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Abstract. As research expands in multiagent intelligent systems, investigators need new tools for evaluating the
artificial societies they study. It is impossible, for example, to correlate heterogeneity with performance in multiagent
robotics without a quantitative metric of diversity. Currently diversity is evaluated on a bipolar scale with systems
classified as eitherheterogeneousor homogeneous, depending on whether any of the agents differ. Unfortunately,
this labeling doesn’t tell us much about theextentof diversity in heterogeneous teams. How can it be determined if
one system is more or less diverse than another? Heterogeneity must be evaluated on a continuous scale to enable
substantive comparisons between systems. To enable these types of comparisons, we introduce: (1) a continuous
measure of robot behavioral difference, and (2) hierarchic social entropy, an application of Shannon’s information
entropy metric to robotic groups that provides a continuous, quantitative measure of robot team diversity. The metric
captures important components of the meaning of diversity, including the number and size of behavioral groups
in a society and the extent to which agents differ. The utility of the metrics is demonstrated in the experimental
evaluation of multirobot soccer and multirobot foraging teams.
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1. Introduction

Heterogeneous systems are a growing focus of robotics
research (Fontan and Mataric, 1997; Goldberg and
Mataric, 1997; Parker, 1994; Balch, 1999). Presently,
diversity in these systems is evaluated on a bipolar
scale; systems are classified as eitherheterogeneousor
homogeneousdepending on whether any of the agents
differ. This view is limiting because it does not permit
a quantitative comparison of heterogeneous systems.
A principled study of diversity requires a quantitative
metric. Such a metric would enable the investigation of
issues like the impact of diversity on performance, and
conversely, the impact of other task factors on diver-
sity. To address this, we proposesocial entropy(com-
puted using Shannon’s information entropy formula-
tion (Shannon, 1949)) as an appropriate measure of
diversity in robot teams.

We do not claim diversity is always desirable. In
fact, experiments described in this article show that for

some tasks homogeneous teams perform better than di-
verse teams. The goal of this work, rather, is to enable
the investigation of the origins of diversity in learn-
ing teams and to help developers build appropriately
diverse robot teams for the tasks and environments in
which they operate. A quantitative metric is crucial to
the investigation of these issues.

While the results of this work are applicable in other
areas, we focus specifically on evaluating diversity in
teams of mechanically similar agents that use reinforce-
ment learning to develop behavioral policies. Behav-
ior is an especially interesting dimension of diversity
in learning systems since as they learn, agents choose
the degree of diversity in their society on their own.

Contributions of this work include (1)simple so-
cial entropy, a novel application of Shannon’s informa-
tion entropy to the measurement of diversity in robot
groups, (2)behavioral difference, a continuous, quanti-
tative measure of difference between individual robots,
(3) hierarchic social entropy, a metric combining
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simple social entropy with behavioral difference to pro-
vide a continuous scale of diversity, capturing even
minute differences between societies, and (4) example
applications of these metrics in the evaluation of actual
robot systems.

This article begins with an examination of the mean-
ing of diversity for multiagent robotic systems. That
discussion is followed by a presentation of informa-
tion entropy, an explanation of how it can be applied
to evaluate robot team diversity and a justification for
its application in this domain. Classification and agent
difference are addressed after that. Next a formulation
of hierarchic social entropy (that combines the con-
cepts of agent difference, classification and entropy) is
introduced. Finally, the utility of simple social entropy
and hierarchic social entropy is demonstrated in exam-
ple applications, including experiments in robot soccer
and multirobot foraging.

2. The Meaning of Diversity

What doesdiversemean? Webster (1989) provides the
following definition:

Figure 1. Several collections of shapes. The number of homogeneous subsets in each collection grows from one in a to four in d. Should
measured diversity depend on the number of homogeneous subsets?

Figure 2. In both of these groups there are the same number of shapes and the same number of homogeneous subsets, but the proportion of
elements in each subset is different.

di.verseadj 1: differing from one another: unlike2:
composed of distinct or unlike elements or qualities

Clearly, difference plays a key role in the meaning of
diversity. In fact, an important challenge in evaluating
robot societal diversity is determining whether agents
are alike or unlike. Assume for now that any two agents
are either alike (in the same behavioral subset) or not.
(The degree of differenceis important but that issue is
addressed later.)

Now consider whatdiversemeans for societies com-
posed of several distinct behavioral subsets. To make
the discussion more concrete, suppose the “society” un-
der examination is a collection of four different shapes:
circles, squares, triangles and stars. Figures 1 and 2
illustrate several sets of shapes as examples of ways
the groupings can differ. The goal is to develop a quan-
titative metric that captures the meaning of diversity
illustrated in these examples.

First, how should the number of distinct subsets
in a society impact the measured diversity? Consider
Fig. 1: four sets of 12 shapes. Each set has a dif-
ferent number of homogeneous subsets; from one
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homogeneous subset in Fig. 1(a) (all circles) to four
in Fig. 1(d). This example suggests that the number
of homogeneous subsets in a society is an important
component of measured diversity.

Now consider Fig. 2. Which group of shapes is more
diverse? In both cases there are exactly 12 shapes and
exactly two different types. In Fig. 2(a) however, there
is a much higher proportion of circles than in 2(b) where
there is an equal number of circles and squares. This ex-
ample suggests that the relative proportion of elements
in each subset is an important component of diversity.

These examples highlight the fact that thedistribu-
tion of the agents between homogeneous subsets is at
the core of the meaning of diversity. In light of this
observation, we make the following commitment: the
measured diversity of a multiagent society depends on
the number of homogeneous subsets it contains and the
proportion of agents in each subset.

3. Simple Social Entropy

How should diversity be quantified? Shannon faced a
similar problem when he sought to quantify the un-
certainty, or randomness, of an information source
(Shannon, 1949). The uncertainty of an information
source has important implications for communications
systems, particularly with regard to the minimum band-
width required to transmit error-free messages.

Interestingly, the properties Shannon sought in a
measure of information uncertainty are also useful in
the measurement of societal diversity (Shannon, 1949).
In fact, researchers in a number of disciplines have
adopted information theoretic concepts of diversity. As
an example, consider this passage from Wilson’s book
The Diversity of Life(Wilson, 1992):

Suppose that we encounter a fauna of butterflies
consisting of 1 million individuals divided into 100
species. Say one of the species is extremely abun-
dant, represented by 990,000 individuals, and each
of the other species therefore comprises an average
of about 100 individuals. One hundred species are
present but, as we walk along the forest paths and
across the fields, we encounter the abundant butterfly
most of the time and each of the other species only
rarely ... In a nearby locality we encounter a second
butterfly fauna, comprising the same 100 species,
but this time all are equally abundant, represented
by 10,000 individuals each. This is a fauna of high
equitability, in fact the highest possible. Intuitively

we feel that the high-equitability fauna is the more
diverse of the two, since each butterfly encountered
in turn is less predictable and therefore gives us more
information on average.

Wilson’s view embraces the idea that societies with
members equally distributed among subsets are the
most diverse. It also suggests that diversity and in-
formation are closely related concepts. Information
entropy is used in a number of related fields as well. It
is used by ecologists as a means of evaluating species’
diversity (Lurie et al., 1983; Lurie and Wagensberg,
1980; Magurran, 1988), by sociologists as a model of
societal evolution (Bailey, 1990), and by taxonomists
as a tool for evaluating classification methodologies
(Sneath and Sokal, 1973; Jardine and Sibson, 1971).

Shannon’s measure,information entropy, is easily
adapted to suit the needs of a societal diversity metric
(Shannon, 1949). Bailey popularized the application
of information entropy to the study of social groups
in his bookSocial Entropy Theory(Bailey, 1990). Al-
though the formulation of simple social entropy for
robot groups is somewhat different than Bailey’s for-
mulation for human societies, we adopt his term here.
This section provides a mathematical basis for the cal-
culation of simple social entropy in robot groups and
illustrates why it is an appropriate measure of multia-
gent system diversity.

