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Abstract

Theory and Algorithms for Hidden Markov
Models and Generalized Hidden Markov Models

Hidden Markov Models (HMMs) are widely used in pattern recognition applications,
most notably speech recognition. However, they have been studied primarily on
a practical level, with the HMM matrices as the fundamental objects and without
considering the viewpoint of an observer trying to accurately predict the future output.
This dissertation is a study of the processes represented by HMMs using the concepts
and techniques of stochastic automata derived from the study of dynamical systems and
their complexity. The goal is to understand these processes in the language of stochastic
automata. Along the way, certain ideas of stochastic automata are characterized in a
measure-theoretic manner.

We begin by defining a process to be a stationary measure space of bi-infinite
sequences. We define a process state to be a conditional distribution on the future of a
process which corresponds to the state of knowledge held by an observer who has seen
some or all of the process’s history. This definition is similar in spirit to ideas used in
dynamical systems, and it is a formalization of the notion of a "deterministic state" used
in automata theory. We describe the process states of HMM processes. And we give a
necessary condition for a process to have an HMM representation.

Following [7] and [8], we define Generalized Hidden Markov Models (GHMMs).
These are structurally and operationally the same as HMMs, except that parameters
which are interpreted as probabilities in defining HMMs are allowed to be negative in
GHMMs. We describe necessary and sufficient conditions for two GHMMs (and thus
two HMMs) to represent the same process, and we give a method for finding the smallest
possible GHMM equivalent to a given one.

Going further, we give an algorithm for constructing a GHMM that represents a
process from the probabilities that process assigns to words. We prove that, for every
process, either the algorithm constructs a GHMM that represents the given process or
that no such representation exists. This characterizes the set of process representable
by GHMMs. Finally, we describe an implementation of this algorithm which constructs
GHMMs from sample sequences.
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1 Introduction

This dissertation is about a class of stochastic processes that are usually presented

as having a finite set of states, but which, in another sense, may have an infinite number

of states. These processes are known variously asHidden Markov Models(HMMs),

functions of a Markov Chain, or stochastic finite automata, all of which are essentially

equivalent. HMMs are used most widely and will be used here.

A process in the HMM class can be described as a finite-state Markov Chain with

a memoryless output process which produces symbols in a finite alphabet. This is the

sense in which these processes have finitely many states. However, from the perspective

of an observer who knows the parameters of some representation of the process and is

able to observe the output symbols but not the internal states, things look different. For

some processes there are infinitely many distinct states of such an observer’s knowledge

about the status of the process. This knowledge is defined in terms of conditional

distributions on future symbols. This is the sense in which there can be infinitely many

states. These states are more relevant than the original finite set of states to the study

of the process, since they allow for optimal prediction.

Functions of Markov Chains were the first descriptions of these processes to be

studied, and they were initially studied as mathematical information sources [1]. There

were a handful of papers such as [2] published in the 1950s and early 1960s, which

define HMMs and lay out these theoretical questions. What is the entropy rate for a

function of a Markov Chain? Do these two functions of Markov Chains define the

same process (the identifiability question)? What is the smallest function of a Markov

Chain equivalent to the given one (the minimality question)? This work was done

by researchers with mathematical backgrounds, studying HMMs from a perspective of

probability and information theory.

From the 1970s onward, HMMs have been used for modeling observed patterns,

especially in speech recognition. There are a large number of papers, such as [3–5], that

present HMMs as tools for use on these practical problems. These papers are written

by researchers interested in pattern recognition, often from a viewpoint in engineering

or computer science, and they usually focus on algorithms and on results in practical

situations.
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A new insight in 1987 led to a generalization of HMMs and to resolution of the

identifiability and minimality questions about Hidden Markov Models [6]. These results

appear in a very few papers that treat HMM matrices as objects of linear algebra

without regard to the signs of the transition matrix entries — which have traditionally

been interpreted as probabilities. These papers include [7] and [8], which solve the

identifiability and minimality questions for HMMs by solving them for a generalization

of HMMs known asGeneralized Hidden Markov Models(GHMMs).

In addition to this development of HMMs per se, there is a substantial literature

in computer science dealing with finite state machines. An emerging branch of this

literature deals with stochastic finite automata, and falls under the heading of complex

systems. This body of work, composed of papers such as [9], focuses on intrinsic

processes rather than representations, and looks at stochastic automata as the simplest

systems in which to study how natural systems process information. Because the

definition of a stochastic finite automaton is quite similar to the definition of a Hidden

Markov Model, this work provides an alternative way of looking at HMMs.

This dissertation developed from looking at HMMs from the viewpoint of the work

on stochastic finite automata. This approach led to the material of chapters 2 and 3.

The work in chapters 4 and 5 followed from this and used the generalization of HMMs

mentioned above. The next paragraphs contain brief overviews of these chapters and

are intended to give the reader an idea of what is to come.

The primary objects of chapter 2 areprocessesandprocess states. A process is a

stationary probability measure on the space of bi-infinite sequences of symbols, where a

symbolis an element of a finite set called the alphabet.* Indices into these sequences are

thought of as times, as if the process were a laboratory apparatus that emits a symbol

with every tick of a clock. Thus, negative indices refer to symbols that were emitted in

the past and that may be known, and nonnegative indices refer to symbols that have not

yet been emitted and may not have been internally determined yet. We define a word

to be a finite string of symbols in the alphabet. A process assigns a probability to each

word and is uniquely determined by these probabilities.

*In the stochastic process literature, the term “state” is usually used where we use “symbol”. In papers such as [2,10], this leads
to the somewhat confusing use of “state” to refer to both symbols and presentation states. In this dissertation, the term “state” is
used exclusively to refer to objects which render the future conditionally independent of the past.
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A process state is a conditional distribution over the future — a measure space

of semi-infinite sequences of symbols — induced by conditioning on known historical

information, such as what particular symbols were emitted at the last few ticks of the

clock. The process states are the possible states of knowledge of an observer who wishes

to predict the future symbols with high accuracy. This observer knows the design of

our hypothetical apparatus, but not the current status of its internal components.

The definition of a process state is new in this dissertation, but the underlying idea

is not. It is used, for example, in [11]. What the author has done here is to formalize

this fundamental idea. The definition of a process is, of course, standard.

In chapter 3, we will introduce Hidden Markov Models (HMMs). An HMM consists

of a recurrent finite-state Markov Chain, an alphabet of output symbols, and a distribution

over that alphabet for each transition in the Markov Chain. The states and transitions

of the Markov Chain are hidden from observation so that only the output symbols are

visible. We represent an HMM primarily by a set of matrices
�
T k

	
, one matrixT k

for each symbolk in the alphabet — note that the superscriptk is an index, not an

exponent. Each entryT k
ij is the probability, if the Markov Chain is in statei, of emitting

symbol k and going to statej. An HMM defines a process in a natural way, and so

HMMs provide a convenient way to represent some processes. The states of an HMM’s

underlying Markov Chain are quite different from process states. We will refer to the

Markov Chain’s states aspresentation states.

We compute the process states for a process represented by an HMM in terms of

the presentation. We show that they are represented by probability distributions over

the presentation states or, equivalently, by mixtures of presentation states. We call them

mixed states† and we identify the real role of presentation states. The presentation states

are the things we combine to make mixed states. Essentially, presentation states are

basis vectors for a vector space containing the mixed states, and mixed states represent

the states of knowledge of an observer. In this interpretation, the matricesT k define

linear transformations among these vectors.

Finally, we consider the question of when a process can be represented by an

HMM. We prove that the following condition is necessary: if a process has an HMM

presentation, then the span of the process states — a subspace of the space of conditional

†The termmixed statesis used in the context of HMMs, with an entirely unrelated meaning in [12].
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distributions on the future — is finite-dimensional. This result is a natural consequence of

the fact that the process states of such a process can be represented by linear combinations

of presentation states.

The definition of an HMM given in chapter 3 is one of several equivalent definitions.

Mixed states first appeared in [1], although not with that name. Most of the remaining

material in the chapter has not previously appeared in print, but has undoubtedly been

deduced a number of times before. Stating these results in terms of process states is the

author’s work, as is the question, “What are the process states for a process represented

by an HMM?” and the resulting interpretation of presentation states as basis vectors,

both of which are crucial to this dissertation. The final section of this chapter is entirely

the author’s own.

Chapter 4 introduces a new class of presentations, Generalized Hidden Markov

Models. We represent a GHMM like an HMM, by a matrix for each symbol, but in

a GHMM we do not interpret the entries in these matrices as probabilities. Indeed,

we allow them to be negative or greater than one. We do constrain these entries, and

we constrain them in such a way that the calculations we use with HMMs produce

meaningful results for GHMMs. In this way, a GHMM assigns probabilities to words

and so it defines a process.

We justify this change as follows. For a process represented by an HMM, we

calculate the probabilities of words by simple linear algebra and we represent process

states as vectors in a space generated by the presentation states. But because we restrict

the entries in the matricesT k to be positive, we restrict the class of linear transformations

they can represent and we restrict the set of possible mixed states to a small subset of

the vector space. If we remove this constraint, we can make use of all sensible linear

transformations and we can use any portion of the vector space. This is what we allow

when we use GHMMs.

Two long-standing problems for HMMs can be readily solved in terms of GHMMs,

namely the equivalence question — Do these two HMMs (or GHMMs) represent the

same process? — and the minimization question — How small is the smallest HMM

which is equivalent to a given HMM? These questions were resolved in [7]. The present

work presents a new and relatively clean resolution of these questions that is similar in
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spirit to the work just cited. But it is different in details and includes an important new

construction, the standard presentation.

Chapter 5 contains two significant results. The first is a proof that every process such

that the span of its process states is finite-dimensional can be represented as a GHMM.

We show this by constructing such a representation. This completes a characterization

of the processes representable by GHMMs, the first half of which appears for HMMs

in chapter 3 and is generalized to GHMMs in chapter 4. The complete characterization

is this: a process has a GHMM presentation if and only if the span of its process states

is finite-dimensional.

It is noteworthy that we can actually construct a GHMM presentation for any process

which has one. This construction leads to the second result of chapter 5: a technique

for constructing a GHMM from a sample of the output from a process. This technique,

which we call thereconstruction algorithm, is completely unlike the forward-backward

algorithm, the most widely used technique for constructing HMMs from sample output.

It needs further development, but it has much more solid theoretical footing than the

forward-backward algorithm. Indeed, it may eventually replace the forward-backward

algorithm. The work in this chapter is entirely that of the author.

In the chapter overviews, we introduced a number of concepts that may be unfamiliar

to the reader. We conclude the introduction with an example, to make some of them

clearer and more concrete to the reader. Let us consider the Hidden Markov Model,

depicted in figure 1.1.

A B1|1/2

1|1/2

0|1
Fig. 1.1 First example HMM.

The circlesA andB represent presentation states, the states of the underlying Markov

Chain. The arrows connecting them represent the transitions of the HMM and the labels

indicate the symbol that will be emitted if that transition is taken and the probability

of that transition. For example, the label1|1/2 at the top indicates that the symbol1
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is emitted when this transition is made and that this transition is taken on1=2 of the

occasions when a transition is made from stateA. We represent this same HMM with

the transition matrices

T 0 =

�
0 0

1 0

�
andT 1 =

�
1

2

1

2

0 0

�
: (1.1)

This is not the full description of an HMM that we will give in chapter 3. In particular,

we have not defined an initial state distribution for this HMM.

It should be clear to the reader that each presentation state in our example defines

a distribution on the future symbol sequences. We call this the conditional distribution

on the future given that presentation state.

Now, suppose that we know the transition matrices and can see the output of

this machine, but do not know what presentation state the HMM is in. That is, the

presentation states are hidden from us, whence the termHidden Markov Models. If

the most recent symbol we have seen is a0, then we can deduce that the HMM is in

presentation stateA. But if the most recent symbol we have seen is a1, we cannot deduce

which presentation state the HMM is in. We can, however, infer a distribution over the

presentation states. The HMM is in either stateA or stateB with probability 1=2 each.

And we can deduce a conditional distribution on the future given that the most recent

symbol was a1. If we do this we will find that it is equal to1=2 of the sum of the two

conditional distributions on the future given presentation statesA andB, respectively.

In the terminology of this dissertation, we have now seen two process states. The

first is the conditional distribution on the future given that the most recent symbol was

a 0. This happens to be identical to the conditional distribution on the future given

presentation stateA. The second is the conditional distribution on the future given that

the most recent symbol was a1, which does not correspond to either presentation state.

We can represent the first of these process states by the mixed state(PA = 1; PB = 0), a

distribution over the presentation states which puts all probability on stateA. Likewise,

we represent the second of our process states by the mixed state(PA = 1=2; PB = 1=2),

a distribution which makes each presentation state equally likely.

We begin in chapter 2 with a full definition of processes and process states.
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2 Processes and Process States

In this chapter and the next one, we defineprocesses, the central objects of this

work. We will work with them in two ways, from two different viewpoints. First

we will define processes in the abstract, as probability measures on a sequence space.

Second, more concretely, we will defineHidden Markov Models— partially observed

finite state Markov chains — which we will use to represent processes. In this chapter

we will introduce the first of these viewpoints, and in chapter 3 we will introduce the

second and then bring the two together.

This chapter builds on, and uses the concepts and terminology of, probability theory.

Appendix B contains a few necessary definitions and theorems with which the reader

may be unfamiliar. A presentation of the basics, if needed, may be found in a number

of standard texts, e.g. [13,14].

The reader may find it helpful to keep in mind the following metaphor. A process

may be thought of as a black box on a laboratory bench with a row of lights on it. These

lights are our symbols, and the row of them is our alphabet. There is a flash from one

or another of these lights every second, which we describe as the emission of a symbol.

This box has been running forever, and will continue running forever. We may know

the design of the box, and we may have observed a number of recent symbol emissions,

but we cannot observe the current configuration of the box’s internal parts.

2.1 Sequence Space

In this section, we define and introduce notation for the sets upon which we will

build our probability spaces.

Begin with a finite setX of symbols, which we will call analphabet. Our canonical

choice will beX = f0; 1; . . . ; m� 1g for some natural numberm. Let XZ be the

space of bi-infinite sequences of elements ofX . That is, if x 2 XZ, thenx is a bi-

infinite sequence. . .x
�3x�2x�1x0x1x2x3 . . ., so that for any integert, there is a symbol

xt 2 X . We will think of the indices as denoting measurement times, with negative

indices referring to the past and nonnegative indices indicating the future. Often, we

will assume that the symbols with negative indices are known and the symbols with
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nonnegative indices are unknown. We will want to think of each measurement time as

being either in the past or in the future, so that we will only need to consider our state

of knowledge after one event an before another, and we will not need to consider our

state of knowledge “as a symbol is becoming known”. Thus we will be thinking of time

t = 0 as being in the future. The reader may wish to think of the “present” as a small

negative number, perhaps�1

2
. Because timet = 0 is the smallest future time at which

a symbol is observed, we will refer tox0 as thenext symbol.

In these terms, aword w of length l is an l-tuple of elements ofX , w 2 X l. We

will denote the empty word, of length zero, by�, and the length of the wordw by jwj.

For, example, if0; 1 2 X , j01101j = 5. A subsequences is a structures = (w; (a; b)),

wherew is a word and(a; b) is a pair of times such thatw has lengthb� a+ 1. The

subsequences is said to be aninstanceof the wordw from which it is formed, andw

is said to be thebase wordof the subsequences = (w; (a; b)). s may also be denoted

sasa+1 . . . sb. a and b are called thestart timeand end time, respectively, ofs. The

length of a subsequence is the length of its base word. An instance of�, then, is written

(�; (a; a� 1)). A sequencex is said to contain, ormatch, a subsequences = (w; (a; b))

if, for all t 2 fa; . . . ; bg, st = xt. We will most often refer to thenext word, which is

any subsequences = (w; (a; b)) with start timea = 0, or thehistory suffix, which is any

subsequence with end time negative oneb = �1.

When writing a subsequence which containsx
�1 or x0, we will sometimes use the

decimal point to denote this and to imply the start and end times. For example,1011:

is denotes history suffix(1011; (�4;�1)) and:0110 is denotes next word(0110; (0; 3)).

We will not always be precise about distinguishing words from subsequences, nor about

usingw for words ands for subsequences. Ifw andz are words, thenwz denotes their

concatenation. The set of all words will be denoted byX �; this set contains�.

The setAs of sequences which match a subsequences,

n
x 2 XZjxi = si for all i 2 fa; . . . bg

o
(2.1)

is called thecylinder setdefined bys. If s is an instance of�, The cylinder set defined

by any instance of� is XZ.
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2.2 Processes

Processes are the central objects of this work. The definition of a process is this:

a process is a stationary probability measure on a space of sequences. In this section

we will develop this definition.

A probability measure is a function which assigns probabilities to sets — in this

case, sets of sequences. To what subsets ofXZ will our process assign probabilities?

That is, what is the domain of this function? We need to define this set of subsets of

X
Z, which is called a�-field. Our choiceX is defined to be the�-field generated by

the cylinder sets. That is,X is the smallest collection of subsets ofXZ such that:

1. for every subsequences, As 2 X, and

2. X is closed under complements and countable unions.

The pair
�
XZ;X

�
is the measurable space in which we will be working.

Essentially, a probability measure on
�
XZ;X

�
is something which assigns proba-

bilities to the cylinder sets defined by subsequences. Ifs is a sequence andAs is the

cylinder set of sequences which matchs, we defineP(s) — the probability ofs —

to be the probability of the cylinder setP(As). BecauseP is a probability measure,

P
�
XZ

�
= 1. Recall thatXZ = A�, so we haveP(�) = 1.

As we stated above, we will require our processes to be stationary. Astationary

process is one in which the probability of a subsequence does not depend on its start time.

Stationarity will allow us to disregard the time index when we do not need it explicitly.

In particular, it allows us to define the probability of a word to be the probability of any

instance of it, as we will see shortly. Virtually all the probability measures on sequence

space addressed in this work are stationary, and the exceptions will be identified as such.

The shift mapT on a sequence spaceXZ is a mapT : XZ ! XZ such that for

all x 2 XZ, for all t, (T (x))
t
= xt+1. The shift map “shifts” a sequence over by one;

it moves the time origin.

Definition 2.1.1. A processP is stationaryif for all setsA 2 X, P(T (A)) = P(A).

Note that we do not need to require shift invariance in both directions, as it is

automatic. SinceT is invertible in a space of bi-infinite sequences, letB = T�1(A),

and apply the definition of stationarity toB, and we haveP
�
T�1(A)

�
= P(A).
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Definition 2.1.2. A processP is a stationary probability space
�
X
Z;X;P

�
. That is,P

is a stationary probability measureP on the measurable space
�
X
Z;X
�
.

The author has chosen to work exclusively with stationary processes for convenience

and for reasons which have their roots in the historical development of this work.

However, virtually all of the results in this dissertation are valid with a definition which

does not require processes to be stationary and instead expects a process to have a start

and stop at finite times. Some of the statements made here, and many of the proofs,

require modifications in order to apply under such a definition.

Let w be a word and lets be an instance ofw. If P is stationary, all instances ofw

have the same probability. Thus, we can define the probability ofw to beP(w) = P(s),

so we can think of a processP as a function which assigns probabilities to words. We

will use Wl to denote the set of all words of lengthl with positive measure. This leads

us to two facts, which are trivial consequences of the properties of probability measures.

The first of these is that, because the cylinder set induced by� is defined to be all ofXZ,

P(�) = 1: (2.2)

The second is that, for any wordw and any lengthl � 0,

X

z2Wl

P(wz) =
X

z2Wl

P(zw) = P(w): (2.3)

As it happens, the converse of this pair of facts is true — any function onX
� which

satisfies equations 2.2 and 2.3 defines a process. This will be our primary tool for

showing that a particular object is a stationary process.

In the statement of the theorem B.1.1, we have separatedf from P for clarity.

When we use this theorem , we will not usually mentionf explicitly. Instead, we

will use P in the role whichf serves here, verify equations 2.2 and 2.3, and invoke

the theorem to assert thatP describes a unique process. This renders the distinction

betweenf and P moot.

Theorem B.1.1. Given a mapf : X �
! [0; 1] satisfying

1. f(�) = 1, and

2. For all wordsw 2 X �, f(w) =
P
z2X

f(zw) =
P
z2X

f(wz);
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there is a unique processP =
�
XZ;X;P

�
such that for allw 2 X �, P(w) = f(w).

This theorem follows directly from Kolmogorov’s extension theorem. Proving it is

conceptually simple but requires some rather serpentine logistics. Instead of appearing

here as a interruption of the conceptual development, the proof appears in appendix B.1.

A few examples are in order before we go on. We will call the first of these the

fair coin. This process should be thought of as a bi-infinite sequence of coin flips

being revealed (or flipped) as time passes. HereX = fheads; tailsg, and xt is the

result of the coin flip at timet. Recall that we think of negative times as the past, and

nonnegative times as the future, so that we have seen all the resultsxt for t < 0 and

we have not yet seen anyxt for t � 0. For any wordw of length l, P(w) = 2�l.

The symbols are independent and identically distributed (iid) so the process must be

stationary. Every sequence inXZ is a realization (defined in section 2.3) of the fair coin

process. Although we don’t need theorem B.1.1 to prove that this process exists, we will

verify that equations 2.2 and 2.3 are satisfied. For 2.2,f(�) = 20 = 1. For 2.3, ifw has

lengthl andz 2 X , thenf(wz) = f(zw) = 2�(l+1), so we have2�2�(l+1) = 2l = f(w).

The second of our examples is a strictly periodic process, in which a fixed word

is repeated over and over. In this example, we choose the word10000, and a typical

realization looks like

. . . 00010000100001000010000100 . . . (2.4)

If the phase (i.e. the index associated to a1, taken modulo5) is uniformly distributed,

P is stationary, and we have a process. It is not difficult to see that every word is

assigned a probability of either0 or 1
5
, with the exception of�, 0, 00, and000, which

have probabilities1, 4
5
, 3
5
, and 2

5
, respectively. This is clearly a process — the measure

can be described explicitly. It assigns measure1
5

each to five bi-infinite sequence and

0 to all the others.

2.3 Past and Future

At times, we will need to treat the past and the future separately. In this section

we will introduce a decomposition of a processes underlying probability space
�
XZ;X

�

which will facilitate this.
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Let X+, the future space, be the usual set of semi-infinite sequences of elements

of X ,

X+ =
�
x
+ = x0; x1; . . . j for all i � 0; xi 2 X

	
(2.5)

andX�, the history space, be the set of semi-infinite sequences of elements ofX with

negative indices:

X� =
�
x
� = . . . ; x

�2; x�1j for all i < 0; xi 2 X
	

(2.6)

We will think of a bi-infinite sequencex 2 XZ as an ordered pair of semi-infinite

sequences
�
x
�;x+

�
, wherex� 2 X� and x+ 2 X+. Thus, we can writeXZ as a

product of sets,XZ = X� �X+. We will refer to an elementx� of X� as ahistory,

and an elementx+ of X+ as afuture. Thus a history suffix, which we defined in section

2.1 to be a subsequence with end time�1, is in fact a suffix of a history.

Next, we will define thehistory�-fieldH and thefuture�-fieldF, both of which are

�-fields onXZ and are sub-�-fields ofX. H andF are generated by the cylinder sets

in X� andX+ respectively. That is,H is defined to be the�-field onXZ generated by

all cylinder sets defined by subsequences with negative end times, andF is defined to

be the�-field onXZ generated by all cylinder sets with nonnegative start times. Thus

if s = (w; (a; b)) is a subsequence with end timeb � �1, thenAs — the set of all bi-

infinite sequencesx 2 XZ which matchs — is an event inH. We will refer to elements

of H ashistory events. Intuitively, a history event is a set for which membership depends

only on the history part of a sequence. A similar statement is true forF, and we will

refer to elements ofF as future events.

In addition, we will need to define a series of finite history�-fields

fHljl 2 f0; 1; . . .gg, where Hl is the �-field on XZ generated by all lengthl his-

tory suffixes. (H0 is the trivial �-field on XZ.) An event inHl, then, is the set of

bi-infinite sequencesx which satisfy some in positionsx
�l; . . . ; x�1. As the reader

may readily verify, the finite history�-fields form an increasing sequence. That is,

for all l � 0, Hl � Hl+1. In addition, the union of the finite history�-fields is the

(infinite) history �-field:

1[

l=0

Hl = H: (2.7)
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A realization from a processP is a bi-infinite sequence inXZ which, loosely

speaking, is within the support of the process’ measureP. Formally, the support of

a measure depends on the topology of the measure space, and we have not defined

one. Instead of doing so now, we will define a realization directly. Take a sequence

x 2 XZ, and consider the set of all subsequences whichx contains. If, for each of these

subsequences, the set of sequences which contains it has positive measure, thenx is a

realization ofP. In the same vein, anull word is a word with probability zero; and a

history x� is a null history if it has a suffix that is a null word.

2.4 Histories and States

In the last section, we established our notation and technical framework. The

material in this section has these components, but it also has a conceptual component.

We will defer most of the technical details until the next section. The material in this

section draws on the concepts and terminology of Markov chains. Readers unfamiliar

with Markov chains may wish to peruse section 3.1 at this time.

Consider the following situation from a time series perspective. Suppose we are

watching a sequence of symbols appear as the output of an apparatus. Suppose further

that this apparatus is known to be described by the processP =
�
XZ

;X;P
�
. Given

P and some natural additional information — namely, the most recent few symbols —

what can we predict about the future? In particular, how can we simulate future output

from this apparatus?

We may assume, due to stationarity, that the next symbol will appear at timet = 0.

Then the symbols we know form a subsequencew with stop timeb = �1 — that is,

w is a history suffix. We will make the reasonable assumption thatP(w) > 0. Thenw

induces a conditional distribution onx0, P(x0 = kjw).

Suppose we choose a symbolx0 according to this conditional distribution, and build

a new history suffixz from it andw shifted by one:z
�1 = x0, and zt�1 = wt if t is

betweenw’s start and end times. We now find ourselves in the same situation we started

in, only one time step further along and with a new history suffix. We can repeat this

process as many times as we like and thus (theoretically, at least) generate synthetic data.

In effect, we are using the history suffixes as states of an infinite Markov chain. If

we output each new symbol as we choose it, we can accurately simulate the original
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apparatus. Essentially, we’ve built what’s called a Hidden Markov Model representation

of our process. (A Hidden Markov Model is a partially observed Markov chain — see

chapter 3.) However, because there are infinitely many history suffixes, it has infinitely

many states, and none of these states are recurrent. That is, once a state has been

seen it can never be revisited. This recasting of the process is not useful in the sense

that it doesn’t tell us anything new beyond knowingP, and we have to use all the

history we know in each simulation step. Is there a more concise or informative way

of simulatingP?

Let’s back up, and look at what we can say about distributions on the future space.

Our known history suffixw induces a conditional distributionP(�jw) � P(�jAw) on

the future space(X ;F).

P(�jw) is an example of aconditional future distribution, a distribution on the future

which arises when we condition on a history event. Conditional future distributions

are of substantial importance. The conditional future distribution reflects ourstate of

knowledgeabout possible future observations fromP. It includes all the information

we have about the future — if we know the conditional future distribution induced by

a history suffix, we may as well forget the history suffix itself. This, loosely speaking,

is the sense in whichP(�jw) is a state.

In the next section, we will consider conditional future distributions which arise

when we condition on either a historys or a history suffixx�. Here, however,

we will restrict ourselves to distributions which arise when we condition on history

suffixes. If two history suffixes,y andz, lead to the same conditional future distribution,

P(�jz) = P(�jy), then we will say that they are equivalent, denotedy � z. They provide

the same information about the future. We define theequivalence classCz of a history

suffix z to be the set of all history suffixesy such thaty � z: Cz = fy 2 X �jy � zg

These equivalence classes should be thought of as condensed versions of the past,

in the sense that if we remember only which equivalence classCz a history suffixz

belongs to and we forgetz itself, then we have lost no information about the future.

More formally, suppose we define a random variableS which maps a history suffix to

its equivalence class,S(z) = Cz. For all future wordss, the definition ofCz tells us

that the conditional probabilityP(sjz) is equal to the conditional probabilityP(sjCz).

Then the history suffix and the future are conditionally independent givenS.
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We can now use these equivalence classes to address the problem of simulating

future output. Start with equivalence classCw which contains our known history suffix

w. Cw induces a distribution onx0. As before, we choose a symbolk 2 X according to

this distribution. Next, we choose any history suffixy in Cw — we need not choosew

— and appendk, and shift it over by one to getz = yk, which is again a history suffix.

Fromz, we get back to an equivalence classCz = S(z). Note that any choice ofy 2 Cw

yields the sameCz, because equality of distributions over the entire future space implies

equality of distributions over the subspace of sequences which start with a givenx0.

