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Abstract

In this paper we review previous work and present new work concerning the relationship be�
tween dynamical systems theory and computation� In particular� we review work by Langton

��� and Packard 
��� on the relationship between dynamical behavior and computational
capability in cellular automata 	CAs
� We present results from an experiment similar to
the one described by Packard 
���� which was cited as evidence for the hypothesis that rules
capable of performing complex computations are most likely to be found at a phase tran�
sition between ordered and chaotic behavioral regimes for CAs 	the �edge of chaos�
� Our
experiment produced very di�erent results from the original experiment� and we suggest that
the interpretation of the original results is not correct� We conclude by discussing general
issues related to dynamics� computation� and the �edge of chaos� in cellular automata�

�� Introduction

A central goal of the sciences of complex systems is to understand the laws and mechanisms
by which complicated� coherent global behavior can emerge from the collective activities of
relatively simple� locally interacting components� Given the diversity of systems falling into
this broad class� the discovery of any commonalities or �universal� laws underlying such sys�
tems will require very general theoretical frameworks� Two such frameworks are dynamical
systems theory and the theory of computation� These have independently provided power�
ful tools for understanding and describing common properties of a wide range of complex
systems�

Dynamical systems theory has developed as one of the main alternatives to analytic�
closed�form� exact solutions of complex systems� Typically� a system is considered to be
�solved� when one can write down a �nite set of �nite expressions that can be used to
predict the state of the system at time t� given the state of the system at some initial
time t�� Using existing mathematical methods� such solutions are generally not possible for
most complex systems of interest� The central contribution of dynamical systems theory to
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modern science is that exact solutions are not necessary for understanding and analyzing a
nonlinear process� Instead of deriving exact single solutions or opting for coarse statistical
descriptions� the emphasis of dynamical systems theory is on describing the geometrical and
topological structure of ensembles of solutions� In other words� dynamical systems theory
gives a geometric view of a process�s structural elements� such as attractors� basins� and
separatrices� It is thus distinguished from a purely probabilistic approach such as statistical
mechanics� in which geometric structures are not considered� Dynamical systems theory
also addresses the question of what structures are generic� that is� what behavior types are
typical across the spectrum of complex systems

In contrast to focusing on how geometric structures are constrained in a state space�
computation theory focuses on how basic information�processing elements�storage� logical
gates� stacks� queues� production rules� and the like�can be combined to e�ect a given
information�processing task� As such� computation theory is a theory of organization and
the functionality supported by organization� When adapted to analyze complex systems�
it provides a framework for describing behaviors as computations of varying structure� For
example� if the global mapping from initial to �nal states is considered as a computation� then
the question is� what function is being computed by the global dynamics� Another range of
examples concern limitations imposed by the equations of motion on information processing�
can a given complex system be designed to emulate a universal Turing machine� In contrast
to this sort of engineering question� one is also interested in the intrinsic computational
capability of a given complex system� that is� what information�processing structures are
intrinsic in its behavior� 
�� ���

Dynamical systems theory and computation theory have historically been applied in�
dependently� but there have been some e�orts to understand the relationship between the
two�that is� the relationship between a system�s ability for information processing and other
measures of the system�s dynamical behavior�

Relationships Between Dynamical Systems Theory and Computation Theory

Computation theory developed from the attempt to understand information�processing as�
pects of systems� A colloquial de�nition of �information processing� might be �the trans�
formation of a given input to a desired output�� However� in order to apply the notion of
information processing to complex systems and to relate it to dynamical systems theory�
the notion must be enriched to include the production of information as well as its storage�
transmission� and logical manipulation� In addition� the engineering�based notion of �desired
output� is not necessarily appropriate in this context� the focus here is often on the intrin�
sic information�processing capabilities of a dynamical system not subject to a particular
computational goal�

Beginning with Kolmogorov�s and Sinai�s adaptation of Shannon�s communication theory
to mechanics in the late ����s 
��� ���� there has been a continuing e�ort to relate a nonlinear
system�s information�processing capability and its temporal behavior� One result is that a
deterministic chaotic system can be viewed as a generator of information 
���� Another is
that the complexity of predicting a chaotic system�s behavior grows exponentially with time

��� The complexity metric here� called the Kolmogorov�Chaitin complexity 
�� ���� uses a
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universal Turing machine as the deterministic prediction machine� The relationship between
the di�culty of prediction and dynamical randomness is simply summarized by the statement
that the growth rate of the descriptive complexity is equal to the information production
rate 
��� These results give a view of deterministic chaos that emphasizes the production of
randomness and the resulting unpredictability� They are probably the earliest connections
between dynamics and computation�

The question of what structures underlie information production in dynamical systems
has received attention only more recently� The �rst and crudest property considered is the
amount of memory a system employs in producing apparent randomness 
�� ���� The idea is
that an ideal random process uses no memory to produce its information�it simply �ips a
coin as needed� Similarly� a simple periodic process requires memory only in proportion to
the length of the pattern it repeats� Within the memory�capacity view of dynamics� both
these types of processes are simple�more precisely� they are simple to describe statistically�
Between these extremes� though� lie the highly structured� complex processes that use both
randomness and pattern storage to produce their behavior� Such processes are more complex
to describe statistically than are ideal random or simple periodic processes� The trade�o�
between structure and randomness is common to much of science� The notion of statistical
complexity 
�� was introduced to measure this trade�o��

Computation theory is concerned with more than information and its production and
storage� These elements are taken as given and� instead� the focus is on how their combina�
tions yield more or less computational power� Understandably� there is a central dichotomy
between machines with �nite and in�nite memory� On a �ner scale� distinctions can be
drawn among the ways in which in�nite memory is organized�e�g�� as a stack� a queue� or a
parallel array� Given such considerations� the question of the intrinsic computational struc�
ture in a dynamical system becomes substantially more demanding than the initial emphasis
on gross measures of information storage and production�

Several connections in this vein have been made recently� In the realm of continuous�state
dynamical systems� Crutch�eld and Young looked at the relationship between the dynamics
and computational structure of discrete time series generated by the logistic map at di�erent
parameter settings 
�� ���� They found that at the onset of chaos there is an abrupt jump
in computational class of the time series� as measured by the formal language class required
to describe the time series� In concert with Feigenbaum�s renormalization group analysis of
the onset of chaos 
���� this result demonstrated that a dynamical system�s computational
capability�in terms of the richness of behavior it produces�is qualitatively increased at a
phase transition�

Rather than considering intrinsic computational structure� a number of �engineering�
suggestions have been made that there exist physically plausible dynamical systems imple�
menting Turing machines 
�� ��� ���� These studies provided explicit constructions for several
types of dynamical systems� At this point� it is unclear whether the resulting computational
systems are generic�i�e�� likely to be constructible in other dynamical systems�or whether
they are robust and reliable in information processing� In any case� it is clear that much
work has been done to address a range of issues that relate continuous�state dynamics and
computation� Many of the basic issues are now clear and there is a �rm foundation for future
work�
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Dynamics and Computation in Cellular Automata

There has also been a good deal of study of dynamics and computation in discrete spatial
systems called cellular automata 	CAs
� In many ways� CAs are more natural candidates
for this study than continuous�state dynamical systems since they are completely discrete in
space� in time� and in local state� There is no need to develop a theory of computation with
real numbers� Unfortunately� something is lost in going to a completely discrete system� The
analysis of CA behavior in conventional dynamical systems terms is problematic for just this
reason� De�ning the analogs of �sensitive dependence on initial conditions�� �the produc�
tion of information�� �chaos�� �instability�� �attractor�� �smooth variation of a parameter��
�bifurcation�� the �onset of chaos�� and other basic elements of dynamical systems theory
requires a good deal of care� Nonetheless� Wolfram introduced a dynamical classi�cation
of CA behavior closely allied to that of dynamical systems theory� He speculated that one
of his four classes supports universal computation 
���� It is only recently� however� that
CA behavior has been directly related to the basic elements of qualitative dynamics�the
attractor�basin portrait 
���� This has led to a reevaluation of CA behavior classi�cation and�
in particular� to a rede�nition of the chaos and complexity apparent in the spatial patterns
that CAs generate 
���

Subsequent to Wolfram�s work� Langton studied the relationship between the �average�
dynamical behavior of cellular automata and a particular statistic 	�
 of a CA rule table 
����
He then hypothesized that �computationally capable� CAs and� in particular� CAs capable
of universal computation will have �critical� � values corresponding to a phase transition
between ordered and chaotic behavior� Packard experimentally tested this hypothesis by
using a genetic algorithm 	GA
 to evolve CAs to perform a particular complex computation

���� He interpreted the results as showing that the GA tends to select CAs close to �critical�
� regions�i�e�� the �edge of chaos��

We now turn our discussion more speci�cally to issues related to �� dynamical�behavior
classes� and computation in CAs� We then present experimental results and a theoretical dis�
cussion that suggest the interpretation given of the results by Packard 
��� is not correct� Our
experiments� however� show some interesting phenomena with respect to the GA evolution
of CAs� which we summarize here� Longer� more detailed descriptions of our experiments
and results are given in 
��� ����

�� Cellular Automata and the �Edge of Chaos�

Cellular automata are one of the simplest frameworks in which issues related to complex
systems� dynamics� and computation can be studied� CAs have been used extensively as
models of physical processes and as computational devices 
��� ��� ��� ��� ���� In its simplest
form� a CA consists of a spatial lattice of cells� each of which� at time t� can be in one of k
states� We denote the lattice size 	i�e�� number of cells
 as N� A CA has a single �xed rule
used to update each cell� this rule maps from the states in the neighborhood of a cell�e�g��
the states of a cell and its nearest neighbors�to a single state� which becomes the updated
value for the cell in question� The lattice starts out with some initial con�guration of cell
states and� at each time step� the states of all cells in the lattice are synchronously updated�
We use the term �state� to refer to the value of a single cell �e�g�� � or ��and the term
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�con�guration� to mean the pattern of states over the entire lattice�

In this chapter we restrict our discussion to one�dimensional CAs with k � �� In a one�
dimensional CA� the neighborhood of a cell includes the cell itself and some number r of
neighbors on either side of the cell� All of the simulations described here are of CAs with
spatially periodic boundary conditions 	i�e�� the one�dimensional lattice is viewed as a circle�
with the right neighbor of the rightmost cell being the leftmost cell� and vice versa
�

The equations of motion � for a CA are often expressed in the form of a rule table� This
is a lookup table listing each of the neighborhood patterns and the state to which the central
cell in that neighborhood is mapped� For example� the following is one possible rule table
for a one�dimensional CA with k � �� r � �� Each possible neighborhood � is given along
with the �output bit� s � �	�
 to which the central cell is updated�

� ��� ��� ��� ��� ��� ��� ��� ���
s � � � � � � � �

In words� this rule says that for each neighborhood of three adjacent cells� the new state is
decided by a majority vote among the three cells�

The notion of �computation� in CAs can have several possible meanings 
���� but the
most commonmeaning is that the CA performs some �useful� computational task� Here� the
rule is interpreted as the �program�� the initial con�guration is interpreted as the �input��
and the CA runs for some speci�ed number of time steps or until it reaches some �goal�
pattern�possibly a �xed�point pattern� The �nal pattern is interpreted as the �output��
An example of this is using CAs to perform image�processing tasks 
����

Packard 
��� discussed a particular k � �� r � � rule� invented by Gacs� Kurdyumov� and
Levin 	GKL
 
��� as part of their studies of reliable computation in CAs� The GKL rule was
not invented for any particular classi�cation purpose� but it does have the property that�
under the rule� most initial con�gurations with less than half ��s are eventually transformed
to a con�guration of all ��s� and most initial con�gurations with more than half ��s are
transformed to a con�guration of all ��s� The rule thus approximately computes whether
the density of ��s in the initial con�guration 	which we denote as �
 is above the threshold
�c � ���� When initial con�gurations are close to � � ���� the rule makes a signi�cant
number of classi�cation errors 
����

Packard was inspired by the GKL rule to use a GA to evolve a rule table to perform this
��c � ���� task� If � � ���� then the CA should relax to a con�guration of all ��s� otherwise�
it should relax to a con�guration of all ��s� This task can be considered to be a �complex�
computation for a k � �� r � � CA since the minimal amount of memory it requires increases
with N � in other words� the required computation is spatially global and corresponds to the
recognition of a nonregular language�� The global nature of the computation means that
information must be transmitted over signi�cant space�time distances 	on the order of N

and this requires the cooperation of many local neighborhood operations 
����

In dynamical terms� complex computation in a small�radius� binary�state CA requires
signi�cantly long transients and space�time correlation lengths� Langton hypothesized that
such e�ects are most likely to be seen in a certain region of CA rule space as parameterized