3.1. Mathematical Formulation
of Simple Social Entropy

Before proceeding we must introduce some additional
notation:

• R is a society of N agents withR = {r1, r2,

r3, . . . , r N}
• C is a classification ofR into M possibly overlapping

subsets.
• ci is an individual subset ofC with C = {c1, c2,

c3, . . . , cM}
• pi = |ci |∑M

j=1 |cj | is the proportion of agents in thei th

subset;
∑

pi = 1.

In the last section we argued that the measured di-
versity of a system should reflect the number of groups
in the system and the distribution of elements into
those groups; diversity should therefore be a function
of M and the pi s as defined above. Assume that a
diversity metric exists and call itH . The diversity of
a society partitioned intoM homogeneous subsets is
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Figure 3. A new society (right) is generated by combining two others (left). The diversity of the new society is a weighted sum of the individual
values ofH for the subsets.

written H(p1, p2, p3, . . . , pM). So, for instance, the
diversity of the group of blocks depicted in Fig. 2(a) is
H( 1

12,
11
12), while the diversity for the group of blocks

in Fig. 2(b) is H( 1
2,

1
2). The diversity of a particular

robot societyRa can also be expressedH(Ra).
Shannon prescribed three properties for a measure of

information uncertainty (Shannon, 1949). With slight
changes in notation, they are equally appropriate for a
measure of societal diversity:

Property 1. Continuous: H should be continuous in
the pi .

Property 2. Monotonic: If all the pi are equal, (i.e.
pi = 1

M ), then H should be a monotonically increasing
function of M. In other words, if there are an equal
number of agents in each subset,more subsets implies
greater diversity.

Property 3. Recursive: If a multiagent society is
defined as the combination of several disjoint sub-
societies, H for the new society should be the weighted
sum of the individual values of H for the subsets. This
property is important for the analysis of recursively
composed societies(e.g. MacKenzie et al.(1997)).

The meaning of the requirement thatH be recursive
is illustrated in Fig. 3. The two groups on the left are
combined into a new society on the right. The groups
on the left have diversitiesH( 5

6,
1
6) (top) andH( 1

2,
1
2)

(bottom). The diversity of the new 18 element society is
H( 5

18,
1
18,

6
18,

6
18). Because the sub-groups contribute1

3
and 2

3 of the agents to new society, the recursive
criteria requires:

H

(
5

18
,

1

18
,

6

18
,

6

18

)
= H

(
1

3
,

2

3

)
︸ ︷︷ ︸

both groups

+ 1

3
H

(
5

6
,

1

6

)
︸ ︷︷ ︸

contribution of first group

+ 2

3
H

(
1

2
,

1

2

)
︸ ︷︷ ︸

contribution of second group

In general, for a societyRc composed of two soci-
eties,Ra andRb, the recursive criteria ensures that:

H(Rc) = H(α, β)+ αH(Ra)+ βH(Rb)
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whereα is the proportion of agents inRa, β is the
proportion of agents inRb andα + β = 1.

Meyer and McIntosh have developed an index of eth-
nic diversity used byUS NewsandUSA Today(Meyer
and McIntosh, 1992). Their index measures the proba-
bility that two people chosen at random (with replace-
ment) will differ along at least one ethnic dimension.
The index value ranges from 0 to 1; greater diversity is
indicated by a larger value. A value of zero applies to
a population in which everyone is the same. If every
person is different from every other person on at least
one dimension, the value is maximized. In practice the
index can never reach unity because an infinite number
of pi s would be required. The metric has intuitive ap-
peal, and may be of interest as a measure of multiagent
social diversity. Using the notation introduced above,
Meyer’s metric can be written:

Hm(X) = 1−
M∑

i=1

p2
i (1)

Hm provides mathematical properties 1 and 2 but
it does not provide for recursively defined societies
(Property 3). Shannon’sinformation entropy, however,
meets all three criteria (Shannon, 1949). The informa-
tion entropy of a systemX is given as:1

H(X) = −K
M∑

i=1

pi log2(pi ) (2)

where K is a positive constant. BecauseK merely
amounts to the choice of a unit of measure, Shannon
setsK = 1 (Shannon, 1949).

Equation (2) (withK = 1) is adopted for the mea-
surement of multiagent societal diversity.H(Ra) is the
simple social entropyof agent societyRa.

In addition to Properties 1, 2 and 3,H has a number
of additional properties that further substantiate it as
an appropriate measure of diversity. First, as we would
expect, H is minimized for homogeneous societies;
these groups are the least diverse. Also, for heteroge-
neous groupsH is maximized when there are an equal
number of agents in each subset. More precisely:

Property 4. H = 0 if and only if all the pi but one are
zero. In other words H is minimized when the system
is homogeneous. Otherwise H is positive.

Property 5. For a given M(number of homogeneous
subsets), H is maximized when all the pi are equal,

i.e. pi = 1
M . This is the case when there are an equal

number of agents in each subset.

Property 6. Any change toward equalization of
the proportions p1, p2, . . . , pM increases H. Thus if
p1< p2 and we increase p1, decreasing p2 an equal
amount so that they are more nearly equal, H in-
creases. An important implication is that there are
no locally isolated maxima.

Even if these properties are desirable in a diversity
metric, why choose information entropy over another
function possessing the same properties? Because, as it
turns out, information entropy (Eq. (2)) is theonlyfunc-
tion satisfying Properties 1, 2 and 3. Shannon proved
this result using the mathematically equivalent proper-
ties he required of an information uncertainty metric
(Shannon, 1949).

3.2. Example Evaluations

Consider the simple social entropy of a heteroge-
neous group composed of one square and three star
shapes. The society consists of four elements,R =
{r1, r2, r3, r4}. One element,r4 (the square) is not
equivalent to the others so there are two homogeneous
subsets,C = {c1, c2}, with c1 = {r1, r2, r3} (the star
class) andc2 = {r4} (the square class). Then,

p1 = 3

4
= .75

p2 = 1

4
= .25

H(R) = −
2∑

i=1

pi log2(pi )

= −((p1 log2(p1))+ (p2 log2(p2)))

= −((.75 log2(.75))+ (.25 log2(.25)))

= .811

Next the simple social entropy of a homogeneous
group is evaluated. The group consists of elementsR =
{r1, r2, r3, r4}. Homogeneity implies there is only one
class, soC = {c1}, andc1 = {r1, r2, r3, r4}. Then:

p1 = 1

H(R) = −
1∑

i=1

pi log2(pi )

= −(p1 log2(p1))
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Figure 4. A spectrum of diversity. In the diagram above, each of the six squares encloses a multiagent system, from least diverse (homogeneous)
on the left, to most diverse (most heterogeneous) on the right. Thesimple social entropy, a qualitative measure of diversity, is listed underneath
each system.

Figure 5. Two very different systems have similar entropy.

= −(1 log2(1))

= 0

The entropy of a number of other example systems
is given in Fig. 4.

4. Limitations of Simple Social Entropy

A potential limitation of simple social entropy as a di-
versity metric is the loss of information incurred when
diversity is summarized in a single number. There are
perhaps an infinite number of societies matching any
particular value of diversity. Figure 5 for example, illus-
trates two very different societies whose entropy differs
by less than 0.01.

A single number does not tell us how many classes
of agents there are or how many agents in each class.
This loss of information occurs whenever any charac-
teristic of a multi-dimensional system is described as a
single value. Such measurements are useful, however,
because they enable generalization and comparison. A
thermometer, for example, does not reveal the position
and velocity of every molecule in the environment but
it does enable us to select our wardrobe for the day.

A more serious limitation of simple social entropy
concerns its lack of sensitivity to the degree of differ-
ence between agents. Suppose, for example, we are
evaluating the diversity of a number of agents dis-
tributed in a two-dimensional space (the dimensions
may represent aspects of behavior or perhaps morpho-
logical axes). Agents that are close to one another are
grouped in the same class. Figure 6 illustrates.