As before, we have built a Hidden Markov Model presentation of our process. This

time, however, we may have gained by doing so. It is possible for the states — that

is, equivalence classes — to be recurrent. For example, in the fair coin process, all

history suffixes are equivalent, so there is exactly one equivalence class, and it is visited

after every time step. We may have infinitely many states, or we may have only finitely

many, depending on the structure of the set of equivalence classes. Essentially, if we

remember only the current equivalence class, we are keeping only the information from

the past that is relevant to predicting the future. This recasting, as we will see, is

fundamental. These conditional distributions on the future are the basis of the primary

notion of “state” that we will be using. However, because there is more than one kind

of object we will want to call a state, we will refer to the equivalence classes — or

rather, the conditional future distributions they induce — asprocess states.

We can extend this idea to include conditional future distributions induced by

conditioning on an entire history. Whenx� is a history andP
�
�jx�

�
is the conditional

future distribution it induces, we can compareP
�
�jx�

�
to a conditional future distribution

P(�jz) induced by a history suffixz. Considering conditional future distributions induced

by histories introduces some complications, with which we will deal in the next section.

2.5 Process States

In this section, we will go through the preceding development again, rigorously.

Those readers for whom the preceding discussion constitutes an adequate definition are

advised to skim the this section rather than reading it closely.

First, we will develop a rigorous definition ofP(�jw), wherew is a history suffix.

We are only interested in conditioning on non-null history suffixes. Lets
l
= x

�l
. . .x

�1
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and letRl be the set of all non-null lengthl history suffixes,Rl = fsljP(sl) > 0g. Then

R =

1S
l=0

Rl is the set of all non-null history suffixes. Letw be any history suffix not in

R, and letBw 2 H be the history event containing all histories which matchw. For any

future eventA 2 F, we define the conditional probabilityP(Ajw) by Bayes rule. That is,

P(Ajw) =
P(A \ Bw)

P(Bw)
; (2.8)

which we will write as

P(Ajw) =
P(A;w)

P(w)
: (2.9)

Next, we will develop a definition for a conditional future distribution given a

history, P
�
�jx�

�
. We will defineP

�
�jx�

�
in terms of the conditional distributions

P(�jwl), wherewl is taken to be the lengthl suffix of the historyx�. For every word

s, we will define

P
�
sjx�

�
= lim

l!1

P(sjwl): (2.10)

Note that if we let

1A(x) =

�
1 x 2 A

0 otherwise;
(2.11)

P(Ajwl) is the conditional expectationE(1AjHl)(x) for any sequencex which matches

w. Thus the limit in equation 2.10 may be writtenlim
l!1

E(1AjHl), which converges

almost surely toE(1AjH)(x) by theorem B.2.3, which is a martingale convergence

theorem. Thus we have

lim
l!1

P(�jwl) = P
�
�jx�

�
(2.12)

for almost everyx�. This is our definition ofP
�
�jx�

�
.

Our next step is to define the set of histories on which we will condition when

defining process states. We have just shown that this definition gives a well-defined

conditional future distribution for almost all histories, and we will condition only on

those histories.

Let us examine howP
�
�jx�

�
can fail to be well-defined for a given historyx�.

For each of the countably many wordss there may be a set of historiesNs — a set
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of measure zero — on whichlim
l!1

P(sjw
l
) does not converge. For example, ifx� has

a suffix wl with probability zero, then for allm > l, P(wm) = 0, andP
�
sjx�

�
is

ill-defined for all s. The unionN of the Ns is itself a null set. On its complement

X
Z
rN , which is thus a set of full measure,P

�
�jx
�

�
exists. We will callN the set of

bad histories, and we will say that a history isgood if it lies in X
Z
r N .

Now we are ready to define process states.

Definition 2.5.1. A process stateis a conditional future distribution which arises in

conditioning on a non-null history suffix or a good history. That is, a process state is

either a conditional future distributionP(�jw) for somew 2 R or it is a conitional future

distributionP
�
�jx
�

�
for somex� 2 X

�

rN . Thus thesetS of all process statesfor

a given process is

S = fP(�jw)jw 2 Rg [
�
P
�
�jx
�

�
jx
�

2 X
�

rN
	
: (2.13)

In section 2.4, we developed the idea of process states in terms of equivalence

classes of history suffixes. We have now developed a formal definition of process states,

and we have defined a process state to be a conditional future distribution and not an

equivalence class of history suffixes. This does not require changing how we think about

process states, because there is a natural correspondence between equivalence classes as

we described them in section 2.4 and conditional future distributions induced by non-null

history suffixes. Recall that two history suffixes are said to be equivalent if they induce

the same conditional future distribution. Thus every equivalence class has an associated

conditional future distribution. At the same time, every process state is induced by

at least one non-null history suffix or at least one good history. All history suffixes

which induce a given process state are automatically equivalent to each other, as are all

histories which induce a given process state. So every process state has an associated

equivalence class of history suffixes, an equivalence class of histories, or both.

In addition, some of our terminology will refer to process states as if they were

equivalence classes of history suffixes. In particular, we will say that a history or

history suffix is amemberor an elementof the process state which itinduces. In

addition, we define the mapG : X�! S which takes a non-null history to the process

state it induces, asG
�
x
�

�
= P

�
�jx
�

�
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Definition 2.5.2. The inducing set of historiesof a process stateA is the setG�1(A)

of all histories which induceA.

G�1(A) may be empty; this occurs ifA is induced only by history suffixes.

We will want to define a probability toG�1(A). As it happens, we do not know

thatG�1(A)�X+ — which lies inXZ — is measurable. This next result tells us that,

if it does not lie in the�-field H, G�1(A) � X+ differs from a measurable set by a

subset of a set of measure zero. Essentially, this means the we can reasonably assign a

measure to it. From here on, we will do so without comment.

Proposition 2.5.3. For any process stateA, G�1(A) � X+ can be written as the

intersection of a measurable set and a set of full measure.

Proof. In this proof, we will be referring to truncations of both the history and the

future. We will usel for history length andk for future length. Also, the reader is

reminded that the process stateA is a probability distribution on the future space, and

so it makes sense to refer toA(w), the probabilityA assigns to a wordw.

For every natural numberl and wordw, and for every historyx�, define

fwl
�
x
�

�
= E(1Aw jHl)

�
x
�

�
= P(wjx

�l . . .x�1) (2.14)

and

fw
�
x
�

�
= E(1Aw jH)

�
x
�

�
= P

�
wjx�

�
: (2.15)

By B.2.4, we know thatlim
l!1

fw
l

= fw almost surely.fw
l

is a measurable function, and

so its limit fw must be measurable.

If we have two process statesB andC, we will say that they arek-equivalentif, for

all wordsw of length less than or equal tok, B(w) = C(w). LetA be a process state

and letAk(A) be the set of all historiesx� which induce process statesG
�
x
�
�

that are

k-equivalent toA. In other language, that is,

Ak(A) =
�
x
�j for all w with jwj � k; P

�
wjx�

�
= A(w)

	
: (2.16)

That is,

Ak(A) =

\

w: jwj=k

�
x
�jP

�
wjx�

�
= A(w)

	

=

\

w: jwj=k

(fw)
�1

(A(w)):
(2.17)
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fA(w)g is a measurable set andfw is a measurable function, so the inverse image

(fw)�1(A) must be measurable. ThusAk(A) is a finite intersection of measurable set

and must be measurable. Further, if we take

A(A) =
1\

k=1

Ak(A); (2.18)

A(A) is a countable intersection of measurable sets, and so it is measurable.

Now, every history inA(A) \
�
XZ

rN
�

induces the process stateA, and no history

which is not inA(A) inducesA. ThusA(A) \
�
XZ

rN
�
= G�1(A). Note that the

XZ
r N has full measure, so we are done.�

The processes addressed in this section and the previous one output bi-infinite

sequences, but the idea of a process state is no less relevant to processes with finite or

semi-infinite output. The essential idea is that a state is a prediction of, or distribution

on, the future reached by some knowledge of the past.

Before going on to the next section, let us look an example. This process has

elements of both of the examples from the previous section. The alphabet isX = f0; 1g.

We first define a nonstationary probability measureQ on
�
XZ;X

�
, which generates

sequencesy = (. . .y�1y0y1...) 2 XZ such that

1. if t is even,yt = 1, and

2. if t is odd, thenyt is either0 or 1 with probability 1

2
each.

Now, we define the processP =
�
XZ;X;P

�
by P = 1

2
(Q+ T (Q)), whereT is the

shift map. In words, our process consists of alternating1s and coin flips, and the coin

flips are equally likely in either even or odd positions. We will not prove that this is a

process, nor will we do so for the examples in the next section. (In chapter 3, we will

develop a systematic approach to calculating probabilities of words, which will make

it practical to present such proofs). The processP is called theband-merging process

for historical reasons[15].
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DC

1|1/2

0|1/2

1|1

A

B

1|3/41|2/3

0|1/4

0|1/3

E
1|1-p

0|p

Fig. 2.1 Process state graph representation of the band-merging process.A, B, C, D, andE are

the process states.A is the start state (induced by�). The labels on the edges consist

of a symbol followed by a vertical bar and a transition probability. Herep= 1 �

p
2

2
.

Figure 2.1 is a process state graph representation of the band-merging process. The

small circles (A, B, C, D, andE) represent process states. The double circle for state

A indicates that it is the process state induced by�, which is called thestart state. The

process is said to bein a state if the known history or history suffix induces that state.

The edges represent possible transitions between states and the labels are of the form

symbol|transition probability. For instance, the edge from stateA to stateB, labeled

with “1|3/4” indicates that if the process is in stateA, then with probability3
4

it will

emit a 1, after which it will be in stateB.

The band-merging process has five process states. StateA is induced by any history

suffix consisting of an even number of1s, and stateB is induced by any history suffix

consisting of an odd number of1s. StatesC andD correspond to any history or history

suffix ending with a0 followed by an even or odd number of1s, respectively, and state

E is induced only by the history consisting entirely of1s. StateE is an interesting

example of a state which we could ignore because it is irrelevant to the study of the

process — it induced only by a single history which has mass zero — but which is well

defined. Such states are said to beelusive. We will discuss elusive states more in the

next section, after which we will usually ignore them.

2.6 Transient and Recurrent States

In section 2.5, we defined a process state to be a distribution on the future which
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is induced by a finite length history suffix or a semi-infinite history. This means that

there may be some process states which are induced by history suffixes and not by any

histories, some states which are induced by histories and not by history suffixes, and

some states that are induced by histories and history suffixes. In this section we classify

process states by the history objects which induce them.

First, we will define terms for the above distinctions.

Definition 2.6.1. A process state isinfinitely precededif it is induced by at least one

good history.

Definition 2.6.2. A process state isreachableif it is induced by at least one history

suffix w with P(w) > 0.

In addition, we need to define one more property. For a process stateA 2 S,

considerG�1(A), the set of histories which induceA. We know that we can assign this

set a measure, for which we will now use the shorthandP(A) = P
�
G�1(A)

�
, where

P
� is the measure on the history space. That is, if we have seen a historys, P(A) is

the probability thats induces process stateA.

Definition 2.6.3. A process state isrecurrent if P(A) > 0.

The termpositive recurrentis often used for this concept [13]. We have chosen to

use recurrent for brevity and because null recurrence does not happen in the systems

of interest here.

Now, for any process state, we may ask three questions. Is it reachable? Is it

infinitely preceded? And, is it recurrent? There are eight triples of answers, of which

three are impossible and five are observed.

Proposition 2.6.4.

1. Every unreachable process state is infinitely preceded.

2. Every recurrent process state is infinitely preceded.

This proposition asserts that the following three kinds of states do not occur:

• unreachable recurrent states which are not infinitely preceded,

• reachable recurrent states which are not infinitely preceded, and
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• unreachable states which are neither recurrent nor infinitely preceded.

Proof. Statement 1 is automatic from the definition of a process state, since every

process state is induced by at least one history or history suffix. Statement 2 follows

from definitions 2.6.1 and 2.6.3. LetA be a recurrent process state. ThenG�1(A) has

positive measure and thus is nonempty. SinceG�1(A) contains only good histories,

then it contains at least one good history which inducesA. �

Definition 2.6.5. A process state istransient if it is reachable and not recurrent. A

transient state is said to bestrictly transientif it is not infinitely preceded.

Definition 2.6.6. A process state iselusiveif it is unreachable and not recurrent.

Unlike the other kinds of states we have discussed, elusive states can often be

ignored. Whereas every reachable state can be induced by at least one word of

positive probability and a recurrent state can be induced by a set of histories of positive

probability, an elusive state can only be induced by events of zero probability. Thus any

countable set of elusive states can be ignored without changing the process’ probability

measure. We will usually omit elusive states for brevity. However, in some processes

the existence and structure of the elusive states is implied by the recurrent states and

in others the set of all elusive states is uncountable and has positive measure, so we

cannot forget them completely.

Proposition 2.6.4 established that there are five classes of states. This, together

with definitions 2.6.5 and 2.6.6, gives us names for them. Table 2.1 summarizes the

relevant information about each type. In figure 2.2, we have examples of all types except

unreachable recurrent states. In order to present processes which have such states in a

reasonable form, we will need to develope more machinery for presenting processes.
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Process state type Reachable Infinitely
Preceded

Recurrent

Strictly Transient yes no no

Infinitely Preceded
Transient

yes yes no

Reachable Recurrent yes yes yes

Unreachable Recurrent no yes yes

Elusive no yes no

Table 2.1 Summary of process state types.

B C

0|1/2

1|1

1|1/2

A
1|2/3 0|1/3

(a) (b)

F G1|1/2

1|1

0|1/2

D E

1|2/3

1|3/4

0|1/4

0|1/3

H

1|p

1|1-p

Fig. 2.2 Process state graph representations of two processes. (a) The golden mean process. The process stateA

is reachable and neither infinitely preceded nor recurrent. StatesB andC are reachable, infinitely

preceded and recurrent. (b) The even process. Herep = 1 �

p
2

2
. StatesD andE are reachable and

infinitely preceded but not recurrent,F andG are reachable, infinitely preceded and recurrent, andH

is unreachable, infinitely preceded, and not recurrent. For both of these processes, there may be

additional ill-defined states resulting from conditioning on histories in some measure-zero bad set.

2.7 Synchronization

Suppose we are watching the output of the even system, and the history suffix we

have seen contains all1s. This means that our state of knowledge about the future of the

process is described by either process stateD or E. It is possible that another observer,

who has been watching longer, knows more about the future than we do. In contrast, if

the history suffix we have seen contains a0, then this is not the case. An observer may
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have more historical information than we do, but this extra information is irrelevant to

the future. In this case we say that we aresynchronizedto the machine.

Definition 2.7.1. A non-null history suffixw is asynchronizing wordif all good histories

and all non-null history suffixes which end inw induce the same process state.

Proposition 2.7.2. If w is a synchronizing word, thenw induces a reachable recurrent

process state.

Proof. Let A be the process state induced byw. A is induced by a history suffix, so

it is reachable. Note thatw is itself a history suffix that ends inw, soA is the process

state induced by all histories and history suffixes which matchw. Further, we know

thatw is not a null word, and that the set of histories which matches it is a subset of

G�1(A). So we have

P(A) � P(all histories which matchw)

� P(w) > 0:
(2.19)

Thus we conclude thatA is recurrent.�

The converse of Proposition 2.7.2 does not hold. There are process in which

nonsynchronizing words induce recurrent states. Also, some processes have no reachable

recurrent states, and hence no synchronizing words. These processes either have

unreachable recurrent states or have uncountably many elusive states. We will see

examples in section 3.5.
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3 Hidden Markov Models

In the last chapter, we talked entirely about distributions on sequence space. Al-

though this viewpoint will be necessary for some of our results, processes as we have

defined them are not very tractable or structured. A distribution on an infinite set need

not lend itself to a finite description, let alone a brief one. In order to do anything

concrete, we will need another set of definitions. These are the traditional definitions

used in the study of Hidden Markov Models [3,16,17]. In this chapter, we define Hidden

Markov Models and then study how they represent processes. We will look at how to

represent the process states of a process defined by an HMM. And we will conclude the

chapter with a result on the structure of these processes’ sets of process states.

The material in sections 3.1, 3.2, and 3.3 is fairly standard in the literature on

HMMs, appearing in such works as [3,16]. The contents of section 3.4 has probably all

been deduced before. Mixed states, for example, appear in [1], although not with that

name. What is new is stating this material in terms of process states. And the material

in section 3.6 is entirely the author’s though some similar results are known.

We will be careful to keep clear the distinction between the process and the way

it’s presented to us. Byprocess, we will always mean a stationary distribution on a

sequence space. When we refer to a finite specification of a process, such as a Hidden

Markov Model, we will call it a presentation of a process, or simply apresentation.

3.1 Notation for Markov Chains

Before we start on Hidden Markov Models, we will define a Markov Chain. This

definition and the following discussion are not intended to be complete; rather, they are

intended to introduce the reader to the notation we will be using.

Definition 3.1.1. An n-stateMarkov Chain(MC) is a triple(V;P; �), where V is a finite

set of sizen, P is ann� n matrix, and� is a lengthn row vector, such that

(i) Each row ofP has sum one,

(ii)
P

i

�i = 1, and

(iii) �P = �:
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Elements ofV are called states,P is called the transition matrix, and� is called a

stationary distribution over the statesV .

Note that this definition requires a Markov Chain to have finitely many states. At

times in the following, we will discuss both countably and uncountably infinite state

Markov Chains, but we will not define them rigorously.

If we let V be the�-field defined by the cylinder sets onV Z, then
�
V Z;V

�
is a

measurable space. We define a distributionP as follows: if v = v0v1 . . .vl�1, with all

vi 2 V , we define

P(v) = �v0Pv0v1 . . .Pvl�2vl�1
; (3.1)

and we defineP(�) = 1. Equation 2.2 is satisfied trivially. We will verify equation

2.3 and invoke theorem B.1.1 to show thatP is a stationary probability distribution.

If z 2 V , then

P(�z) = P(z�) = P(z) = �z: (3.2)

Thus, X
z2V

P(z�) =
X
z2V

P(�z) =
X
z2V

�z = 1 = P(�): (3.3)

If v = v0 . . . vl�1, we haveP(vz) = P(v)Pvl�1z. ThusX
z2V

P(vz) = P(v)
X
z2V

Pvl�1z = P(v) � 1 = P(v): (3.4)

On the other hand,

P(zv) = �zPzv0Pv0v1 . . .Pvl�2vl�1
; (3.5)

so X
z2V

P(zv) =

 X
z2V

�zPzv0

!
Pv0v1 . . .Pvl�2vl�1

: (3.6)

But
P
z2V

�zPzv0 is the v0 coordinate of�P and�P = �, so

X
z2V

�zPzv0 = �v0 (3.7)

and X
z2V

P(zv) = P(v): (3.8)
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Thus the Markov Chain(V; P; �) defines a process
�
V Z;V;P

�
.

We conclude this section with at definition which we will need in section 3.2.

Definition 3.1.2. If (V; P; �) is a Markov Chain andC � V , we say thatC is a

recurrent componentof the Markov Chain if:

(i) For all u; v 2 C, there exists an integerk > 0 such thatP k
uv > 0, and

(ii) For all u 2 C, for all v 2 V r C, and for all integersk > 0, we haveP k
uv = 0.

Here,P k means thekth power of the matrixP .

Definition 3.1.3. A finite Markov Chain isreducible if it has more than one recurrent

component.

If a Markov Chain is reducible, it is often appropriate to think of it as two or more

separate Markov Chains. A Markov Chain which has exactly one recurrent component

is said to beirreducible.

3.2 Hidden Markov Models

In this section, we will give a definition of a Hidden Markov Model (HMM), and

we will show how an HMM specifies a process.

A Hidden Markov Model is a Markov Chain with an associated output mechanism

which takes either states or transitions between states to either symbols or distributions

on symbols. We will refer to the Markov Chain as theunderlying Markov Chainof

the HMM. We will calculate exclusively with finite presentations — those in which the

Markov Chain has finitely many states. However, we will, at times, consider infinite

presentations.

Hidden Markov Models appear in the literature in several forms, the most frequent

being Functions of a Markov Chain[1] and State-output Hidden Markov Models[16].

These forms are equivalent in the sense that for any HMM in one of these forms, there

is an HMM in each of the other forms which defines the same process. The HMMs

in this work will be Edge-output Hidden Markov Models, the elements of which are

the set of states, the set of symbols, a stationary distribution on those states, and, for

each state, a joint distribution on symbols and next states. The following definition

formalizes this idea.
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Definition 3.2.1. A Hidden Markov Model (HMM)is a quadruple
�
V;X ;

�
T k
	
; �
�
, where

V andX are finite sets of sizesn = jV j andm = jX j,
�
T k
	
=
�
T kjk = 0; . . . ;m� 1

	
is a set ofn � n matrices, and� is a probability vector with lengthn. The matrices�
T k
	

must satisfy

1. For all i such that0 � i � n � 1

X
j;k

T i
ij = 1; (3.9)

2. and for alli,j such that0 � i; j � n � 1 and0 � k � m � 1,

T k
ij � 0: (3.10)

Finally, � must satisfy

�j =
X
i;k

�iT
k
ij: (3.11)

The underlying Markov Chainof a Hidden Markov Model is a the Markov Chain�
V;
P
k

T k; �

�
:

Elements ofV , calledpresentation states, are the states of the underlying Markov

Chain. Elements ofX are calledsymbols, as in chapter 2. Unless we have rea-

son to do otherwise, we will useV = f0; 1; . . . ; n � 1g or V = fA;B; . . .g and

X = f0; 1; . . . ;m� 1g. The
�
T k
	

, called thejoint matrices, represent a set of joint

distributions on next statesj 2 V and output symbolsk 2 X in the following way. If

i; j 2 V and k 2 X and the Markov Chain is in statei, then the probability that the

next symbol emitted will bek and the next state will bej is

P(j; kji) = T k
i;j: (3.12)

The last element of the quadruple is�, which is astationary distribution. Most

definitions of HMMs found in the literature have an initial distribution instead of

a stationary distribution. The difference is that an initial distribution may be any

distribution over the states, whereas the stationary distribution is constrained to satisfy

equation 3.11. Using a stationary distribution here makes the resulting process stationary.

If the underlying Markov Chain has a single recurrent component, then� is uniquely

determined by the joint matrices. If, however, the underlying Markov Chain has more
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than one recurrent component, then� is only partially determined. Choosing a stationary

distribution is then tatamount to choosing a distribution over the components.

In addition, we will define a few auxiliary matrices. Thetransition matrixP of a

Hidden Markov Model is defined by

Pij =
X
k

T k
ij: (3.13)

The output matrixB is ann�m matrix such thatBjk gives the probability of emitting

the symbolk 2 X while in the statej 2 V . B is define by

Bki =
X
j

T k
ij: (3.14)

The conditions imposed on the joint matrices ensure thatP andB are stochastic matrices,

that is, their rows sums are all equal to1. Also, we have�P = �, and we can write

the underlying Markov Chain of the HMM as(V; P; �).

A warning to readers familiar with state-output Hidden Markov Models defined in

terms of transition and output matrices — our choice of notation may be misleading

to your intuition. The auxiliary matricesP andB are not always sufficient to recover

the joint matrices
�
T k
	

. For example, if we start with a state-output HMM, the joint

matrices can be constructed asT k
ij = PijBjk, and equations 3.13 and 3.14 will be

satisfied. That is, if we compute the right hand sides of 3.13 and 3.14, we will recover

our original transition and output matrices. But, if we start with a set of joint matrices,

compute the transition and output matrices by equations 3.13 and 3.14, and then compute

PijBjk, the result need not be the joint matrices. Doubtful readers are encouraged to

perform the calculations themselves on the two-state, two symbol process with joint

matricesT 0 =

�
0 0

1=2 0

�
andT 1 =

�
1=2 1=2

0 1=2

�
.

In general, a state-output HMM may be built from an edge-output HMM, but the

state-output HMM may need to have a greater number of states, because edge-output

HMMs have more degrees of freedom per state than state-output HMMs. Given an edge-

output HMM
�
V;X ;

�
T k
	
; �
�
, we can construct an equivalent state-output HMM with

set of statesU = V �V as follows: ifa; b; c; d 2 V , then we have(a; b); (c; d) 2 U . Let

P(a;b);(c;d) =

( P
k2X

T k
cd b = c

0 b 6= c;
(3.15)
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and let

B(a;b);k =
T k
a;b

P

l2X

T l
a;b

: (3.16)

3.3 HMMs as Processes

An HMM presentation defines a process. That is,
�
V;X ;

�
T k
	
; �
�

determines a

probability distributionP and thus a processP =
�
XZ;X;P

�
. Let us see how this

works.

First, we suppose that the presentation’s underlying Markov Chain is in the state

i 2 V . Let k be a symbol andj 2 V be a presentation state. We want to know

P(kji), the probability that the next symbol will bek, andP(jji; k), the probability that

next presentation state will bej if the next symbol isk. These are straightforward to

calculate from the presentation.

P(kji) =
X
j

P(j; kji) =
X
j

T k
ij (3.17)

P(jji; k) =
P(j; kji)

P(kji)
=

T k
ijP

l

T k
il

(3.18)

Next, instead of assuming that the current presentation state isi, that is,P(i) = 1,

we assume that it has distribution�. To calculate the analogous quantities,P(kj�) and

P(jjk; �), we start by calculatingP(j; kj�). After that, the answers are essentially the

same as above.

P(j; kj�) =
X
i

�iP(j; kji) =
�
�T k

�
j

(3.19)

P(kj�) =
X
j

P(j; kj�) =
X
j

�
�T k

�
j

(3.20)

P(jj�; k) =
P(j; kj�)

P(kj�)
=

�
�T k

�
jP

j

�
�T k

�
j

(3.21)

If we denote the column vector(1; . . . ; 1)T by ~1, we can writeP(kj�) = �T k~1.
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Now, define a mapCk, which takes distributions� on the statesV to distributions

on V , by

Ck(�) = �T k=�T k~1: (3.22)

We then haveP(jj�; k) = (Ck(�))j. We think of � as representing our state of

knowledge about the internal state of the process. TheCk should be thought of as

update maps: they take a distribution� at one time and update it to reflect the passage

of time and the latest observationk.

Having addressed single symbols, we are ready to address words. We begin with

a wordw of length two,w = w0w1. P(wj�) factors toP(w0j�) � P(w1jw0; �). The

first of these terms is a case we have just treated in 3.20. For the second, if we update

� to Cw0
(�), it reduces to the same case:P(w1jw0; �) = P(w1jCw0

(�)). We now

expand and simplify,

P(wj�) = P(w0j�) �P(w1jCw0
(�))

=
�
�Tw0~1

��
Cw0

(�)Tw1~1
�

=
�
�Tw0~1

�� �Tw0

�Tw0~1

�
�
�
Tw1~1

�

= �Tw0Tw1~1

(3.23)

By similar manipulations, we have

(Cw1
� Cw0

)(�) = Cw1

�
�Tw0

�Tw0~1

�

=

�
�Tw0=�Tw0~1

�
Tw1

�
�Tw0=�Tw0~1

�
Tw1~1

=
�Tw0Tw1

�Tw0Tw1~1

(3.24)

This extends to words of arbitrary length. Ifw is a word of lengthl, then

P(wj�) = �Tw0Tw1 . . .Twl�1~1 and the updated distribution over the presentation states

is �
Cwl�1

� . . . � Cw0
. . .
�
(�) =

�Tw0 . . .Twl�1

�Tw0 . . .Twl�1~1
(3.25)

Now, if we use the stationary distribution� in place of the arbitrary distribution�, we

have a stationary process.
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Lemma 3.3.1. There is a unique stationary processP =
�
XZ;X;P

�
such that for all

words w = w0 . . .wl�1,

P(w) = �Tw0 . . .Twl�1~1: (3.26)

Proof. We will simply verify equations 2.2 and 2.3 and invoke theorem B.1.1. First,

P(�) = �~1 =
P
i

�i = 1. This takes care of 2.2. Second, forz 2 X ,

P(wz) = �Tw0 . . .Twl�1T z~1: (3.27)

Thus, X
z2X

P(wz) = �Tw0 . . .Twl�1

 X
z2X

T z

!
~1: (3.28)

But the rows of
P
z

T z sum to one, so

�
P

z

T
z

�
~1 = ~1. Hence,

X
z2X

P(wz) = �Tw0
. . .Twl�1~1 = P(w): (3.29)

Similarly, X
z2X

P(zw) = �

 X
z2X

T z

!
Tw0

. . .Twl�1~1: (3.30)

But �

�P
z

T z

�
= �, so

X
z2X

P(zw) = �Tw0
. . .Twl�1~1 = P(w): (3.31)

Thus the hypotheses of theorem B.1.1 are satisfied.�

Definition 3.3.2. The process defined by an HMM presentation
�
V;X ;

�
T k
	
; �
�

is the

processP =

�
X
Z;X;P

�
which assigns the probabilityP(w) = P(wj�) for any word

w of symbols inX .