�See Hopcroft and Ullman ���� for an introduction to formal�language classes in computation theory�
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by � 
���� For binary�state CAs� � is simply the fraction of ��s in the output bits of the
rule table� For CAs with k � �� � is de�ned as the fraction of �nonquiescent� states in
the rule table� where one state is arbitrarily chosen to be �quiescent�� and all states obey a
�strong quiescence� requirement 
���� Langton performed a number of Monte Carlo samples
of two�dimensional CAs� starting with � � � and gradually increasing � to �� ��k 	i�e�� the
most homogeneous to the most heterogeneous rule tables
� Langton used various statistics
such as single�site entropy� two�site mutual information� and transient length to classify
CA �average� behavior at each � value� The notion of �average behavior� was intended
to capture the most likely behavior observed with a randomly chosen initial con�guration
for CAs randomly selected in a �xed�� subspace� These studies revealed some correlation
between the various statistics and �� The correlation is quite good for very low and very
high � values� However� for intermediate � values in �nite�state CAs� there is a large degree
of variation in behavior�

Langton claimed on the basis of these statistics that as � is incremented from � to

� � ��k�� the average behavior of CAs undergoes a �phase transition� from ordered 	�xed
point or limit cycle after some short transient period
 to chaotic 	apparently unpredictable
after some short transient period
� As � reaches a �critical value� �

c
� the claim is that rules

tend to have longer and longer transient phases� Additionally� Langton claimed that CAs
close to �c tend to exhibit long�lived� �complex��nonperiodic� but nonrandom�patterns�
Langton proposed that the �c regime roughly corresponds to Wolfram�s Class � CAs 
����
and hypothesized that CAs capable of performing complex computations will most likely be
found in this regime�

Analysis based on � is one possible �rst step in understanding the structure of CA
rule space and the relationship between dynamics and computation in CAs� However� the
claims summarized above rest on a number of problematic assumptions� One assumption
is that in the global view of CA space� CA rule tables themselves are the appropriate loci
of dynamical behavior� This is in stark contrast with the state space and the attractor�
basin portrait approach of dynamical systems theory� The latter approach acknowledges the
fact that behaviors in state space cannot be adequately parameterized by any function of
the equations of motion� such as �� Another assumption is that the underlying statistics
being averaged 	e�g�� single�site entropy
 converge� But many processes are known for which
averages do not converge� Perhaps most problematic is the assumption that the selected
statistics are uniquely associated with mechanisms that support useful computation�

Packard empirically determined rough values of �c for one�dimensional k � �� r � � CAs
by looking at the di�erence�pattern spreading rate 	 as a function of � 
���� The spreading
rate 	 is a measure of unpredictability in spatio�temporal patterns and so is one possible
measure of chaotic behavior 
��� ���� It is analogous to� but not the same as� the Lyapunov
exponent for continuous�state dynamical systems� In the case of CAs it indicates the average
propagation speed of information through space�time� though not the production rate of
local information� At each � a large number of CAs was sampled and for each CA 	 was
estimated� The average 	 over the selected CAs was taken as the average spreading rate at
the given �� The results are reproduced in Figure �	a
� As can be seen� at low and high ��s�
	 vanishes� indicating �xed�point or short�period behavior� at intermediate � it is maximal�
indicating chaotic behavior� and in the transition or �c regions�centered about � � �
��
and � � �
���it rises or falls gradually� While not shown in Figure�	a
� for most � values
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	�s variance� like that of the statistics used by Langton� is high�

�� The Original Experiment

Langton�s empirical CA studies recounted above addressed only the relationship between �
and the dynamical behavior of CAs as revealed by several statistics� Those studies did not
correlate � or behavior with an independent measure of computation� Packard 
��� addressed
this issue by using a genetic algorithm 	GA
 
��� to evolve CA rules to perform a particular
computation� This experiment was meant to test two hypotheses� 	�
 rules able to perform
complex computations are most likely to be found near �c values� and 	�
 when rules are
evolved to perform a complex computation� evolution will tend to select rules near �

c
values�

Packard�s experiment consisted of evolving binary�state one�dimensional CAs with r � ��
The �complex computation� is the �c � ��� task described above� A genetic algorithm was
applied to a population of rules represented as bit strings� To calculate the �tness of a string�
the string was interpreted as the output bits of a rule table� and the resulting CA was run
on a number of randomly chosen initial conditions� The �tness was a measure of the average
classi�cation performance of the CA over the initial conditions�

The results from this experiment are displayed in Figure �	b
� The histogram displays
the observed frequency of rules in the GA population as a function of �� with rules merged
from a number of di�erent runs with identical parameters but with di�erent random number
seeds� In the initial generation the rules were uniformly distributed over � values� The graph
	b
 gives the �nal generation�in this case� after the GA has run for ��� generations� The
rules cluster close to the two �c regions� as can be seen by comparison with the di�erence�
pattern spreading rate plot 	a
� Note that each individual run produced rules at one or the
other peak in graph 	b
� so when the runs were merged together� both peaks appear 
����
Packard interpreted these results as evidence for the hypothesis that� when an ability for
complex computation is required� evolution tends to select rules near the transition to chaos�
He argues� like Langton� that this result intuitively makes sense because �rules near the
transition to chaos have the capability to selectively communicate information with complex
structures in space�time� thus enabling computation�� 
����

	� Our Experiment

We performed an experiment similar to Packard�s� The rules in the population are repre�
sented as bit strings� each encoding the output bits of a rule table for 	k� r
 � 	�� �
� Thus�
the length of each string is ��� � ��r���

For a single run� the GA we used generated a random initial population of ��� rules 	bit
strings
 with � values uniformly distributed over 
����� Then it calculated the �tness of each
rule in the population by a method to be described below� The population was then ranked
by �tness and the �� rules with lowest �tness were discarded� The �� rules with highest
�tness were copied directly into the next generation� To �ll out the population �� new rules
were generated from pairs of parents selected at random from the current generation� Each
pair of parents underwent a single�point crossover whose location was selected with uniform
probability over the string� The resulting o�spring were mutated at a number of sites chosen
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Figure �� �a�	 The average di�erence�pattern spreading rate � of a large number of randomly chosen
k � 
� r � � CAs� as a function of �� �b�	 Results from Packard�s experiment on GA evolution of CAs
for the �c � ��
 classi�cation task� The histogram plots the frequencies of rules merged from the �nal
generations �generation ���� of a number of runs� These populations evolved from initial populations
uniformly distributed in �� The histogram consists of �� bins of width ������� The bin above � � ���
contains just those rules with � � ���� Graphs �a� and �b� are adapted from �
��� with the author�s
permission� No vertical scale was provided there�
�c�	 Results from our experiment� The histogram plots the frequencies of rules merged from the �nal
generations �generation ���� of �� runs� These populations evolved from initial populations uniformly
distributed in �� Following �
�� the ��axis is divided into �� bins of length ������ each� The rules with
� � ��� are included in the rightmost bin� The best �cross� and mean �circle� �tnesses are plotted for
each bin� �The y�axis interval for �tnesses is also �������
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from a Poisson distribution with a mean of ����

The �tness of a rule � is calculated as follows� � is run on ��� randomly chosen initial
con�gurations on a lattice with N � ���� A new set of initial con�gurations is chosen each
generation� and all rules in that generation are tested on it� The ��� initial con�gurations are
uniformly distributed over densities in 
����� with exactly half having � � ��� and exactly half
having � � ���� � is run on each initial con�guration for approximately ��� iterations� the
actual number is chosen probabilistically to avoid over�tting� ��� iterations is the measured
maximumamount of time for the GKL CA to reach an invariant pattern over a large number
of initial con�gurations on lattice size ����

��s score on a given initial con�guration is the fraction of �correct� bits in the �nal
con�guration� For example� if the initial con�guration has � � ���� then ��s score is the
fraction of ��s in the �nal con�guration� Thus� � gets partial credit for getting some of
the bits correct� A rule generating random strings would therefore get an average score of
approximately ���� ��s �tness is its average score over all ��� initial con�gurations� For more
details and for justi�cations for these parameters� see Mitchell et al� 
����

The results of our experiment are given in Figure �	c
� This histogram displays the
observed frequency of rules in the population at generation ��� as a function of �� merged
from �� di�erent runs with identical parameters but di�erent random number seeds� The
best and mean �tnesses of rules in each bin are also displayed�

There are a number of striking di�erences between Figures �	b
 and �	c
�

� In Figure �	b
� most of the rules in the �nal generations cluster in the �c regions de�ned
by Figure �	a
� In particular� in Figure �	b
� approximately ��� of the mass of the
distribution is in bins ��� and ����� combined 	where bins are numbered ���� left to
right
� In Figure �	c
 these bins contain only ������ of the mass of the distribution
	there are no rules in bins �� �� ��� ��� or ��� and there are only � rules in bin � out of
a total of ���� rules represented in the histogram
�

� In Figure �	b
 there are rules in every bin� In Figure �	c
 there are rules only in the
central six bins�

� In both histograms there are two peaks surrounding a central dip� As in the original
experiment� in our experiment each individual run produced rules at one or the other
peak� so when the runs were merged together� both peaks appear� In Figure �	b
� how�
ever� the two peaks are located roughly at bins � and �� and thus are centered around
� � �
�� and � � �
��� respectively� In Figure �	c
 the peaks are located roughly at
bins � and � and thus are centered around � � �
�� and � � �
��� respectively� The
ratio of the two peak spreads is thus approximately ����

� In Figure �	b
� the two highest bins are roughly �ve times as high as the central bin
whereas in Figure �	c
 the two highest bins are roughly three times as high as the
central bin�

Figure �	c
 also gives an important calibration� the best and mean �tness of rules in
each bin� The best �tnesses are all between ���� and ����� except the leftmost bin which
has a best �tness of ����� Under this �tness function the GKL rule has �tness � �
�� on all
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lattice sizes� the GA never found a rule with �tness above ���� on lattice size ���� and the
measured �tness of the best evolved rules was much worse on larger lattice sizes 
���� The
�tnesses of the rules in Figure �	b
 were not given by Packard 
���� though none of those
rules achieved the �tness of the GKL rule 
����


� Discussion of Experimental Results

Why Do the Rules Cluster Close to � � ����

What accounts for these di�erences between Figures �	b
 and �	c
� In particular� why did
the evolved rules in our experiment tend to cluster close to � � ��� rather than the two �c

regions�

There are two reasons 	discussed in detail below
� 	�
 Good performance on the �c � ���
task requires rules with � close to � �� and 	�
 the GA operators of crossover and mutation
intrinsically push any population close to � � ����

It can be shown that correct or nearly correct performance on the �c � ��� task requires
rules close to � � ���� Intuitively� this is because the task is symmetric with respect to the
exchange of ��s and ��s� Suppose� for example� a rule that carries out the �c � ��� task
has � � ���� This implies that there are more neighborhoods in the rule table that map
to output bit � than to output bit �� This� in turn� means that there will be some initial
con�gurations with � � �c on which the action of the rule will decrease the number of ��s�
And this is the opposite of the desired action� If the rule acts to decrease the number of ��s
on an initial con�guration with � � �c� it risks producing an intermediate con�guration with
� � �

c
� which then would lead 	under the original assumption that the rule carries out the

task correctly
 to a �xed point of all ��s� misclassifying the initial con�guration� A similar
argument holds in the other direction if the rule�s � value is greater than ���� This informal
argument shows that a rule with � �� ��� will misclassify certain initial con�gurations�
Generally� the further away the rule is from � � ���� the more such initial con�gurations
there will be� Such rules may nonetheless classify many initial con�gurations correctly or
partially correctly� However� we expect any rule that performs reasonably well on this task�
in the sense of being close to the GKL rule�s ���� average �tness across lattice sizes�to have
a � value close to ���� This selection pressure is one force pushing the GA population to
� � ���� We note that� not surprisingly� the GKL rule has � � ����

A second force pushing rules to cluster close to � � ��� is a �combinatorial drift� force�
by which the random actions of crossover and mutation� apart from any selection force� tend
to push the population towards � � ���� The results of experiments measuring the relative
e�ects of this force and the selection force in our experiment are given elsewhere 
����

Implications of the Requirement for � � ���

The theoretical argument that the �c � ��� task requires rules with � � ��� invalidates
Packard�s use of this task as an evolutionary goal for testing the hypothesis that rules ca�
pable of performing complex computations are most likely to be found close to �

c
regions�

According to Figure �	a
� for k � �� r � � CAs the �c values occur at roughly ���� and

��



����� But for the ��classi�cation tasks� the range of � values required for good performance
is simply a function of the task and� speci�cally� of �

c
� Our experimental results� along

with the theoretical argument for � � ��� given above� lead us to conclude that it is not
correct to interpret Figure �	b
 as evidence for the hypothesis that CAs able to perform
complex computations will most likely be found close to �c� This is an important conclu�
sion� since Packard�s work 
��� is the only published experimental study directly linking �
with computational ability in CAs�

Since ��classi�cation is only one particular class of tasks� this conclusion does not directly
invalidate speculations about a generic relationship between � and computational ability in
CA� However� there is to date no theoretical or experimental evidence for such a relationship�
and an alternative framework for analyzing computation in CAs suggests that there is no
such relationship 
��� ��� Moreover� it is likely that� like ��classi�cation� any particular
non�trivial computational task will have aspects that 	�
 require certain ranges of �� not
necessarily those close to �c� or 	�
 are not re�ected in � at all�

Aside from performing particular computational tasks� it has been known for some time
that some CAs� e�g�� the Game of Life CA� are capable in principle of universal computation�
this was proved for the Game of Life by explicit construction 
��� The Game of Life has
� � �c� Langton 
��� sketched a construction of some components of a universal computer
	similar to those used in the construction for the Game of Life
 in another particular two�
dimensional CA in the �complex regime�� However� these particular constructions do not
establish any generic relationship between �

c
and the ability for complex� or even universal�

computation�

In summary� we conclude that there is no evidence for a generic relationship between �
and computational ability in CA and no evidence that an evolutionary process with compu�
tational capability as a �tness goal will preferentially select CAs at a special �c region�

We do not know for certain what accounted for the di�erences between our experimental
results and those obtained by Packard� We speculate that the di�erences are due to additional
mechanisms in the GA used in the original experiment that were not reported by Packard 
����
For example� the original experiment included a number of additional sources of randomness�
such as the regular injection of new random rules at various � values and a much higher
mutation rate than that in our experiment 
���� These sources of randomness may have
slowed the GA�s search for high��tness rules and prevented it from converging on rules close
to � � ���� The key observable for this� the �tness of the evolved CAs� was not reported by
Packard 
���� Our experimental results and theoretical analysis indicate that the clustering
close to �

c
seen in Figure �	b
 is almost certainly an artifact of mechanisms in the particular

GA that was used rather than a result of any computational advantage conferred by the �c

regions� To test the robustness of our results� we have performed a wide range of additional
experiments� Not only have the results held up� but these experiments have pointed to a
number of novel mechanisms that control the interaction of evolution and computation 
����

What Causes the Dip at � � ����

Aside from the many di�erences between Figure �	b
 and Figure �	c
� there is one rough
similarity� the histogram shows two symmetrical peaks surrounding a central dip� We found

��



that in our experiment this feature is due to a kind of symmetry breaking on the part
of the GA� this symmetry breaking actually impedes the GA�s ability to �nd a rule with
performance at the level of the GKL rule� In short� the mechanism is the following� On each
run� the best strategy found by the GA is one of two equally �t strategies�

Strategy �� If the initial con�guration contains a su�ciently large block of adjacent
	or nearly adjacent
 ��s� then increase the size of the block until the entire lattice
consists of ��s� Otherwise� quickly relax to a con�guration of all ��s�

Strategy �� If the initial con�guration contains a su�ciently large block of adjacent
	or nearly adjacent
 ��s� then increase the size of the block until the entire lattice
consists of ��s� Otherwise� quickly relax to a con�guration of all ��s�

These two strategies rely on local inhomogeneities in the initial con�guration as indicators
of �� Strategy � assumes that if there is a su�ciently large block of ��s initially� then the
� is likely to be greater than � �� and is otherwise likely to be less than � �� Strategy �
makes similar assumptions for su�ciently large blocks of ��s� Such strategies are vulnerable
to a number of classi�cation errors� For example� a rule might create a su�ciently sized
block of ��s that was not present in an initial con�guration with � � ��� and increase its
size to yield an incorrect �nal con�guration� But� as is explained in 
���� rules with � � ���
	for Strategy �
 and rules with � � ��� 	for Strategy �
 are less vulnerable to such errors
than are rules with � � ���� For example� a rule with � � ��� maps more than half of the
neighborhoods to �� and thus� tends to decrease the initial �� Due to this it is less likely to
create a su�ciently sized block of ��s from a low�density initial con�guration�

The symmetry breaking involves deciding whether to increase blocks of ��s or blocks of
��s� The GKL rule is perfectly symmetric with respect to the increase of blocks of ��s and
��s� The GA� on the other hand� tends to discover one or the other strategy� and the one
that is discovered �rst tends to take over the population� moving the population ��s to one
or the other side of � ��

The shape of the histogram in Figure �	c
 thus results from the combination of a number
of forces� the selection and combinatorial drift forces described above push the population
toward � � ���� and the error�resisting forces just described push the population away
from � � ���� 	Details of the epochs the GA undergoes in developing these strategies are
described in 
��� ����


It is important to understand how in general such symmetry breaking can impede an
evolutionary process from �nding optimal strategies� This is a subject we are currently
investigating�

�� Conclusion

In this chapter we have reviewed some general ideas about the relationship between dynami�
cal systems theory and the theory of computation� In particular� we have discussed in detail
work by Langton and by Packard on the relation between dynamical behavior and compu�
tation in cellular automata� Langton investigated correlations between � and CA behavior
as measured by several coarse statistics� While there appears to be a relationship between
high and low � and CA behavior as measured by these statistics� the relationship is weak for
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intermediate � due to high variance in the statistics there� Packard�s experiment was meant
to directly test the hypothesis that computational ability is correlated with �

c
regions of CA

rule space�

We have presented theoretical arguments and results from an experiment similar to
Packard�s� From these we conclude that Packard�s interpretation of his results was not
correct� We believe that those original results were due to mechanisms in the particular GA
used in that experiment 
��� rather than to intrinsic computational properties of �c CAs�
In addition� as we have noted� speci�c properties of the �c � ��� task invalidate it as an
evolutionary goal for testing the �evolution to �c� hypothesis� We have also noted that any
particular non�trivial computational task is likely to have properties that 	�
 require certain
ranges of lambda not related to �c� or 	�
 are not re�ected in � at all�

The results presented here do not disprove the hypothesis that computational capability
can be correlated with phase transitions in CA rule space�� Indeed� this general phenomena
has already been noted for other dynamical systems� as noted in the introduction 
���� More
generally� the computational capacity of evolving systems may very well require dynamical
properties characteristic of phase transitions if such systems are to increase their complexity�

We have shown only that the published experimental support cited for hypotheses relating
�
c
and computational capability in CAs was not reproduced� One problem is that these

hypotheses have not been unambiguously formulated� If the hypotheses put forth by Langton

��� and Packard 
��� are interpreted to mean that any rule performing complex computation
	as exempli�ed by the �

c
� ��� task
 must be close to �

c
� then we have shown it to be

false with our argument that correct performance on the �c � ��� task requires � � ����
If� instead� the hypotheses are concerned with generic� statistical properties of CA rule
space�the �average� behavior of an �average� CA at a given ��then the notion of �average
behavior� must be better de�ned� Additionally more appropriate measures of dynamical
behavior and computational capability must be formulated� and the notion of the �edge
of chaos� in CAs must also be well de�ned� Static parameters estimated directly from the
equations of motion� as � is from the CA rule table� are only the simplest �rst step at making
such hypotheses and terms well�de�ned� � and 	 are excellent examples of the problems one
encounters� their correlation with dynamical behavior is weak� and they have far too much
variance when viewed over CA space�

Classifying CA behavior and analyzing the types of computation that CA behavior sup�
ports requires a structural view of CAs that goes beyond quantifying degrees of apparent
disorder�apparent disorder is precisely what �� 	� and various mean��eld statistics are meant
to indicate� The �rst steps have been taken in this direction by delineating various struc�
tural elements in CA�periodic and positive�entropy domains� intervening walls� particles�
and particle interactions 
��� ��� Employing this approach� one can determine the intrinsic
computational capability in CA behavior� For example� this approach gives a method for
constructing nonlinear �lters that remove periodic and �chaotic� domains from space�time
data produced by a CA� The resulting �ltered con�gurations typically reveal how the CA
performs its information processing in terms of 	�
 particles that transmit information over

�There are several direct inferences concerning computation in CAs and phase transitions that can be
drawn from existing results� For example� individual CAs have been known for some time to exhibit phase
transitions ��� with the requisite divergence of correlation length required for in�nite memory capacity�

��



long space�time distances and 	�
 particle�particle interactions that perform logical opera�
tions 
��� A summary of this type of analysis of the GKL rule in terms of particles is given
in 
����

Let us close by re�emphasizing that our studies do not preclude a future rigorous and
useful de�nition of the phrase �edge of chaos� in the context of cellular automata� Nor
do they preclude the discovery that it is associated with a CA�s increased computational
capability� Finally� they do not preclude adaptive systems moving to such dynamical regimes
in order to take advantage of the intrinsic computational capability there� In fact� the present
work is motivated by our interest in this last possibility� And the immediate result of that
interest is this attempt to clarify the underlying issues in the hope of facilitating new progress
along these lines�
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