The figure shows three systems. In each system,
the four elements in the lower left remain unchanged,
but from 6(a) to 6(c) a fifth agent appears in several
locations progressively more distant from the others.
In Fig. 6(a) it is just close enough to be classified with
the others, while in 6(b) it is just far enough away to be
placed in a separate category. The simple social entropy
metric cannot differentiate between the distribution of
agents in 6(b) and 6(c) because there is no difference in
the number and size of the subsets. Also, the entropy
measure finds a greater difference between the systems
in 6(a) and 6(b) than between those in 6(b) and 6(c).

One potential solution is to consider the maximum
difference between agents as an additional component
of diversity; e.g. the distanced in Fig. 7. In the biolog-
ical taxonomy literatured is referred to asmaximum
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Figure 6. One difficulty in the analysis of diversity. Dots representing agents are plotted in a two-dimensional space. Lines enclose agents
grouped in the same class. The entropy metric cannot distinguish between the systems illustrated in b and c.

Figure 7. Maximum taxonomic distance is a useful metric, but it does not account for the distribution of elements in the space.

taxonomic distance. Taxonomic distance is useful, but
as Fig. 7 illustrates, it cannot serve as the only measure
of diversity. This example shows two societies: one
society with most of the agents classified together, but
one “outlier” at distanced (7(a)); and another society
with two equally sized subsets separated by the same
distance (7(b)). Both of these systems have the same
maximum difference but quite different distributions
of agents into subsets. Taxonomic difference captures
the greatest difference between agents in the society
but ignores the distribution of agents in the space. In
the next two sections we show how a more comprehen-
sive metric can be developed that reflects the extent of
difference between the agents in a society.

5. Classification and Clustering

The discussion of diversity left open the question of
how agents are classified into subsets. It was assumed
that any two agents are either alike (in the same subset)
or unlike. In actuality, the robotic agents to be classified
are distributed in a multi-dimensional space where the

dimensions correspond to components of behavior and
difference corresponds to the distance between agents
in the space. Difference between agents is likely to vary
along a continuous spectrum instead of in the binary
manner assumed previously.

The limitations of simple social entropy discussed in
Section 4 suggest that the diversity calculation would
be improved if consideration were given to the spa-
tial structure of the system. Here “spatial structure”
refers to the distribution of elements in the classifica-
tion space. In other words, the “clumpiness” of the
system and the distribution of the clumps in the space
are important.

The challenge of finding and characterizing clumps
or clusters of elements distributed in a continuous
multi-dimensional space is exactly the problem faced
by biologists in building and using taxonomic systems.
In the case of biology the dimensions of the space repre-
sent aspects of morphology or behavior that distinguish
one organism from another. In this research the dimen-
sions are the components of behavior that distinguish
one robot from another.
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Figure 8. Example classification using numerical techniques. The top row shows how the system is clustered at several levels, parameterized
by taxonomic levelh (h is distinct from information entropyH ). The classification is summarized in a taxonomic tree, or dendrogram (bottom).
Strong similarities between elements are indicated by grouping near the bottom of the dendrogram; weaker similarities between groups are
reflected in converging branches at higher levels.

The aims of taxonomic classification are distinct
from other types of classification in that one goal is to
arrange the elements in a hierarchy reflecting their dis-
tribution in the classification space. Conversely, many
classification tasks only require a simple partitioning of
the space (e.g. categorizing e-mail into folders). Taxo-
nomic trees (the end result of the taxonomic classifi-
cation process, e.g. Fig. 8) are potentially more useful
in the analysis of diversity than simple partitionings
because they provide more information about the soci-
ety’s spatial structure.

Biology offers a rich literature addressing this prob-
lem. In fact, an entire field—numerical taxonomy—
is devoted to ordering organisms hierarchically using
principled numerical techniques (Sneath and Sokal,
1973; Jardine and Sibson, 1971). Many of the ap-
proaches in numerical taxonomy are directly applica-
ble to the problem of robot classification. They include
mechanisms for building and analyzing classification
structures (e.g. taxonomic trees) and for identifying
organisms on the basis of these structures.

5.1. Tools from Numerical Taxonomy

Figure 8 provides an example of the numerical taxo-
nomic approach. Six elements (they could be organ-
isms, species or robots) are distributed about a two-

dimensional space. The location of each element in the
space is determined by the value of each trait (e.g. tail
length, weight, etc.) used in the classification. Each
trait corresponds to a dimension in the classification
space. The goal is to build a taxonomic tree that re-
flects the spatial distribution of elements in the system:
closely related elements should be classified together at
the bottom; similarities between groups are indicated
as the branches converge at higher levels. These rela-
tions are expressed graphically in adendrogram(Fig. 8,
bottom).

Techniques from numerical taxonomy address the
problem of how to classify organisms, or groups of
organisms, at various levels. At the lowest level in bi-
ological classification for instance, humans and goril-
las are more likely to be classified together than, say,
humans and dogs. But at a higher level, primates are
in fact grouped with canines in the classmammalia.
Dendrograms provide an orderly hierarchic view of the
these classifications. While dendrograms per se are not
necessary for the evaluation of diversity, they are use-
ful visualization tools and their construction provides
clues for the evaluation of overall societal diversity.

Dendrograms are constructed using a clustering al-
gorithm parameterized byh, the maximum difference
allowed between elements in the same subset. The no-
tation D(a, b) is used to refer to the difference be-
tween the elementsa andb. In most applications the
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Figure 9. The branching structure of the dendrograms for these two societies is the same. However, the more compact distribution of elements
in the system on the upper right is reflected in the branches being compressed towards the bottom of the corresponding dendrogram (lower right).

difference metric is normalized so that taxonomic dis-
tance between any two elements varies between 0 and 1.
Whenh = 1 all elements are grouped together in one
cluster (see the cluster at the top right in Fig. 8 for
example). Ash is reduced from 1 down to 0 cluster
boundaries change; the number of subsets increases as
they split into smaller clusters. The splits are reflected
as branches in the dendrogram. Finally, whenh = 0
each element is a separate cluster; a “leaf” at the bottom
of the dendrogram “tree.”

Dendrograms can reveal subtle differences in soci-
etal structure. Figure 9 for example, shows two soci-
eties with the same relative arrangement of elements,
but one grouping is compact while the other is spread
out over a larger area. The difference in scale is re-
flected in a compressed dendrogram for the spatially
compact society (Fig. 9 right). Can these differences
be accounted for in the evaluation of diversity?

Before addressing this, it is necessary to examine
some of the details of clustering algorithms used to
build a taxonomic tree. After that, the discussion re-
turns to how these techniques can be used in the eval-
uation of diversity.

5.2. Clustering

Literally hundreds of clustering algorithms have been
developed by researchers in a wide range of fields

(Sneath and Sokal present a comprehensive taxonomy
of clustering methods in Sneath and Sokal (1973)).
One reason for the proliferation of techniques is the
lack of generally agreed upon optimality criteria for
evaluating the various methods. Jardine, for instance,
suggests information-based metrics for biological clus-
tering applications, but this may not be appropriate in
all domains (Jardine and Sibson, 1971). Because we
are interested in the advantages of taxonomic repre-
sentations of societal structure, the field of numerical
taxonomy is an appropriate source of techniques for
this research.

Most clustering methods used in numerical taxo-
nomy arehierarchic. In hierarchicclassifications any
member of a lower ranking taxon is also a member
of a higher ranked taxon.Nonhierarchicclassifications
do not exhibit ranks in which subsidiary taxa become
members of larger more inclusive taxa. For traditional
biological taxonomy, hierarchic classifications are
required (Sneath and Sokal, 1973).