Over the course of this dissertation, we will be doing many calculations containing

expressions of the formTw0 . . .Twl�1 . In order to shorten these expressions, we

will define the matrixTw for any word w. If w = w0 . . .wl�1, then we define

Tw = Tw0 . . .Twl�1. For the empty word�, we defineT� = I. Thus, for any pair

of words,w andz, we haveTwz = TwT z. In this notation, the probability of a word

w is P(w) = �Tw~1.
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As we have seen, matrix presentations are convenient for calculation. Intuitive

interpretation, on the other hand, is often easier with some other forms of presentation.

For this reason, we will introduce a new form of presentation, which we will call a

labeled directed graph. Examples of labeled directed graph presentations may be found

in section 3.5. It is worth noting that, while labeled directed graph presentations are

often quite clear, they become less intelligible as the number of edges per state increases.

For example, compare figures 3.3 and 3.6 on pages 44 and 46.

We have already seen process state graph presentations in sections 2.5 and 2.6;

the presentations we define here are related, but distinct. Here the nodes of a labeled

directed graph represent presentation states, and not process states as was the case before.

Process state graphs are deterministic — that is, they cannot have two or more edges

leaving the same state labeled with the same symbol. Labeled directed graphs do not

have this restriction.

A labeled directed graph is a directed graph in which the nodes represent presentation

states and the edges represent possible transitions. Each edge is labeled with a symbol

and a probability. An edge from statei to statej which is labeled withkjp corresponds

to an entry in a joint matrix:Tk

ij = p. That is,k is a symbol andp is a probability, and

whenever the labeled directed graph is in statei, it has probabilityp of following this

edge, and if it does so it will output ak and go to statej. We can translate an HMM

into a labeled directed graph by drawing a node for each state of the HMM and an edge

for each nonzeroT k
ij. Similarly, we can usually translate a labeled directed graph into

an HMM. We letV be the set of nodes in the graph andX be the set of all symbols

which are appear on the edges of the graph. For eachi; j 2 V and k 2 X , if there

is an edge from statei to statej which is labeled withkjp for somep, then we set

T k
ij = p, and otherwise we setT k

ij = 0. The one piece of an HMM which is not present

in a labeled directed graph is the stationary distribution�. If there is only one possible

stationary distribution for the set of joint matrices, then the labeled directed graph is a

complete presentation, and it defines a process. If there is more than one — that is,

if the underlying Markov Chain has several recurrent components or is periodic[13] —

then the labeled directed graph does not specify a process.

A given process may have many presentations, and determining whether or not

two presentations describe the same process is nontrivial [7,2]. For example, the



34

V = f0;1; 2g; X = f0; 1g; �A = ( 1
4
; 1
4
; 1
2
)

T 0 =

0
@0 1

2

1

2

0 0 0

0 0 0

1
A; T 1 =

0
@0 0 0

0 1

2

1

2

1

2
0 1

2

1
A

Fig. 3.1 Process “simple nondeterministic source,” presentation A.

W = f0; 1g; X = f0; 1g; �B = ( 1
4
; 1

4
; 1

2
)

U0 =

�
0 0
1

2
0

�
; U1 =

�
1

2

1

2

0 1

2

�

Fig. 3.2 Process “simple nondeterministic source,” presentation B.

presentations in figures 3.1 and 3.2 define the same process. To show that presentations

A and B are equivalent, it is sufficient to show that, for every finite wordw, �ATw~1 =

�BU
w~1. In this case, it can be done by induction. However such proofs are at best

computationally messy and are not very illuminating. In section 4.3, we will develop

a systematic approach to equivalence of presentations. We will prove that A and B are

equivalent there.

Not all processes can be presented as finite HMMs. For example, consider the

modified nested parentheses process[18], a process with the alphabet of( , ), and!.

(The termmodified refers to the presence of the! symbol.) One way to represent

this process is as a single presentation state and a counter which holds a nonnegative

integer. If the counter is set to zero, then with probability1

3
, the machine outputs a(

and sets the counter to one, and with probability2

3
it outputs a! and leaves the counter

at zero. If the counter is not set to zero, then with probability2

3
the machine outputs a

) and decrements the counter and with probability1

3
it outputs a( and increments the

counter. If the initial value of the counter is drawn from the appropriate distribution,

this description defines a (stationary) process. This process always outputs balanced

strings of parentheses between any consecutive pair of! symbols, and there is no upper

bound to the number of levels of nesting. We will prove in section 3.6 that there is no

HMM presentation for this process.

Simply stated, in this section we have shown how to get a process from an HMM.
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But consider the inverse problem — suppose we have a process, and we want an HMM

presentation for it. Because a process can have more than one HMM presentation,

we cannot expect a unique answer. And, as the modified nested parentheses process

illustrates, we cannot always expect any answer at all. This is a form of the problem

of HMM reconstruction, and nothing we have seen here so far suggests a way of

approaching it.

Finally, we can define the class of processes which are the subject of this dissertation,

stochastic finite automata. Astochastic finite automaton(SFA) is a process which has a

finite HMM presentation. In section 3.6, we will give a necessary condition for a process

to be an SFA. Notably, this condition will, among other things, suggest an approach to

HMM reconstruction.

3.4 Mixed States

In section 2.5, we defined process states in rather abstract terms, and in section 3.2

we described HMMs in more concrete terms. In this section, we will bring these threads

together and discuss the process states of processes defined by HMM presentations.

Recall that a process state is a conditional future distribution which arises when we

condition on a history or a history suffix. Suppose we have a processP =
�
XZ;X;P

�

defined by an HMM presentation
�
V;X ;

�
T k

	
; �
�
. What are the process states for this

process?

There are some presentations for which the process states coincide with the presen-

tation states. Such presentations are necessarilydeterministic. This means that, for any

given presentation statei 2 V and symbolk 2 X there is at most one presentation state

j 2 V such that the transition fromi to j with symbol k is possible,T k

ij 6= 0. If a

process has a finite deterministic presentation then it is called aStochastic Deterministic

Finite Automaton(SDFA). In this case, the presentation states and process states are

similar though they may not coincide. SDFAs are an important class of processes; see

[19]. However, typical HMMs are not deterministic and the processes they represent

are not SDFAs. It is this case which this section addresses.
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We will begin with reachable states, those which result from conditioning on a finite

history suffix. Supposes is a history suffix andw is a next word. We have

P(wjs) =
P(sw)

P(s)
=

�T sTw~1

�T s~1
: (3.34)

(If P(s) = 0, thenP(wjs) is not well defined. We will ignore suchs throughout this

section.) Since the conditional distributionP(�js) is the object we are interested in and

w is the argument it takes, we will rewrite this as

P(wjs) = P(�js)(w) =
�T s

�T s~1
Tw~1 (3.35)

Here,P(�js) shows up as�T s=�T s~1, which is a distribution on the presentation states.

In fact, distributions over the presentation states are close to being process states.

If � is such a distribution, thenP(�j�) is the conditional future distribution given the

measure�, defined byP(wj�) = �Tw~1. We will show below that all process states

can be represented in this way. If two different history suffixes,s and s, define the

same distribution over presentation states —�T s=�T s~1 = �T s=�T s~1 — then clearly

P(�js) = P(�js), so s and s lead to the same process state.

Before we proceed, we will introduce a notational convenience. When we have

a row vector�, we often need tonormalizeit, that is, scale it so that the sum of its

components is1. We have been writing the normalization of� as �

�~1
. We now define

N , the normalizing function, which takes row vectors to row vectors, by

N(�) =
�

�~1
: (3.36)

With this, we can writeN(�Tw) instead of�Tw=�Tw~1.

Definition 3.4.1. A mixed stateof a presentation is a distribution over the presentation

states.

(The namemixed statecomes from thinking of mixed states as “mixtures” of

presentation states. This is similar to the use of “mixed state” in quantum mechanics. It

should be noted that Fraser and Dimitriadis have use the term “mixed state” in connection

with HMMs to mean something entirely different [12].)

Mixed states are related to process states, but they are not quite the same. First, there

can be mixed states which do not represent any process states. For example, consider
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the process presented by the HMM

V = f0;1g;X = f0; 1g; � = ( 1
2
; 1

2
)

T 0 =

�
0 1

0 0

�
; T 1 =

�
0 0

1 0

�
:

(3.37)

This process has only three process states. (If we have seen any history or history suffix

of length 1 or more, then we know the entire past and the entire future almost surely

— it is either . . . 0:10101 . . . or . . . 1:01010 . . .. If not, we are conditioning on�, and

we get the futures10101 . . . and01010 . . . with probability 1

2
each.) The mixed states

corresponding to these process states are(0; 1), (1; 0), and ( 1
2
; 1

2
). The other mixed

states do not define process states.

Second, it can happen that two or more different mixed states correspond to a single

process state. This can only happen if the presentation in question is not minimal, that is,

if it has some redundancy in its states. For example, the process presented by the HMM

V = f0; 1g;X = f0; 1g; � = ( 1
2
; 1

2
)

T 0 =

�
1

2
0

1

2
0

�
; T 1 =

�
0 1

2

0 1

2

�
(3.38)

is an elaborate presentation of a fair coin, which has only one process state. The mixed

states(1; 0) and(0; 1), which arise asN
�
�T 0

�
andN

�
�T 1

�
respectively, represent the

same process state.

Definition 3.4.2. Fix a process and an HMM presentation for it. LetA be a process

state and� a mixed state. If for all next wordsw we haveA(w) = �Tw~1, then we say

that � is a mixed state versionof the process stateA.

Theorem 3.4.3. Suppose we have a process and an HMM presentation for it. Then

every process state, except possibly those in a null set, has a mixed state version.

For a reachable process stateA, we have essentially already shown this. Ifs is a

history suffix withP(s) > 0 which inducesA, N(�Ts) is a mixed state version ofA.

However, for unreachable states, there is no such simple solution. Most of the rest of

this section addresses this issue. The proof of this theorem appears on page 41.

To treat this case, we need to work in a probability space which contains both pre-

sentation states and symbols. Begin with our HMM
�
V;X ;

�
T k
	
; �
�
, and its underlying

Markov Chain(V; P; �). These define the observation processP =
�
XZ;X;P

�
and the
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internal process
�
V Z;V;P

�
, respectively. We will define thejoint processof these two

to be the processQ =

�
(V �X )

Z
;J;Q

�
as follows. The alphabet of the joint processes

is V �X and thus its sequence space is(V �X )
Z. Its �-field is the�-field generated

by the cylinder sets in(V �X )
Z. If we have a wordŵ = (v1; x1); (v2; x2); . . . ; (vl; xl),

we have

Q(ŵ) = �v1T
x1
v1v2

. . .T xl�1

vl�1vl

 X
i2V

T
xl

vli

!
: (3.39)

The pair(v; x) corresponds to our original HMM leaving statev and outputting symbol

x. ThusQ(ŵ) is the probability that the HMM traverses the sequencev1; v2; . . . ; vl

of presentation states and, as it does this, emits the wordx1; x2; . . . ; xl. Specifically,

this is the probability that the HMM starts in presentation statev1, emits x1 while

making a transition tov2, and then emitsx2 while going to v3, and so forth. This

ends when the HMM emitsxl�1 during the transition fromvl�1 to vl and then emits

xl during a transition to any state. This free choice of thel + 1th state leads to the

sum at the end of equation 3.39. The new processQ has the HMM presentation�
V; V �X ;

�
Uk
jk 2 V �X

	
; �
�
, where ifv 2 V andx 2 X , thenU (v;x) is defined by

U
(v;x)

ij =

�
T x
ij v = i

0 v 6= i
(3.40)

and we can rewrite 3.39 as

Q(ŵ) = �U (v1;x1) . . .U (vl;xl)~1 (3.41)

Let M : V � X ! X be the projection mapM(v; x) = x, and let MZ :

(V �X )Z ! X
Z be the projection map on sequence spaces which appliesM at each

time index: MZ(. . . zizi+1 . . .) = (. . .M(zi)M(zi+1) . . .). Thus for any subsequence

s = sasa+1 . . . sb, si 2 X when we applyM�1 to the cylinder setAs we get the set of

all sequences in(V �X )Z whosex part matchess,

M�1(As) =
n
z 2 (V �X )ZjM(zi) = si for all i 2 a; a+ 1; . . . b

o
: (3.42)

It should be clear thatM is a measurable function, and that ifA 2 X, we have

P(A) = Q
�
M�1(A)

�
.

In some sense, defining joint processes is a more natural way of approaching HMMs,

than the path we have taken of defining (symbol) processes first and then introducing
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HMMs as ways of representing processes. However, the joint process approach leads

one’s intuition in a direction other than the one in which this work is going. In particular,

the joint process approach does not suggest section 3.6, and in fact could lead one to

reject it. This is because introducing HMMs and joint processes first puts presentation

states in a more fundamental role than process states. In contrast, the insight which led

to section 3.6 resulted in part from observing that process states were actually the more

fundamental objects. We will use the joint process only in part of this section.

In section 2.5 we definedR to be the set of wordsw 2 X � such thatP (w) 6= 0: We

also defined the set of bad historiesN to be the set of all histories, and we showed that

N is a null set. A historyx� is in N if lim
l!1

P(sjwl) does not exist for somes 2 X �,

wherewl is the lengthl suffix of N . In particular, ifx� is not inN , we know that

every suffixwl of x� lies in R.

Definition 3.4.4. If s is either a history suffix inR or a good history, the mixed state�(s)

is defined to be that mixed state whoseith coordinate satisfies(�(s))i = Q(v0 = ijs)

for all i 2 V . We call �(s) the mixed stateinducedby s.

How can we compute induced mixed states? Ifw is a history suffix inR, we

can calculate directly, using equation 3.41 and definition 3.4.4. The answer is far

less cumbersome than the calculations needed to produce it, and brings us back to the

material of pages 36–36.

Q(v0 = ijw) =
Q(i; w)

Q(w)
=
Q(v0 = i; x�l . . .x�1 = w�l . . .w�1)

Q(x�l . . .x�1 = w�l . . .w�1)
(3.43)

Q(v0 = ijw) =

P

v
�l...v�12V

�
�U (v

�l;w�l) . . .U (v
�1;w�1)

P
x2X

U (i;x)~1

�
P

v
�l...v�12V

�
�U (v

�l;w�l) . . .U (v
�2;w�1)~1

� (3.44)

Q(v0 = ijw) =

�

 P
v
�l2V

U (v
�l;w�l)

!
. . .

 P
v
�12V

U
(v
�1;w�1)

! P
x2X

U
(i;x)~1

�

 P
v
�l2V

U (v
�l;w�l)

!
. . .

 P
v
�12V

U (v
�1;w�1)

!
~1

(3.45)



40

Note that
P

v2V

U (v;x) = T x and that

� P
x2X

U (i;x)~1

�
j

=
P

v2V;x2X

U
(i;x)
j;v = �ij, which

means that
P
x2X

U (i;x)~1 = ei, the ith standard basis vector. Thus we can write

Q(ijw) =
�Tw

�l . . .Tw
�1ei

�Tw
�l . . .Tw

�1~1

=
�Twei

�Tw~1
= N(�Tw)ei:

(3.46)

Thus, the induced mixed state�(w) is simply given by�(w) = N(�Tw).

Before we address the mixed state�
�
x�
�

induced by a historyx�, we need the

following theorem, due to technical difficulties of conditioning on sets of measure zero.

Corollary B.2.4. If fFng is an increasing sequence of�-fields andA is an event, then

P(AjFn)! P(AjF) almost surely, whereF is the smallest�-field which contains all

of the Fns.

Proposition 3.4.5. For any historyx�, let sl denote the lengthl history suffix

x�l . . .x�1. For almost everyx�, �(sl) ! �
�
x�
�

as l ! 1.

Proof. For each positive integerl, let Fl � J be the�-field generated on(V �X )
Z

by history suffixesw 2 X � of length l, and letF
1

be the�-field generated by the

union of theFls. ThusF
1

is the set of inverse images underM of sets in the history

�-field H of the processP. Also, letAi � (V �X )
Z be the set on whichv0 = i. Now,

applying theorem B.2.4, we get

Q(AijFl)! Q(AijF1) (3.47)

almost surely asl ! 1. For a given historyx� 62 N , and for each positive integerl,

let sl denote the lengthl history suffixx
�l . . .x�1. Now,

Q(AijFl)
�
x�

�
= Q(Aijsl) = (�(sl))i (3.48)

since we know thatsl 2 R. Similarly,

Q(AijF1)
�
x�

�
= Q

�
Aijx

�

�
=

�
�
�
x�

��
i
; (3.49)

so equation 3.47 becomes�(sl) ! �
�
x�

�
almost surely asl ! 1, for almost every

x� 62 N , or simply for almost everyx�.�
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The next result establishes that�(s) contains all the information about the past which

is contained ins and which is relevant to the future.

Proposition 3.4.6 Let w be any word inX �. If s is a history suffix inR, then

P(wjs) = �(s)Tw~1. And if x� is a good history, thenP(wjs) = �
�
x
�

�
Tw~1 almost

surely.

Proof. If s is a history suffix, we know that

P(wjs) =
�Ts

�T s~1
Tw~1 = N(�T s)Tw~1: (3.50)

Since�(s) = N(�T s), we haveP(wjs) = �(s)Tw~1.

For a good historyx�, let s
l
= x

�l
. . .x�1 for eachl, and letF

l
� X be the�-field

generated by the history suffixes of lengthl. In addition, letAw � XZ be the cylinder set

of sequences which containw. Now, if we apply theorem B.2.4, we getP(AwjFl) !

P(AwjF1) almost surely asl !1, or equivalentlyP(wjs
l
) ! P

�
wjx�

�
.

On the other hand, we know that�(s
l
)! �

�
x
�

�
almost surely. The function� ! �Tw~1

is continuous, so�(s
l
)Tw~1! �

�
x
�

�
Tw~1 almost surely. And sinceP(wjs

l
) = �(s

l
)Tw~1

almost surely, we know thatP(wjsl) converges almost surely to bothP
�
wjx�

�
and to

�
�
x
�

�
Tw~1, so it must be true that�

�
x
�

�
Tw~1 = P

�
wjx�

�
almost surely.�

Proposition 3.4.6 directly implies that the past and the future are conditionally

independent given the mixed state induced by the past. At last, we can return to mixed

state versions of process states and prove theorem 3.4.3.

Proof of theorem 3.4.3Let A be a process state forP =
�
X ;XZ;P

�
. Then there

is either a history or a history suffix which inducesA. Let s be any such history or

history suffix. For all next wordsw, A(w) is defined to beP(wjs) almost surely, and

we know thatP(wjs) = �(s)Tw~1, soA(w) = �(s)Tw~1. Thus �(s) is a mixed state

version ofA. �

Finally, with the remainder of this section, we will define a new presentation, called

the mixed state representation(MSR). If we start with a presentation(V;X ;fT xg; �),

let V be the set of all mixed states�(s) which are induced by a historys 2 R or

a history suffixx� 62 N . Elements ofV are presentation states of the mixed state

representation. That is, presentation statesV of the MSR are mixed states of the
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presentation(V;X ; fTxg; �). The mixed state representation is another presentation

of the process defined by(V;X ; fT xg; �). Notably, it may have infinitely many states.

It is with this representation in mind that we use the wordstatein the termmixed state.

Suppose what we know of the history of our processP is that the most recent output

word was the history suffixw. Then the next symbol will bex 2 X with probability

P(xjw) = �(w)T x~1, and if x is the next symbol, then the known history word becomes

wx. Now, we will look at this transition in terms of the mixed states. Since we know

that the history suffix isw, we are in mixed state�(w). From�(w), the next symbol is

x with probabilityP(xj�(w)) = �(w)T x~1, and if x is chosen as the next symbol, then

a transition is made to the MSR state�(wx).

In order to use mixed states as states, we need to be able to compute�(wx) from

�(w) without usingw. Fortunately, this is not difficult to do.

�(wx) = N(�TwT x)

=
�TwT x

�TwT x~1

=
�TwT x=�Tw~1

�TwT x1=�Tw~1
:

(3.51)

Thus we have

�(wx) =
�(w)T x

�(w)T x~1
= N(�(w)T x) = Cx(�(w)): (3.52)

Note thatw does not appear except in�(w) and �(wx).

Now we can define the mixed state representation. As we have stated, its presentation

states are elements ofV , mixed states which are induced by histories or history suffixes.

We write them as row vectors� =
�
�1; . . . ; �jV j

�
. Its symbol set, clearly, will beX .

BecauseV may be infinite or even uncountable, we cannot define transition matrices,

but we can give equivalent information. Given a state� 2 V and a symbolx 2 X ,

if the current state is�,

(i) the probability thatx is emitted isP(xj�) = �T x~1, and

(ii) if x is emitted, the next state isCx(�) = N(�T x).

We will not address here the issue of whether or not a stationary distribution onV

exists. To use the mixed state presentation to compute the probability of a wordw,
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assume presentation starts in state� = �(�) 2 V and compute

lY
i=1

�i�1T
wi~1 (3.53)

where l = jwj, �0 = � and �i = Cwi
(�i�1) = N(�i�1T

wi) for i � 1. It can

easily be verified that the result of this calculation is equal to the probabilityP(w) =

�Tw1Tw2 . . .Twl~1 assigned by
�
V;X ;

�
T k
	
; �
�
. The product in equation 3.53 is simply

the product of the quantities which the normalizing functionN divides out of the�i.

Note that the mixed state representation is deterministic. That is, for any MSR

state� 2 V and any symbolx 2 X , there is a unique MSR stateCx(�) to which

a transition involving the emission ofx is possible. Further, the MSR states are in

one-to-one correspondence with the process states, except perhaps for a set of each of

measure zero.

In this section, we defined mixed states and showed that they are intimately related

to the process states. In fact, the significance of mixed states is that they give us a way

of representing the process states.

3.5 Examples

At this point we will digress from the formal development and present several

examples in detail. These examples are chosen in part to illustrate the variety of

behaviors which are seen in SFAs. The calculations to support the conclusions are

not presented here; the reader is encouraged to perform them.

The Golden Mean Process The first example is theGolden Mean Process(GMP)

which we have already seen in section 2.6. This presentation is deterministic, and the

recurrent process states and the presentation states coincide, so GMP is a stochastic

deterministic finite automaton.

GMP has two symbols, and its smallest HMM presentation has two states. Its most

prominent feature is that its output sequences never contain pairs of consecutive0s. The

reader should be able to verify that� = ( 2
3
; 1

3
) from the transition matricesT 0 andT 1.

V = fB;Cg; X = f0; 1g; � = ( 2
3
; 1

3
)

T 0 =

�
0 1

2

0 0

�
; T 1 =

�
1

2
0

1 0

�
(3.54)
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B C

0|1/2

1|1

1|1/2

A
1|2/3 0|1/3

(b)

B C

0|1/2

1|1

1|1/2

(a)

Fig. 3.3 (a) Labeled directed graph presentation of GMP. (b) Process state graph presentation of

the process GMP. In this case, the recurrent process states coincide with the presentation states.

This process has three process states. Ifw is a history or history suffix which ends

in 1, it induces process stateB. The mixed state it induces isN (�Tw) = (1; 0). If w is

a history or history suffix which ends in0, it induces process stateC and mixed state

(0; 1). This covers all histories and all history suffixes except�, which induces process

stateA, which is transient, and mixed state� = ( 2
3
; 1

3
). The probabilities associated

with the start state areP(1j�) = �T 1~1 = 2

3
andP(0j�) = �T 0~1 = 1

3
. Similarly, the

states to which these transitions are made are identified by comparing mixed states;

C1(�) = (1; 0) andC0(�) = (0; 1). These are the mixed states associated to statesB

andC, respectively.

The Simple Nondeterministic Source Our next example is theSimple Nonde-

terministic Source (SNS), which we saw in section 3.2. This process can be represented

with only two presentation states, but as we will see shortly, it has infinitely many

process states. A two-state HMM presentation is

V = fA;Bg; X = f0; 1g; � = ( 1
2
; 1

2
);

T 0 =

�
0 0
1

2
0

�
; T 1 =

�
1

2

1

2

0 1

2

�
:

(3.55)

A B1|1/2 1|1/2

0|1/2

1|1/2

Fig. 3.4 Labeled directed graph presentation for SNS.
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Let wn = 01n, the word consisting of a0 followed by n 1s, and letAn be the

process state induced bywn. The matrix corresponding town is

Twn = T 0
�
T 1
�
n

=

�
0 0

2�n�1 n2�n�1

�
; (3.56)

so the mixed state�(wn) corresponding toAn is

N(�Twn) = N
�
2�n�1; n2�n�1

�
=

�
1

n+ 1
;

n

n+ 1

�
: (3.57)

The first few of these states are listed in table 3.1. TheAn are all distinct states, since

their mixed state versions are all distinct. In fact, theAn comprise all but one of the

process states. Also, the word0 is a synchronizing word, sinceP(�j0) = P(�jw0) for

all wordsw such thatP(w0) > 0. We can verify this by calculatingC0(�) = (1; 0)

andC0(�) = (1; 0) for all �. Thus all of thewns are synchronizing words, and all of

the An are reachable recurrent states.

SNS is also an example of a process in which reachable recurrent states are induced

by words which are not synchronizing. This precludes the possibility of a converse to

proposition 2.6.2, which said that synchronizing words induce reachable recurrent states.

The word11 induces the process stateA3, a reachable recurrent state, also induced by

w3 = 0111. However,11 is not a synchronizing word, becauseP(�j011) andP(�j111)

are not equal toA3.

History or history
suffix s

Mixed state�(s) Process state P(symbol0jw)

. . . 0 (1; 0) A0 0

. . . 01 ( 1
2
; 1
2
) A1

1

4

. . . 011 ( 1
3
; 2
3
) A2

1

3

. . . 0111 ( 1
4
; 3
4
) A3

3

8

. . . 01111 ( 1
5
; 4
5
) A4

2

5

. . . 01n
�

1

n+1
; n

n+1

�
An

1

2

n

n+1

infinitely many1s (0; 1) A1
1

2

Table 3.1 The first few mixed and process states of the “simple nondeterministic source”.
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1|1

0|1/4

1|3/4

0|1/3

1|2/3

0|3/8

1|5/8

0|2/5

1|3/5
....

0|1/2

1|1/2

1

Fig. 3.5 An abbreviated version of the deterministic labeled directed graph presentation for

the process “simple nondeterministic source,” which has infinitely many process states.

The Cantor process Our third example is theCantor process, which has the

following HMM presentation:

V = fA;Bg; X = f0; 1g; � = ( 1
2
; 1

2
);

T 0 =

�
0:55 0

0:30 0:15

�
; T 1 =

�
0:15 0:30

0 0:55

�
:

(3.58)

A B

0|0.55

1|0.15

1|0.55

0|0.15

1|0.3

0|0.3

Fig. 3.6 Labeled directed graph presentation for the Cantor process.

Recall that a process state is an equivalence class of histories and history suffixes.

For the Cantor process, all of these equivalence classes are trivial: every history and

every history suffix induces a future conditional distribution which is different from that

generated by every other history and every other history suffix. (Of course, pairs of

future conditional distributions exist arbitrarily close to one another.) The result is that

the Cantor process has uncountably many elusive process states, one induced by each

history. Also, it has countably many strictly transient states, which are in one-to-one

correspondence with the history suffixes. Thus, this is an example of a process with

no synchronizing words.
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Note that

N
�
(x; 1� x)T 1

�
=

�
3x

11� 2x
;
11 � 5x

11 � 2x

�
�
�x
3
; 1 �

x

3

�
; and

N
�
(1� y; y)T 0

�
=

�
11 � 5y

11 � 2y
;

3y

11 � 2y

�
�
�
1�

y

3
;
y

3

�
:

(3.59)

These approximations are exact at(0; 1) and (1; 0), and are within 1

54
in between.

Thus, if � is the mixed state induced by a historys, appending a symbol tos

corresponds approximately to moving� two-thirds of the distance to either(0; 1) or

(1; 0), respectively. The mixed states induced by histories form a set similar to the

middle-thirds Cantor set, hence the process’s name. This may be seen in figure 3.7,

which is a plot of the Cantor process’s mixed states, all of which lie on the line segment

with endpoints(0; 1) and (1; 0). The mixed states induced by history suffixes lie in

the middle of the intervals which are deleted to form the approximate Cantor set. (It

is possible to construct an HMM for which the mixed states induced by histories are

exactly the middle-thirds Cantor set, but it is degenerate — it is equivalent to a fair coin.)

(0,1) (1,0)

Fig. 3.7 The mixed states for the process Cantor. Dots are mixed states corresponding to elusive process states.

The small vertical lines are the mixed states corresponding to the subset of transient process states.

The Two Biased Coins process The last example we will look at here is the

Two Biased Coins (2BC)process. The process can be simulated with a pair of biased

coins. One of the biased coins is chosen by a flip of a fair coin. The chosen biased

coin is then flipped to produce a bi-infinite sequence. Like the above examples, it has

the following two-state presentation:

V = fA;Bg; X = f0; 1g; � = ( 1
2
; 1

2
);

T 0 =

�
3

4
0

0 1

4

�
; T 1 =

�
1

4
0

0 3

4

�
:

(3.60)

2BC is a reducible process, as it consists essentially of two processes with no interaction

between them; see figure 3.8.

