white region bordered by � In symmetry with the
��� interaction described above� the �� interaction creates the � particle that catches up
with the � and the two annihilate� In this way� the larger black region takes over and the
correct density classi�cation is e�ected�

A third type of particle�based information processing is illustrated at the top left of
the right�hand diagram in Fig� ��a�� Here� an � decays into a  and a �� In this case� the
white region bordered by  is smaller than the black region bordered by �� As before� 
collides with the � on its left� producing �� However� there is another � particle to the right
of �� Instead of the � proceeding on to eventually collide with the �� the � �rst collides
with the second �� Since the � borders the larger of the two competing regions� its collision
is slightly later than the �� collision to its left� The ��� collision produces a � particle
propagating to the left� Now the � and the � approach each other at equal and opposite
speeds and collide� Since � is carrying the information that the white region should win and
� is carrying the information that the black region should win� their collision appropriately
results in an �ambiguity� signal�here� a � that later on interacts with particles from greater
distances� But since � traveled farther than � before their collision� a � is produced that is
is shifted to the right from the original �� The net e�ect�the net geometric subroutine�is
to shift the location of density ambiguity from that of the original � particle in the IC to a
� moved to the right a distance proportional to the large black region�s size relative to the
white region�s size�

Even though this � encodes ambiguity that cannot be resolved by the information
currently at hand�that is� the information carried by the � and � that produce it�this �
actually carries important information in its location� which is shifted to the right from the
original �� To see this� refer to Fig� �� an enlargement of the right diagram of Fig� ��a� with
some particle labels omitted for clarity� W and B denote the lengths of the indicated white
�low density� and black �high density� regions in the IC� Given the particle velocities listed
in Table � and using simple geometry it is easy to calculate that the �� produced by the ���
interaction� is shifted to the right by ��B�W� cells from the ��s original position� The shift
to the right means that the high�density region �to the left of the leftmost �� has gained
B�W sites in size as a result of this series of interactions� In terms of relative position the
local particle con�guration ��� becomes ��� and then ��� which annihilate to produce
a �nal �� This information is used later on� when the rightmost  collides with the new
� before its partner � does� eventually leading to black taking over the lattice� correctly
classifying the ��� � ���� IC�

It should now be clear in what sense we say that particles store and transmit informa�
tion and that particle collisions are the loci of decision making� We described in detail only
two such scenarios� As can be seen from the �gures� this type of particle�based information
processing occurs in a distributed� parallel fashion over a wide range of spatial and temporal
scales� The functional organization of the information processing can be usefully analyzed
at three levels� �i� the information stored in the particles and decisions made during their
interaction� �ii� geometric subroutines that are coordinated groupings of particles and inter�
actions that e�ect intermediate�scale functions� and �iii� the net spatial computation over
the whole lattice and from t  
 to t  Tmax�

In the next section we will argue that these levels of description of a CA�s compu�
tational behavior�in terms of information transmission and processing by particles and
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Figure �	 An enlargement and relabeling of the right diagram of
Fig� ��a� with some particle labels omitted for clarity� W is the length
of the leftmost white region� B is the length of the black region to
its right� and d is the amount by which the � produced by the 	�

interaction has been shifted from the leftmost �� Given the particle
velocities listed in Table � and using simply geometry� it is easy to
calculate that d 
 ��B �W��
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Figure �	 �a� Type�� misclassi�cation by �apar� with �� 
 ���� Even
though �� � �c� at tc �here� t 
 �� the lengths of the black regions sum
to �� cells and the lengths of the white regions sum to �� cells� This
leads to a misclassi�cation of IC density� �b� Type�� misclassi�cation
by �apar� starting with �� 
 ���� At tc �here also� t 
 �� the sum of
the lengths of the black regions is �� cells and the sum of the lengths
of the white regions is �� cells� However� even though these condensed
lengths correctly re�ect the fact that �� � �c� the black regions in the
IC�s center occur within white regions in such a way that they get
cut o�� Ultimately this yields a large white region that wins over the
large black region and the IC is misclassi�ed�

their interactions�is analogous to� but signi�cantly extends� Marr�s �representation and
algorithm� level of information processing� It turns out to be the most useful level for un�
derstanding and predicting the computational behavior of CAs� both for an individual CA
operating on particular ICs and also for understanding how the GA evolved the progres�
sive innovations in computational strategies over succeeding generations� �We will put these
latter claims on a quantitative basis shortly��

�apar almost always iterates to either all 
s or all �s within Tmax  �N time steps�
The errors it makes are almost always due to the wrong classi�cation being reached rather
than no classi�cation being e�ected� �apar makes two types of misclassi�cations� In the
�rst type� illustrated in Fig� �
�a�� �apar reaches the condensation time tc having produced
a con�guration whose density is on the opposite side of �c than was ��� The particles and
interactions then lead� via a correct geometric computation� to an incorrect �nal con�gura�
tion� In the second type of error� illustrated in Fig� �
�b�� the density �tc is on the same
side of the threshold as ��� but the con�guration is such that islands of black �or white� cells
are isolated from other black �or white� regions and get cut o�� This error in the geometric
computation eventually leads to an incorrect �nal con�guration� As N increases� this type
of error becomes increasingly frequent and results in the decreasing P���

N values at larger N �
see Table ��
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Figure ��	 �a� Misclassi�cation by �bpar� with �� 
 ���� �By Tmax 

�N � the CA reaches an all�s �xed point�� �b� Correct classi�cation
by �apar on the same IC�

��� Computational Strategy of �bpar�Failure Analysis

As noted in Table � the space�time behavior of �bpar exhibits three regular domains� &
�

�white�� &� �black�� and &	 �striped�� The size�competition strategy of �bpar is similar to that

of �apar� In �bpar� the striped region plays the role of �
a
par�s checkerboard domain� However�

when compared to �apar� the roles of the two domain boundaries &
�&� and &�&� are now

reversed� In �bpar� &
�&� is stable� while &�&� is unstable and decays into two particles�

Thus� the strategy used by �bpar is� roughly speaking� a 
�� site�value exchange applied to
�apar�s strategy� Particles �� �� � �� �� and � are all analogous in the two CAs� as are their
interactions� if we exclude three�particle interactions� cf� Tables � and � They implement
competition between adjacent large white and black regions� In analogy with the preceding
analysis for �apar�s strategy� these local competitions are decided by which particle� a  or a
�� reaches a � �rst�

In �apar�  and � each approach � at the rate of one cell per time step� In �
b
par� although

 is now a stationary particle� it also e�ectively approaches � at the rate of � cell per time
step� since � moves with velocity �� � approaches � at the rate of ��� cell per time step�

the velocity of � minus the velocity of �� Thus� there is an asymmetry in �bpar�s geometric
computation that can result in errors of the type illustrated in Fig� ���a�� There the IC�
with �  
�	�� condenses around iteration tc � �
 into a block of �	 black cells adjacent to
a block of � white cells� The  particle� traveling at velocity � relative to �� reaches � in
approximately �	 time steps� The � particle� traveling at velocity ��� relative to �� reaches
� in approximately �
� time steps� Thus� even though the black cells initially outnumber
the white cells� the black region is cut o� �rst and white eventually wins out� yielding
an incorrect classi�cation at time step ��	� In contrast� �apar� with its symmetric particle
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Figure ��	 Blow�up of part of right�hand diagram of Fig� �b� illus�
trating asymmetries in �bpar�s particle velocities that can result in
misclassi�cations�

velocities� reaches a correct classi�cation on this same IC �Fig� ���b���

Like �apar� �
b
par makes two types of classi�cation errors�the type in which �

b
par reaches

tc with a con�guration whose density �tc is on the opposite side of �c than �� and the type
illustrated in Fig� ���a�� The �rst type ��type ��� is an error in how the CA condenses
into domains and particles� The second type ��type ��� is due to asymmetries in particle
velocities� Consider Fig� ��� a blow�up of part of the right�hand diagram of Fig� ��b�� To the
left of the � �labeled� is an isolated black island and to the right is a white island� Together
these two contiguous islands are bounded by two � particles on either side� Inside� as in �apar�
an � decays into a  and a �� The resulting set of local particle interactions is such that
the two islands compete for space within the two bounding ��s� ending with the creation of
a new �� If W and B respectively denote the lengths of the white and black islands� then
after a series of interactions���� � �� � ��the white region �to the left of the original
leftmost �� gains �W�B sites in size� Thus� to increase this region�s size the internal white
island must be at least half the size of its adjacent black island�

It is evident� therefore� that unlike �apar� there are asymmetries in �
b
par�s particle �logic��

and these are biased in favor of classifying high densities� These asymmetries are what make
P���

N ��bpar� lower than P
���

N ��apar�� �See Table ���

	� Signi
cance of the Particle�Level Description

There are several alternative ways in which cellular automata such as �apar and �
b
par can be

described as performing a computation� Marr anticipated some of these in delineating the
various levels of information processing in vision �	��� In principle� our CAs are completely
described by the ��� bits in their look�up tables� This is too low�level a description� however�
to be useful for understanding how a given CA performs the �c  ��� task� Using this level

��



is like trying to understand how a pocket calculator computes the square root function by
examining the physical equations of motion for the electrons and holes in the calculator�s
silicon circuitry�

Moreover� attempting interpretation at this level also violates� in a sense� one of the
central tenets of the century�long study of dynamical systems� namely� that for nonlinear
systems �e�g�� most CAs�� the local space�time equations of motion do not directly determine
the system�s long�term behavior� In the case of CAs it is not the individual look�up table
neighborhood�output�bit entries acting over a single time step that directly give rise to the
observed computational strategy� Instead� it is the interaction of subsets of CA look�up table
entries that over a number of iterations leads to the emergence of domains� particles� and
interactions�

A second possibility for describing computational behavior in CAs is in terms of its
detailed space�time behavior�i�e�� the series of raw con�gurations of 
s and �s� Again� this
description is too low level for understanding how the solutions to the task are implemented�
This approach is like trying to understand how a calculator�s square root function is per�
formed by taking a long series snapshots of the positions and velocities of the electrons and
holes traveling through the integrated circuits� This prosaic view is analogous to Marr�s
�hardware implementation� level of description �	���

A third possibility is to describe the CA in terms related to the task�s required in�
put"output mapping and the task�s computational complexity� For example� on a particular
set of �
� random ICs� half with � � ��� and half with � � ���� �apar correctly classi�ed ��%
of the � � ��� ICs and �% of the � � ��� ICs� On average �apar took �� time steps to reach
a �xed point� the maximum time was ���� The computational complexity of the �c  ���
task on a serial architecture is O�N�� This kind of operational analysis is roughly at Marr�s
�computational theory� level�

None of these levels of description gives much insight into how the task is being per�
formed by a particular CA in terms of what information processing is being done and how
it leads to a particular measured performance� What is needed is an intermediate�level de�
scription whose primitives are informationally related to the task at hand� This is what
the computational mechanics level of particles and particle interactions gives us� How ever
one might detect the primitives at this level� it is analogous to Marr�s �representation and
algorithm� level� in which particles can be seen as representing aspects of the IC and their
actions and interactions can be seen as the CA�s emergent algorithm�

Representations� in the form of data structures� and algorithms have been studied ex�
tensively for von Neumann�style computers� but there have been few attempts to de�ne such
notions for decentralized spatially extended systems such as CAs� One can� of course� in
principle implement any standard data structure and algorithm in a computation�universal
CA� such as the game of Life CA ���� by simulating a von Neumann�style computer� How�
ever� this is not a particularly useful notion of information processing if one�s goals are to
understand how nonlinear systems in nature compute� It is even more problematic if one
wishes to design computation in complex decentralized spatially extended architectures� We
believe that it will be essential to develop new �macroscopic�level� vocabularies in order to
explain how collective information processing takes place in such architectures� �One bene�t
of this development would be an understanding of how to program these architectures in

��



genuinely parallel ways��

A close reading shows that Marr�s analysis of the descriptional levels required for visual
processing misses several key issues� These are �i� the fact that representations emerge
from the dynamics �i�e�� are intrinsic to the dynamics�� �ii� a clear formal de�nition is
required to remove the subjectivity of detecting these intrinsic representations� and �iii�
their functionality is entailed by a new level of dynamics� also intrinsic� that describes their
interactions� As illustrated above in several cases� the computational mechanics framework
that we are employing here makes these distinctions and provides the necessary concepts
and methods to address these issues ���� ���� The result is that we can analyze in detail the
emergent computational strategies in the evolved CAs�

Our particle�level description forms an explanatory vocabulary for emergent computa�
tion in the context of one�dimensional� binary�state CAs� As was described above� particles
represent various kinds of information about the IC and particle interactions are the loci of
decision making that use this information� The resulting particle �logic� gives a functional
description of how the computation takes place that is neither directly available from the
CA look�up table nor from the raw space�time con�gurations produced by iterating the CA�
It gives us a formal notion of �strategy�� allowing us to see� for example� how the strategies
of �apar and �bpar are similar and how they di�er� One immediate consequence of this level

of analysis is that we can say why �bpar�s strategy is weaker�

The level of particles and interactions is not only a qualitative description of spatial
information processing� it also enables us to make quantitative predictions about computa�
tional performance� In Refs� ���� and ���� we describe how to model a CA using its particle
catalog and statistical properties at the condensation time� For each of several di�erent
CAs �� we compare the model�s prediction for PI

N��� as well as for the average time taken
to reach a �xed point with the values measured for the actual �� Some of these compar�
isons will be summarized in Sec� ���� The degree to which a model�s predictions agree with
the corresponding CA�s behavior indicates the degree to which the particle�level description
captures how the CA is actually performing the computation� Since� as we will show� the
model�s predicted performance and the observed performance are very close� we conclude
that the particle�level description accurately captures the intrinsic computational capability
of the evolved CAs�

�� Evolutionary History of �apar Innovation� Contingency� and Exaptation

The structural analysis of CA space�time information processing that we have just outlined
also allows us to understand the evolutionary stages during which the GA produces CAs�
Here we will show how the functional components�domains� particles� and interactions�
arise and are inherited across the evolutionary history of a GA run� We will also demonstrate
a number of evolutionary dynamical phenomena� such as the historical contingency of func�
tional emergence and the appearance of initially nonfunctional behaviors that later are key
to the �nal appearance of high performance CAs�

To begin� Figures ���a� and ���b� illustrate �apar�s evolutionary history� Fig� ���a�
gives a partial tree of the parent�child relationships between some of �apar�s ancestors� each
numbered by its generation of birth� Note that� since elite CAs can survive for more than
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Figure ��	 �a� Partial ancestral tree of �apar� �b� F
���
��
 ��� �diamonds�

and P���

��
 ��� �crosses� of the CAs �i in �a�� Six of the data points are
marked with the name of the corresponding CA�

CA Name Rule Table �Hexadecimal� F ���
��
 P���

��


��b F�EFFFFFFFFFFFFF 
�	
 
�	


�B	F�F	�FFFFBFFF

�� ������
������FFF 
��� 
�	


�B	F�F	�FFFFBFFF

��� ������
������FFF 
��� 
�	��
�B	F��	��DFFFF�F

��� ������
������FBF 
��� 
�	�	
�B	F��	��FBFFF�F

��� ������
������FBF 
��� 
����
�B	F��	��FBDF��F

��� ������
���
��FB� 
��� 
���	
�BBF��
��FBDF��F

Table �	 CA chromosomes �look�up table output bits� given in hex�
adecimal� F ���

��
 � and P
���

��
 for the six ancestors of �apar described in
this section� �See Fig� � for directions on how to recover the CA rule
table outputs from the hexadecimal code�� The F ���

��
 values in this
table are those calculated in the CA�s generation of birth by the GA�
the P���

��
 values given are the means over � trials of the performance
function� calculated after the run was complete� When tested over �
trials� the standard deviation of F ���

��
 is approximately �� and the
standard deviation of P���

��
 is approximately �� for each CA�
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Figure ��	 Space�time behavior of generation � and � ancestors� ��b
and ��� of �

a
par� Both start from the same IC with �� 
 ����

one generation� parents and o�spring� e�g� ��� and ���� can have nonconsecutive generation
labels� The CAs listed are those with the best �tness in the generation in which they arose�
Table 	 lists the look�up tables� F ���

��
 � and P
���

��
 for the six ancestors of �
a
par described below�

Fig� ���b� plots F ���
��
 �diamonds� and P

���

��
 �crosses� versus generation of birth for each
of these ancestors� In generations 
�� the best CA in the population has F ���

��
  P
���

��
  
�	�
achieved by a �default� strategy like those of Fig� � Starting at generation �� evolution
proceeds in a series of abrupt increases in F ���

��
 � More gradual increases are seen in P
���

��
 � of
course� this statistic is not available to and thus is not used by the GA� The occasional small
decreases result from the stochastic nature of the �tness and performance evaluations�

The goal now is to use the functional analysis to understand why these increases come
about� To do so� we present a series of space�time diagrams� in Figs� ����� that compare
space�time behaviors of CAs along the ancestral tree of Fig� ���a�� In each �gure� space�
time behavior with the same IC is given for two ancestrally related CAs to highlight the
similarities and evolutionary innovations�

��� ��b and �� �Fig� ���

Here the IC has very low density� ��  
���� ��b� a �default� CA� always iterates to all �s�
and in Fig� ��a� misclassi�es the IC� ��a �not shown� is a default CA that always iterates to
all 
s� ��b�s look�up table contains mostly �s �see Table 	� and ��a�s look�up table contains
mostly 
s� They crossed over at locus 	� to produce ��� therefore the �rst part of ���s
look�up table contains mostly 
s� and the rest is mostly �s� In Fig� ��b� �� iterates to all

s and correctly classi�es the IC�

��



 
 

 

 Φ 8(a)  Φ 13(b)

0

Time

148
148Site0 148Site0

α′′

Figure ��	 Space�time behavior of generation � and �� ancestors� ��
and ���� of �

a
par� Both start from the same IC with �� 
 ���� �The

signi�cance of ��� is explained below� when ��� and ��� are compared��

��� �� and ��� �Fig� ���

Here ��  
��� In Fig� �	�a� �� quickly iterates to all �s� This is its more typical behavior
than that shown in Fig� ��b�� very small regions of black quickly grow to take over the
entire lattice� In this way� �� is only slightly better than a default CA like ��b� it correctly
classi�es all high�density ICs and only a small number of very low density ICs� Note that
while F ���

��
 ���� � 
�	� P
���

��
 ���� remains at 
�	� �� can be said to be carrying out a �default�
with�exceptions� strategy� All runs that produced such strategies went on to converge on
either block�expanding strategies or embedded�particle strategies�

Interestingly� the checkerboard domain &	  f�
���g is produced by �� on some ICs
�Fig� �	�� However� &	 does not contribute to ���s �tness or performance� It is a functionally
neutral feature� To determine this� we modi�ed ���s rule table to prevent the checkerboard
domain from propagating� The two relevant entries are 
�
�
�
 � 
 and �
�
�
� � ��
Flipping the output bit on either or both of these entries produces CAs with F ���

��
  
��� and
P���

��
  
�	� that is� �tness and performance identical to those of ��� �The standard deviations
of F ���

��
 for this and the other variant CAs discussed in this section were approximately

�
�� The standard deviations of P���

��
 were approximately 
�

	�� Appropriating biological
terminology� we can consider the checkerboard domain� at this generation� to be an adaptively
neutral trait of ���

��� represents a steep jump in �tness over ��� as seen in Fig� ���b�� ��� is a block�
expanding CA� It maps ICs to all �s unless there is a su�ciently large block of adjacent

s in the IC� in which case that block expands to eventually �ll up the entire lattice� as in
Fig� �	�b�� which is a correct classi�cation by t  Tmax� On some ICs� ��� also produces
a checkerboard domain and a similar but less ordered region� the latter can be seen in

��
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Figure ��	 Space�time behavior of �apar ancestors� ��� and ��� arising
in generation �� and ��� Both start from the same IC with �� 
 ����

Fig� �	�b�� We determined� in a fashion similar to that just explained above� that these
traits also were adaptively neutral�

��� ��� and ��� �Fig� ���

Here ��  
�	�� ��� expands blocks of 
s on many ICs with � � ���� including the one in
this �gure� resulting in misclassi�cations� In fact� many high�density ICs with � � 
�	 are
misclassi�ed and� while ��� has markedly higher F

���
��
 than its ancestors� its performance

P���

��
 is only marginally improved �see Table 	��

��� creates three types of boundaries between white and black domains� Two of them
are shown in Fig� ���a�� labeled � and ��� The �� like �apar�s �� exists for only a single time
step and then decays into � and �� whereas �� remains stable� A third type� ���� does not
appear for this IC but can be seen in Fig� �	�b�� �� and ��� support the block�expanding
strategy� whereas � leads to a competition between white and black regions similar to that
seen in �apar�

In contrast� consider Fig� ���b�� where the same �  
�	� IC is correctly classi�ed by
���� Recalling Table 	 we see that ����s F

���
��
 and P

���

��
 are both substantially higher than
those of ���� ����s higher F

���
��
 and P

���

��
 can be explained at the particle level� The particles
are labeled in Fig� ���a� and Fig� ���b��

��� creates the same set of particles as ��� �on some ICs it expands 
�blocks� not shown
in Fig� ���b�� but with di�erent frequencies of occurrence� �� and ��� appear less often than
in ��� and � appears more often� Thus� ��� is more likely to expand 
�blocks� and thus make
more errors� than ��� on ICs for which �� � 
�	� Given �

 randomly generated � � 
�	 ICs�
�� and ��� were created by ��� in ��% of the ICs and by ��� in ��% of the ICs� Whenever

��
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Figure ��	 Space�time behavior of generation �� and �� ancestors� ���
and ���� of �

a
par� Both are shown starting from the same IC that has

�� 
 ����

�� or ��� are created� the �nal con�guration will be all 
s regardless of whether � is created�
That is� block expanding dominates other behaviors� This explains why �ipping output bits
to suppress the checkerboard domain does not signi�cantly a�ect ����s F

���
��
 and P

���

��
 � but
does signi�cantly a�ect these values for ���� When the checkerboard domain was suppressed
in ���� F

���
��
 decreased only to 
��� but P

���

��
 decreased to 
�	�

Following Gould and Vrba ����� we consider the checkerboard domain &	 to be an
example of an �exaptation��a trait that has no adaptive signi�cance when it �rst appears�
but is later co�opted by evolution to have adaptive value� According to Gould and Vrba� such
traits are common in biological evolution� In the evolutionary innovation that goes from ���
to ��� the exaptation of &

	 in ��� makes just this transition to functionality associated with
a marked increase in �tness and performance� This� in turn� leads to the change in dominant
computational strategy away from block expanding�

��� ��� and ��� �Fig� �	�

Here ��  
�	� The misclassi�cation by ��� �illustrated in Fig� ���a�� is compared with the
correct classi�cation by ����s higher �tness and performance child ��� �Fig� ���b��� Both
CAs create similar particles� but in ��� the velocity of the � particle is ���� whereas in ���
its velocity is zero�

In Fig� ���a�� the white region �markedW� is larger than the black region to its right
�marked B�� Since the � particles have positive velocity� the black regions toW�s left and
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Figure ��	 Space�time behavior of generation �� and �� ancestors� ���
and ���� of �

a
par� Both start from the same IC with �� 
 ����

right both expand to the right� Coming in from the left� this decreases the size of W� On
the other side� the �rightmost� � particle moves away from theW region� This asymmetry
allows the B region to win the size competition� when the B region should not�

The asymmetry between black and white regions is corrected in ��� by the change
in ��s velocity to zero� This makes the size competition between black and white regions
symmetric� The result� seen in Fig� ���b�� is that the smaller B region is now cut o� by the
� and �� theW region is allowed to grow� and the correct classi�cation is made�

��� ��� and ��� �Fig� ���

Here ��  
���� ���� though an improvement over ���� still carries with it remnants of its
ancestors� block�expanding past� In Fig� ���a�� ��� misclassi�es the IC by creating an ���

particle instead of an � particle at a white�black �ambiguous density� boundary in the IC�
Recall that in ���� �

� or ��� particles were created in ��% of the random ICs with � � ����
In ��� this frequency is about the same� ��%� Thus� ����s main innovation over ��� is the
zero velocity of the � particle and the resulting symmetric size�competition strategy�

In ���� a descendant of ���� neither �
� or ��� particles are created� This explains the

higher F ���
��
 and P

���

��
 of ��� over those of ����

��� ��� and ��� �Fig� ���

Here� ��  
�	� �apar� here named ��� to denote its generation of birth� outperforms ���
since it classi�es more low�density ICs correctly� On some low�density ICs like the one used
in Fig� ���a�� ��� condenses too much of the IC into black regions� a type � error� These
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Figure ��	 Space�time behavior of generation �� ancestor ��� of �apar
and ��� �itself �apar�� Both start from the same IC� which has density
�� 
 ����

then win the size competition� resulting in a misclassi�cation� ��� makes type � errors on
low�density ICs less often �e�g�� as seen in Fig� ���b��� it correctly classi�es the same IC as in
Fig� ���a�� On the same set of �
� ICs� ��% of ����s errors were on low�density ICs� whereas
only �% of ����s errors were on low�density ICs�

��	 Particle Models of Evolved Cellular Automata

The �natural history� of �apar�s evolution given above demonstrates how we can understand

the jumps in F ���
��
 and P

���

��
 in terms of regular domains and particles�functional compo�
nents in the CA�s dynamical behavior� The GA�s actions can be described at a low level as
manipulating bits in CA rule tables via crossover and mutation� but a better understand�
ing of the evolutionary process emerges when we describe its actions at the higher level of
manipulating particle types� velocities� and interactions� An important component of this
viewpoint is that the particles and their interactions lead to higher �tness� To test the
hypothesis more quantitatively� we ask to what extent the CAs� observed �tnesses and per�
formances can be predicted from the particle and interaction properties alone� To this end�
in collaboration with Wim Hordijk� we have constructed �ballistic� particle models of the
CAs �� through ���� These models are intended to isolate the particle�level mechanisms and
in so doing allow us to determine how much of the CA behavior this level captures�

A ballistic particle modelM� of a CA � consists of the catalog of particle types� veloc�
ities� interactions� and their frequencies of occurrence at tc� M� is �run� by �rst using the
particle frequencies to generate an initial con�guration stc of particles at the condensation
time and then using the catalog of velocities and interactions to calculate the initial par�
ticles� ballistic trajectories and the products of subsequent particle interactions� The �nal

��



con�guration is reached when either all particles have annihilated or when Tmax � tc steps
have occurred� This con�guration and the actual time at which it was reached gives usM��s
prediction of what ��s classi�cation would be for an IC corresponding to stc and the time it
would take � to reach it� Particle models and their analysis are described in detail in Refs�
���� and ����

CA Name P���

��
 ��� P���

��
 �M��
�� 
�	

 
�	


��� 
�	�� 
�	�
��� 
�	�	 
��
�
��� 
���� 
���
��� 
���	 
���	
��� 
���	 
���	

Table �	 The CA and model performances P��

���

of ��� ���� ���� ����
���� and ���� �After ������ Note �apar has been referred here as ����
The CA rule tables are given in Table ��

A comparison of the performances of the six CAs just analyzed and their particle models
are given in Table �� As can be seen� the agreement is within a few percent for most cases� In
these and the other cases small discrepancies are due to simpli�cations made in the particle
models� These include assumptions such as the particles being zero width and interactions
occurring instantaneously� These error sources are analyzed in depth in Ref� ����� For ���
the error is higher� around �%� due to a long�lived transient domain that is not part of the
particle catalog used for the model� The main e�ect of this is that the condensation time
is overestimated on some ICs that generate this domain� This� in turn� means that the
model describes only the last stages of convergence to the answer con�gurations� which it
gets correctly and so has a higher performance than ���� For ��� the error is around %�
This appears to be due to errors in estimates of the distribution of particle types at the
condensation time�

The conclusion is that the particle�level descriptions can be used to quantitatively pre�
dict the computational behavior of CAs and so also the CA �tnesses and performances in the
evolutionary setting� In particular� the results support the claim that it is these higher�level
structures� embedded in CA con�gurations� that implement the CA�s computational strat�
egy� More germane to the preceding natural history analysis� this level of description allows
us to understand at a functional level of structural components the evolutionary process by
which the CAs were produced�

�� Related Work

In Sec� � we discussed some similarities and di�erences between this work and other work
on distributed parallel computation� In this section we examine relationships between this
work and other work on computation in cellular automata�

��



It should be pointed out that �apar�s behavior �and the behavior of many of the other
highest�performance rules� is very similar to the behavior of the so�called G#acs�Kurdyumov�
Levin �GKL� CA� This CA was invented not to perform the �c  ��� task� but to study
reliable computation and phase transitions in one�dimensional spatially�extended systems
����� More extensive work by G#acs on reliable computation with CAs is reported in Ref�
����

The present work and earlier work by our group came out of follow�on research to
Packard�s investigation of �computation at the edge of chaos� in cellular automata ��
��
Originally Wolfram proposed a classi�cation of CAs into four behavioral categories �����
These categories followed the basic classi�cation of dissipative dynamical systems� �xed
point attractors exhibiting equilibrium behavior� limit cycle attractors exhibiting periodic
behavior� chaotic attractors exhibiting apparently random behavior� and neutrally stable sys�
tems at bifurcations exhibiting long transients� Wolfram suggested that the latter category
was particularly appropriate for implementing sophisticated �even universal� computation�

Following this with a more quantitative proposal Langton ��� hypothesized that a CA�s
	�the fraction of �non�quiescent states� �here� �s� in its look�up table�s output states�
was correlated �generically� with the CA�s computational capabilities� In particular� he
hypothesized that CAs with certain �critical� 	 values� which we denoted 	c� would be more
likely than CAs with 	 values away from 	c to be able to perform complex computations� or
even universal computation� Packard�s goal was to test this hypothesis by using a genetic
algorithm to evolve �k� r�  ��� �� CAs to perform the �c  ��� task� starting from an
initial population chosen from a distribution that was uniform over 	 � �
� ��� He found that
after �

 generations� the �nal populations of CAs� when viewed only as distributions over
	� tended to cluster close to 	c values� He interpreted this clustering as evidence for the
hypothesized connection between 	c and computational ability�

In Ref� �	�� we were able to show� via theoretical arguments and empirical results�
however� that the most successful CAs for the �c  ��� task must have 	 � ���� This value
of 	 is quite di�erent from Packard�s quoted 	c values� We argued that Packard�s results were
due to an artifact in his particular implementation of the GA� Using more standard versions
and his version of GA search we obtained results that disagreed with Packard�s �ndings and
that were roughly in accord with our theoretical predictions that high performance CAs were
to be found at 	 � ���� far from 	c� and not in� for example� Wolfram�s fourth CA category�
We were also able to explain the deviations of our results from the theoretical predictions�
The current work came out of the discovery of phenomena� such as embedded�particle CAs
���� �
�� that were not found in Ref� ��
�� Moreover� according to Langton the 	  ���
value for our high�performance CAs corresponds to CAs in Wolfram�s chaotic class� The
space�time diagrams shown earlier demonstrate that they are not �chaotic�� their behavior�
in fact� puts them in the �rst ��xed�point� category�

Later� other researchers performed their own studies of evolving cellular automata for
the �c  ��� task� Sipper and Ruppin ��	� ��� used a version of the GA to evolve �nonuniform
CAs��CA�like architectures in which each cell uses its own look�up table to determine its
state at each time step� For a lattice of size N � the individuals in the GA population are
the N look�up tables making up a nonuniform CA� Sipper and Ruppin used this framework
to evolve r  � nonuniform CAs to perform the �c  ��� task� as well as other tasks� They

��



reported the discovery of nonuniform CAs with P���

��
 values comparable to that of �
a
par� They

did not report P���

N results for any other value of N nor did they give statistics on how often
high�performance nonuniform CAs were evolved� Moreover� no structural analysis of CA
space�time behavior or GA population dynamics was given� Thus� it is unclear how the high
�tnesses were obtained� either dynamically or evolutionarily�

Andre et al� used a genetic programming algorithm to evolve �k� r�  ��� �� CAs with
N  �� to perform the �c  ��� task ���� This algorithm discovered particle CAs with
higher P���

��
 than that of �
a
par �e�g�� 
���� versus 
������ We obtained the look�up table for

one such CA� �GP �D� Andre� personal communication� and found that on larger lattices� the
performance of �GP was close to that of �

a
par �P

���

�

 ��GP�  
���	 and P
���




 ��GP�  
����� cf�

Table ��� It is not clear whether the improvement in P���

��
 was due to the genetic programming
representation CA look�up tables or some other factor related to increased computational
resources� For example� their runs had a 	

�fold larger population sizeM and �
�fold larger
number of ICs over our GA runs� Their runs did� however� �nd high�performance CA in
average numbers of generations that were half those in our GA� Thus� the computational
resources they used in their evolutionary search were approximately �	

 times larger than
in our GA runs�

Paredis ���� and Juill#e and Pollack �	� experimented with coevolutionary learning tech�
niques to improve the GA�s search e�ciency to �nd embedded particle CAs for the �c  ���
task� The latter work speci�cally rewarded or penalized ICs of particular densities� depend�
ing on the amount of information ICs of those densities provided for distinguishing �tnesses
between CAs in the population� This resulted in a higher percentage of GA runs in which
high�performance embedded�particle CAs were discovered and in the discovery of higher�
performance CAs than in any of the non�coevolutionary runs� The highest performance
CA discovered had P��


���
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�

�� P�



���
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�
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���
 
��
 	 
�

��

Unfortunately� the performance of this coevolved CA� although high on small lattices �e�g�
N  ���� decays more rapidly with lattice size than the GKL rule� which happens to have
lower performance than the coevolved rule on small lattices� This is appears to be the result
of the more complex domains that preclude� through additional persistent particles� conver�
gence to the answer con�gurations� 
N or �N � Compared to the coevolved CAs� the GKL
CA is one of the CAs that maintains high performance on larger lattices�

Our own work has been extended to other tasks� most thoroughly to a global synchro�
nization task for which we have performed similar analyses to those given in this paper
�����

Our notion of computation via particles and particle�interactions derives from that in�
troduced by the computational mechanics framework ���� ��� ��� and so di�ers considerably
from the notions used in most other work on designing CAs for computation� For example�
propagating particle�like signals were used in the solution to the Firing Squad Synchroniza�
tion Problem �	�� 	�� ���� in Smith�s work on CAs for parallel formal�language recognition
����� and in Mazoyer�s work on computation in one�dimensional CAs �	��� However� in all
these cases� the particles and their interactions were designed by hand to be the explicit be�
havior of the CA� That is� the particles are explicitly coded in each cell�s local state and their
dynamics and their interactions are coded directly into the CA lookup table� Typically� their
interactions were e�ected by a relatively large number of states per site� Steiglitz� Kamal�

��



and Watson�s carry�ripple adder ��
� and the universal computer constructed in the Game
of Life ��� both used binary�state signals consisting of propagating periodic patterns� But�
again� the particles were explicitly designed to ride on top of a quiescent background and
their interaction properties were carefully hand coded� In Squier and Steiglitz�s �particle
machine� ���� and in Jakubowski� Steiglitz� and Squier�s �soliton machine� ���� particles
are the primitive states of the CA cells� Moreover� their interaction properties are explicitly
given by the CA rule table� These machines are essentially kinds of lattice gas automata
���� that operate on �particles� directly� �Other work on arithmetic in cellular automata
has been done by Sheth� Nag� and Hellwarth ��� and Clementi� De Biase� and Massini ����
among others��

In contrast to these� particles in our system are embedded as walls between regular
domains� They are often apparent only after those domains have been discovered and �ltered
out� Their structures and interaction properties are emergent properties of the patterns
formed by the CAs� Notably� although each cell has only two possible states� the structures
of embedded particles are spatially and temporally extended� and so are more complex than
atomic or simple periodic structures� Typically� these structures can extend over spatial
scales larger than the CA radius� For example� the background domain of the elementary
CA �ECA ��
� shown in Fig� � has a temporal periodicity of � time steps and a spatial
periodicity of � sites� markedly larger than the r  � nearest�neighbor coupling�

��� Conclusion

Our philosophy is to view CAs as systems that naturally form patterns �such as regular
domains� and to view the GA as taking advantage�via selection and genetic variation�of
these pattern�forming propensities so as to shape them to perform desired computations�
Within this framework� we attempt to understand the behavior of the resulting CAs by
applying tools� such as the computational mechanics framework� formulated for analyzing
pattern�forming systems� The result gives us a high�level description of the computationally
relevant parts of the system�s behavior� In doing so� we begin to answer Wolfram�s last
problem from �Twenty problems in the theory of cellular automata� �Wolfram� ���	�� �What
higher�level descriptions of information processing in cellular automata can be given�� We
believe that this framework will be a basis for the �radically new approach� that Wolfram
claimed will be required for understanding and designing sophisticated computation in CAs
and other decentralized spatially extended systems�

Our analysis showed that there are three levels of information processing occurring dur�
ing iterations of the evolved high�performance CAs� The �rst was the type of information
storage and transmission e�ected by the particles and the type of �logical� operations im�
plemented by the particle interactions� The second� higher level comprised the geometric
subroutines that implemented intermediate�scale computations� We analyzed in detail two
of these that were important to the size competition between regions of low and high density�
We also showed how variations in the particles led to several types of error at this level� The
third and �nal level is that of the global computation over the entire lattice up to the answer
time� This is the level at which �tness is conferred on the CAs�

We analyzed in some detail the natural history that led to the emergence of such com�






putationally sophisticated CAs� The evolutionary epochs typically proceed in a set sequence�
with earlier epochs setting the �necessary� context for the later� higher performance ones�
Often the jumps to higher epochs were facilitated by exaptations�changes in adaptively
neutral traits appearing in much earlier generations�

There are a number of fruitful directions for future work� The �rst is to extend the
lessons learned here to more general evolutionary search algorithms and pattern forming dy�
namical systems� The problem of choosing a genetic representation of dynamical systems that
helps� or at least does not hinder� the search will play an important role in addressing this�
The evolution of CAs that operate on two�dimensional images rather than one�dimensional
strings will also help address this issue and also open up application areas� such as iterative
nonlinear image processing �����

We also need to develop substantially better analytical descriptions of the search�s pop�
ulation dynamics and of how the intrinsic structures in CAs interact with that dynamics�
Although the evolution of CAs is a very simpli�ed problem from the biological perspective�
the evolutionary time scale of the population dynamics and the development time scale of
the CAs result in a two�time�scale stochastic dynamical system that is di�cult to analyti�
cally predict� Such predictions� say of how to set the mutation rate or population size for
e�ective search� are centrally important both for basic understanding of evolutionary mech�
anisms and for practical applications� Progress on quantitatively predicting the population
dynamics occurring during epochal evolution has been made ���� ��� The adaptation of
the �statistical dynamics� approach introduced there to the evolution of CAs will be an im�
portant� but di�cult� step toward understanding complicated genotype�to�phenotype maps�
The latter is highly relevant for using such search methods on complex problems�

Another quantitative direction is the estimation of computational performance of dis�
tributed systems based on higher�level descriptions� The results� reported here and described
in detail in Refs� ���� and ���� on predicting CA computational performance are encour�
aging� Constructing a more accurate model along with a quantitative analytical model of
higher�level computation in CAs will help us understand how much the embedded CA struc�
tures contribute individually to overall �tness� And this� in turn� will allow us to monitor the
evolutionary mechanisms that lead to the emergence of collective computation in coordinated
groups of functional units�
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A� Domain Filter

In this appendix we describe the properties and construction of �apar�s domain�recognizing
and �ltering transducer�

The transducer� shown in Fig� �
� reads in binary CA con�gurations and outputs strings
of the same length� the lattice size N � in the domain�wall alphabet f	� 
� �� �� wg� In this
alphabet 	 indicates that the transducer has not yet �synchronized� �see below� to the
domain or wall structures in the con�guration� f
� �� �g label each of the three domains�
respectively� and w indicates a wall between domains� In the �ltered space�time diagrams w
is mapped to black and all other output symbols map to white�

Brie�y� �apar�s domain�wall transducer is constructed as follows� �
a
par has three domains�

each of which can be described by simple �nite�state machines� These machines form the
recurrent states of the transducer� When the transducer �rst begins to read in the con�gu�
ration� it may take several steps to disambiguate the site values and identify the appropriate
domain in which they are participating� Working through the transitions and transient states
that lead to the recurrent �domain� states determines the transitions from the start state�
When the transducer is reading site values consistent with one of these domains� but then
encounters site values that are not consistent with it �e�g� values indicating walls�� then some
number of additional site values must be read in to determine the domain type into which
the transducer has moved� Such transitions determine the transducer�s domain�to�domain
transitions�

Note� that due to the steps required to initially read in a su�cient number of site values
to recognize the domains and walls� a process that we call synchronization� the transducer
may have to read some portion of the con�guration that it has already read� as it wraps
around due to the lattice�s periodic boundary conditions� This takes at most one additional
pass over the con�guration�

The general construction procedure for domain�wall transducers is given in Ref� ��	��
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