Another important distinction between clustering
algorithms is whether or not overlap is allowed be-
tween clusters. In anonoverlappingmethod, taxa at
any one rank are mutually exclusive; a member of one
taxon cannot also be a member of a second taxon at
the same rank. Nonoverlapping classifications must
sometimes arbitrarily assign elements to one or an-
other equally distant subset. By relaxing this constraint,
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Figure 10. Example of hierarchic overlapping clustering. Clusters are enclosed in black lines.

overlappingmethods allow membership in more than
one taxa.

Overlapping clustering methods are characterized by
the degree of overlap allowed. Overlap can be quan-
tified as the diameter of overlap or as the number of
elements in the overlapping region.

TheCu overlapping clustering method is used in this
research (Jardine and Sibson, 1971).Cu oru-diametric
clusteringmethods permit the diameter of overlap be-
tween clusters at levelh to be at mostuh (in this work
u = 1). A cluster at levelh is a maximally linked
set such that for all elementsri and r j in the cluster
D(ri , r j ) ≤ h.

Reviewing the notation presented earlier, the so-
ciety of N elements to be clustered isR = {r1, r2,

r3, . . . , r N}. The society will be divided intoM possi-
bly overlapping clustersC = {c1, c2, c3, . . . , cM}. The
Cu algorithm for clustering at levelh proceeds in the
following sequence:

1. Initialize N clusters withci = {ri }.
2. For each clusterci :

(a) For eachr j (exceptri ) inR:

i. If ( D(r j , rk) ≤ h) for everyrk already
in ci ) add elementr j to clusterci .

3. Discard redundant clusters.

An example society classified usingCu clustering is
presented in Fig. 10. The clusterings for several values
of h are illustrated withh increasing from left to right.
Notice in the fourth diagram that the element in the mid-
dle of the space is claimed by two clusters. This cluster-
ing technique ishierarchicbecause elements classified
at one level, or value ofh, are also members of higher
level taxa. In addition, the taxa (clusters) become larger
and more inclusive at higher levels.

The spatial extent of elements in a taxonomic space is
a reflection of the degree of difference between agents.
It has already been pointed out (in Section 4) that such

differences are important in the evaluation of diversity,
especially for distinguishing between societies with
similar structure and numbers of elements but with dif-
fering spatial size.

Note that sensitivity to the degree of difference be-
tween elements in hierarchic clustering depends onh.
Becauseh is aparameterof the clustering algorithm, it
can be varied to examine clusterings at any scale. Hier-
archic algorithms are, in effect, variable power cluster-
ing microscopes. For values ofh near zero the tiniest
difference between elements will cause them to be clas-
sified separately, while the clusterings at large values of
h reveal societal structure at a macroscopic level. This
feature is exploited in the development of a diversity
measure sensitive to differences in the spatial size of
societies.

6. Hierarchic Social Entropy

Now consider how tools from numerical taxonomy can
be applied to the measurement of diversity. The dis-
cussion of hierarchic clustering algorithms above de-
scribed how the number and size of clusters depend
on h. But how is simple social entropy impacted by
changes inh? Since the partitioning of a society is
based onh the entropy also depends on it. An exam-
ple of the relationship is illustrated in Fig. 11. En-
tropy changes in discrete steps ash increases. Note
that points where change occurs correspond to branch
points in the dendrogram.

Compare the dendrograms and entropy plots of the
two societies in Fig. 12. As in the earlier example, the
two groups have the same relative structure, but the
society represented on the right is more compact, re-
sulting in branching compressed towards the bottom of
the tree. The difference in scale is also readily appar-
ent in the plots of entropy. Entropy drops to zero much
more quickly in the plot corresponding to the compact
society. Because the value of simple entropy depends
significantly onh when hierarchic clustering is used,
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Figure 11. Entropy depends onh. Note that changes in entropy
correspond to the branch points in the dendrogram. (For easier ref-
erence, the dendrogram is rotated 90 degrees.)

we augment the notation to account for this:

H(R, h) = H(R) for the clustering ofR at

taxonomic levelh (3)

H is a function ofR and h because the classifica-
tion of agents into subsets, and therefore the entropy,
depends on them both. This highlights the fact that
the entropy of a particular clustering is only a snapshot
of the society’s diversity. A comprehensive evaluation
of diversity should account for clustering at all taxo-
nomic levels. This is easily accomplished using the area
under the entropy plot as a measure of diversity. This
augmented metric, calledhierarchic social entropy, is
defined as:

S(R) =
∫ ∞

0
H(R, h) dh (4)

whereR is the robot society under evaluation,h is a pa-
rameter of the clustering algorithm indicating the max-
imum difference between any two agents in the same
group andH(R, h) is the simple entropy of the society
for the clustering at levelh. Note that ash→∞a point
is reached where all elements are clustered in the same
subset (the maximum taxonomic distance).H(R, h)
drops to 0 at this point. In the behavioral difference
measure used in this work, the maximum possible dif-
ference between elements is fixed at 1.0, so the upper
limit of the integration is 1 rather than∞ as in the
general case.

6.1. Why Hierarchic Social Entropy
is a Useful Metric

Hierarchic social entropy is a continuous ratio mea-
sure; it has an absolute zero (when all elements are
identical) and equal units. This enables a total ordering
of societies on the basis of diversity. It also provides
for quantitative results of the form “Rb is twiceas di-
verse asRa.” This is a significant advantage over the
categorization of systems as simply “homogeneous”
or “heterogeneous.” Several other useful properties of
hierarchic entropy are examined below.

Hierarchic social entropy can distinguish differences
between societies regardless of scale. Societies with
infinitesimally small differences are compared as eas-
ily and precisely as systems spanning millions of
units. This property is demonstrated with an example.
Figure 13 illustrates two societies of three elements ar-
ranged in triangles. In both cases the two elements on
the left are spaced a distancex apart. A third element
is placed either 2x or 4x from the other elements in so-
cietiesR2x andR4x respectively. Because hierarchic
social entropy is scale invariant, it is able to distinguish
between these two systems for all values ofx. This will
be demonstrated forx = 1

1000000, for x = 1000000 and
proven for allx.

First, observe that due to the spacing of the elements,
there are three distinctCu clusterings for each system
(depending onh). For societyR2x, the three elements
are placed in three separate clusters when 0≤ h < x.
Two clusters are present whenx ≤ h < 2x. Finally,
all three elements are grouped together in one cluster
when 2x ≤ h.

The groupings over all three ranges are illustrated in
Fig. 14 (groupings are similar forR4x except the final
clustering does not occur untilh ≥ 4x). The simple
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Figure 12. A comparison of entropy versush for two societies.

Figure 13. These two example systems are used to demonstrate how hierarchic social entropy can distinguish differences between societies
regardless of scale. Spacing between the elements is parameterized byx (top). Because hierarchic entropy is scale invariant it can distinguish
between the two societies regardless of the value ofx. Dendrograms (bottom) illustrate the values ofh where clusterings change.
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Figure 14. Cu clusterings ofR2x for different values ofh.