Calculation of 2BC’s mixed states is equivalent to using Bayesian methods to infer

which of the two biased coins is being flipped. The stationary distribution� is the prior
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distribution, and�(w) is simply the posterior distribution over the presentation states

given the wordw. The procedure we use for calculating�(wx) from �(w) can be

viewed as a procedure to dynamically update the posteriors. Ifw is a word of length

i+ j consisting ofi 0s andj 1s in any order, thenTw =

�
3
i

4i+j 0

0 3
j

4i+j

�
; and resulting

mixed state�(w) = N(�Tw) is 1

3i+3j

�
3i; 3j

�
= 1

3i�j+1

�
3i�j; 1

�
. So the mixed state —

and the process state — induced by a word depends only on the difference between the

number of0s and the number of1s in the word. Thus, there are countably infinitely

many reachable process states, one for each integer. Some of these process state are

portrayed in figure 3.8a.

With finite data, we are never sure which presentation state the process is in, so all

reachable process states are transient. Asymptotically, as the length of the word goes

to infinity, we can be sure with probability1 which of the presentations states we are

in. Thus, the mixed state versions of the recurrent process states are(1; 0) and (0; 1),

Hence there are exactly two recurrent process states, both of which are unreachable and

which correspond exactly to the presentation states.

There are also uncountably many histories in which the difference between the

number of zeros and the number of ones is bounded, for example. . . 010101. These

histories induce elusive states, the total probability of which is0.

0 +1-1 +2-2

0|1/21|1/2 0|5/8

1|3/80|3/8

1|5/8

1|3/100|3/10

......

(a)

A0|3/4 1|1/4 B 1|3/40|1/4

(b)

Fig. 3.8 (a) A subset of the transient process states for 2BC. The state induced by a word is determined solely by

the number of0s minus the number of1s in the word. All of the transient states are infinitely preceded.

(b) The recurrent states of 2BC. BothA andB are unreachable recurrent states. Each connected

component of the graph corresponds to a recurrent component of the underlying Markov Chain.
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3.6 When Does a Process have an HMM Presentation?

In this section we propose a characterization of when a process is an SFA —

that is, when a process has a (finite) HMM presentation — and we show that it is

a necessary condition. This characterization is a keystone of this dissertation. It leads

almost directly to the reconstruction algorithm of chapter 5. And it follows from the

following observation.

If we have a process with an HMM presentation
�
V;X ;

�
T k

	
; �
�
, then a mixed state

for that presentation is a distribution onV , or equivalently, a vector ofjV j components.

This means that all the mixed states lie in thejV j-dimensional vector spaceRjV j. This

in turn means that the dimension of the span of the mixed states is less than or equal

to jV j <1. As process states are essentially equivalent to mixed states, we can make

a similar statement about the process states.

First, we need to be able to work with process states as elements of a vector space.

Let W be the set of all signed measures on the future space. These include the process

states: ifA is a process state, thenA 2 W. For anyA;B 2 W and c; d 2 R, we

define cA + dB as follows. For all future wordsw, (cA+ dB)(w) is defined to be

cA(w) + dB(w), so thatW is a vector space. In addition, ifA;B are probability

measures andc; d � 0; c + d = 1, thencA + dB is a probability measure.

We now state the main result of this section.

Theorem 3.6.1Given a processP, letU be the subspace ofW spanned by the reachable

process states. If theP has an HMM presentation
�
V;X ;

�
T k

	
; �
�
, then dim(U) � jV j.

Before we can readily prove this result, we need to develop the connection between

W and RjV j.

Lemma 3.6.2 Suppose we haveA;B 2 W and �; � 2 R
jV j such that for all future

wordsw we have�Tw~1 = A(w) and�Tw~1 = B(w). Then for allc; d 2 R and for all

future wordsw, we have(c� + d�)Tw~1 = (cA+ dB)(w).

Proof. (c�+ d�)Tw~1 = c
�
�Tw~1

�
+d

�
�Tw~1

�
= cA(w)+dB(w) = (cA + dB)(w):�

For the next lemma, we need some additional notation. We will use0 to denote the

zero vector inRjV j (Note that0 is a row vector, in contrast to~1.) Also, we will use0 to
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denote the zero measure inW. Thus we have, for all future wordsw, 0Tw~1 = 0(w) = 0.

Lemma 3.6.3Suppose we have reachable process statesA1; . . . ;Al 2 W, and vectors

�1; . . . ; �l 2 R
jV j such that�i is a mixed state version ofAi for eachi 2 1; . . . ; l. If

there exist real numbersc1; . . . ; cl, not all zero, such that
lP

i=1

ci�
i = 0, then

lP

i=1

ciAi = 0.

Proof. For all future wordsw, we have 
kX

i=1

ciAi

!
(w) =

 
kX

i=1

ci�
i

!
Tw~1 (3.61)

by lemma 3.6.2. However, the right hand side of equation 3.61 is zero by assumption.

Thus the left hand side is also zero for allw, and we have

kX
i=1

ciAi = 0: � (3.62)

Proof of theorem 3.6.1Choose anyjV j + 1 reachable process statesA1; . . . ;AjV j+1,

and choose�1; . . . ; �jV j+1 2 R
jV j such that�i is a mixed state version ofAi for each

i 2 1; . . . ; k. The�i are a set ofjV j+ 1 vectors in ajV j-dimensional vector space, so

they must be dependent. That is, there must existc1; . . . ; cjV j+1 such that
jV j+1P
i=1

ci�i = 0.

Now, by lemma 3.6.3,
jV j+1P
i=1

ciAi = 0W , so theAis are linearly dependent. Thus, we

have shown that a set of linearly independent process states has size at mostjV j, so the

span of the process states is at mostjV j-dimensional.�

The following fact about SFAs follows immediately from theorem 3.6.1.

Corollary 3.6.4. Given a process, letU be the span of its process states. If it has a

(finite) HMM presentation, then dim(U) < 1.

Proof. For any finite HMM
�
V;X ;

�
T k
	
; �
�
, we havejV j <1. Thus, using theorem

3.6.1, we have dim(U) � jV j < 1.�

As an illustration of the use of corollary 3.6.4, we will now prove the following

statement, which was stated without proof at the end of section 3.3.

Proposition 3.6.5. The modified nested parentheses process does not have an HMM

presentation.
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Proof. Let wn =!(n� 1 be the lengthn word consisting of a! followed by n � 1

(s. Similarly, letsn = )
n � 1

! be the mirror image ofwn. After the wordwn, the

counter must ben � 1. Before the wordsm, the counter must bem � 1. Thus sm

cannot followwn if m 6= n:

P(smjwn) =

�
( 2
3
)
n

m = n

0 m 6= n:
(3.63)

Now let An be the process state induced bywn,

An(sm) =

�
( 2
3
)
n

m = n

0 m 6= n:
(3.64)

For every n and any for linear combination c1; . . . ; cn�1, we have

(c1A1 + . . . cn�1An�1)(sn) = 0, while An(sn) > 0. Thus,An is linearly independent

of A1; . . . ;An�1. In this way we see that we can construct arbitrarily large, linearly

independent sets of process states. Thus we have dim(spanfAiji > 0g) = 1, so this

process cannot have an HMM presentation.�

A related condition for functions of Markov chains was shown by Gilbert [20],

and variants appear in [10] and [21]. These conditions are stated in terms of a different

context of definitions and terminology, so that their exact relationship to corollary 3.6.4 is

difficult to ascertain. The author suspects that if one developed the appropriate machinery

to connect these contexts, one would find that the conditions are equivalent.

We have shown that dim(U) <1 is a necessary condition for a process to have an

HMM presentation. It is almost a sufficient condition. In order to make this precise,

however, we will need to develop a generalization of HMMs. This generalization is

the subject of the next chapter.
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4 Generalized Hidden Markov Models

At the beginning of the last chapter, we viewed a Hidden Markov Model as a Markov

chain with a stochastic output filter, and we only interpreted the presentation states as

the states of a Markov Chain. Over the course of that chapter, we used the tools of linear

algebra more and more, working with mixed states rather than directly with presentation

states. Finally, we introduced an alternative interpretation of the presentation states —

that they are basis elements for the set of mixed states, or equivalently, for the set of

process states. In this interpretation, the transformation matrices define the process by

defining linear transformations on the mixed states. As we will see, this linear algebra

interpretation is the more fundamental one.

In this chapter, we will define and use a generalization of Hidden Markov Models

in which the presentation states cannot be interpreted as states of a Markov chain, but

can only reasonably be interpreted as basis elements. The first use of Generalized

Hidden Markov appears to have been as a counter-example in [10]. Several authors

have used Generalized Hidden Markovs and similar techniques in recent years, including

connection to neural nets developed in [22 ] and the solution of the problem of HMM

equivalence in [7]. Late in this chapter, and in the next one, we will choose a linearly

independent basis for the span of the process states, and use these basis vectors as

presentation states of a new presentation we construct directly from the process.

4.1 Generalized Hidden Markov Models

When we think of a Hidden Markov Model as an object of linear algebra, it makes

sense to consider what happens when we perform a change of basis — a canonical

linear algebra operation. And so, after one convenient definition, we will work through

a change of basis for a generic HMM.

Definition 4.1.1. A unit-sum vector is a vector whose components sum to one. A

unit-sum matrix is a matrix whose row vectors are unit-sum vectors.

That is, a row vectorv is unit-sum row vector ifv~1 = 1, and a matrixA is a unit

sum matrix if

A~1 = ~
1: (4.1)
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Note that the inverse of a unit-sum matrix must also be unit-sum. If we multiply both

sides of equation 4.1 byA�1, we get

I~1 = A�1~1 (4.2)

and, clearly,I~1 = ~1. If a unit-sum vector satisfies the additional requirement that all

of its components are nonnegative, then it is astochasticvector. Similarly a matrix is

stochastic if all of its rows are stochastic vectors.

Suppose we have an HMMI =

�
V;X ;

�
T k
	
; �
�
. A mixed state� =

�
�1; . . . ; �jV j

�

for this HMM is a stochastic vector in a vector space with basis elements associated

to the statesi 2 V : if � is induced by a history objects, then �i = P(ijs). The

process state associated with� is a linear combination
P
i

�iAi of the conditional future

distributionsAi = P(�ji). If we letU be the span of all of the HMM’s reachable process

states, then
�
A1; . . . ;AjV j

	
is the basis we used forU in section 3.6.

We will now work through a change of basis. We begin by choosing a new basis�
B1; . . . ;BjV j

	
for U as follows: choose an invertible unit-sumjV j � jV j matrix M ,

and for all i let

Bi =

X
j

MijAj: (4.3)

Clearly, for alli, Bi 2 U , and becauseM is invertible,
�
B1; . . . ;BjV j

	
is a basis forU .

This change of basis calculation will be facilitated by the following somewhat

nonstandard notation. We will write the vectors of the basis in a formal column vector

as if they were scalars. That is, we define the formal column vectors~A and ~B by

~A =

0
@
A1

...
A

jV j

1
A and~B =

0
@
B1

...
B
jV j

1
A (4.4)

Thus, we may rewrite 4.3 as

~B = M~A: (4.5)

In this notation, if� 2 RjV j is a mixed state, then it is a row vector, and it describes the

process state�~A. From equation 4.5, we getM�1~B = ~A, so �M�1~B = �~A. Thus

if � = �M�1, then�~A = �~B, so � and� describe the same process state in different
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coordinate systems. HenceM�1 maps~A–coordinates to~B–coordinates. Since� is not

a mixed state for any HMM we have defined yet, we will call it a coordinate vector.

Our HMM’s stationary distribution� and its transition matrices are all given in
~A–coordinates. What do they look like in~B–coordinates?� is simply a mixed state,

so it transforms to the coordinate vector� = �M�1 as we have indicated above. If� is

a coordinate vector, then�~B 2 U , and�M defines a row vector in~A coordinates — a

mixed state. We can operate on�M with the operatorTk, and transform the result back

to ~B coordinates withM�1. The result is that the operation�! �T k in ~A coordinates

becomes� ! �MT kM�1 in ~B coordinates. That is, the similarity transformation which

transformsT k into ~B coordinates produces the matrixUk
= MT kM�1.

Now, if we define a set of formal symbolsV 0

=
�
1
0; 20; . . . ; jV j

0

	
, we can construct

a quadruple
�
V 0;X ;

�
Uk
	
; �
�
. This quadruple looks like an HMM. It may fail to be

one, however, because theUk matrices may have negative entries. Nonetheless, it

satisfies the rest of the definition of an HMM. The transition matrices
�
Uk
	

satisfy�P
k

Uk

�
~1 = ~1, since

 X
k

Uk

!
~1 =

 X
k

MT kM�1

!
~1

= M

 X
k

T k

!
M�1~1

= M

 X
k

T k

!
~1

= M~1 = ~1:

(4.6)

And � satisfies� = �
P
k

Uk since

�
X
k

Uk
= �M�1

X
k

MT kM�1

= �M�1M

 X
k

T k

!
M�1

= �

 X
k

T k

!
M�1

= �M�1
= �:

(4.7)
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Further, if we manipulate
�
V 0;X ;

�
Uk
	
; �
�

as if it were an HMM, and calculate

�Uw~1 for an arbitrary wordw = w1 . . .wl, we get

�Uw~1 = �Uw1 . . .Uwl~1

=
�
�M�1

��
MUw1M�1

�
. . .
�
MUw1M�1

�
~1

= �Tw1 . . .TwlM�1~1;

(4.8)

and sinceM�1 is unit-sum, this becomes

�Uw~1 = �Tw~1: (4.9)

Thus, for every wordw 2 X �, we getP(w) = �Uw~1. In spite of the fact that it is not

an HMM,
�
V 0;X ;

�
Uk
	
; �
�

defines a process as if it were. We will call it aGeneralized

Hidden Markov Model (GHMM), following [8].

For instance, consider the following presentation of the Golden Mean Process which

we saw in section 3.5:

V = fB;Cg; X = f0; 1g; � = ( 2
3
; 1

3
)

T 0 =

�
0 1

2

0 0

�
; T 1 =

�
1

2
0

1 0

�
(4.10)

As discussed in section 3.5, the processes states for this HMM are represented by the

mixed states
�
2

3
; 1
3

�
, (1; 0) and (0; 1). Let

M =

�
1 0

2 �1

�
; (4.11)

which is an invertible, unit-sum matrix. Note thatM�1 = M . Now, when we perform

the change of basis, we get

� = �M�1 =
�
4

3
;�1

3

�
; (4.12)

U0 = MT 0M�1 =

�
1 �1

2

2 �1

�
; and (4.13)

U1 = MT 2M�1 =

�
1

2
0

0 0

�
: (4.14)

The new coordinates for the process states, which are the images of the mixed states

under multiplication (on the right) byM�1, are
�
4

3
;�1

3

�
, (1; 0), and(2;�1).

How can we make sense of
�
V 0;X ;

�
Uk
	
; �
�
? If we try to think of10 2 V 0 as a

state in some variation on a Markov chain, it makes no sense at all — this casts
P
k

Uk
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in the role of a transition matrix, so we find ourselves looking at negative transition

probabilities. If we insist on this interpretation, then we must reject the whole idea of

GHMMs as absurd. But if we think of10 as an vector in a basis forU , there is no

substantial difficulty. A row ofUk simply gives the coordinates of the image of some

basis element under a linear mapping, and a negative coordinate is a perfectly sensible

thing. Instead of contemplating possible meanings for negative probabilities, we simply

stop interpreting the matrix entriesUk

ij as probabilities. Essentially, we attribute meaning

to the entire matrixUk — it is a linear map — but not to individual entries in this matrix.

(We will continue to use the termmixed state, although it is no longer apt.)

Definition 4.1.2. A Proto-Generalized Hidden Markov Model (Proto-GHMM)is a

quadruple
�
V;X ;

�
T k
	
; �
�
, whereV andX are finite sets, and eachT k is a jV j � jV j

matrix, and the following conditions are satisfied:

1.
P
k

T k is a unit-sum matrix*,

2. � is a unit-sum vector, and

3. � = �
P
k

T k.

We would like to have a Proto-GHMM define a process in the same way that an

HMM does, but this does not always happen, because of a complication introduced

by allowing negative entries in theT ks. Proto-GHMMs
�
V;X ;

�
T k
	
; �
�

and wordsw

exist such that�Tw~1 < 0. An example is

V =
�
0
0; 10

	
; X = f0; 1g; � =

�
1

2

;
1

2

�

T 0
=

�
�1 0

0 �1

�
; T 1

=

�
0 2

2 0

�
;

(4.15)

for which �T 0~1 = �1. Clearly, then, a Proto-GHMM may fail to define a process. The

next two definitions address this problem.

Definition 4.1.3. A Proto-GHMM
�
V;X ;

�
T k
	
; �
�

is valid if, for all words w 2 X �,

it satisfies�Tw~1 � 0.

*The reader may wonder why we require
P

k

U
k to be unit-sum, when we could discard this restriction and have greater generality.

This extra generality costs us some convenience. For example, the fact that� and
P

k

T
k are unit-sum guarantees that

P

k

P(k) = 1.

We can work around such difficulties, but there is no point — as we will see in chapter 5. Every process which could possibly be
represented with this greater generality has a GHMM presentation.
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Definition 4.1.4. A Generalized Hidden Markov Model (GHMM)is a valid Proto-

GHMM.

This definition is precisely what we need in order to have GHMMs represent

processes.

Proposition 4.1.5. Every GHMM defines a process.

Proof. We prove this by applying B.1.1, wheref(w) = �Tw~1. Thus we must verify

1. f(�) = 1, and

2. for all wordsw 2 X �,

f(w) =
X
z2X

f(zw) =
X
z2X

f(wz): (4.16)

Unlike previous applications of B.1.1, here we must also show thatf : X � ! [0; 1].

First, f(�) = �T�~1, whereT � is the identity matrix by definition and� is unit-sum.

So clearly,f(�) = 1. Next, we deal withf(wz):X
z2X

f(wz) =
X
z2X

�TwT z~1

= �Tw

 X
z2X

T z

!
~1:

(4.17)

But
P
z2X

T z is a unit-sum matrix, so this becomes

X
z2X

f(wz) = �Tw~1 = f(w): (4.18)

The other equality in equation 4.16 may be handled by a similar calculation, using

� = �
P
z2X

T z in place of the unit-sum property.

Finally, we need to show that for an arbitrary wordw 2 X �, 0 � f(w) � 1. Half of

this is given by validity. Given the properties we have just shown, a simple induction

argument establishes that for alll, X
s2X l

f(s) = 1: (4.19)

Let l = jwj, and rewrite 4.19 as

1 =
X
s2X l

f(s) = f(w) +
X

s2X l; s6=w

f(s): (4.20)
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Both terms in this sum are nonnegative, so neither can be greater than1.�

We can characterize the preceding development as follows: A Proto-GHMM is an

object which would be an HMM if it didn’t have negative entries in its matrices, and a

GHMM is a Proto-GHMM which never assigns a negative number to a word, and thus

defines a process. That is, we are allowing negative entries in transition matrices, but

only when the result works with the procedures we use for HMMs.

Testing the validity of a Proto-GHMM is nontrivial. Consider the obvious, naive

algorithm: Take the (countably infinite) list of all words inX �, and write a loop which

computes�Tw~1 for every wordw on the list. Make the loop halt if this quantity is

negative, and continue down the list if it is not. The Proto-GHMM is valid if and only

if the loop never halts. Clearly this is not a practical test. One can find improvements to

this algorithm which prune this list and thus typically reach invalid conclusions faster.

And there are some special cases in which validity can be established — for instance,

every HMM is a (valid) GHMM. Nevertheless, the essence of the test in the general

case remains the same.

We have now finished defining GHMMs, and we will present some results involving

them. The first of these is an extension of theorem 3.6.1 to GHMMs. The proof of 3.6.1

will serve as a proof of 4.1.6 without modification, so we will not give a separate proof

here. Recall thatW is the set of all signed measures on the future.

Proposition 4.1.6.Given a processP, letU be the subset ofW spanned by the reachable

process states. IfP has a GHMM presentation
�
V;X ;

�
T k

	
; �
�
, thendim(U ) � jV j.

We conclude this section by restating and expanding on the basis change manipula-

tion we performed earlier in this section. We begin with the following result.

Proposition 4.1.7. If
�
V;X ;

�
T k

	
; �
�

is a GHMM andM is an invertible unit-sum

matrix, andV 0 is any set of sizejV j, then
�
V 0;X ;

�
MT kM�1

	
; �M�1

�
is a GHMM

which defines the same process as
�
V;X ;

�
T k

	
; �
�
.

Proof. It may easily be verified that
�
V 0;X ;

�
MT kM�1

	
; �M�1

�
is a Proto-GHMM.

And by the same arguments used above for conjugation of HMMs, we know that for

any w 2 X �,

�Uw~1 = �Tw~1: (4.21)
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The right side of equation 4.21 is always nonnegative, so the left side must be also.

Therefore
�
V 0;X ;

�
MT kM�1

	
; �M�1

�
is valid, and thus it is also a GHMM.�

Definition 4.1.8. We say that two Proto-GHMMs
�
V;X ;

�
T k

	
; �
�

and
�
V 0;X ;

�
Uk

	
; �
�

are conjugateto each other by an invertible unit-sum matrixM if

1. jV j = jV 0j,

2. � = �M�1, and

3. for all k, Uk = MT kM�1.

Note that this is a linear conjugacy, which is the only kind of conjugacy we will consider.

Proposition 4.1.7 tells us, then, that if a Proto-GHMM is conjugate to a GHMM,

then it is itself a GHMM.

Definition 4.1.9. When two GHMMs define the same process, we say that they are

equivalent.

Thus the proof of proposition 4.1.7 also shows that if two GHMMs are conjugate,

then they are equivalent.

Lemma 4.1.10. If two GHMMs
�
V;X ;

�
T k

	
; �
�

and
�
V 0;X ;

�
Uk

	
; �
�
, are conjugate

by an invertible unit-sum matrixM , then for allw 2 X �,

�UwM = �Tw: (4.22)

Note that since these two HMMs are equivalent, we know that�Tw~1 = �Uw~1. So

if we divide equation 4.22 by this quantity, we get

�Uw

�Uw~1
M =

�Tw

�Tw~1
; (4.23)

which we may recognize as

N (�Uw)M = N(�Tw): (4.24)

That is,M takes mixed states to mixed states.
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Proof. We are given thatU 0
= MT 0M�1, U1

= MT 1M�1, and� = �M�1. Multiply

by M , and we haveMT 0
= U0M , MT 1

= U1M , and� = �M . Thus, for allw,

�UwM = �Uw1 . . .UwlM

= �Uw1
. . .Uwl�1MTwl

...

= �MTw1 . . .Twl

= �Tw: �

(4.25)

The converse of proposition 4.1.7 does not hold — there are pairs of GHMMs

which are equivalent but not conjugate. This is caused by redundancy — extra states in

the presentation. In fact, there are pairs of such presentations which are both HMMs.

Consider
V = f0; 1; 2g; X = f0; 1g; � =

�
1

3

;
1

3

;
1

3

�

T 0
=

0
@
0

1

2
0

0 0 0

0
1

2
0

1
A; T 1

=

0
@

1

2
0 0

0 0 1
1

2
0 0

1
A;

(4.26)

and
V 0

=
�
0
0; 10; 20

	
; X = f0; 1g; � =

�
2

9

;
1

3

;
4

9

�

U0
=

0
@
0

1

2
0

0 0 0

0
1

2
0

1
A; U1

=

0
@
0 0

1

2

0 0 1

1

2
0 0

1
A:

(4.27)

These are both presentations of the Golden Mean Process, which are redundant in

different ways. The reader may see this by noticing that states0 and 2 — and 0
0

and2
0 — have the same future conditional distributions. Thus,0 and2 — and0

0 and

2
0 —can be merged.

To show that these presentations are not conjugate, we will show that there exists

no invertible unit-sum matrixA which takes�Tw to �Uw for all w 2 X �. Lemma

w �Tw �Uw

0
�
0; 1

3
; 0
� �

0; 1
3
; 0
�

01
�
0; 0; 1

3

� �
0; 0; 1

3

�

011
�
1

6
; 0; 0

� �
1

6
; 0; 0

�

0111
�
1

12
; 0; 0

� �
0; 0; 1

12

�

Table 4.1 The actions of the HMMs given in equations 4.26 and 4.27 on selected words.
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4.1.10 tells us that each row of table 4.1 constrains the matrixA. These constraints

are incompatible; the first three rows imply thatA is the identity matrix, and the fourth

implies that it is not. Thus, no suitable matrixA exists, so these presentations are not

conjugate.

4.2 Redundancy and Linear Algebra

In the last section we saw an example in which two equivalent presentations may fail

to be conjugate to one another, because they are redundant in different ways. We will

now study redundancy, and then return in the next section to GHMM equivalence. The

methods we will develop here give us a new way of describing the essential information

in a GHMM. In this new form, we will be able to identify and factor out redundancy,

which is the key to resolving the equivalence and minimization problems.

Vector SpacesWe begin by identifying two vector spacesH andF , which we will

call the history and future spaces. Given a GHMM
�
V;X ;

�
T k
	
; �
�
, let H be the span

of the set of all mixed states:

H = spanfN(�Tw)jw 2 X �g: (4.28)

In a complementary fashion, let

F = span
n
T s~1js 2 X �

o
: (4.29)

Elements ofH are linear combinations of mixed states, which are row vectors, and

elements ofF are column vectors. Just asN(�Tw) contains all the information about

the history suffixw that is relevant to the future,T s~1 contains all the information about

the future that is relevant to the past. Implicit in this is that� and~1 play analogous

roles which is suggested by the identities�
P
k

T k = � and
P
k

T k~1 = ~1. Just as we may

use�Tw to calculate the conditional distributions on the future induced byw, we may

useT s~1 to calculate the conditional distributions on the past induced bys. Thus, we

may think of T s~1 as a backward analog of a process state, and we may think of any

f 2 F as a linear combination of these.

Let h = N(�Tw) andf = T s~1. If we take the product of these, we gethf = P(sjw).

In considering the producthf , we may think ofh as the linear functional andf as the



62

operand, or vice versa. In general, ifh 2 H andf 2 F , then we may think ofh as a

maph : F ! R defined byh(f) = hf , and we may think off as a mapf : H ! R

given byf(h) = hf . ThusH andF are almost each other’s dual spaces.

ButH andF may not be each other’s duals. If there is redundancy in the presentation

states — that is, if there are distinct mixed states which induce the same conditional

future — then it may happen thatH andF have different dimensions, and there may

be nonzeroh 2 H for which hf = 0 for all f 2 F .

Let

KF = fh 2 Hj for all f 2 F ; hf = 0g; (4.30)

and similarly,

KH = ff 2 Fj for all h 2 H; hf = 0g: (4.31)

That is, h 2 H is in KF if it is in the kernel of everyf 2 F . If h = �Tw is a

row vector induced by a wordw and h 2 KF , we usually haveh = (0; . . . ; 0) and

P(w) = 0. In an HMM, this is the only way a row vector induced by a word may fall

in KF . But differences between mixed states may lie inKF . Suppose two wordsw1

andw2 induce the same process state,P(�jw1) = P(�jw2), and leth1 = N(�Tw1) and

h2 = N(�Tw2). Then for all wordss,

h1T
s~1 = P(sjw1) = P(sjw2) = h2T

s~1: (4.32)

Because everyf 2 F is a linear combination of column vectorsT s~1, this implies

h1f = h2f for all f 2 F , or h1 � h2 2 KF . If we know that the current history suffix

is eitherw1 or w2, but we do not know which one, then our finding out which one

does not improve our ability to predict the future. And this works backward, too — if

h1 � h2 2 KF , thenw1 andw2 induce the same process state.KF contains exactly

those vectors which are irrelevant to the future of the process. For this reason we say

that KF consists of redundancy.

Similar statements are true aboutKH. If, and only if, f1; f2 2 F andhf1 = hf2

for all h 2 H, thenf1� f2 2 KH, and the distinction betweenf1 andf2 is independent

of the history of the process.

Now we can eliminate this redundancy — factor it out, so to speak — by working

with the quotient spacesH=KF andF=KH in place ofH andF . As the following
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lemma shows,H=KF is in one-to-one correspondence withU the span of the reachable

process states, so it contains no redundancy.

Lemma 4.2.1. H=KF is isomorphic toU .

Proof. Let  be the quotient map : H ! H=KF , and letM : H ! U be defined

as follows: if h 2 H, thenM(h) is the signed measure on the future space given by

M(h)(s) = hT s~1 for all s 2 X �. Now we can define our isomorphism� : H=KF ! U .

If g 2 H=KF , chooseh 2  �1(g) and define�(g) = M(h). The value of�(g) does

not depend on our choice ofh, because ifh1; h2 2  �1(g), thenh1 � h2 2 KF . This

implies thath1T s~1 = h2T
s~1 for all s, soM(h1) = M(h2).

Because andM are linear,� must be linear. To show that it is an isomorphism, we

must show that it is injective and surjective. The first of these is trivial: suppose�(g1) =

�(g2). If we chooseh1 2  �1(g1) andh2 2  �1(g2), we haveM(h1) = M(h2), which

is equivalent toh1T s~1 = h2T
s~1 for all s. Thush1 � h2 2 KF , so g1 = g2.

Next we show that� is surjective. The definition ofU implies that there must exist

wordsw1; . . . ; wn such that the process statesA1 = P(�jw1); . . . ; An = P(�jwn) form a

linearly independent basis forU . That is, there are no real numbersa1; . . . ; an, such that

(a1A1 + . . . + anAn)(s) = 0 for all s: (4.33)

For i = 1; . . . ; n, let gi =  (N(�Twi)). For all i and for all s, we have

�(gi)(s) =M(N(�Twi))(s)

= P(sjw)

= A(s);

(4.34)

so �(gi) = Ai. Thus if g1; . . . ; gn were linearly dependent,A1; . . . ;An would have to

be linearly dependent as well. Sog1; . . . ; gn are a linearly independent basis for some

subspace ofH=KF and� is a map which takes this basis to a basis forU . This means

that� is an isomorphism from this subspace ontoU . But � is injective and takes all of

H=KF to U , hence this subspace is all ofH=KF .�

An element ofH=KF is a set of row vectors, differences between which lie inKF .

Similarly an element ofF=KF is a set of column vectors which is parallel toKH. What

does a linear functional — a real valued linear function — onH=KF look like? It is
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simply a linear functional onH which is constant along directions which lie inKF .

Every f 2 F is a linear functional onH which is zero on all ofKF , so everyf 2 F

is a linear functional onH=KF . Note thatf1; f2 2 F represent the same functional

onH — and thus onH=KF — if and only if f1 and f2 differ by an element ofKH.

So all of the column vectors in anye 2 F=KH represent the same linear functional on

H=KF . So we may say thate is that functional. And ifg 2 H=KF , we havege = hf

for anyh 2  �1(g) and for anyf 2 F taken by the quotient map toe. Likewise, each

g 2 H=KF is a unique linear functional onF=KH. SoH=KF andF=KH like H and

F , consist of elements of each other’s dual spaces. But unlike elements ofH andF ,

elements ofH=KF andF=KH contain no redundancy.

Lemma 4.2.2. H=KF andF=KH are each other’s dual spaces.

Proof. We have seen that everye 2 F=KH is a unique linear functional onH=KF .

Thus, to show thatF=KH is the dual ofH=KF , we need only show thatF=KH

contains the entire dual space rather than a proper subspace. Similarly, we must show

thatH=KF contains the entire dual ofF=KH.

Let n be the dimension ofH=KF , and letn be the dimension ofF=KH. Let g1; . . . ; gn

be a linearly independent basis forH=KF and lete1; . . . ; em be a linearly independent

basis forF=KH. Finally, letA be then �m matrix with entriesAij = giej. Suppose

a linear combinationa1g1 + . . . angn is taken to zero by all ofe1; . . . ; em. It must be

taken to zero by everye 2 F=KH, and hence(a1g1 + . . . angn)f = 0 for everyf 2 F .

This is possible only ifa1g1 + . . . angn = 0, so the rows ofA are linearly independent

andA has rankn. A similar argument shows thatA has rankm, so n = m. Hence

H=KF andF=KH have the same dimension, so neither can be a proper subspace of

the other’s dual space. Each must be the dual space of the other.�

Bases We will now move on to more concrete and more readily manipulated forms of

these vector spaces. In particular, we will be working with bases for subspaces ofH and

F that are isomorphic toH=KF andF=KH, respectively. In addition, we will want to

be able to refer to our basis vectors in a way that does not depend on any basis derived

from a presentation. Thus we will choose basis vectors which are associated with words.
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Definition 4.2.3. A wordlist W of length l is a finite list (ordered set) of words

w1; . . . ; wl 2 X �.

Given a wordlistW of lengthl and a GHMM
�
V;X ;

�
T k

	
; �
�
, we define thel�jV j

matrix H as follows: theith row of H is N(�Twi). We callW the history wordlist

andH thehistory matrix. Similarly, given a wordlistS of lengthm, which we will call

the future wordlist, we define thefuture matrixF to be thejV j �m matrix whoseith

column isT si~1. Note thatH andF are functions ofW andS, respectively. We will

sometimes writeH(W ) andF (S) to avoid ambiguity. We will useH andF to denote

the span of the rows ofH and the columns ofF , respectively.

Because we wantH to contain a representation of every process state, we are

interested in wordlists which induce a sufficiently large basis.

Definition 4.2.4. A history wordlist W is sufficient for a given GHMM, or simply

sufficient if the span of the rows ofH(W ) satisfies

span
�
H [KF

	
= H: (4.35)

Similarly, a future wordlistS is sufficient if the span of the columns ofF (S) satisfies

span
�
F [KH

	
= F :

This definition means that a history wordlist, for example, is sufficient if the rows

of H, mapped intoH=KF by the quotient map , form a basis forH=KF .

It is possible for a sufficient wordlist to contain words which are not needed for

sufficiency. As we will see shortly, removing such words is desirable.

Definition 4.2.5. A history wordlist is minimal if it is sufficient and it has length

l = dim fHg� dim fKFg. Similarly, a future wordlist is minimal if it is sufficient and

it has lengthm = dim fFg � dim fKHg.

If W andS are minimal history and future wordlists, thenH andKF are compli-

mentary subspaces ofH, andF andKH are complimentary subspaces ofF .

Proposition 4.2.6. If W is a minimal history wordlist, thenH is isomorphic toH=KF .

Similarly, if S is a minimal future wordlist thenF is isomorphic toF=KH. In both

cases, the restriction of the quotient map — toH andF as appropriate — is a suitable

isomorphism.
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Proof. If W is a wordlist of lengthl, thendim
�
H
	
� l. But if W is sufficient, then

H andKF together spanH, so

dim

�
H
	
+ dim fKFg � dimfHg: (4.36)

If W is also minimal, this impliesdim
�
H
	
� l, so we havedim

�
H
	
= l and

dim

�
H
	
+ dim fKFg = dim fHg: (4.37)

Thus the rows ofH must be linearly independent. Further,H must be independent of

KF , so we can write

H = H �KF : (4.38)

ThusH is complementary toKF , and the restriction of the quotient map toH is an

isomorphism betweenH andH=KF . A similar proof holds forS, F , andF=KH.�

Proposition 4.2.7. If W andS are minimal wordlists, then

1. jW j = jSj,

2. rank(H) = rank(F ),

3. dim
�
H
�
= dim

�
F
�
, and

4. H and F are each other’s dual spaces.

Proof. H is isomorphic toH=KF , andF is isomorphic toF=KH. Lemma 4.2.2 tells

us thatH=KF andF=KH are dual to each other, and we know that these isomorphisms

preserve the products of elements. ThisH and F must be each other’s dual spaces,

which proves (4). This, in turn, implies (1), (2), and (3).�

We began this section by defining the vector spacesH andF so that elements ofH

represent conditional distributions on the future, and elements ofF represent conditional

distributions on the past. ButH andF contain subspaces of redundancy,KF andKH.

Now, if W andS are sufficient, we have vector spacesH andF , the elements of which

still encode the same set of conditional distributions, and we have basesH andF for

H and F , respectively. In addition, ifW and S are minimal,H and F contain no

redundancy andH andF are linearly independent bases.

Note that we have now shown that if our history wordlist is minimal,H is isomorphic

to U . In particular, we have a natural map from one to the other: IfA 2 U , then there



67

is a uniqueh 2 H such that for alls 2 X �, we haveA(s) = hT s~1. That is, if h is

a mixed state, it is the mixed state representation forA. (This h may be found by the

techniques used in the proof of lemma 4.2.1, which involve building a basis of process

states and a corresponding basis of mixed states induced by the same words.) ThusH

may be thought of as a version ofU consisting of tangible vectors of real numbers rather

than the more abstract signed measures on an infinite sequence space.

As the following proposition establishes, ifW andS are sufficient, then the matrices

H andF , like the vector spacesH andF , can tell us whether or not a distinction is

independent of the past or of the future. And ifW andS are minimal, thenH andF

contain no redundancy, in the sense that no row vector in the span ofH is independent

of the future, and likewise forF . We will work with minimal wordlists whenever we

can because the absence of redundancy makes it easier to determine whether or not two

processes states are distinct.

Proposition 4.2.8. If W andS are sufficient,f 2 F , andh 2 H, then

1. f 2 KH if and only if Hf =

0
@
0
...
0

1
A, and

2. h 2 KF if and only if hF = (0; . . . ; 0).

Proof. If f 2 KH andh is a row ofH, thenh 2 H, sohf = 0. If f 62 KH, then there

is someh 2 H such thathf 6= 0. Any vector inH can be written ash = cH + k, a

linear combination of the rows ofH plus somek 2 KF . Thus we have

0 6= hf = cHf + kf; (4.39)

where we know thatkf = 0. So this becomes0 6= cHf , which impliesHf 6=

0
@
0
...
0

1
A.

This proves (1), and a virtually identical argument proves (2)�

Recall that each row ofH is associated with a particular word: theith row of H is

the mixed stateN(�Twi), wherewi is theith element ofW . Similarly, thejth column

of F is T sj~1, wheresj is the jth element ofS. ThusHF is the matrix of conditional

probabilities given by

(HF )
ij
= N(�Twi)T sj~1 = P(sjjwi): (4.40)
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Also, becauseW andS have the same length,HF is square.

Corollary 4.2.9. If W andS are minimal, thenHF is a nonsingular matrix. Conversely,

if W andS are sufficient and one or both ofW andS is not minimal, thenHF is singular.

Proof. Supposev is a row vector such thatvHF = (0; . . . ; 0). Then (vH)F =

(0; . . . ; 0), sovH 2 KF . But vH 2 H, and sinceW is minimal,H\KF = f(0; . . . ; 0)g.

Thus we havevH = (0; . . . ; 0). The rows ofH are linearly independent, so we must

havev = (0; . . . ; 0). That is, if a linear combination of the rows ofHF is the zero row,

then all of the coefficients of the linear combination are zero. Hence the rows ofHF

are linearly independent. AndHF is square, so it is nonsingular.

Conversely, assume thatW is not minimal. The case in whichS is not minimal may be

treated similarly. LetW 0 be a minimal wordlist which is a subset ofW , and letH 0 be

the history matrix induced byW 0. Now we consider two cases. In the first, the rows of

H span the same space as the rows ofH 0. This means that the dimension ofH must be

less than the number rows inH. Thus the rows ofH must be linearly dependent, which

implies that the rows ofHF are linearly dependent. In the second,H is larger than the

span of the rows ofH 0. But the span of the rows ofH 0 is isomorphic toH=KF . Any

larger subspace ofH must contain nonzero vectors which lie inKF and which are sent

to zero byF . Thus the row span ofH is reduced by multiplication byF , which means

that the rows ofHF are linearly dependent.�

Wordlists In the next section, we will useH andF extensively, as they will be our

primary tools for solving the equivalence and minimization problems. In the remainder

of this section, we will discuss the construction of these matrices and the construction

of the wordlists on which they depend.

The next lemma is a minor fact which we will need in section 4.3.

Lemma 4.2.10. If S is sufficient andh 2 KF , then for anyk in the alphabetX ,

hT k 2 KF .

Proof. Our assumption thath 2 KF implies that for all wordss, hT s~1 = 0. This means

that for anyk, for all wordss, hT ks~1 = 0, simply becauseks is a word. Thus we have
�
hT k

�
T s~1 = 0 for all words s, which implies thathT k 2 KF .�
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Two facts make the construction of sufficient wordlists feasible. First,H is a vector

space spanned by the mixed states, which are vectors of lengthjV j, so a basis forH

— or any subspace ofH — need not have more thanjV j elements. Similarly, a basis

for F need not have more thanjV j elements. So wordlists never need to be longer than

jV j in order to be sufficient. Second, we have the following fact of linear algebra.

Lemma 4.2.11.If u 2 spanfv1; . . . ; vng, andA is any matrix such that the productuA

is defined, thenuA 2 spanfv1A; . . . ; vnAg.

Proof. There must exist numbersc1; . . . ; cn such thatu = c1v1 + . . . + cnvn. But then

uA = c1v1A + . . . + cnvnA.�

We construct sufficient wordlists using the following algorithm, which is used for

a somewhat different purpose in [8].

Algorithm 4.2.12. Let Q be a queue — a first-in, first-out list —Q of words, and let

and letW be a list of words. QueueQ will store a list of words which the algorithm

has determined it must examine, andW will store the developing wordlist.

1. Initialize Q to contain only the word�, and initializeW to be empty.

2. Take a wordz from the tail ofQ and test whether of notN (�T z) lies in

spanfN(�Tw)jw 2 Wg = spanfrows ofH(W )g: (4.41)

3. If it does, discardz and skip forward to step 6. (Otherwise, continue with step 4.)

4. Add z to the wordlistW .

5. For eachx 2 X , add the wordzx to the head ofQ.

6. If Q is not empty, go back to step 2.

7. Stop. Q is empty, andW contains the completed wordlist.

Algorithm 4.2.12 builds only history wordlists, but a virtually identical algorithm

builds future wordlists.

Proposition 4.2.13. The wordlists constructed by algorithm 4.2.12 are sufficient. In

fact, for these wordlists,H = H .

Proof. We need to show that ifh 2 H, thenh 2 H. Everyh 2 H is a linear combination

of vectors of the formN(�Tw) for somew 2 X �, so it will suffice to consider vectors
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of that form. Suppose there exists a wordy such thatN(�T y) 62 H. Let z be the

longest prefix ofy such thatN(�T z) 2 H. There is at least one such prefix, namely

�. Let x be the symbol which followsz in y — that is, choosex 2 X so thatzx is

a prefix of y. ThusN(�T zx) is not in H.

Now, we have chosenz so thatN(�T z) is in H = spanfN(�Tw)jw 2 Wg, but

N(�T zx) is not. By lemma 4.2.11, we know thatN(�T z)T x is in the span of

fN(�Tw)T xjw 2 Wg, or equivalently,

N(�T zx) 2 spanfN(�Twx)jw 2 Wg: (4.42)

Because the algorithm added eachw to W , we know that it added the wordswx to

the queue. Thus the vectorsN(�Twx) were subsequently tested against the developing

basis and added to the basis if it did not already span them. Hence we know that for all

w 2 W , the vectorsN(�T zx) lie in H, soN(�T zx) is a linear combination of vectors

which are known to be inH, thus it is itself inH. This is a contradiction, hence no

words y can exist.�

Sufficient future wordlists may be constructed by an essentially identical process.

Lemma 4.2.14. A GHMM
�
V;X ;

�
T k

	
; �
�

has sufficient wordlistsW and S, every

word of which has length less thanjV j.

Proof. The construction we have just given has the property that ifw is not added to

W , then no words of the formwz can be added toW . Thus ifw is in W , every prefix

of w is in W as well, including the length zero word�. This means that if a word of

lengthl is added to a wordlistW , thenW has at least one element of each of the lengths

0; 1; . . . ; l and thus contains at leastl + 1 elements. Note that the wordlists constructed

here never have more thanjV j elements because rows ofH are linearly independent

and span a subset ofRjV j. Thus a word of lengthjV j or more can never be added toW .

A virtually identical proof holds forS.�

Once we have sufficient wordlists, we can get minimal wordlists simply by extracting

appropriate subsets. Suppose we have history and future wordlistsW andS, we take

H(W )F (S) and delete every row which is linearly dependent on those which precede
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it. The words associated with the remaining rows form a new wordlistW 0, and the

remaining rows themselves formH(W 0)F (S).

The rows ofH(W 0)F (S) are now linearly independent, which means the rows of

H(W 0) are independent. Moreover, because we only deleted linearly dependent rows,

the row span ofH(W 0)F (S) is the same as that ofH(W )F (S). The properties ofF are

such that we can be sureH(W 0) has the appropriate span. As we will show next, the

resulting wordlistW 0 is minimal. The analogous construction, deleting columns instead

of rows, builds us a minimal future wordlistS 0.

Proposition 4.2.15. Let W and S be sufficient wordlists. IfW 0 is a subset ofW

such that

1. the row span ofH(W 0)F (S) is the same as that ofH(W )F (S), and

2. the rows ofH(W 0)F (S) are linearly independent,

thenW 0 is minimal. Similarly, if S 0 is a subset ofS such that

1. the column span ofH(W )F (S0) is the same as that ofH(W )F (S), and

2. the columns ofH(W )F (S0) are linearly independent,

then S 0 is minimal.

Proof. As usual, we have separate statements about the past and the future, and we will

only prove the one about the past, as essentially the same argument will serve for the

future. We will not need to refer toF (S 0), and will useF = F (S).

We will first show thatW 0 is sufficient, that is, that the rows ofH(W 0), together with

KF , spanH.

Let h1; . . . ; hn be the rows ofH(W ). If h 2 H, then there exists a vectora =

(a1; . . . ; an) such that

h = a1h1 + . . . + anhn + k

= aH(W ) + k
(4.43)

for somek 2 KF . Multiplying on the right byF , we havehF = aH(W )F + kF . We

know thatkF = 0, sohF is in the span of the rows ofH(W )F . But the rows ofH(W 0)F

have the same span, so there must exist some vectorc such thathF = cH(W 0)F . This

is equivalent to(h� cH(W 0))F = 0, which means thath � cH(W 0) is in KF . Thus



72

h = cH(W 0) + k0 for somek0 2 KF . ThusKF and the rows ofH(W 0) spanH, so

W 0 is sufficient.

Showing thatW 0 is minimal is now trivial. The rows ofH(W 0)F are linearly

independent and multiplying byF cannot eliminate any linear dependency which is

in the rows ofH(W 0). So the rows ofH(W 0) are linearly independent, andW 0 is

minimal.�

In this section, we have studied the relationship between the past and the future in

terms of linear algebra. As part of this study, we introduced and definedH andF , and

showed how to construct them and their associated wordlists. Next, we will begin to

use them to identify and eliminate redundancy from GHMM presentations.

4.3 Equivalence and Minimization of GHMMs

This section addresses two problems. The first of these, which we discussed in

section 4.1, is theidentifiability problem: When are two GHMMs equivalent? That is,

when do two GHMMs define the same process? The second is theminimizationproblem:

Given a GHMM, what GHMM is as small as possible — that is, has as few presentation

states as is possible — but is equivalent to the given one? These two questions are

closely related, and have been studied for HMMs for some time. The identifiability

problem is the more famous of the two and was posed by Blackwell and Koopmans in

1957 and solved by Ito et al in 1992, by a methods similar to the one presented here.[2,7]

The minimization problem is nearly solved in the same paper, and was completed by

Vijay Balasubramanian.[8] The details of the method presented here are the work of the

author. Notably, the standard presentation, which is important here and again in chapter

5, does not appear in any previous paper, though related presentations have appeared

before beginning with [20].

Suppose we have a GHMM presentation
�
V;X ;

�
T k

	
; �
�

for a processP and

wordlistsW andS such thatH andF are invertible. (This can only happen if there is

no redundancy, that is, ifKF andKH are trivial.) We are now going to define a sort

of a canonical presentation forP, which we will call thestandard presentationfor P,

which in this case is conjugate to
�
V;X ;

�
T k

	
; �
�

by H.
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If we conjugateT k byH, we getBk = HT kH�1, and if we writeH�1 asF (HF )
�1,

we have

Bk = HT kF (HF )
�1
: (4.44)

We will call the matricesBk the standard transition matricesfor the processP given

W and S. As we know, each(HF )ij is simply P(sjjwi). Similarly, for all k 2 X

and for all i; j 2 V ,
�
HT kF

�
ij
= N(�Twi)T kT sj~1

= P(ksjjwi):
(4.45)

In words,HT kF exhibits the action of the mapT k in terms of the bases — the rows

of H and the columns ofF — we have developed for the past and the future. And

both (HF )
�1 andHT kF are entirely determined by probabilities of words — by the

process, rather than by the presentation. This fact is key to the algorithms of this section

and the next chapter.

The same is true of the initial vector


 = �H�1 = �F (HF )
�1
; (4.46)

since (�F)j = P(sj). We will refer to 
 as thestandard initial vectorfor P given

W andS. Thus
 andBk depend only on the wordlists and the process, and not on

the GHMMs themselves.

The following definition assembles the standard transition matrices and the standard

initial vector into a presentation. We may choose any set of sizejV j as the set of

presentation states. It will be convenient to chooseW because, as we will see shortly,

the presentation states are associated with the words inW . Also, recall corollary 4.2.9,

which tells us thatHF is invertible.

Definition 4.3.1. If
�
V;X ;

�
T k

	
; �
�

is a GHMM presentation for the processP andW

andS are wordlists such that the matrixHF is invertible, then we define thestandard

presentationfor P given W and S to be

�
W;X ;

n
Bk

o
; 

�
; (4.47)

whereBk = HT kF (HF )
�1 and 
 = �H�1 = �F (HF )

�1.
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The following result establishes that ifH andF are invertible, the standard pre-

sentation forP is in fact a presentation, and that it is a presentation forP. In 4.3.10,

we will establish that the standard presentation is a presentation forPwheneverHF is

invertible, that is, whenever the standard presentation is defined.

Lemma 4.3.2.Let
�
V;X ;

�
T k

	
; �
�

be a GHMM presentation for the processP and let

W andS be wordlists such that the matricesH andF are invertible. Then the standard

presentation forP givenW andS is a GHMM presentation forP.

Proof. The standard presentation
�
W;X ;

�
Bk

	
; 

�

is conjugate to
�
V;X ;

�
T k

	
; �
�

by

H. Given this fact, proposition 4.1.7 tells us that
�
W;X ;

�
Bk

	
; 

�

is a GHMM and

that it is equivalent to
�
V;X ;

�
T k

	
; �
�
.�

Suppose we have a second GHMM
�
V 0;X ;

�
Uk

	
; �
�

which is equivalent to our

first GHMM,
�
V;X ;

�
T k

	
; �
�
. If we take its history and future matricesH 0 and

F 0 with respect to the same wordlistsW and S, then we must haveH 0F 0
= HF ,

H 0UkF 0
= HT kF , and �F 0

= �F . The for both presentations generate the same


and the same set ofBks and so they generate the same standard presentation. In this

sense, the standard presentation plays a role similar to that of a canonical form. But

because the standard presentation depends on the wordlistsW andS, there is no single,

absolute standard presentation. This is why we call it thestandardpresentation and not

the canonical presentation.

In other words, suppose we have two equivalent GHMMs, and we have wordlists

such that both GHMMs’ history and future matrices are invertible. Then they must

produce the same
 andBk, and therefore they must both be conjugate to the standard

presentation. We know that if two GHMMs are both conjugate to a third GHMM, then

they must be equivalent. So using standard presentations shows promise of resolving

the identifiability problem. The approach above for constructing the standard transition

matrices will not work in general, because the assumption thatH andF are invertible

may fail. However, there is a generalization of the standard presentation which we can

always construct, and so we can give a new solution to the identifiability problem using

this generalization.

Theorem 4.3.3. Suppose we are given two GHMMs
�
V;X ;

�
T k

	
; �
�

and
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�
V 0;X ;

�
U k

	
; �
�
, and letW andS be history and future wordlists which are sufficient

for both of them. LetP be the probability measure induced by
�
V;X ;

�
T k

	
; �
�

and

let Q be that induced by
�
V 0;X ;

�
Uk

	
; �
�
. The GHMMs are equivalent — that is,

P = Q — if and only if all of the following hold:

1. for all wi 2 W and sj 2 S, P(sjjwi) = Q(sjjwi),

2. for all wi 2 W , sj 2 S, andk 2 X , P(ksjjwi) = Q(ksjjwi), and

3. for all sj 2 S, P(sj) = Q(sj).

We will prove this by showing that the probability of any word is determined by

these few probabilities, these few conditional probabilities, and the information thatW

andS are sufficient. Thus the entire process is determined by these same few pieces of

information. At this point, it is worth recalling Bayes rule —P(sjw) = P(ws)=P(w)

— because it tells us that we can compute the necessary conditional probabilities from

the (non-conditional) probabilities of all wordswi, sj, wisj, andwiksj for all wi 2 W ,

sj 2 S, andk 2 X . We can ignore the possibility thatP(wi) = 0 for somei, and hence

thatP(sjjwi) will not be well-defined, because the row ofH corresponding to thatwi

must lie inKF . Such a row is never needed in the basis.

The proof itself, which begins on page 79, uses a number of lemmas, most of which

are proved by calculation and use of the properties ofH andF . These lemmas develop

a generalization of the standard presentation. Note that we are usingW as a set of

presentation states. Recall that we concluded in chapter 3 that the role of presentation

states was to serve as basis vectors for the space containing the mixed states. Here, we

use this the other way, and having chosen a basis for the mixed states, we will use the

elements of that basis as presentation states. Arguably, the presentation states should be

labeled with the mixed states, rather than the strings inW which induce those mixed

states, but we will use the strings themselves for brevity and clarity.

Whenever two GHMMs share an alphabet†, it is always possible to find wordlists

which are sufficient for both of them. IfW1 andW2 are sufficient for
�
V;X ;

�
T k

	
; �
�

and
�
V 0;X ;

�
Uk

	
; �
�
, respectively, then the wordlistW = W1 [W2, with words in any

fixed order, will be sufficient for both
�
V;X ;

�
T k

	
; �
�

and
�
V 0;X ;

�
Uk

	
; �
�
.

†Two GHMMs which have distinct alphabets always represent different processes. In some applications, however, it may be
desirable to map one alphabet onto another so as to sidestep this fact.



76

WhenW andS are not minimal, and thusHF is not invertible, we can no longer

define the standard transition matricesBk. It is still possible, however, to define a form

of the standard presentation, though we can no longer define it as simply as we can if

W and S are minimal.

Definition 4.3.4. Given a GHMM presentation
�
V;X ;

�
T k
	
; �
�

of a processP and

sufficient wordlistsW andS, we say that
�
W;X ;

�
Bk

	
; 

�

is a quasi-presentationif

1. for eachk 2 X , Bk satisfiesBkHF = HT kF , and

2. 
 satisfies
HF = �F .

We refer toBk and
 as aquasi-transition matrixand aquasi-initial vectorrespectively.

If HF is invertible, then there is a unique quasi-presentation for a processP given

W and S, and it is the standard presentation. Otherwise, quasi-presentations are not

unique. Lemma 4.3.5 shows that quasi-presentations exist.

Lemma 4.3.5. If W andS are sufficient, then for eachk there exists a quasi-transition

matrix Bk such that

BkHF = HT kF; (4.48)

and there exists a quasi-initial vector
 such that
HF = �F .

Proof. Let hi = N(�Twi) be the ith row of H. Then the ith row of HT k is

hiT
k = N(�Twi)T k, which must lie inH. The rows ofH and elements ofKF

spanH, so there is somev 2 KF and somea 2 R
n such thathiT k = aH + v. This

means thathiT kF = aHF . Let the ith row of Bk be a.

Likewise, � is in H, so we can find
 2 Rn andv 2 KF such that
H + v = �, and

hence
HF = �F .�

The next lemma depends on the normalization of the rows ofH. In fact it is the

reason we definedH — and indeed,H — usingN(�Tw) instead of the simpler�Tw.

Lemma 4.3.6. The matrix
P

k2X

Bk and the vector
 are both unit-sum.

Proof. Because~1 is an element ofF , there exists ana 2 Rn and anu 2 KH such that

~1 = Fa+ u. ThusH~1 = HFa, and since the rows ofH are mixed states and so must
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be unit-sum, we have~1 = HFa. Similarly, for all k 2 X , we can write

HT k~1 = HT kFa+HT ku (4.49)

But each row ofHT k is in H, soHT ku = 0 and we haveHT k~1 = HT kFa. Now,
P

k

T k is unit-sum, so if we sum onk, this becomes~1 = H
P

k

T kFa.

Summing 4.48 onk gives us X
k2X

Bk

!
HF = H

 X
k2X

T k

!
F: (4.50)

If we multiply on the right bya, we can substitute~1 for HFa and forH
P
k

T kFa, and

we have

�P
k

Bk

�
~1 = ~1.

Similarly, 
HF = �F becomes
HFa = �Fa, which in turn becomes
~1 = 1.�

Lemma 4.3.6 establishes that
�
W;X ;

�
Bk
	
; 

�

satisfies conditions 1 and 2 of the

three conditions of definition 4.1.2, which defines a Proto-GHMM. The next lemma tells

us that it may fail to satisfy the final condition —

P
k

Bk may differ from
, but only

by a vector inKF .

Lemma 4.3.7. For some vectorr such thatrHF = 0, 
 satisfies

P
k

Bk
= 
 + r.