Figure 15. Simple entropy ofR2x as a function ofh. There are three distinct regions with different values.

entropy for each clustering ofR2x is
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These values and the regions over which they apply
are illustrated in Fig. 15. Similarly, the simple entropy
for each clustering ofR4x is

H
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)
= 1.585 for 0≤ h < x
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)
= 0.000 for 4x ≤ h

Now, supposex = 1
1000000. Can hierarchic entropy

distinguish between these two systems? First we calcu-

late the hierarchic entropy of societyR2x. Recall the de-
finition of hierarchic social entropyS(R, h) (Eq. (4)):

S(R) =
∫ ∞

0
H(R, h) dh

As was pointed out above,H(R, h) takes on distinct
values over three regions depending onh. Therefore,
the integral can be broken into parts corresponding to
these regions:∫ ∞

0
H(R2x, h) dh=

∫ x

0
H(R2x, h) dh

+
∫ 2x

x
H(R2x, h) dh

+
∫ ∞

2x
H(R2x, h) dh

Substituting 10−6 for x and the simple entropy values
above forH(R2x, h), we have∫ ∞

0
H(R2x, h) dh

=
∫ 10−6

0
H

(
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,

1

3
,

1
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)
+
∫ 2×10−6

10−6
H

(
2

3
,

1

3

)
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+
∫ ∞

2×10−6
H

(
3
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)
=
∫ 10−6

0
1.585+

∫ 2×10−6

10−6
0.811+

∫ ∞
2×10−6

0.000

= 2.396× 10−6

The hierarchic social entropy ofR2x is 2.396× 10−6.
The calculation forR4x is similar:∫ ∞

0
H(R4x, h) dh

=
∫ x

0
H(R4x, h) dh+

∫ 4x

x
H(R4x, h) dh

+
∫ ∞

4x
H(R4x, h) dh

=
∫ 10−6

0
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∫ ∞

4×10−6
H
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)
=
∫ 10−6

0
1.585+

∫ 4×10−6

10−6
0.811+

∫ ∞
4×10−6

0.000

= 4.018× 10−6

For systemR4x we haveS(R4x) = 4.018× 10−6.
Therefore whenx = 10−6 S(R2x) < S(R4x) andR4x

is 1.68 times more diverse thanR2x.
What if x = 1000000? ForR2x the computation

proceeds as follows:∫ ∞
0

H(R2x, h) dh

=
∫ x

0
H(R2x, h) dh+

∫ 2x

x
H(R2x, h) dh

+
∫ ∞

2x
H(R2x, h) dh

=
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0
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0
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0.811+

∫ ∞
2×106

0.000

= 2.396× 106

Similarly, the hierarchic entropy for systemR4x is
4.018× 106. So whenx = 1000000 we again have
S(R2x)< S(R4x); societyR4x is again 1.68 times
more diverse thanR2x.

In fact, S(R2x)< S(R4x) holds for all values of
x> 0:∫ ∞

0
H(R2x, h) dh
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0.000
?
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0
1.585+

∫ 4x

x
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∫ ∞
4x

0.000

1.585x + 0.811x + 0.000
?
< 1.585x + 0.811× 3x + 0.000

2.396x < 4.018x

In addition to scale invariance, hierarchic entropy
benefits from several other advantages. Hierarchic en-
tropy addresses a key weakness of simple social en-
tropy by accounting for continuous differences be-
tween elements in the society. Figure 16 illustrates the
kind of difference in societal structure hierarchic en-
tropy can distinguish. In an earlier example, simple
social entropy could not resolve differences between
these systems (Fig. 6). However, when hierarchic so-
cial entropy is employed, the measured diversity of
the three systems increases linearly as the one agent is
positioned further and further away. As one would ex-
pect, the difference in diversity between systems 16(a)
and 16(b) is much smaller than that between 16(b) and
16(c). This is not necessarily the case when simple en-
tropy is used (as the earlier example illustrates).

Hierarchic entropy preserves the basic properties of
simple social entropy when agent differences are bi-
nary. Hierarchic entropy is a more general metric than
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Figure 16. Hierarchic social entropy (bottom) is computed for three societies (top). The values are 0.715 for the system on the left and 1.00 for
the system on the right. The calculated value increases as the element on the upper right is positioned further away from the group. Dendrograms
for the groups are also displayed (middle row).

simple entropy, subsuming the properties ofH at each
taxonomic levelh. In the case where difference be-
tween agents is binary, (either alike or unlike), Eq. (4)
degenerates toH(R) (simple entropy) because the
clustering does not depend onh. However, when con-
tinuous differences are important, hierarchic entropy
can resolve structural difference in societies that sim-
ple social entropy cannot.

Figure 17 shows how the basic properties of sim-
ple social entropy are preserved with hierarchic en-
tropy. In this example two subsets are located a fixed
distance apart in the classification space. The two soci-
eties pictured differ only in the distribution of elements
between the subsets. Hierarchic entropy properly cap-
tures the increased diversity of the system with agents
distributed equally between the subsets.

It is important to note however, that the properties
of simple entropy were formulated on the assumption
of a fixed partitioning of the group being studied. This
assumption does not necessarily hold when continuous
(rather than binary) differences are used to cluster the
elements. The number of subgroups and the proportion
of agents in each both depend onh, the taxonomic level.

7. Behavioral Difference

To summarize the paper so far, hierarchic clustering is a
means of dividing a society into subsets of behaviorally
equivalent agents at a particular taxonomic level. Di-
versity is evaluated at each taxonomic level based on
the number of subsets and the number of robots in each
subset at that level. Integrating the diversity across all
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Figure 17. Hierarchic social entropy retains the basic properties of simple entropy. The computed value (bottom) depends on the distribution
of elements in the subsets. Dendrograms for the two groups are also displayed (middle row).

taxonomic levels produces an overall measure of diver-
sity for the system. Previous sections have described
the overall diversity metric and algorithms for cluster-
ing the agents into subsets. This section focuses on the
difference metric used for clustering.

How should the behavior of two agents be com-
pared? One possibility would be to evaluate their dif-
ference in an “evaluation chamber” in which the robots
are exposed to all situations and their their responses
recorded. Even though it is unlikely such a chamber
could be built, the analogy is useful. Figure 18 illu-
strates the procedure. As the agents are exposed to var-
ious situations, responses are recorded as a trace. After
the experiment is concluded, the traces are compared
to evaluate the difference between agents. In the figure,
the horizontal axis of the traces represents all distinct
perceptual situations a robot might experience, while
the vertical component encodes the agent’s response.

Since a real evaluation chamber would be practi-
cally impossible to build, an alternative method for

evaluating behavioral difference is proposed. The tech-
nique advocated here is to look for differences in the
agents’ behavioral coding. In many cases (e.g. Balch
et al., 1995; Mataric, 1992; Goldberg and Mataric,
1997) robot behavior is coded statically ahead of time,
thus individuals may be directly compared by evalu-
ating their behavioral configuration. Learning multi-
robot systems (e.g. Balch, 1997; Mataric, 1994) pose
a challenge because their behavior evolves over time.
To avoid that problem in this research, the policies of
learning agents are evaluated after agents converge to
stable behavior.

This approach depends on three key assumptions:

Assumption 1. At the time of comparison, the robots’
policies are fixed and deterministic.

Assumption 2. The robots under evaluation are sub-
stantially mechanically similar: differences in overt
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Figure 18. Evaluating behavioral difference using an idealized “evaluation chamber.” Robots are evaluated in the chamber (left), where their
response to every situation is recorded as a trace (readout, right). The behavioral difference between two agents is the difference between their
traces (bottom). A single quantitative value is given by integrating the difference.

behavior are influenced more significantly by differ-
ences in policy than by differences in hardware.

Assumption 3. Differences in policy are correlated
with differences in overt behavior.

If these conditions are not met in a particular multi-
robot system, the approach may not be appropriate.
But the assumptions are reasonable for the conditions
of this research, namely: experiments conducted on
mechanically similar robots built on the same assembly
line. Control systems running on the robots differ only
in the data specifying each agent’s policy. The com-
parison of these policies is the crux of the approach.

7.1. Example: Multirobot Foraging

The objective is to show how behavioral difference can
be evaluated by examining differences in robots’ be-
havioral coding. Before proceeding, an example en-
coding is presented. Although this example describes
a particular robot architecture, this is only for illustra-

tion, the method is applicable to other architectures as
well.

Consider how behaviors could be designed for a team
of foraging robots. The task is to collect colored objects
(red) and place them into colored bins (red and blue).
For this example, one agent will be programmed to
place the objects in the red bin, while the other will
deposit them in the blue bin.2

In this approach to behavioral configuration, the
agent is provided several behavioral assemblages
(skills) that correspond to steps in achieving the task
(e.g.wander, acquire, deliver, and so on) (Arkin et al.,
1993). Binary perceptual cues are used to sequence the
robot through the steps in achieving the task.