Proof. Because
 is known to satisfy
HF = �F , there is av 2 KF such that


H = � + v. Thus,


H
X
k

T k
= �

X
k

T k
+ v

X
k

T k

= � + v0
(4.51)

for somev0 2 KF . Similarly, 4.50 tells us that

H
X
k

T k
=

X
k

BkH +A (4.52)

for some matrixA, all rows of which lie inKF . When we substitute the right-hand

side of equation 4.52 into equation 4.51, we have

P
k

BkH = �+v0�
A, from which

the substitution of
H � v for � gives us



X
k

BkH = 
H + v0 � 
A� v: (4.53)
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Multiplying by F , we have



X

k

BkHF = 
HF: (4.54)

Thus, there is some row vectorr such thatrHF = 0 and

P
k

Bk = 
 + r.�

We would like lemma 4.3.7 to have established that

P
k

Bk = 
, because that would

have completed the verification that
�
W;X ;

�
Bk
	
; 

�

is a Proto-GHMM. However,

this is not always the case — a quasi-presentation is not always a Proto-GHMM. If

HF is invertible — that is, ifW andS are minimal — then
�
W;X ;

�
Bk
	
; 

�

is the

standard presentation. In this case, we do have a Proto-GHMM, which we may prove by

multiplying equation 4.54 by(HF )
�1. We will soon show that the standard presentation

is, in fact, a GHMM equivalent to
�
V;X ;

�
T k
	
; �
�
, and we will use this fact later in

this section when we address the minimization problem.

In the next lemma, which is the key step in the proof of theorem 4.3.3, we establish

that the quasi-initial vector
 and the quasi-presentation matricesBk can reproduce the

probabilities of words given by the initial vector� and the transition matricesT k. Here,

we begin using the quasi-transition matrices as transition matrices, with the convention

that if x = x1 . . .xn is a word, thenBx = Bx1 � � �Bxn.

Lemma 4.3.8. For all x 2 X �,

1. HT xF = BxHF ,

2. �T xF = 
BxHF , and

3. �T x~1 = 
Bx~1.

Proof. We will prove by induction on the length ofx. If the length is one, then 1 is

equivalent toBkHF = HT kF , which Bk satisfies by definition.

If x has length greater than one, then we can writex = yk for k 2 X and y the

prefix of x with length jxj � 1. We will assume, as our induction assumption, that

HT yF = ByHF . This means that there is some matrixA such that

HT y = ByH +A; (4.55)

and all rows ofA lie in KF . Now, multiply on the right byT k and we have

HT yT k
= ByHT k

+AT k: (4.56)
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BecauseBk is defined to satisfyBkHF = HT kF , we know thatHT k
= BkH +C for

some matrixC, all rows of which lie inKF . Making this substitution forHT k on the

right-hand side of 4.56 and writingC 0
= C + AT k, we have

HT yT k
= ByBkH + C 0: (4.57)

Note thatC 0F is a matrix of zeros. Thus, if we multiply equation 4.57 byF , we have

HT xF = BxHF; (4.58)

which proves 1.

Note that we have shown that

HT x
= BxH +A (4.59)

for some matrixA such thatAF is a matrix of zeros. Multiplying by
 and then

substituting� + v for 
H gives us

�T x
+ vT x

= 
BxH + 
A; (4.60)

for somev 2 KF . Note that bothvT x and 
A lie in KF . Now, if we multiply by

F , we get

�T xF = 
BxHF; (4.61)

thus proving 2.

And finally, if we multiply equation 4.60 by~1, we have

�T x~1 = 
BxH~1: (4.62)

BecauseH is a unit-sum matrix, equation 4.62 proves 3.�

We have now defined quasi-presentations, proven that they exist, and proven that

they determine the probabilities of all words. Having done so, we are ready to prove

theorem 4.3.3.

Proof of Theorem 4.3.3. If two GHMMs
�
V;X ;

�
T k

	
; �
�

and
�
V 0;X ;

�
Uk

	
; �
�

are

equivalent, then they agree on the probabilities of all words, and thus an all conditional
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probabilities. The interesting part of the theorem is that ifW and S are sufficient

for both
�
V;X ;

�
T k

	
; �
�

and
�
V 0;X ;

�
Uk

	
; �
�
, and if these two GHMMs agree on

the probabilitiesP(sjw), P(ksjw), andP(s) for all w 2 W , s 2 S, andk 2 X , then
�
V;X ;

�
T k

	
; �
�

and
�
V 0;X ;

�
Uk

	
; �
�

are equivalent. We will prove this by constructing

a quasi-presentation for
�
V;X ;

�
T k

	
; �
�

and showing that it is also a quasi-presentation

for
�
V 0;X ;

�
Uk

	
; �
�
.

Let H1 andF1 be the history and future matrices for
�
V;X ;

�
T k

	
; �
�

and letH2 and

F2 be the history and future matrices for
�
V 0;X ;

�
Uk

	
; �
�
. Let us recall the hypotheses

of this theorem.

1. For allwi 2 W and sj 2 S, P(sjjwi) = Q(sjjwi),

2. For allwi 2 W , sj 2 S, andk 2 X , P(ksjjwi) = Q(ksjjwi), and

3. For all sj 2 S, P(sj) = Q(sj).

First, P(sjjwi) = (H1F1)ij, andQ(sjjwi) = (H2F2)ij, so 1 is equivalent toH1F1 =

H2F2. Second,P(ksjjwi) =
�
H1T

kF1

�
ij

, andQ(ksjjwi) =
�
H2U

kF2

�
ij

, so 2 can

be written as follows: for allk, H1T
kF1 = H2U

kF2. Last, P(sj) = (�F1)j, and

Q(sj) = (�F2)j, so 3 becomes�F1 = �F2. Thus, what we need to show is that

these three facts —H1F1 = H2F2, H1T
kF1 = H2U

kF2 for all k, and �F1 = �F2

— together imply thatP(x) = Q(x) for any x 2 X �, whereP(x) = �Tx~1 and

Q(x) = �Uk~1. Let 
 be any solution to
H1F1 = �F1, and for allk, let Bk be any

solution toBkH1F1 = H1T
kF1. Then

�
W;X ;

�
Bk

	
; 

�

is a quasi-presentation for the

process represented by
�
V;X ;

�
T k

	
; �
�
. Lemma 4.3.8 now tells us that for anyx 2 X �

�T x~1 = 
Bx~1.

But we know thatH1F1 = H2F2 and �F1 = �F2, so 
 satisfies
H2F2 = �F2.

Similarly, eachBk satisfiesBkH2F2 = H2U
kF2. Thus,

�
W;X ;

�
Bk

	
; 

�

is also a quasi-

presentation for
�
V 0;X ;

�
Uk

	
; �
�
. So lemma 4.3.8 tells us that for allx, �Ux~1 = 
Bx~1,

and therefore that for allx, �Ux~1 = �T x~1.�

Corollary 4.3.9. If
�
V;X ;

�
T k

	
; �
�

and
�
V 0;X ;

�
Uk

	
; �
�

are two GHMMs which

assign the same probabilities to all words of length less than2n, neither of which has

more thann states, then they are equivalent.
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Proof. Lemma 4.2.14 tells us that we can find wordlistsW andS in which all of the

words have length at mostn�1. For such wordlists, all words of the formwi, sj, wisj,

andwiksj have lengths less than2n, so
�
V;X ;

�
T k
	
; �
�

and
�
V 0;X ;

�
Uk
	
; �
�

must

agree on allP(sjjwi) = P(wisj)=P(wi), P(ksjjwi) = P(wiksj)=P(wi), andP(sj).

Thus, by theorem 4.3.3, they are equivalent.�

With this machinery in hand, we can resolve the minimization problem.

Theorem 4.3.10.Given a GHMM
�
V;X ;

�
T k
	
; �
�
, let P be the process it represents,

and letW andS be minimal wordlists. Then the standard presentation
�
W;X ;

�
Bk
	
; 

�

for givenW andS is a GHMM, and it is equivalent to
�
V;X ;

�
T k
	
; �
�
. Furthermore,

no GHMM exists with fewer thanjW j states which is equivalent to
�
V;X ;

�
T k
	
; �
�
.

Proof. As noted on page 78, whenHF is invertible, 
 =
P

k

Bk
, and the standard

presentation is a Proto-GHMM. We established in lemma 4.3.8 that
Bx~1 = �T x~1 for all

x 2 X �. This proves both that it is a GHMM and that it is equivalent to
�
V;X ;

�
T k
	
; �
�
.

Because the rows ofHF are linearly independent, and these rows consist of conditional

future probabilities, we know that the process statesP(�jwi) are linearly independent.

Thus the span of the reachable process states has dimension at leastjW j. In fact, if

we combine lemma 4.2.1 and proposition 4.2.6, we have proven that its dimension is

exactlyjW j. If a GHMM has fewer thanjW j states, then it induces a process for which

the span of the reachable process states has dimension less thanjW j, and thus it cannot

be equivalent to
�
V;X ;

�
T k
	
; �
�
.�

We conclude this section with a result — the existence of conjugacies — which we

promised in section 4.1. This was first shown — for functions of finite Markov Chains

— by Gilbert [20].

Proposition 4.3.11. Let
�
V;X ;

�
T k
	
; �
�

and
�
V 0;X ;

�
Uk
	
; �
�

be two minimal,

equivalent GHMMs — that is,jV j = jV 0j = dim (U), whereU is the span of the

reachable process states. Then there exists a matrixM such that
�
V;X ;

�
T k
	
; �
�

and
�
V 0;X ;

�
Uk
	
; �
�

are conjugate byM .

Proof. Let W and S be minimal wordlists for
�
V;X ;

�
T k
	
; �
�
, and letH1 and F1

be the associated history and future matrices. BecauseW and S are minimal,H1F1
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must be invertible. We know thatjV j = dim(U), and for minimalW we know that

jW j = dim(U). ButH1 hasjW j rows andjV j columns, so it must be square. Likewise,

F1 must be square and bothH1 andF1 must be invertible.

LetH2 andF2 be the history and future matrices for
�
V 0;X ;

�
U k

	
; �
�
. Then the process

statesP(�jwi) form a linearly independent basis forU , hence the rows ofH2 must be

linearly independent. ThusH1, F1, andH2 are full rank square matrices, and must be

invertible. We also know thatH1F1 = H2F2 is invertible, soF2 = H�1

2
H1F1 must

be invertible.

Now, we calculate. We haveH2U
kF2 = H1T

kF1 and�F1 = �F2, so

Uk
= H�1

2
H1T

kF1F
�1

2
(4.63)

and � = �F1F
�1

2
. And if we let M = H�1

2
H1, M is a unit-sum matrix. And

H1F1 = H2F2 implies H�1

2
H1F1F

�1

2
= I, so M�1

= F1F
�1

2
. So equation 4.63

may be writtenUk
= MT kM�1. Moreover, we have� = �F1F

�1

2
= �M�1. Thus

�
V;X ;

�
T k

	
; �
�

and
�
V 0;X ;

�
Uk

	
; �
�

are conjugate.�

We began this section by defining a GHMM to be a representation of a process

similar to an HMM, but with negative entries allowed in its transition matrices. We

studied the vector spaces of conditional distributions on the future induced by history

words and of conditional distributions on the past induced by future words. We

found bases for these vector spaces in terms of these same words. These bases were

instrumental in resolving the identifiability and minimization problems, and they led

us to the standard presentation. We have shown that the standard presentation is a

GHMM presentation for a process, and we have observed that it is determined entirely by

probabilities of words. In the next chapter, we will use this fact to construct presentations

directly from probabilities of words — that is, directly from the process.
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5 Reconstruction

The subject of this chapter is thereconstruction problem, which has two versions.

In both, the objective is to construct a presentation for some process given certain

information about that process. In the first, which we will callreconstruction from

probabilities, the given information is the probability the process assigns to every word

in X
�. In the second, which we will callreconstruction from a sample, the given

information is a sample of the process’s output. We will use this sample data solely to

estimate probabilities of words, so reconstruction from a sample may be viewed as a form

of reconstruction from probabilities in which the probabilities are only approximately

known. Alternatively, reconstruction from probabilities may be thought of as an idealized

form of reconstruction from a sample, in which the sample is infinitely large. In

both versions, we make the assumption that the span of the process states is finite-

dimensioned. In fact, we will show how to construct a GHMM presentation for any

process which satisfies this condition.

A substantial body of research has accumulated around the problem of reconstruction

from a sample for HMMs, for example [23–26]. Most of it involves versions of an

algorithm known as forward-backward or Baum-Welsh [17,24]. These are forms of the

expectation-maximization (EM) algorithm [27]. With all of these algorithms, a number

of structural assumptions are required — the number of states and some choice about

what transitions will be allowed to occur (for example, all may be allowed). Then a

random initial presentation which satisfies the structural assumptions is chosen. The

various algorithms then implicitly assume it describes the sample to some degree, and

iteratively adjust the parameters while leaving the structure fixed.

In contrast, we will present a solution to the problem of reconstruction from

probabilities, which appears not to have been studied before. We will follow this

with an adaptation of this solution to reconstruction from a sample. The resulting

reconstruction algorithm does not require its user to choose a number of states or a

structure of allowed transitions, nor does it depend on any ability of random HMMs to

describe the sample. Instead, it operates by estimating conditional distributions (that is,

process states) from the sample and then constructs GHMM transition matrices directly

from these conditional distributions.
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This algorithm is new, and it is the work of the author. It should be noted,

however, that other elements of this algorithm have been used before. Gilbert [20]

and Dharmadhikari [10,28], consider the rank of the matrix of probabilities we call

HT kF . Given a function of a Markov chain in a certain class, Gilbert constructs a

new function of a Markov chain which is conjugate to the original. His technique,

like the one used here, derives a set of presentation states form a matrix of word

probabilities. Crutchfield [11] uses estimated probabilities to reconstruct presentations

of stochastic deterministic finite automata from samples. And the QL algorithm is a

standard technique in numerical linear algebra [29].

5.1 Constructing a Presentation for a Process

The key observation in section 4.3 was this: the matricesHF andHT kF , for all k,

do not depend on a presentation. We can rewrite theorem 4.3.10 as follows: if a process

P =

�
X
Z;X;P

�
has a presentation for whichW and S are minimal wordlists, then

�
W;X ;

�
Bk

	
; 

�

is a presentation forP. That is, we can construct a presentation for

P almost without referring to a preexisting presentation — if we know the probabilities

of the right words, we can compute all the components of
�
W;X ;

�
Bk

	
; 

�

from those

probabilities using 4.3.10. But so far, we still need a preexisting presentation from which

to construct the wordlists. To solve the problem of reconstruction from probabilities,

then, we need to be able to build minimal wordlists from probabilities — that is, from

a process without referring to a presentation.

It turns out that it is possible to construct suitable wordlists from probabilities of

words, but no finite algorithm can do so correctly in every case. The reason is simple:

a finite algorithm can only examine the probability of a finite number of words. If

we build a presentation from the probabilities of a finite number of words, then it is

always possible that there is a word, which was not examined, whose probability is not

correctly extrapolated from the words which were examined by the presentation. Thus,

the solution to the problem of reconstruction from probabilities must have an element

which is either infinitary or nonconstructive. Fortunately, there is an algorithm, built on

our theoretical framework, that works well in practice as we will see in the next section.

And we can find suitable wordlists directly given any upper bound on the maximum

word length, such as that which can be derived from the number of presentation states.
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In chapter 4, we built our history wordlists so that the set of mixed states induced by

their words spannedH=KF . Recall thatU is defined as the span of the recurrent process

states, without reference to a presentation, and thatU is isomorphic toH=KF . To build

history wordlists without referring to presentations, we will choose words that induce

a set of process states spanningU . Describing the future wordlists in an analogous

fashion is a little more difficult because we do not have a concept analogous to “state”

that refers to something induced by the future.* If we recall the definition of a reachable

process state — a conditional distribution on the future which is induced by a history

word — then the appropriate analog is clear: a conditional distribution on the past which

is induced by a future word. Such a conditional distribution would be a process state if

we were to reverse the direction of time, so we will call it areverse state. The future

wordlists we wish to build, then, consist of words which induce a set of reverse states

which has the same span as the set of all reverse states. It will not be necessary to

actually write reverse states in any calculations, so we will not define notation for them.

At this point, we shift to more nearly concrete objects. We need to choose an

order onX � — the order we choose does not matter, so long as it is fixed. A natural

choice is to put shorter words before longer words, and put words of the same length in

lexicographical order by some order onX . WhenX = f0; 1g, and0 precedes1, we have

�; 0; 1; 00; 01; 10; 11; 000; . . . (5.1)

Let qi be the ith word in this ordering, then we have a one-to-one correspondence

betweenN and X �.

We can now define the infinite matrixP , whose entries are indexed byN�N. Let

w = qi, s = qj, and

Pij =

�
P(sjw) P(w) 6= 0

0 P(w) = 0:
(5.2)

For convenience and clarity, we will useqi in place of i itself in subscripts ofP and

write Pw;s instead ofPij . Each row ofP is labeled with a history word, each column

with a future word, and each entry (except for those in all-zero rows) is a conditional

probability. The top row, with history word�, contains the unconditioned probabilities

P(wj�) = P(w). So in principle the top row alone can generate the whole matrix. Each

*There is a time-symmetric development of our approach that we have chosen not to present here.
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row contains a complete description of a reachable process state, in the form of all the

conditional probabilities on future words. Each column contains a complete description

of a reverse state, although some renormalization is needed to put the column into the

right form. Thus, any wordw identifies both a unique rowPw;� and a unique column

P
�;w. We will denote the row associated withw by r(w) and the column associated

with s by c(s).

The following definition is analogous to definition 4.2.4 of sufficient wordlists for

a GHMM.

Definition 5.1.1. A history wordlistW is sufficient for a processif the rows identified

by the words inW span all the rows ofP . Similarly, a future wordlistS is sufficient

for a process if the columns identified by the words inS span all the columns ofP .

Now, a pair of wordlistsW andS identifies a submatrix ofP in a natural way:

if W = fw1; . . . ; wng and S = fs1; . . . ; skg, we define the submatrixG of P by

Gij = Pwi;sj , so thatGij = P(sjjwi) for all i = 1; . . . ; n and j = 1; . . . ; l. That is,

we pick out the elements ofP which are both in the rows identified byW and in the

columns identified byS. If we had a presentation forP and we built the wordlistsW

andS and the matricesH andF for that presentation, we would find thatG = HF (see

equation 4.40). In the same manner, we define a submatrixCk of P for eachk 2 X by

picking out the rows ofP corresponding to words inW and the columns corresponding

to wordsksj for sj 2 S. That is,Ck is defined byCk
ij = Pwi;ksj = P(ksjjwi). Thus,

if we had a presentation forP, we would haveCk = HT kF .

In corollary 4.2.9, we established that ifW andS are minimal for a GHMM, then

HF is invertible. And we know that if eitherW or S is sufficient but not minimal,

thenHF is larger in size — but not in rank — than it would be ifW and S were

minimal. Thus ifW andS are sufficient,HF is invertible if and only ifW andS are

both minimal. We will use the analogous version of this for the following definition.

Definition 5.1.2. A pair of wordlistsW andS areminimal for a processP if they are

sufficient forP and the matrixG they define is invertible.

The next few results establish that sufficiency and minimality for a process have the

properties we will need in theorem 5.1.8, which is the main result of this section. These
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properties are roughly analogous to the properties of sufficient and minimal wordlists

for a GHMM, though we will not attempt to draw precise analogies.

We are interested in the number of linearly independent rows and columns ofP .

If P were finite, we would refer to its rank. Thus we give the following definition for

rank in this infinite context.

Definition 5.1.3. The rank of P is defined to be the supremum of the ranks of the

finite submatrices ofP .

Lemma 5.1.4. The rank ofP is equal to the dimension of the span ofU .

Because of the close connection between the rows ofP and the reachable process

states, this is almost automatic. The only difficulties are in dealing with the infinitely

many columns in those rows.

Proof. Let n = dim(U), which we will assume for the moment is finite. We can choose

fw1; . . . ; wng such that ifAi = P(�jwi) for i = 1; . . . ; n, the process statesA1; . . . ;An

spanU . Then for allw 2 X �, there are numbersa1; . . . ; an such that

P(�jw) = a1A1 + . . . + anAn: (5.3)

so for all s, P(sjw) =
P

i

aiAi(s). This implies that the rowr(w) can be written as

r(w) = a1r(w1) + . . . + anr(wn). So the rowsr(w1); . . . ; r(wn) form a basis for the

rows of P . Thus, any collection of more thann rows is linearly dependent, and the

same must be true for the rows of submatrices. This shows that rank(P ) � n.

Conversely, becauseA1; . . . ;An are linearly independent and the rowr(wi) determines

the distributionAi = P(�jwi), r(w1); . . . ; r(wn) must be linearly independent. So the

row space ofP has dimensionn. What remains to be shown is thatP has a finite

submatrix of rankn.

For any words, let c0(s) be the lengthn column vector consisting of those elements of

c(s) which lie in rowsr(w1); . . . ; r(wn); that is,

c0(s) =

0
@
P(sjw1)

...
P(sjwn)

1
A =

0
@
Pw1;s

...
Pwn;s

1
A: (5.4)

We will call c0(s) a subcolumnof P . Choose a wordlistS such thatc0(s1); . . . ; c0(sl)

is a linearly independent basis for the span of all subcolumnsc0(s). Let G be then� l
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submatrix ofP given byW and S. The columns ofG are exactly the subcolumns

c0(s1); . . . ; c
0(sl), so G has rankl. We have shown the rank ofG must be less than

n, so l � n.

We now define the subrowr0 in a manner analogous to the definition of a subcolumn.

The subrowr0(s) is the lengthl row vector(Ps1;w; . . . ; Psl;w). We will reserve the terms

subrowand subcolumnfor these subsets ofP , and we will use the termsrow vector

andcolumn vectorfor other row and column vectors, including linear combinations of

subrows and subcolumns.

Suppose thatl < n. Then there exists a row vector(a1; . . . ; an), not all components of

which are zero, such that the product(a1; . . . ; an)G is a linear combination of subrows

which is the zero row vector. Now, for anys 2 X �, the subcolumnc0(s) is a linear

combination ofc0(s1); . . . ; c0(sl), so if the subrowr0(wi) is zero, theith element of

eachc0(sj) must be zero, and so theith element of every subcolumn must be zero.

That is, if a subrow is zero, the corresponding entire row must be zero. The same

must be true for linear combinations of subrows: for anys the element in columns of

the infinite vectora1r(w1) + . . . + anr(wn) is a linear combination of elements of the

row vector (a1; . . . ; an)G. Thus, if (a1; . . . ; an)G is all zeros, then every element of

a1r(w1) + . . . + anr(wn) is a linear combination of zeros, and so

a1Pw1;s + . . . + anPwn;s = 0; (5.5)

for all words s.

But the rows r(w1); . . . ; r(wn) have been shown to be linearly independent, so

a1r(w1) + . . . + anr(wn) cannot be equal to a row of zeros. Thus, there is a word

s such that

a1Pw1;s + . . . + anPwn;s 6= 0: (5.6)

This is a contradiction. Therefore,n = l and G is a square submatrix ofP which

has rankn.†

†We may interpret this in the following way: the process states of the forward and time-reversed processes have span sets of the
same dimension. Thus, the minimal GHMM presentations for the forward and time-reversed processes have the same number of
presentation states.
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Lastly, if n = dim (U) is infinite, then for anym we can find linearly independent

process statesA1; . . . ;Am. Proceeding as above, we can construct a submatrixG or

P with rank m. Thus there is no upper bound to the ranks of the submatrices ofP ,

so the rank ofP is infinite.�

The first part of the following result has essentially already been proven. The second

part establishes that minimal wordlists exist.

Proposition 5.1.5. For any processP, let n be the rank ofP . If n is finite, then

1. There exists an invertiblen � n submatrix ofP , and

2. If G is any such matrix, then the wordlistsW andS that produce it are minimal

for P.

Proof. In the proof of lemma 5.1.4, we constructed ann� l matrixG which had rankl,

and showed thanl = n. ThusG is a square matrix of full rank, and must be invertible,

which proves part 1. Note that the invertibility ofG is also part of what it means to

be minimal for a process. Thus, to prove part 2, we need only show thatW andS are

sufficient, becauseG is invertible. That is, we need only show thatr(w1); . . . ; r(wn)

span all rows ofP , and thatc(s1); . . . c(sn) span all columns ofP . As in the proof of

lemma 5.1.4, we will usec0(s) to denote the subcolumn ofP ,

c0(s) =

0
@
Pw1;s

...
Pwn;s

1
A: (5.7)

Thus,c0(sj) is thejth column ofG. Likewise, we will user0(w) to denote the subrow

r0(w) = (Pws1 ; . . . ; Pwsn), so thatr0(wi) is the ith row of G.

Let w be any word not inW . The set of subrowsfr0(w); r0(w1); . . . ; r
0(wn)g contains

n+1 vectors of lengthn, hence they are not linearly independent. Butr0(w1); . . . ; r
0(wn)

are linearly independent, sor0(w) must be a linear combination of them. That is, there

is a vectora such thataG = r0(w). BecauseG is invertible, we havea = r0(w)G�1;

that is, there is exactly one sucha.

Now let s be any word not inS, and consider the(n+ 1) � (n+ 1) submatrixM

of P given by

M =

�
G c0(s)

r0(w) Pws

�
: (5.8)
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We know that rank(P ) = n, soM must be singular. The firstn rows ofM are linearly

independent, so the last row must be a linear combination of them. That is, there must

be a vectorb such thatbG = r0(w) and bc0(s) = Pw;s. Now we have just shown that

there is a unique vectora such thataG = r0(w), and thisa clearly does not depend on

s. So we must havea = b, andac0(s) = Pw;s. Furthermore, this must hold for alls.

Thus the entire rowr(w) of P satisfies

r(w) = a1r(w1) + . . . + anr(wn); (5.9)

so we have shown that all rows ofP lie in the span ofr(w1); . . . ; r(wn).

A similar argument shows that the columnsc(s1); . . . ; c(sn) span all columns ofP .�

The next lemma completes the development of minimal wordlists for a process.

Lemma 5.1.6. Let P be any process such that the rankn of P is finite. If W andS

are minimal wordlists forP, then bothW andS have lengthn.

Proof. If W andS are minimal wordlists forP, thenG is an invertible submatrix of

P . The rank ofG is at mostn, and soW andS (which must have the same length

because invertible matrices must be square) have length at mostn. Furthermore, there

are sets ofn rows which are linearly independent, all of which must lie in the span of

the rows identified byW . SoW must have lengthn.�

We need one more lemma before we are ready for theorem 5.1.8. This one is a

calculation, most of which appeared in the proof of proposition 5.1.5.

Lemma 5.1.7. Given a processP and a matrixG defined by minimal wordlists, for

any w; s 2 X �, we have

r0(w)G�1c0(s) = P(sjw): (5.10)

Proof. As in the proof of proposition 5.1.5, let

M =

�
G c0(s)

r0(w) Pw;s

�
: (5.11)

M must be singular in such a way that there is a vectora satisfying

1. aG = r0(w), and

2. ac0(s) = Pw;s.
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And becauseG is invertible, we must havea = r0(w)G�1. Thus we have

r0(w)G�1c0(s) = Pw;s = P(sjw):� (5.12)

Note that if we letw = x ands = �, lemma 5.1.7 gives usr0(x)G�1c0(�) = P(�jx).

But c0(�) = ~1 andP(�jx) = 1 for any x, so for allx we have

r0(x)G�1~1 = 1: (5.13)

We have now completed the minor results concerning minimal wordlists for pro-

cesses, and are ready to state and prove the main result of this section. We will use�i

to represent a vector with a one in theith position and zeros in all other positions. This

symbol represents a row vector when it appears to the left of a matrix and a column

vector when it appears to the right of a matrix.

Recall that we have definedCk by Ck
ij = Pwi;ksj , and that if we have arbitrary

wordlists and any presentation forP, we haveG = HF andCk = HT kF . Note that

Ck satisfies the following:

Ck
ij = P(ksjjwi)

= P(kjwi)P(sjjwik)

= P(kjwi)Pwik;sj :

(5.14)

so the ith row of Ck satisfies

�iC
k = P(kjw)r0(wik) (5.15)

Theorem 5.1.8. If P is any process for which the dimension of the span ofU is

finite, andW andS are minimal wordlists forP, then
�
W;X ;

�
Bk
	
; 

�

is a GHMM

presentation forP, whereBk = CkG�1 and
 = (P(s1); . . .P(sn))G
�1.

Proof. To prove that
�
W;X ;

�
Bk
	
; 

�

is a presentation forP, we must show
P
k

Bk is

unit–sum and that
Bx~1 = P(x) for all x 2 X �. The first of these is a calculation. By

manipulating the definition of theBks, we get X
k

Bk

!
~1 =

 X
k

Ck

!
G�1~1: (5.16)
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We will work with the ith row alone, and use equation 5.15:

�i

 X
k

Bk

!
~1 = �i

 X
k

Ck

!
G�1~1 =

X
k

P(kjwi)r
0

(wik)G
�1~1: (5.17)

Applying equation 5.13, we get

�i

 X
k

Bk

!
~1 =

X
k

P(kjwi)

= 1:

(5.18)

Since this is true for eachi, we have shown that
P
k

Bk is unit-sum:

�P
k

Bk

�
~1 = ~1.

Showing that


Bx~1 = P(x) (5.19)

holds for allx is more involved. We will prove this by proving that for allx,


Bx
= P(x)r0(x)G�1: (5.20)

From this multiplying on the right by~1 and applying equation 5.13 gives us equation

5.19.

We will establish equation 5.20 by inductively concatenating symbols to form an

arbitrary wordx. The base case is trivial —B
 is the identity matrix,P(�) = 1,

and 
 = r0G�1 by definition. So what remains to be shown is the induction case:

given a wordx and a symbolk, assume that
Bx
= P(x)r0(x)G�1 and prove that


BxBk
= P(xk)r0(xk)G�1.

Consider thejth coordinate ofP(kjx)r0(xk): we have

P(kjx)r0(xk)�j = P(kjx)Pxk;sj

= P(kjx)P(sjjxk)

= P(ksjjx):

(5.21)

Replacing the right hand side using lemma 5.17, we have

P(kjx)r0(xk)�j = r0(x)G�1c0(ksj): (5.22)

Now, note thatCk
ij = Pwi;ksj is the ith row of c0(ksj), so that for alli,

�ic
0

(ksj) = Ck
ij = �iC

k�j: (5.23)
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Thus, we haveCk�j = c0
(ksj), and equation 5.22 becomes

P(kjx)r0
(xk)�j = r0

(x)G�1Ck�j: (5.24)

This holds for allj, so we have

P(kjx)r0(xk) = r0(x)G�1Ck: (5.25)

Next we multiply both sides byP(x) on the left andG�1 on the right and then simplify:

P(x)P(kjx)r0(xk)G�1
= P(x)r0(x)G�1CkG�1

P(xk)r0(xk)G�1
= P(x)r0(x)G�1Bk:

(5.26)

Finally, we use the induction hypothesis
Bx
= P(x)r0(x)G�1 and we get

P(xk)r0(xk)G�1
= 
BxBk; (5.27)

and the proof is complete.�

We summarize the constructive portion of the preceding development as follows.

Algorithm 5.1.9. Let P =

�
XZ;X;P

�
be a process satisfying the condition that the

span of its process states is finite-dimensional. A GHMM presentation forP may be

constructed by the following steps.

1. Construct the infinite matrixP with entriesPw;s = P(sjw).

2. Find a nonsingular minorG of P such that no other minor ofP has rank greater

than the rank ofG.

3. Build the history wordlistW = fw1; . . . ; wng by defining wi to be the word

associated with theith row of P . Build the future wordlists = fs1; . . . ; sng by

defining sj to be the word associated with thejth column ofP .

4. For eachk 2 X , construct the matrixCk with entriesCk
ij = P(ksjjwi).

5. For eachk 2 X , computeBk
= CkG�1.

6. Compute
 = (P(s1); . . . ;P(sn))G
�1.

As we will see in section 5.2, a reconstruction program based on this theoretical

framework has been developed. When it is given a set of word probabilities produced

by a GHMM it reliably constructs a GHMM which accurately reproduces those word

probabilities.
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We conclude this section with the converse of theorem 4.16, which says that every

process that has a GHMM presentation satisfies dim(U) <1. And if conjecture 6.1.1

is true, it is also a converse of theorem 3.6.1, which says the same thing for HMMs.

Corollary 5.1.10. Every process such that the dimension of the span of its reachable

process states is finite has a GHMM presentation.

Proof. Let P be any process for which the span ofU is finite dimensional. Lemma

5.1.4 tells us thatP has finite rank, and proposition 5.1.5 then establishes that finite

minimal wordlists exist. Theorem 5.1.8 gives us a GHMM presentation in terms of

these wordlists.�

Together, theorem 4.16 and corollary 5.1.10 prove the following characterization of

the class of processes represented by GHMMs.

Theorem 5.1.11.A process has a GHMM presentation if and only if the dimension of

the span of its reachable process states is finite.

5.2 Reconstruction from a Sample

Suppose we are given a finite sequence of symbols and we are told that it is a sample

of output from a processP. How can we construct a presentation for this process? This

is the problem ofreconstruction from a sample. We will consider samples which consist

of a single sample sequence of lengthL, such as

01101 . . . 10; (5.28)

and also samples which consist of several sample sequences of total lengthL, like

11110 . . . 11; 0111 . . . 0; and010110 . . . 001: (5.29)

It should be apparent to the reader that this problem is of a different character

than the problem of reconstruction from probabilities. Any given finite sample could

have been generated by any one of an infinite number of processes, so the problem

cannot be solved in any absolute sense. The best we can possibly do is to give a

presentation for a process which would be likely to generate this sample, and consider

this presentation to represent a new process that is an approximation toP. Thus, we



95

must heed statistical issues such as variances of parameter estimates, and how much

data is available. Further, because this is a question which can be asked for real data in

a practical setting, we will be interested in the computational issues of operation counts

and storage needs. These issues are discussed in subsections 2 and 3, following the

description of the reconstruction algorithm.

The Algorithm Our approach to reconstruction from a sample estimates conditional

probabilities of various words from the relative frequencies of those words in the data.

It then assembles these probabilities into a truncated (finite size) estimateP̂ of P .

From here we will proceed as in algorithm 5.1.9, substitutingP̂ for P and adapting the

algorithm so that it works with the finite size and imperfect estimation ofP̂ .

Our first task, then, is to construct̂P , for which we need an estimator and a pair of

wordlists. Letr andr0 be the lengths of the longest history and future words which we

will consider, respectively. Define acutpoint to be a position between to consecutive

symbols in a sample sequence which is at leastr symbols from the beginning andr0

symbols from the end of the sample sequence. That is, a cutpoint is a time at which we

know the immediate history and future words of lengths at leastr andr0, respectively.

For any pair of wordsw ands, let b be the number of cutpoints in all sample sequences

preceded byw, and leta be the number of cutpoints preceded byw and followed by

s. Our estimate forP(sjw), which we will denote�(sjw), is given by�(sjw) = a=b.

We use the conventions that�(sjw) = 0 if b = 0 and that ifw = �, b is the number

of cutpoints in the sample. This is simply a frequency substitution estimate, and it

has meanP(sjw). For any sample, and for any choice ofr, the estimates�(sjw) for

different pairs of wordsw ands are consistent with each other. (For example, for any

w, s, andx, �(wsjx) = �(wjx) � �(sjw).)

The wordlists we will use to construct̂P will not be minimal in any sense. We

will make them as large as possible to make sure they are sufficient. We are limited

by our data in what words we can include. (If we fixb, the variance of�(sjw) can be

shown to beP(sjw)(1�P(sjw))=b, so the estimate is of little value ifb is too small.

If a is too small, on the other hand, the standard deviation becomes large relative to

a=b even if b is large.) Thus, we will need to select a large set of words which occur

reasonably often. The precise method by which we do this may be rather ad-hoc, as
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all reasonable methods will produce similar sets of words. This is because they will

all include short words with well estimated probabilities and will exclude long words

with poorly estimated probabilities. The essential requirement is that a balance must be

struck between making the wordlists large and making the variances of the estimates

small. For simplicity, we will use the following heuristic: letl be the largest natural

number such thatK times the total number of words of length2l + 1 that occur in the

sample is less than the total number of cutpoints in the sample, for some fixed constant

K. This means that those words of length2l+1 that have at least one occurrence in the

sample occur an average of more thanK times. We choose both of our wordlists to be

the set of all words of lengthl or less that occur in the sample. LetY denote this set.

Now, with our wordlists chosen, we construct thejY j� jY j matrix P from history

wordlist Y and future wordlistY just as we constructedG from the minimal wordlists

W andS in section 5.1. That is, letP consist of one row and one column for each

word in Y , so that for allw; s 2 Y , P has an elementPw;s = Pw;s = P(sjw). P

contains those unknown true probabilities we want to estimate. We definejY j � jY j

matrix P̂ by replacing each conditional probabilityPw;s = P(sjw) with its estimate

P̂w;s = �(sjw) for all w; s 2 Y . Thus,P̂ is a stochastic matrix which may be thought

of as an estimate ofP .

Hopefully P̂ is large enough, by which we mean thatY contains sufficient history

and future wordlists for the processP. If it is not, then the presentation we produce will

represent only a poor approximation toP, and the available data is probably insufficient

to induce a good approximation. In this case, the estimates inP̂ have sufficiently

small variances, but some essential behavior of the process cannot be deduced from

the probabilities we have estimated. If we makeY larger, the probabilities we attempt

to estimate capture the essential behavior, but our estimates might have variance large

enough to make them meaningless. If we followed section 5.1 exactly, the next step

would be to find a minorG of P̂ which has the same rank aŝP . Because we have

chosenY as large as possible, we expect it to contain minimal wordlistsW andS as

proper subsets, and we expectP̂ to have a rank much less than its size.

However, this is probably not the case. IfY is big enough,P will have a rank

much less than its size; but̂P will not. Because eacĥPw;s is a random variable with

nonzero variance,̂P is a random matrix close to the singular matrixP . Generically,
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such a matrix will be nonsingular, but ill-conditioned. We wantG to have the same

rank asP and to be well-conditioned; because the rank ofP is unknown, we will make

G as large a well-conditioned submatrix ofP̂ as possible. For this reason, the problem

of finding a suitableG is itself an estimation problem.

We solve it as follows. We decomposêP by the QL algorithm with pivoting. The

QL decomposition is related by transposes to the more familiar QR decomposition, and

both are standard techniques in numerical linear algebra [29]. This algorithm builds a

basis for the row space of̂P , starting with an empty basis, and adding one vector at

a time. At each step, it computes the distance from each row vector to the subspace

spanned by the developing basis. It selects the row with the greatest distance, and adds

a vector derived from it to the basis, in such a way that the basis now spans the selected

row. As the reader may deduce, each row is selected at most once and the distances for

the selected rows decrease as more rows are selected.

As a by-product, the QL algorithm lists the rows of the matrix in the order in which

they were selected, and it gives the distance computed for each row at the time it was

selected. These distances tell us how significant each row is and thus, how significant

each basis vector is. We choose a threshold� for these distances and discard the rows

with distances less than this threshold. These discarded rows with their small distances

makeP̂ ill-conditioned rather than singular, and their contributions are likely to result

from stochastic (sample) variation rather than reflecting the true probabilities inP . How

we choose this threshold� is necessarily somewhat arbitrary. We use a second heuristic

that attempts to draw the threshold just above the largest distance resulting from the

variance of the estimateŝPw;s.

We build our history wordlistW by collecting the words that induce the rows we

keep. This step dictates the numbern = jW j of presentation states in the presentation

we will reconstruct. Finally, we apply the QR algorithm (related to QL by transposes) to

this edited matrix and select the columns with then largest distances. The result is that

we are left with a square matrixG and a wordlistS. The construction ofG guarantees

that it is invertible and well-conditioned.

From here, we construct the matricesCk such thatCk
ij = �(ksjjwi) and let

Bk = CkG�1 as in section 5.1. And if we letpi = �(sij�) for each wordsi in the future

wordlistS, we can set
 = (p1; . . . ; pn)G
�1. The same calculations we used in the proof
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of theorem 5.1.8 show that
�
W;X ;

�
Bk

	
; 

�

satisfies all the necessary conditions and

is in fact a Proto-GHMM. This finishes the construction of the presentation, which we

summarize as follows.

Algorithm 5.2.1. If we are given one or more sample sequences of output from a

processP =

�
XZ;X;P

�
for which P is unknown, we may construct a Proto-GHMM

W;X
�
Bk

	
; � which approximately representsP by the following steps.

1. Construct a matrix of estimated word probabilities. This may be done as follows.

a. Fix a numberK and choose the largestl such that each word of length2l + 1

occurs an average ofK times.

b. Let Y be the set of all words of lengthl or less.

c. For eachw; s 2 Y , compute

P̂w;s =
the number of timesws occurs
the number of timesw occurs

: (5.30)

2. Find a nonsingular, well-conditioned minorG of P . One way to do this is as follows.

a. Perform a QL decomposition of̂P to compute a significance for each row.

b. Fix a threshold� and discard all rows of̂P with significance less than�. Let

n be the number of rows remaining.

c. Perform a QR decomposition of the remainder ofP̂ and select then columns

with the highest significance. These subcolumns ofP̂ comprise the matrixG.

3. Let the history wordlistW be the set of words associated with the rows ofG, and

let the future wordlistS be the set of words associated with the columns ofG.

4. For eachk 2 X , construct the matrixCk with entriesCk
ij = �(ksjjwi) = P̂wi;ksj

5. For eachk 2 X , computeBk = CkG�1.

6. For eachsi 2 S, compute an estimate�(si) of P(si).

7. Compute
 = (�(s1); . . . ; �(sn))G
�1.

This computes all the parts of a Proto-GHMM
�
W;X ;

�
Bk

	
; 

�
. If this Proto-GHMM

is valid, it is a GHMM presentation for a process which has word probabilities close

to those ofP.

This construction is not completely satisfactory, however. We cannot assert that
�
W;X ;

�
Bk

	
; 

�

is a GHMM because we have not shown that it is valid. In fact it
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is possible to construct a sample from which a reconstruction yields an invalid Proto-

GHMM. As mentioned in section 4.1, determining whether or not a given presentation

is valid is quite difficult. We will address this further in section 6.2.

Statistical Considerations Algorithm 5.1.1 produces a Proto-GHMM as a func-

tion of a sample. If the sample is a random sample of the output from a processP,

the sample is a random variable, and so the Proto-GHMM is also a random variable.

Thus the reconstruction algorithm, together withP and the length of the sample, induce

a distribution on the space of Proto-GHMMs.

We would like to be able to describe this distribution, but doing so is quite

complicated. One of the difficulties is describing the distribution ofP̂ . Each entry

�(sjw) in P̂ has the formX

Y
, whereX appears to have a binomial distribution, with

parameter� = P(sjw) andY trials, andY is the random variable describing the number

of occurrences of the wordw. However,X may not be binomial, because occurrences

of s may not be independent of previous occurrences. Similarly, the distribution of

Y cannot be described easily. Moreover, entries ofP̂ are not independent. Although

it may appear that the joint distributions of some groups of entries may be a function

of a multinomial distribution, this is not the case. Our “trials” are not independent,

as they come from examining pieces of the sample sequences, and these pieces may

overlap. For example, if the alphabet isX = f0; 1g and the sample consists of a single

sequence, then the numbers of occurrences of01 and 10 may differ by at most one.

This complicates any description of the distribution ofP̂ . In addition, even the size of

P̂ depends on the sample. Although it may be possible to characterize the distribution

of P̂ in a tractable way, doing so is beyond the scope of this dissertation.

If we were able to express this distribution reasonably, we would manipulate it

further in order to derive the distribution it induces on the set of all Proto-GHMMs.

To do this, we would look at the output of the QL algorithm as a random variable and

examine its distribution. Continuing in this way, we would derive distributions forG,

the Cks, and eventually for
 and theBks. However, we cannot proceed with this

program because we cannot describe the distribution ofP̂ . Most of the steps would be

laborious, and probably not very interesting.
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The distribution of the output of QL raises two interesting questions in mathematical

statistics. First, given a random matrix̂A which is the sum of an unknown singular matrix

A and a random matrix (with zero mean and some assumptions about its variance), how

can we best estimate the rank ofA? Second, how ill-conditioned canA be — or how

small must the variance of the random matrix be — so that we can reliably estimate

the rank ofA?

Computational Issues The computational issues for the reconstruction algorithm

are the numbers of operations and the storage requirements of this algorithm. As is

common practice, we will be concerned only with how these quantities scale — their

order — and not with precise estimation.

First, we need notation for the parameters of the problem. We have usedL as the

length of the sample, andm = jXj as the size of the alphabet. LetY be the large

wordlist used to construct̂P , and letN be the number of words inY — this means that

P̂ is N �N . Let l be the length of the longest word inY , and letn be the number of

words in the minimal wordlists we derive. These parameters are not all independent; we

must haven < N and may reasonably expect, assuming the entropy rate of the process

is close to the maximum possible, thatl � logmN .

To construct the estimates, we need to count the number of occurrences of each

word of the formws for w and s in Y . To do so, we step through the sample. At

each step, and for each length up to2l, we identify the word of that length which

starts at our present location in the sample, and add one to that word’s count. (This

technique requires minor adjustments involving the ends of sample sequences to produce

the estimates exactly as we defined them in terms of cutpoints on page 95.) The number

of locations is essentiallyL, and the number of words at each location is2l. The work

to be done for each word may be organized so that it has constant time. Thus, the

number of operations required to do the estimation has orderO(lL).

The storage requirements of estimation are simple. To estimateP̂ , we must store

one counter for each ofN2 words. In addition, the matricesCk depend on the counts

for words of the formwks, with w ands in Y andk 2 X . It is convenient to do the

necessary counts for words of length up to2l+1 at the same time. This does not change

the order of the number of operations, and it increases the storage toO
�
N

2
m
�
.
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Constructing minimal wordlists, and a basis for the mixed states, is the next stage

of reconstruction. The QL algorithm we use to do this requiresO
�
N3
�

operations and

O
�
N2
�

storage. In practice, this is the most time-consuming part of the algorithm.

ComputingG�1 takesO
�
n3
�

operations, which is dominated byN3 and so may be

ignored.

Finally, the algorithm constructs the matricesCk and performs the multiplications

CkG�1. There arem of these multiplications, each a product ofn � n matrices, so

this stage requiresO
�
n3m

�
operations andO

�
n2m

�
memory. This last quantity is

dominated by the storage requirements of the estimation stage, and we will ignore it.

Thus, the entire reconstruction algorithm requires

O
�
lL +N3 + n3m

�
(5.31)

operations andO
�
N2m

�
memory.

Of the parameters in expression 5.31, onlyL andm are known in advance. The

number of statesn is difficult to estimate — indeed, a good part of the work of the

reconstruction algorithm is in estimating it. However,m is usually small enough andn is

usually sufficiently smaller thanN thatn3m is small compared toN3. Thus, the number

of operations does not scale strongly with the eventual number of presentation states.

With the heuristic we used to chooseY , the remaining two parameters are related

by l � logN . This will necessarily be true of any method for choosingY , since the

number of possible words of lengthl or less is
�
ml+1

� 1
�
=(m� 1) � ml. Thus, l

changes slowly compared toN . Because of this and because expression 5.31 depends

linearly on l but on the cube ofN , we see thatN is far more important to the scaling

of the operation count.

The heuristic forY (page 96) gives us a way to estimatel andN . It choosesl so that

the words of length2l+1 occur an average ofK times. There are aboutL opportunities

for such words to occur, so there must be aboutL=K such words. Assuming allm2l+1

possible words of length2l + 1 appear in the sample, we havem2l+1
� L=K, or

ml
�

�
L

K

� l

2l+1

�

r
L

K
: (5.32)

Taking the basem of both sides gives us the approximationl � log
m

p
L=K . Assuming

all possible words of lengthl occur in the sample, the left-hand side of equation 5.32 is
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an estimate of theN produced by the heuristic, so we haveN �
p
L=K. With these

substitutions, the expression 5.31 becomes

O

 
L log

m

L

K
+

�
L

K

�3

2

+ n3m

!
(5.33)

and we see that the reconstruction algorithm takes orderL
3

2 operations. Similarly, it

requires memory ofO(mL=K).

We conclude this computational analysis a few final comments. First, recall that

there is more than one possible choice of the heuristic for selectingY . The conclusion

we have just reached, that the reconstruction algorithm takes time of orderL
3

2 , depends

explicitly on the choice. Other choices may give higher or lower exponents, and may

make the algorithm as a whole better or worse. We have no reason to believe that the

heuristic we have used is a particularly good one.

Second, it is worth mentioning the time and memory required by the forward-

backward algorithm because the reconstruction algorithm will inevitably be compared to

it. The forward-backward algorithm operates by repeatedly making small adjustments

to a presentation. It needsO
�
n2L

�
operations per iteration and usesO

�
nL+ n2m

�
storage overall. There are variants that take fewer operations, but these do not appear to

be widely used [30,31]. The number of states initially selected is likely to be larger than

the n estimated by the reconstruction algorithm because this number must be chosena

priori and because it is usually necessary to use more states than are mathematically

needed in order to get an HMM which describes the data well. Additionally, the forward-

backward algorithm requires an unspecified number of iterations to converge. The author

knows no way to estimate how this number of iterations scales with the size of the data

set or the complexity of the process.

Finally, the reconstruction algorithm, as presented here, should be thought of as a

mathematical draft, rather than a finished program. At this time it has been implemented,

but the implementation cannot be considered an optimal coding. There has not been a

systematic search either for a good heuristic forY or for the heuristic used to choose

the threshold�. And there has not been any systematic comparison of the results of this

algorithm to those of the forward-backward algorithm.

When the existing implementation is given actual probabilities (that is, we apply QL

to P instead ofP̂ ) for a process defined by a GHMM, it reliably produces a minimal
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GHMM which is, to machine precision, equivalent to the original. When it is given a

sufficiently large sample of the output from a GHMM, it typically produces a GHMM that

represents a process with word probabilities similar to those of the original GHMM. It is

prone to two types of failures, however. In one, it produces a GHMM with an excessive

number of states because the threshold� is too low. In the other, it produces an invalid

Proto-GHMM. The reconstruction algorithm needs more work on the implementation

details in order to make it widely usable, but the overall framework has a solid theoretical

grounding and may, in time, replace the forward-backward algorithm.



104

6 Conclusions and Further Directions

In the preceding chapters, we have introduced process states, described the process

states of an HMM, and shown that the span of an HMM’s process states is a finite-

dimensional vector space. We have introduced GHMMs, shown how to tell when pairs

of GHMMs represent the same process, and shown how to construct a minimal GHMM

equivalent to a given one. Finally, we have given procedures for constructing a GHMM

presentation for a process either from word probabilities or from a sample of output. We

will conclude this dissertation by making some observations and by suggesting some

directions for further investigation. We will discuss the viewpoint which led to this

work, the problem of GHMM validity, and the question of how to find an HMM that

is equivalent to a given GHMM. We will end by discussing the implications of this

dissertation for the broader field of modeling complex systems.

6.1 Process states and presentations

The results of this dissertation have followed from a few ideas. The first of these is

that the process is more fundamental than the presentation which represents it. This

idea is present in the dynamical systems literature; see [32,33,11]. The second is

that a process has states which are inherent to it, and distinct from the states of any

presentation. The third is a question: What are the process states for a process in terms

of a presentation that defines it? And the fourth is the observation that if a process has

an HMM presentation, then its process states lie in a finite-dimensional vector space.

Together, these ideas lead to a viewpoint that is useful for the study of the processes

generated by HMMs.

Some previous work on HMMs has defined the processes represented by HMMs,

usually in discussing the problem of HMM equivalence [2]. However, these works have

kept the focus on the HMMs’ presentations themselves, and have worked with processes

very little. In this dissertation, on the other hand, the focus is on the processes, and

HMMs are of interest primarily as convenient representations of processes. We justify

this shift in focus, and the accompanying shift in viewpoint, with the assertion that

processes are the more fundamental objects. The process, not the presentation, is almost

always the object of the real focus. (There may be a few applications in which a
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phenomenon being studied has a known structure, and the presentation states may be

chosen so as to have some inherent reality of their own. But in any other use of HMMs,

the presentation states themselves have no meaning and the HMM is being used solely

as a representation of a process.)

A similar contrast between this dissertation and previous work on HMMs can be

made for process states and presentation states. In previous work on HMMs, the word

state is used exclusively to refer to presentation states. Much of this work uses the

vectors we have namedmixed states[1,3] without referring to them as states of any sort.

(The termsmixed state, process state, andpresentation statewere coined by the author

for this work, so they could not have been used in previous works. Mixed states have not

been named; process states have been calledcausal states[11], and presentation states

have simply been calledstates.) In some works — for example, [1] — it is clear that

the authors were aware that mixed states render the future conditionally independent

of the past.

Beginning with the process, we are led to define the process state, because process

states are inherent to the process, and presentation states are not. And later, when

we introduce HMMs, it is natural to ask what their process states look like. With

this background, the mixed states become objects with meaning — conditional future

distributions — instead of merely being intermediate results in a computation. Thus

HMMs, which we use as a convenient way to represent processes, have given us a

convenient way to represent process states. From this we see that an HMM’s process

states lie in a finite-dimensional vector space, and we see the presentation states in their

true role as basis vectors for this space.

This viewpoint can lead us in other directions as well. Process states are useful

for calculating various statistics. The entropy of a process, for instance, may readily be

computed from an HMM presentation by use of mixed states, but not directly from the

presentation states. This was done in [1,34,35]

The author has work in progress concerning the computation of other statistics

— notably statistical complexity and excess entropy [9,11] — and a classification of

processes with HMM presentations. It appears that this perspective will be a useful one

for any research involving HMMs.
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6.2 Generalized Hidden Markov Models

Many of the results in this dissertation are stated for Generalized Hidden Markov

Models instead of Hidden Markov Models. For several reasons, however, the reader may

prefer to work with HMMs. Certainly HMMs are more familiar, and the reader is likely

to be more comfortable with them than with GHMMs because of their negative entries.

There is no question of validity with HMMs — every HMM is valid. Also, HMMs can

be interpreted by examining the transition matrices, though such interpretation may be

suspect unless equivalent HMMs receive similar interpretations. And finally, there are

questions which make sense for HMMs but not for GHMMs, such as, What presentation

state is the HMM most likely to be in at timet? (The meaningfulness of the answer is

questionable, as discussed above, unless individual states have intrinsic meanings.)

We ask the reader to work with GHMMs for the following reasons. First, when the

presentation states are correctly understood as the basis elements for the space containing

the process states, the entries in the transition matrices are understood to be coordinates

and not probabilities. With this in mind, restricting vectors to the positive cone of the

space, in which all coordinates are positive, is unnatural and arbitrary. Second, the

results of chapters 4 and 5 use the tools of linear algebra. Use of these tools becomes

much more difficult if it is necessary to stay entirely in the positive cone. Furthermore,

it is possible — though no examples are known to the author — that there are processes

which may be represented with fewer states as GHMMs than as HMMs, or that processes

exist that can be represented as GHMMs but not as HMMs.

Determining whether or not a Proto-GHMM is valid — given
�
V;X ;

�
T k
	
; �
�

such

that � and
P

k

T k are unit-sum, is�Tx~1 � 0 for all wordsx? — seems to be a hard

problem. If we simply generate random output, negative “probabilities” of symbols

usually show up quickly or not at all. But the absence of negative “probabilities” up to

any finite time does not prove that the Proto-GHMM is valid.

We might try the following naive algorithm for testing validity. If we order the set

of all finite words, we can compute the probability of each word in turn. When we

reach a negative probability, we conclude the Proto-GHMM is invalid and halt. But if

it is valid, the process never halts.

The question of validity can be phrased in the following way. Does the set of
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reachable process states intersect the set of vectorsv for which vT
k~1 < 0 for any

symbolk? The latter of these sets is a finite union of half-spaces, so the answer does

not change if we replace the former set with its convex hull. This suggests the following

approach: we take a queue of mixed states, initially containing only the stationary vector

� and a convex setS, initially empty. For each vectorv that we remove from the queue

and for each symbolk, we compute the “probability”vT k~
1 and halt if it is negative.

Then we generate the mixed stateu = N
�
vT

k
�

which is the result if the process is

in the process state corresponding tov and then emitsk. If u is not in S, we replace

S with the convex hull ofS [ fug and addu to the queue. We continue in this way

until the queue is empty.

In essence, this algorithm constructs a subset of the set of all words such that if

none of the words in the subset has negative “probability,” then the Proto-GHMM is

valid. However, this algorithm has the same problem as the naive algorithm. For some

GHMMs it will never stop because this subset is still infinite — the queue may never

be empty. For the simple nondeterministic source we saw in section 3.5, for example,

there is an infinite sequence of words all of which lie outside the convex hull of all

the preceding words.

No finite method for generating the convex hull of the set of reachable process

states is known, though it may be possible to develop such a method based on linear

programming. The work of Heller, which gives results for functions of finite Markov

Chains in terms of convex polygonal cones, may contain part of a solution [21]. Indeed,

it is not known whether or not this set can always be finitely described. Thus, we do

not know of a practical method for testing whether or not a Proto-GHMM is valid.

6.3 Converting GHMMs to HMMs

There is another aspect of our understanding of GHMMs which is unsatisfactory.

If we have a GHMM, is there an HMM which is equivalent to it? If so, is there an

equivalent HMM that has the same number of states as the GHMM? These questions

are open, but in light of the present understanding, we offer the following conjectures.