The agents are provided with the perceptual fea-
tures enumerated in Table 1. At the behavior selec-
tion level, the robot’s perception can be represented
by four bits (one bit per perceptual feature). Given
the perceptual state, the robot selects from one of the
four behaviors listed in Table 2. Decomposing the task
into a state/action space enables a robot’s policy to be
enumerated by pairing perceptual states with actions.
Some of the 16 states are never actually encountered
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Table 1. Perceptual features available to the foraging
robots. Each feature is equivalent to one bit of informa-
tion; the entire perceptual state is a four-bit value.

Perceptual feature Meaning

red visible A red attractor is visible.

red in gripper A red attractor is in the gripper.

close to red bin Close enough to the red delivery
area to drop an attractor in it.

close to blue bin Close enough to the blue delivery
area to drop an attractor in it.

Table 2. Behaviors the robots select from in accomplishing
the foraging task.

Behavior Robot activity

wander Search the environment for attractors.

acquire red Proceed to the closest red object and grasp it.

deliver blue Go the the blue delivery area.

deliver red Go to the red delivery area.

since it is impossible for an agent to be simultaneously
in the red and blue delivery zones.

Using this approach, policies for the two robots are
now described. One of the robots collects red objects
and places then in the red bin, while the other places
them in the blue bin. The policy for robotr red is to
search for red attractors using thewanderbehavior.
When it sees an attractor, it activates theacquire red
behavior. Once it has grasped the object, it uses the
deliver red behavior to go to the red bin. Robotrblue

is similar, except it delivers to the blue bin instead.
Policies for the two agents are enumerated in Table 3.
The behaviors in the center of the table are activated
when the corresponding perceptual situations on the
left are encountered.3

The actions selected by the agents described above
differ in six of the states. In the case where the robots
have a red object in their gripper but aren’t close to a
bin, they choose different actions (to either go to the red
or blue bin). When they are close to the correct bin,
they both drop the attractor and resume thewander
behavior. Next, we explain how a numerical value can
be assigned to this behavioral difference.

7.2. Definition of Behavioral Difference

To facilitate the discussion, the following additional
symbols and terms are defined:

Table 3. The policies of two foraging robots. Robotr red collects
red objects and places them in the red bin, Robotrblue collects
red objects and places then in the blue bin. Differences between
the actions are listed on the right. The state bits represent, from
left to right,red visible, red in gripper, close to red bin,
andclose to blue bin. Impossible states are indicated with an
asterisk (*).

Response
State Robotr red action Robotrblue action difference

0000 wander wander 0.0

0001 wander wander 0.0

0010 wander wander 0.0

0011* wander wander 0.0

0100 deliver red deliverblue 1.0

0101 deliver red wander 1.0

0110 wander deliverblue 1.0

0111* wander wander 0.0

1000 acquire red acquirered 0.0

1001 acquire red acquirered 0.0

1010 acquire red acquirered 0.0

1011* acquire red acquirered 0.0

1100 deliver red deliverblue 1.0

1101 deliver red wander 1.0

1110 wander deliverblue 1.0

1111* wander wander 0.0

• i is a robot’s perceptual state.
• a is the action (behavioral assemblage) selected by

a robot’s control system based on the inputi .
• π j is r j ’s policy; a = π j (i ).
• pi

j is the number of timesr j has encountered percep-
tual statei divided by the total number of times all
states have been encountered. Experimentally,pi

j is
computed post facto.

The approach is to evaluate behavioral difference
by comparing the robots’ policies. The two foraging
robots introduced earlier, for example, exhibit behav-
ioral differences that are reflected in and caused by
their differing policies. In the terminology introduced
above, i represents the perceptual features an agent
uses to selectively activate behaviors. In the case of
the foraging robots, assign a bit to each perceptual fea-
ture, so, for example,i = 0001 indicates that only
the last perception (close to blue bin) is activated.
For the foraging robotsπ(i ) is the activated behavior
(e.g.wander, deliver).
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Definition 1. ra and rb, are absolutely behaviorally
equivalent iff they select the same behavior in every
perceptual state.

In complex systems with perhaps thousands of states
and hundreds of actions it may also be useful to provide
a scale of equivalence. This would allow substantially
similar agents to be grouped in the same cluster even
though they differ by a small amount. The approach is
to compare two robots,ra andrb, by integrating the dif-
ferences between their responses,|πa(i )− πb(i )| over
all perceptual statesi . If the action is a single-dimension
scalar, as in a motor current for instance, the difference
can be taken directly. However, complex actions like
wanderandacquireare treated as nominal values with
response difference defined as 0 whenπa(i ) = πb(i )
and 1 otherwise. This approach is often used in clas-
sification applications to quantify difference between
nominal variables (e.g. eye color, presence or absence
of a tail, etc.). Using this notation, a simple behavioral
difference metric can be defined as:

D′(ra, rb) = 1

n

∫
|πa(i )− πb(i )| di (5)

or for discrete state/action spaces:

D′(ra, rb) = 1

n

∑
i

|πa(i )− πb(i )| (6)

where 1
n is a normalization factor to ensure the differ-

ence ranges from 0 to 1. In the case of the discrete
sum,n corresponds to the number of possible states. If
ra andrb select identical outputs (πa(i ) = πb(i )) in all
perceptual states (i ), thenD′(ra, rb) = 0. Whenra and
rb select different outputs in all casesD′(ra, rb) = 1.
In the numerical taxonomy literature, this difference is
called themean character difference(Sneath and Sokal,
1973). The calculation parallels the idealized evalua-
tion chamber procedure introduced earlier (Fig. 18).

Equations (5) and (6) weigh differences equally
across all perceptual states. This may be problema-
tic for agents that spend large portions of their time
in a small portion of the states. Consider two foraging
robots that differ only in their reaction to blue attrac-
tors. If, in their environment, no blue attractors are
present the agents would appear to an observer to have
identical policies.

There may be other important reasons certain states
are never visited. In learning a policy, for instance, the
robots might discover in early trials that certain por-
tions of the state space should be avoided due to large

negative rewards. Because these portions of the space
are avoided, the agents will not refine their policies
there, but avoid them entirely. It is entirely possible
for the agents to differ significantly in these portions
of the space even though they may appear externally to
behave identically.

To address this, the response differences in states
most frequently visited should be emphasized while
those that are infrequently experienced should be de-
emphasized. This is accomplished by multiplying the
response difference in each situation by the proportion
of times that state was visited by each agent(pi

a + pi
b).

Formally, behavioral difference between two robotsra

andrb is defined as:

D(ra, rb) =
∫ (

pi
a + pi

b

)
2

|πa(i )− πb(i )| di (7)

or in discrete spaces

D(ra, rb) =
∑

i

(
pi

a + pi
b

)
2

|πa(i )− πb(i )| (8)

Whenra andrb select differing outputs in a given
situation, the difference is normalized by the joint pro-
portion of times they have experienced that situation.

As an example of how behavioral difference is cal-
culated, suppose the robots introduced earlier are eval-
uated in an experimental run.4 During the experiment,
the number of times each agent visits each state is
recorded. This log, along with the response differences
listed in Table 3 can be used to compute the behavioral
difference between the two agents. The calculation is
illustrated in Table 4. The number of times each agent
visited each state is enumerated, then used to compute
pi for each robot for each state. The normalized be-
havioral difference at each state is listed in the right
column, and summed at the lower right. The value in
the lower right-hand corner, 0.55, is the behavioral dif-
ference between robotsr red andrblue.

The measure of behavioral difference provides for
the following definitions:

Definition 2. ra and rb, are ε-equivalent iff
D(ra, rb) < ε.

Definition 3. ≡ε indicatesε-equivalence,ra ≡ε rb

meansra andrb areε-equivalent.

Definition 4. A robot society,R, is ε-homogeneous
iff for all ra, rb ∈ R, ra ≡ε rb.
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Table 4. Sample evaluation of the behavioral difference between the two agents whose policies are listed in Table 3. The
number of times each state was visited by each agent is listed and used to computepi for each state for each robot. In turn,
the proportion of visits to each state is used to normalize the response difference between the agents. Note: these values
were not gathered from experiment, they are presented for example only.