Conjecture 6.3.1. Given a GHMM, there is an HMM that is equivalent to it.
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Conjecture 6.3.2. Given a GHMM, there is an HMM that is equivalent to it with the

same number of presentation states.

For a slightly different formulation of GHMMs — which output from states instead

of from transitions — Balasubramanian [8] has asserted that conjecture 6.3.1 holds but

conjecture 6.3.2 does not. A similar assertion is implied in [7], but neither paper gives

any proof or any counterexamples that apply to GHMMs as defined here. Darmadhikari

and Heller state results for “regular” functions of a Markov Chain that the author has

not applied to GHMMs [10,21]. One or both of these results may show that conjecture

6.3.2 is false. The author of this dissertation expects that both conjectures hold, but

has not found a proof.

Whether or not conjectures 6.3.1 and 6.3.2 hold, there are GHMMs for which

equivalent HMMs exist. We can construct such GHMMs by conjugating HMMs, or

by reconstructing from probabilities. When an equivalent HMM exists, how can we

find it? Because this is a matter of converting from a generalized HMM to an ordinary

HMM, we will call this the degeneralization problem.

There is reason to believe that the degeneralization problem is nontrivial. Suppose,

for instance, we have an algorithm that will degeneralize any GHMM for which an

equivalent HMM exists. If we apply this algorithm to an invalid Proto-GHMM, it must

fail. If we apply it to an arbitrary Proto-GHMM, and it succeeds, we have shown that

the Proto-GHMM is valid. Thus, if we have a degeneralization algorithm we have a

way to establish the validity of a substantial collection of Proto-GHMMs. Furthermore,

if conjecture 6.3.1 is true, the only way this degeneralization algorithm can fail is if the

Proto-GHMM is invalid. In this case, our degeneralization algorithm serves as a general

test which determines the validity of Proto-GHMMs.

We can give a necessary and sufficient condition for a GHMM to have a HMM

equivalent to it, but this condition is so close to restating the definition that it has little

value. Given a GHMM, there is an HMM equivalent to it if and only if there exists a

convex setC in the space containing the mixed states with a finite number of vertices

such that

1. the initial distribution� is in C, and
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2. for all verticesv and for all symbolsk the vectorvT k lies in the convex hull of

C [

n
~0
o

.

If C exists, then the vertices ofC are the presentation states of an HMM equivalent to

the given GHMM. As with validity, the problem is finding the convex set.

No degeneralization algorithm exists at present, but one possible approach is known.

If we conjugate by a carefully chosen matrix, we can make any particular entry in any

given transition matrix nonnegative, with the possible cost of making some other entry

negative. It may be possible to choose a matrix that makes all entries simultaneously

nonnegative. The task of finding such a matrix may be approached as a maximization

task: maximize the sum of the negative entries of the matricesAT kA�1 over the space

of n � n stochastic invertible matricesA.

General multidimensional maximization techniques fail to find suitable matrices even

when they are known to exist. This probably occurs because these techniques search for

local maxima and the space of invertible matrices is disconnected. However, it may be

possible to develop a global technique specialized to the form of this specific problem.

Further, and of particular interest if conjecture 6.3.1 holds but conjecture 6.3.2 fails,

it is possible to add states to a GHMM by an operation similar to conjugation. Ifv is

a stochastic row vector of lengthn, andh is an arbitrary column vector of lengthn,

consider then � (n+ 1) matrix

A = (I � hv h ) (6.1)

and the(n+ 1) � n matrix

B =

�
I

v

�
: (6.2)

Note that bothA andB are stochastic and their product isAB = I. If
�
V;X ;

�
T k
	
; �
�

is a GHMM and we let� = �A, and for allk we letUk
= BT kA, then for any suitable

V 0,
�
V 0;X ;

�
Uk

	
; �
�

is ann+1–state GHMM which is equivalent to
�
V;X ;

�
T k
	
; �
�
.

Thus, if we cannot find ann–state HMM equivalent to our original GHMM, we can

search for one with more thann states. A solution to the degeneralization problem may

well emerge from these techniques.



110

6.4 Reconstruction

The reconstruction algorithm is the crowning achievement of this dissertation. The

algorithm is novel and it is not a variation on an older algorithm. It operates directly,

without requiring an initial configuration and without making iterative adjustments to

the model. The connection between the source data and the resulting Proto-GHMM

through the probability estimates is natural and clear.

The practical implementation of the reconstruction algorithm (that builds GHMMs

from samples) shows considerable promise, but needs further development in order to

be widely useful. As discussed at the end of section 5.2, this work includes looking

for better heuristics, considering other possible estimators, a proper statistical study, and

general fine-tuning.

6.5 Last remarks

The problem of HMM (or GHMM) reconstruction may be thought of as a “complex

estimation problem” or a problem of “model inversion with uncertainty.” That is, we

want to take a random sample and build a model from it. But what we have is a

class of models and a method of generating random samples from a model in this

class. However, the method of generating samples, while not complicated, is involved

enough that there is not a practical way to “invert” it. There are many model classes

to which this description applies, including a number which have applications: Hidden

Markov Models, neural networks, and a number of less well known model classes used

in pattern recognition.

In recent years, there has been a proliferation of work attempting to solve these prob-

lems by iterated improvement. Forward-backward and back propagation, for HMMs and

neural nets, respectively, are probably the oldest of these. Many of these approaches use

versions of the expectation-maximization (EM) algorithm, which is a general algorithm

that may be specialized to address many situations. Others use stochastic optimization al-

gorithms, such as simulated annealing and genetic algorithms. Most of these approaches

have similar failings: they get stuck in local optima, they may depend strongly on the

initial (random) model, and they often require larger models than is appropriate to get a

decent answer. Nonetheless, these approaches are being used because these algorithms
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provide a way to get some sort of answer to questions that previously would have been

intractable. It is not inappropriate to describe these methods as crude tools by which

one can bring a computer to bear on modelling problem.

This dissertation has taken a different approach. We began by attempting to better

understand HMMs on a theoretical level. This led to an attempt to characterize the

class of processes which could be represented by HMMs. With the better theoretical

understanding we had gained, a new approach to the reconstruction problem became

accessible. Although it remains to be seen how the reconstruction algorithm will serve

in practice, there is reason to believe that in time it may replace forward-backward as

the main method by which HMMs are constructed from the sample data.

It is the author’s contention that this experience is applicable to other problems

of model inversion with uncertainty. It is undoubtedly easier to implement an iterative

improvement algorithm than to do this sort of theoretical study, so iterative improvement

schemes may remain useful in the study of new model classes. After a model class has

proved its utility, however, it is valuable to gain the theoretical understanding necessary

to develop more direct algorithms.
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Appendix A Notation

Processes
X Alphabet (set of symbols), canonicallyf0; 1; . . . ;m� 1g.

XZ The set of bi-infinite sequences of symbols inX .

X�, X+ The history and future sequence spaces, which are sets of
semi-infinite sequences.

x A bi-infinite sequence, that is, an element ofXZ.

x
�, x+ Semi-infinite history and future sequences, which are elements of

X� andX+ respectively.

xi ith element in sequencex, x+, or x�.

X � The set of all (finite-length) words of symbols inX .

w, s Words inX � or subsequences, especially history suffixes, which
are subsequences with end time�1, or next words, which are
subsequences with end time0.

jwj The length of a word or subsequencew.

Aw The set of (bi-infinite) sequences which match the wordw.

X The�-field onXZ generated by the cylinder sets.

F The future�-field, subset ofX.

H The history�-field, subset ofX.

P A probability distribution on measureable space
�
XZ;X

�
.

P A process, which is a measure space
�
XZ;X;P

�
in whichP is

stationary.

N The set of bad histories, on which we do not condition.

R The set of non-null history suffixes — that is, the set of words
with positive probability — on which conditioning is well defined.

P(�js) The conditional distribution on the future induced by a words. If
s 2 R, P(�js) is a reachable process state.

P
�
�jx�

�
The conditional distribution on the future induced by a history
x
�. If s 62 N , P

�
�jx�

�
is an infinitely preceded process state.

A A process state, which is a conditional distribution on the future
induced by conditioning on a history, a history suffix, or both.
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Hidden Markov Models
V Set of presentation states or Markov chain states.

jV j The size — that is, number of elements — ofV .

� The initial distribution of a Markov chain or an HMM, which we
always take to be stationary.

P The transition matrix of a Markov Chain(V; P; �).

i, j Indices which refer to specific presentation states.

k An index which refers to a symbol in the alphabetX .

T k A joint matrix of a Hidden Markov Model, also sometimes
referred to as a transition matrix. Note that the superscriptk is an
index, not an exponent.

T k
ij

An entry in a joint matrix: if the HMM is in the presentation
statei, T k

ij is the probability that the HMM will make a transition
to presentation statej and emit the symbolk.

Tw For any wordw = w1 . . .wn, Tw is the productTw1Tw2 � � � Twn.
�
V;X ;

�
T k

	
; �
�

A Hidden Markov Model. The of matrices
�
T k

	
contains one

matrix for each symbolk 2 X .

B The output matrix for an HMM which emits symbols from states
rather than from transitions. Such an HMM may be converted to
joint matrix form by assigningT k

ij = PijBjk.

~1 A column vector containing all1s. Size is implied by context.

N The normalization operator: ifv is a row vector,N(v) is v

multiplied by a scalar so that its entries sum to1.

�(s), �
�
x
�

�
The mixed state induced by a history suffixs 2 R or a history
x
� 2 N . For s, we have�(s) = N(�Ts).

�, � Mixed states of an HMM, which are row vectors satisfying
�~1 = 1.

W The space of all signed measures on the future.

U The span of the reachable process states, which is a subspace of
W.



114

Generalized Hidden Markov Models
M Conjugation matrix, which is an invertible unit-sum matrix.

H, F History and future vector spaces, which are spaces of row and
column vectors.

KF The subspace ofH consisting of all vectors which are sent to zero
by multiplication on the right by every vector inF .

KH The subspace ofF consisting of all vectors which are sent to zero
by multiplication on the left by every vector inH.

H A matrix, the rows of which are mixed states and form a basis for
H=KF .

F A matrix, the columns of which have the formT s~1 and form a
basis forF=KH.

W , S History and future wordlists. The rows ofH are the mixed states
induced by the words inW , and the columns ofF are the vectors
T s~1 for the wordss 2 S.

Bk A joint matrix for the standard presentation.Bk solves
HT kF = BkHF .


 The initial vector of the standard presentation.
 solves
�F = 
HF .
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Reconstruction
qi The ith word in a fixed ordering ofX �.

P TheN�N matrix with entriesPij = P(qjjqi).

P The jW 0j � jS 0j truncation ofP containing those rows and
columns which correspond to words in the large wordlistsW 0 and
S 0 respectively.

�(sjw) The frequency-count estimate ofP(sjw) estimated from sample
data.

P̂ A jW 0j � jS 0j approximation toP estimated from sample data.

r(w) The row ofP which corresponds to the wordw.

c(s) The column ofP which corresponds to the words.

r0(w) The sub-row ofr(w) containing only those columns
corresponding to words inS

c0(s) The sub-column ofc(s) containing only those rows corresponding
to words inW .

G The submatrix ofP containing those rows and columns which
correspond to words in the wordlistsW andS respectively.G is
normally chosen to be invertible.

Ck The jW j � jSj matrix with entriesCk
ij = P(ksjjwi).

Bk A joint matrix of the reconstructed presentation, given by
Bk

= CkG�1
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Appendix B Selected Probability Theory

This appendix outlines selected elements of probability theory that are used in this

dissertation. For a thorough presentation of this material, see any text on the subject,

for example [14,13].

B.1 Kolmogorov’s Extension Theorem and Process Existence

The purpose of this section is to prove the following theorem, which is our tool for

showing that processes exist.

Theorem B.1.1. Given a mapf : X
� ! [0; 1] statisfying

1. f(�) = 1, and

2. For all wordsw 2 X �, f(w) =
P

z2X

f(zw) =
P

z2X

f(wz),

there is a unique (stationary) processP =

�
XZ;X;P

�
such that for allw 2 X �,

P(w) = f(w).

This result is derived from Kolmogorov’s extension theorem, which appears in the

literature in several forms. None of the forms the author has seen, however, can be

transformed into the form we need without an unreasonable amount of manipulation,

thus this section. We will useRn andRN to refer to the Borel�-fields onRn and

R
N, respectively.

Theorem B.1.2. (Kolmogorov’s Extension Theorem[13 p. 428]) Suppose that

we are given probability measures�n on (R
n;Rn

) that are consistent; that is,

�n+1((a1; b1]� . . .� (an; an]�R) = �n((a1; b1]� . . .� (an; an]): (B.1)

Then there is a unique probability measureP on
�
R
N;RN

�
with

P(xjx 2 (ai; bi]; 1 � i � n) = �n((a1; b1]� . . .� (an; bn]): (B.2)

There are three diferences between the probability measure
�
R
N;RN;P

�
shown to

exist by Kolmogorov’s Extension Theorem and a stationary process
�
XZ;X;P

�
. We

will need to surmount all three to prove theorem B.1.1. First,R
N is a product of copies

of the real numbers andXZ is a product of copies of the finite discrete setX . We will
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deal with this by an injective mapg : X ! R. Second, and most troublesome, elements

of RN are semi-infinite sequences and elements ofXZ are bi-infinite sequences. Our

trick for working around this difficulty makes use of a bijective maph : N ! Z, and

involves considering the integers in the order0;1;�1; 2;�2; . . .. This has an unfortunate

effect on the readability of the proofs. Last,P need not be stationary nor does it need

to satisfy any similar condition. We will use Kolmogorov’s Extension Theorem to show

thatP exists, and then prove separately that it is stationary.

Before we begin, we will introduce several functions and some notation. First, we

defineg to be any injective mapg : X ! R. It will not matter what the images of

particular symbolsx 2 X are, as long as they are different.

Second, we define the bijective maph : N ! Z mentioned above by

h(n) =

�
n=2 n even
(1 � n)=2 n odd:

(B.3)

Its inverse is given by

h�1(y) =

�
2y y > 0

1� 2y y � 0:
(B.4)

In effect, h alternately returns positive and negative integers. It maps1; 2; 3; 4; 5 to

0; 1;�1; 2;�2 respectively, andh�1 maps�2;�1; 0; 1; 2 to 5; 3; 1; 2; 4 in that order.

Several more functions are defined in terms ofh: J(n) is a set-valued function

J(n) =
�
y 2 Zjh�1(y) � n

	
, andd(n) andc(n) are respectively the largest and smallest

values inJ(n). Because we will useJ(n) primarily as an index set, we will consider

its elements in a particular order, namely increasing numerical order. These functions

can be characterized by the following equations:

c(n) = min(h(n); h(n� 1)) =

�
2�n

2
n even

1�n

2
n odd

(B.5)

d(n) = max(h(n); h(n� 1)) =

�
n

2
n even

n�1

2
n odd

(B.6)

J(n) = fc(n); . . . ; d(n)g: (B.7)

The reader may wish to verify a few facts which will be needed presently. Ifn is even,

we haveh(n+ 1) < 0, c(n+ 1) = c(n)� 1 andd(n+ 1) = d(n). If n is odd, we have

h(n+ 1) > 0, c(n+ 1) = c(n) and d(n+ 1) = d(n) + 1.
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Now we move on to sets of subsequences. We will useX
[a;b] to denote the set

of all subsequencesxa . . .xb with start timea and end timeb. Similarly, we will use

X
J(n) to denote the set of all subsequencesxc(n) . . .xd(n) with start timec(n) and end

time d(n). BecausejJ(n)j is always equal ton, X J(n) is a product ofn copies ofX .

In fact, X J(n) is identical toX n except that the coordinates ofX J(n) are labeled with

c(n); c(n+ 1); . . . ; d(n) instead of1; 2; . . . ; n. Thus, ifn is odd,X J(n+1) = X J(n)�X ,

whereas ifn is even,X J(n+1) = X � X J(n).

In addition, we need to define a function that takes subsequences inX J(n) to

subsequences inRn and a closely related function that takes bi-infinite sequences in

XZ to semi-infinite sequences inRN. We will denote both of these functions byH.

They will reorder their argument’s coordinates and map them intoR. If x 2 X J(n),

then there is a subsequencev 2 Rn that satisfiesvi = g
�
xh(i)

�
for all i 2 1; . . . ; n. We

defineH : X J(n) ! R
n by H(x) = v. For example, ifx = x

�1x0x1x2 2 X
J(4), then

H(x
�1x0x1x2) = g(x0)g(x1)g(x�1)g(x2): (B.8)

For an arbitraryx = xc(n) . . .xd(n) 2 X
J(n), we have

H
�
xc(n)xc(n)+1 . . .xd(n)

�
= g(x0)g(x1) . . . g

�
xc(n)+d(n)+1

�
: (B.9)

Similarly, if x 2 XZ, then there existsv 2 RN such that for alli 2 Z, the coordinate

vi satisfiesvi = g
�
xh(i)

�
. We defineH : XZ ! R

N by H(x) = v. Neither version of

H is invertible, becauseg is not invertible. However, they do have set inverses. For

instance, ifA � R
n thenH�1(A) =

n
x 2 X J(n)jH(x) 2 A

o
:

Next, we define anindexed product setS to be a subset ofX [a;b] of the form

S = Sa � . . .� Sb, whereSi � X . If S = Sa � . . .� Sb is an index product set, and

S 0 � X , thenS � S0 is an indexed product set contained inX [a;b+1]. We define the

cylinder mapCyl which takes indexed product sets to sets of sequences as follows:

Cyl(S) =
n
x 2 XZjxi 2 Si; a � i � b

o
: (B.10)

That is,Cyl(S) is the set of all sequences inXZ that match a subsequence inS. We

will also define the shift mapT on indexed product sets by

T (S) =
n
x 2 X [a�1;b�1]jxi 2 Si+1; a � i+ 1 � b

o
: (B.11)
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(The reader may have noticed that we are using the same notation for the shift map on

indexed product sets as we use on sequences.)

Lemma B.1.3. The following facts aboutCyl andT may be easily verified, and

we will give no proof.

1. Cyl(S) = Cyl(S � X ) = Cyl(X � S)

2. T (S �X ) = T (S) � X = X � T (S)

3. T (Cyl(S)) = Cyl(T (S))

One special interaction is worth noting. LetS � X J(n) be an indexed product set

S = Sc(n) � . . . � Sd(n) and let

A = Cyl(S) =
n
x 2 XZjxi 2 Si for all i; c(n) � i � d(n)

o
: (B.12)

Then we have

T (S) =
n
x 2 X [c(n)�1;d(n)�1]jxi 2 Si+1; c(n) � i+ 1 � d(n)

o
; (B.13)

T (A) =
n
x 2 XZjxi 2 Si+1; c(n) � i+ 1 � d(n)

o
; (B.14)

andT (A) = Cyl(T (S)) and thus by lemma B.1.3,T (A) = Cyl(T (S)�X ).

Finally, notice that for any indexed product setS 2 X [a;b] there is a setS � X J(n),

wheren = min (�2a; 2b+ 1), such thatCyl(S) = Cyl
�
S
�
. Since every cylinder set

can be written asCyl(S) for someS 2 X [a;b], this means that every cylinder set can

be written asCyl
�
S
�

for someS 2 X J(n).

At last, we are ready to state and prove a result. This is Kolmogorov’s extension

theorem in a form which applies to processes.

Theorem B.1.4 (Bidirectional Discrete version of Kolmogorov’s Extension Theo-

rem). Suppose we have a sequence of measures�n onX J(n) which satisfy the following

conditions for alln and for all indexed product setsS � X J(n). If n is odd,

�n(S) = �n+1(S �X ) (B.15)

and if n is even,

�n(S) = �n+1(X � S) and (B.16)

�n(S) = �n+1(T (S)�X ): (B.17)



120

Then there exists a unique stationary processP =
�
X Z;X;P

�
such that, for alln and

for all S � XJ(n),

P(Cyl(S)) = �n(S): (B.18)

The proof of this statement is in two parts. In the first, we show thatP exists using

the awkward mapping tricks defined above, theorem B.1.2 and equations B.15 and B.16.

In the second, we use equations B.15, B.16, and B.17 to show thatP is stationary.

Proof. We define a sequence of measures�n on Rn as follows: if A � R
n, we

define�n(A) = �n
�
H�1(A)

�
, that is

�n(A) = �n

n
x 2 X J(n)jH(x) 2 A

o
(B.19)

The following calculation establishes that the�ns are consistent. By definition,

�n+1(A� R) = �n+1

�
H�1(A� R)

�
: (B.20)

Now, H�1(A� R) can be rewritten as

H�1(A� R) =

�
H�1(A)�X n odd
X �H�1(A) n even;

(B.21)

so we have

�n+1(A� R) =

�
�n+1

�
H�1(A)�X

�
n odd

�n+1

�
X �H�1(A)

�
n even:

(B.22)

And by applying equations B.15 and B.16 to the right-hand sides, we get

�n+1(A� R) = �n
�
H�1(A)

�
= �n(A):

(B.23)

Thus, we can apply Kolmogorov’s Extension Theorem to the measures�n, which gives

us a unique measureP on
�
R
N;RN

�
which agrees with the�n: if Ai is a Borel set for

all i 2 1; . . . ; n andA = A1 � . . . � An, then

P(xjxi 2 Ai; i 2 1; . . . ; n): (B.24)

Now we defineP. For all S 2 X,

P(S) = P(H(x)jx 2 S): (B.25)
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This P is in fact an extension of the�ns. For allS 2 X
J(n), we have

�n(S) = �n(H(S))

= P
�
a 2 RNja1 . . .an 2 H(S)

�

= P
�
x 2 X

Z
jxc(n) . . .xd(n) 2 S

�
= P(Cyl(S))

(B.26)

Thus, we have shown thatP exists.

To show thatP is stationary, we need to show thatP(T (A)) = P(A) for a

sufficiently rich set ofA 2 X. Any collection which contains all the cylinder sets

will suffice. The collection we choose is

A =
n
Cyl(S)j indexed product setsS � X J(n) for somen

o
: (B.27)

Thus, everyA 2 A has an associatedn and an associatedS. (Of course, there will be

more than one suitablen; S pair, but there will be a smallestn and a unique associated

S, and these are then andS to which we refer.)

If n is even, equation B.17 gives us

P(A) = �n(S)

= �n+1(T (S)�X )

= P(Cyl(T (S)�X )):

(B.28)

And sinceCyl(T (S)�X ) = Cyl(T (S)) = T (A), this becomesP(A) = P(T (A)).

If n is odd, we expandS by one and then do a similar calculation.

P(A) = �n(S)

= �n+1(S �X )

= �n+2(T (S �X )�X )

= P(Cyl(T (S �X )�X ))

(B.29)

Here we can again apply lemma B.1.3 to getCyl(T (S �X )�X ) = T (A), and thus

P(A) = P(T (A)).�

Now we are ready to prove theorem B.1.1, which we restate here:

Theorem B.1.1. Given a mapf : X �
! [0; 1] statisfying

1. f(�) = 1, and

2. For all wordsw 2 X
�,

f(w) =
X

z2X

f(zw) =
X

z2X

f(wz); (B.30)
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there is a unique stationary processP =

�
XZ;X;P

�
such that for allw 2 X �,

P(w) = f(w).

The proof will proceed as follows: we will construct measures�n which satisfy

equations B.15, B.16, and B.17, and then apply Theorem B.1.4 to get the result.

Proof. For all w 2 X � and jwj = n, let S = fwg and define

�n(S) = f(w): (B.31)

For a generalS � X J(n), S is a disjoint union of sets of the formSw = fwg. Thus we

may safely define the measure�n on all subsets ofX J(n) by

�n(S) =
X
w2S

�n(Sw) =
X
w2S

f(w): (B.32)

We need to show that�n is a probability measure; that is, we need to show that

�n

�
X J(n)

�
= 1. We will do this by induction onn. If n = 0 then X J(n) = f�g

and we are givenf(�) = 1, so�1 is a probability measure. The induction step depends

on equation B.30, and the odd and even cases must be done separately. Ifn is odd and

�n is a probability distribution, then we have

�n+1

�
X J(n+1)

�
=

X

w2X J(n+1)

f(w)

=
X

w2XJ(n)

X
x2X

f(wx)

=
X

w2XJ(n)

f(w)

= �n

�
X J(n)

�
= 1:

(B.33)

If n is even and�n is a probability measure, then the calculation is the same except that

we write f(xw) in place off(wx) and we use the other half of equation B.30.

Now we must show that equations B.15, B.16, and B.17 are satisfied. We will

establish each of them using equation B.30 much as before. First equation B.15,

assumingn is odd:

�n(S) =
X
w2S

f(w) =
X
w2S

X
x2X

f(wx)

=
X

z2(S�X )

f(z)

= �n+1(S �X ):

(B.34)
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Second, equation B.16, assumingn is even:

�n(S) =
X

w2S

f(w) =
X

w2S

X

x2X

f(xw)

=
X

z2(X�S)

f(z)

= �n+1(X � S)

(B.35)

Lastly, equation B.17, again assumingn is even:

�n(S) =
X

w2S

f(w) =
X

w2S

X

x2X

f(wx)

=
X

z2(S�X )

f(z):
(B.36)

But this time,S � X 6� X J(n), so the expression�n+1(S �X ) does not make sense.

However, we do haveT (S �X ) = T (S) � X � X J(n), and f does not depend on

time indices, so we have

�n(S) =
X

z2(S�X )

f(z) =
X

z2(T (S)�X )

f(z)

= �n+1(T (S)�X ):

(B.37)

We have now shown that the�ns satisfy all of the conditions of theorem B.1.4.

Thus, applying this theorem, we have shown that there exists a unique stationary process

P =
�
XZ;X;P

�
such that for alln and for allS � X J(n), we haveP(Cyl(S)) = �n(S).

Therefore, if we letS = fwg for any lengthn word w, we have

f(w) = �n(S) = P(Cyl(S)) = P(w): (B.38)

So we are done.�

B.2 Martingales

This section presents the martingale convergence results needed in chapters 2 and 3.

Let X be a random variable on a probability space(
;F ;P), and letG be a sub-�-field

of F . That is,G is a �-field andG � F as sets of sets.

Definition B.2.1. Theconditional expectationof X with respect toG is any random

variable Y that satisfies

1. Y is measureable with respect toG, and

2. for all A 2 G, Z

A

XdP =

Z

A

Y dP: (B.39)
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Several facts about conditional expectation are worth noting. First, conditional

expectations exist on all the probability spaces considered in this dissertation. Second,

conditional expectations are unique up to sets of measure zero — if bothY andY 0 satisfy

definition B.2.1, thenY = Y 0 almost everywhere. Third, a conditional expectation is a

variable, not a constant. That is,Y is a function on
. However,Y is constant almost

everywhere on atoms ofG. (A setA 2 G is an atom if the only sets inG which are

subsets ofA are the empty set andA itself.)

The connection between conditional expectation and the conditional probability of

elementary probability is as follows. IfZ is a random variable on(
;F ;P), thenZ

induces a�-field �(Z) on
, namely the smallest�-field containing all sets of the form

Z�1(B) for Borel setsB. Let A be a set inF with indicator function (characteristic

function) 1A. If we fix a constantc 2 R and evaluate the conditional expectation

E(1Aj�(Z)) on x 2 Z�1(c), we find that

E(1Aj�(Z))(x) = P(x 2 AjZ = c) (B.40)

for almost every suchx.

A filtration is an increasing sequence of�-fields fFg = F1 � F2 � . . ..

Definition B.2.2. A sequencefXg = X1;X2; . . . is a martingalewith respect to

the filtration fFg if

1. for all i, Xi is measureable with respect toFi, and

2. for all s; t 2 N such thatt > s, Xs = E(XtjF)

Martingale convergence theorems are commonly stated like this: iffXng is a

martingale andE(jXnj) < 1 for all n, then there exists a random variableX such

that Xn converges almost surely toX with E(jXj) < 1. Note that this statement

establishes that the limitX exists, not whatX is.

The result needed in this disseratation is this. Given a filtrationfFg, let G be the

smallest�-field that contains everyFi. Let A be a set inF , and defineXn to be the

conditional expectationE(1AjFn). ThenfXg is a martingale with respect tofFg. The

fact we need isXn ! E(1AjG) almost surely.

The following result appears as theorem 4.3 in [36].

Theorem B.2.3. (Doob’s Martingale Convergence Theorem)If fFng is an

increasing sequence of�-fields (that is, for alln � 0, Fn is a sub-�-field of Fn+1),
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andX is a measureable function such thatE(jXj) <1, then lim
n!1

E(XjFn) converges

almost surely toE(XjF), whereF is the smallest�-field which contains all of theFns.

Now the result we need is simply Doob’s Martingale convergence theorem restricted

to the case in whichX is an indicator function.

Corollary B.2.4. If fFng is an increasing sequence of�-fields andA is an event,

thenP(AjFn) ! P(AjF) almost surely, whereF is the smallest�-field which contains

all of the Fns.
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