State Timesr red visited pi
red Timesrblue visited pi

blue Difference (from Table 3) Normalized difference

0000 100 0.1 100 0.1 0.0 0.00

0001 – – 100 0.1 0.0 0.00

0010 100 0.1 – – 0.0 0.00

0011 – – – – 0.0 0.00

0100 200 0.2 200 0.2 1.0 0.20

0101 – – 200 0.2 1.0 0.10

0110 200 0.2 – – 1.0 0.10

0111 – – – – 0.0 0.00

1000 100 0.1 100 0.1 0.0 0.00

1001 – – 100 0.1 0.0 0.00

1010 100 0.1 – – 0.0 0.00

1011 – – – – 0.0 0.00

1100 100 0.1 100 0.1 1.0 0.10

1101 – – 100 0.1 1.0 0.05

1110 100 0.1 – – 1.0 0.00

1111 – – – – 0.0 0.00

Totals 1000 1.0 1000 1.0 6.0 0.55

ε in these definitions is closely tied to the parameter
h used inCu clustering. A classification at taxonomic
level h will consist ofh-homogeneous clusters.

Currently this approach is limited to evaluating be-
havioral difference between policies represented as a
deterministic function, e.g.π(i ). This is reasonable for
the analysis of policies developed using reinforcement
learning techniques since once learning is complete,
the policies are fixed. It does not address robots uti-
lizing FSAs for behavioral sequencing. An FSA might
generate a different output (action) in the same percep-
tual state, depending on the sequence of inputs up to
that point. To address the problem a quantitative tech-
nique for comparing FSAs is required. One avenue
of approach would be a comparative analysis of the
“languages” (actually sequences of perceptual state)
accepted by two agents under evaluation. This is be-
yond the scope of the present investigation however.

8. Application of Simple Social Entropy
in Simulated Soccer Experiments

We now describe how the simple and hierarchic social
entropy measures can be employed experimentally. In

this first set of experiments, specialization in learning
simulated robot soccer teams is examined using sim-
ple social entropy. In the following section, hierarchic
social entropy is used to evaluate foraging robot teams
in simulation and on laboratory platforms.

In both sets of experiments, the agents are provided a
common set of skills (motor schema-based behavioral
assemblages) from which they build a task-achieving
strategy using reinforcement learning. The agents learn
individually to activate particular behavioral assem-
blages given their current situation and a reward
signal.

8.1. The Simulated Soccer Task

Robot soccer is an increasingly popular domain for
robotics research (Kitano et al., 1997). It is an attractive
domain for multiagent investigations because a robot
team’s success against a strong opponent usually re-
quires some form of cooperation. Also, it is familiar
to many audiences and it provides opportunities for di-
versity among the team members. We provide a brief
review of the system and experiments here. For more
detail, the reader is referred to Balch (1998).
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In this soccer task, each team is composed of four
simulated robot players. Once play begins the teams
attempt to push and/or kick the ball into the opponent’s
goal (in a difference from RoboCup soccer, the goal
spans the width of the field’s boundary). Play is con-
tinuous; after a scoring event, the ball is immediately
replaced to the center of the field without repositioning
the agents. In each game, play continues until a total of
10 points are scored. The experiments were conducted
by engaging anexperimentallearning team against a
fixed opponentcontrol team in soccer contests. Per-
formance is evaluated as the total number of points
scored by the learning team. We begin by describing
the control team’s behavioral configuration.

8.2. The Control Team

The control team will always follow a fixed policy
against the teams under evaluation. The control team’s
design is based on the following observations. First,
points are scored by bumping the ball across the oppo-
nent’s goal. Second, robots must avoid bumping the
ball in the wrong direction, lest they score against their
own team. A reasonable approach then, is for the robot
to first ensure it is behind the ball, then move towards
it to bump it towards the opponent’s goal. Alternately,
a defensive robot may opt to remain in the backfield to
block an opponent’s scoring attempt.

Each robot selects from a set of behavioral assem-
blages to complete the task. The behaviors are se-
quenced to form a complete strategy. The behavioral
assemblages developed for these experiments are:

• moveto ball (mtb): The robot moves directly to the
ball. A collision with the ball will propel it away
from the robot.
• get behindball (gbb): The robot moves to a posi-

tion between the ball and the defended goal while
dodging the ball to avoid bouncing it in the wrong
direction.
• moveto backfield (mtbf): The robot moves to the

back third of the field while being simultaneously
attracted to the ball. The robot will kick/bump the
ball if it comes within range.

Each of these behavioral assemblages is composed
through the cooperative combination of several motor
schemas. More detail on these behaviors is provided
in Balch (1998).

The overall system is completed by sequencing the
assemblages with a selector that activates an appro-

priate skill depending on the robot’s situation. This is
accomplished by combining a boolean perceptual fea-
ture,behindball with a selection operator. The selec-
tor picks one of the three assemblages for activation,
depending on the current value ofbehindball.

The control team includes three “forwards” and one
“goalie.” The forwards and goalie are distinguished by
the assemblage they activate when they find themselves
behind the ball: the forwards move to the ball while the
goalie remains in the backfield. Both types of player
will try to get behind the ball when they find themselves
in front of it.

8.3. Learning Soccer Teams

To isolate the impact of learning on performance, the
learning teams were developed using the same behav-
ioral assemblages and perceptual features as the control
team. This approach ensures that the performance of
a learning team versus the control team is due only to
differences in policy.

The control team’s configuration uses a fixed se-
lector for coordination. Learning is introduced by re-
placing the fixed mechanism with a selector that uses
Q-learning instead. TheQ-learner automatically tracks
previous perceptions and rewards to refine its policy
(Watkins and Dayan, 1992). At each step, the learning
module is provided the current reward and perceptual
state. It learns over time to select the best assemblage
given the situation.

The policy an agent learns depends on the reward
function used to train it. One objective of this research is
to discover howlocal versusglobal reinforcement im-
pacts the diversity and performance of learning teams.
Global reinforcement refers to the case where a single
reinforcement signal is simultaneously delivered to all
agents, while with local reinforcement each agent is
rewarded individually. To that end, we consider two
reinforcement functions for learning soccer robots:

• Local performance-based reinforcement: each agent
is rewarded individually when it scores a goal, or is
punished when it is nearest the ball when the team
is scored against.
• Global performance-based reinforcement: all agents

are rewarded when when the team scores, or pun-
ished when the team is scored against.

Complete details of the formulation of these reward
functions are provided in Balch (1998).
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Figure 19. Examples of homo- and heterogeneous learning soccer teams. In both cases the learning team (dark) defends the goal on the right.
The agents try to propel the ball across the opponent’s goal by bumping it. A homogeneous team (left image) has converged to four identical
behaviors which in this case causes them to group together as they move towards the ball. A heterogeneous team (right) has settled on diverse
policies which spread them apart into the forward and middle of the field.

8.4. Soccer Results: Performance and Diversity

Experimental data were gathered by simulating thou-
sands of soccer games and monitoring robot perfor-
mance. The learning robots are evaluated on two crite-
ria: task performance (score) and diversity of behavior.

For each trial, the learning robots were initialized
with all Q-values set to zero. A series of 100 10-point
games were played. Information on performance was
recorded after each game. The robots retain their learn-
ing set between games. An experiment is composed of
10 runs, or a total of 1000 10-point games. Each run
uses the same initial parameters but different pseudo-
random number seeds.

Performance is measured as the difference between
the learning team’s score and the opponent’s score. A
negative value indicates the team lost the game, while
positive values indicate the team won the game. When
rewarded using the global reinforcement signalRglobal,
the learning teams out-score the control team by an av-
erage of six points to four, yielding a performance of
2.0. This average includes the initial phase of training.
When trained using the local rewardRlocal, the learning
teams lose by an average of four points to six, or a per-
formance of−2.0. In these soccer experiments, teams
trained using global reinforcement perform best.

After the training phase, robot teams are evaluated
for behavioral diversity by examining their policies.
Altogether there are 9 possible policies for the learning
agents since for each of the two perceptual states, they
may select one of three assemblages. Based on these
nine policies, there are a total of 6561 possible 4 robot
teams.

The extent of diversity in these teams is quantified
using the simple social entropy metric. Agents are clas-
sified asbehaviorally equivalentonly if they share ex-
actly the same policy.

Two example teams, one homogeneous, the other
heterogeneous, are illustrated in Fig. 19. All members
of the team on the left have converged to identical poli-
cies. In fact,all robots in the 10 locally-reinforced
teams converged to the same “forward” policy used by
the control team (Table 5). All 10 teams converged to
fully homogeneous behavior.H(R) = 0 for the ho-
mogeneous teams trained using local reinforcement.

In contrast, all of the 10 globally-reinforced teams
diversify to heterogeneous behavior. In all cases, the
agents settle on one of three particular policies. All
the teams include one robot that converges to the same

Table 5. The control soccer team’s policy
summarized as policy tables. The 1 in each
row indicates the behavioral assemblage se-
lected by the robot for the perceived situation
indicated on the left. The abbreviations for the
assemblages are introduced in the text.

Assemblage

Perceptual feature mtb gbb mtbf

Control team forward

not behindball 0 1 0

behindball 1 0 0

Control team goalie

not behindball 0 1 0

behindball 0 0 1
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“forward” policy used by the control team; they also
include at least one agent that follows the same pol-
icy as the control team’s “goalie.” The other robots
learn a policy of always selecting theget behindball
assemblage, no matter the situation (for convenience
this policy is referred to as a “mid-back”).

In cases where the team had not fully converged,
investigation reveals that the changes are due to one
agent alternating between the “goalie” and “mid-back”
policies. In summary, the globally-reinforced teams
always converged to one “forward,” one or two “mid-
backs” and one or two “goalies.”H(R) = 1.5 for the
heterogeneous teams (the maximum entropy for a team
of four soccer robots is 2.0).

8.5. Summary of Results in the Soccer Task

Two reward functions,Rlocal, Rglobal were employed by
learning soccer teams as they engaged a fixed oppo-
nent team in thousands of trials. The relative impact of
the reward function on team performance and diversity
was evaluated. Simple social entropy was employed
to measure diversity in the teams. The primary results
are

• in some cases individual learning robots automati-
cally diversify to fill different roles on a team;
• global reinforcement leads to better performance and

greater diversity in this simulated soccer task;
• local reinforcement leads to poorer performance and

more homogeneous behavior.

The locally-reinforced teams converge to “greedy”
behaviors that maximize their individual reward, but
lead to poor team performance. This may suggest that
defensive play is important in soccer but there is no in-
centive for a robot to fill a defensive role. With the lo-
cal reward strategy a goalie would be “punished” every
time the opponent scores and never receive a positive
reinforcement.

The use of the simple social entropy metric enables
the quantification of diversity in these learning teams
and correlation of diversity with performance. The poli-
cies for these robots, however, are rather simple and
lend themselves to the discrete classifications neces-
sary for simple entropy. What about very large policy
spaces?

Simple social entropy would probably not be as use-
ful an analytic measure when many thousands of poli-
cies are possible. In this case it is likely for each robot
to have slight differences in policy from every other

robot (and therefore be in a different “class”). The re-
sulting simple entropy would always be at a maximum
for all robot teams—thus making it impossible to make
relative comparisons of diversity.

Hierarchic social entropy can address this limitation.
In the next section we examine a robot team with a more
complex policy space and show how hierarchic social
entropy may be used in its analysis.

9. Application of Hierarchic Social Entropy
in Multirobot Foraging Experiments

The task in this set of experiments calls for robots to
collect several different types of objects and deposit
them in different bins according to type. As an exam-
ple of why this task is useful, consider a janitorial robot
responsible for collecting and sorting recyclable trash
objects into glass, aluminum and paper bins. Many as-
sembly and construction tasks also involve collecting
parts or materials and placing them in a specific lo-
cation. These tasks are referred to asmulti-foraging
tasks.Multi refers to the multiple types of object to
deliver, not the number of robots engaged in the task.
An example of robots executing a multi-foraging task
is presented in Fig. 20.

9.1. Behaviors for Multi-Foraging

As in the soccer example above, a schema-based re-
active control system is used for robot programming.
Each agent is provided several pre-programmed skills
that correspond to steps in achieving the task (e.g.wan-
der, acquire, deliver, and so on). Binary perceptual
features are used to sequence the robot through steps
in achieving the task. Selection of the appropriate be-
havior, given the situation, may be programmed by
hand or discovered by the robot through reinforcement
learning. (In addition to the learning strategies inves-
tigated here, these behaviors were also used to build
successful hand-coded foraging strategies, including
a winning entry in the AAAI-97 Robot Competition
(Balch, 1999).)

A range of skills were developed to support a number
of foraging strategies and to avoid bias towards any par-
ticular approach. The repertoire is suitable for building
behaviorally homogeneous foraging teams as well as
various heterogeneous strategies. The behaviors are
summarized below:

• wander: move randomly about the environment in
search of attractors. Upon encountering an attractor,
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Figure 20. Real and simulated robot foraging. Left: two robots forage for colored attractors in the laboratory; after grasping an object, they
deposit it in one of two delivery zones according to color. Right: in simulation, robots are represented as black circles, arcs indicate the robots’
visual sensing range, obstacles are drawn as gray circles, the small discs are attractors. The robots deliver the attractors to the color-coded
squares representing delivery areas.

most agents learn to transition to an appropriateac-
quirebehavior.
• staynear home: similar to thewanderassemblage,

but with an additional attractive force to keep the
agent close to the homebase. This assemblage might
be utilized in a territorial foraging strategy.
• acquire red: move towards the closest visible red

attractor. When close enough to grasp the attractor,
most agents learn to close their gripper and transition
to adeliverassemblage.
• acquireblue: move towards the closest visible blue

attractor.
• deliver red: move towards the red delivery area.

When close enough to deposit the attractor in the
delivery area, most agents learn to open their grip-
per and transition to one of thewanderassemblages.
• deliver blue: move towards the blue delivery area.

All of the behaviors include a provision for obstacle
and robot avoidance. More detail on the specifics of the
behaviors (e.g. schema parameter values) is provided
in Balch (1998).

The perceptual state is a combination of ninepercep-
tual features. Each feature is a single, abstracted bit of
environmental or sensor state germane to the robot’s
task (e.g. whether or not the robot is holding an attrac-
tor in its gripper). The perceptual features used in this
work are cataloged in Table 6. In addition to the fea-
tures advising the robot whether an attractor is visible,

there are also features indicating whether attractors are
visible outside the delivery (or “home”) zone. The
visibility cues are used to allow hand-coded territorial
agents (reported in Balch (1999)) to search for attrac-
tors at a distance from the delivery zone (home zone)
while ignoring the others (and vice-versa).

Overall, the policy space in this task is much larger
than that explored in the soccer example. While only
nine policies per robot were possible in the soccer
example, there are more than 3000 possible foraging
policies.

9.2. Learning Strategies for Foraging

As in the soccer experiments, the approach is to provide
each agent a reward function that generates feedback
at each movement step regarding the agent’s progress,
then to use that function over many trials to train the
robot team. Again,Q-learning is used to associate ac-
tions with state. The learning agents are initialized
with randomQ-tables, thus random, poorly perform-
ing policies. Since each agent begins with a different
policy, the teams are initially maximally diverse. They
improve their policies using the reinforcement func-
tions described below.

Three reward functions are investigated here:

• Local performance-based reinforcement: each agent
is rewarded individually when it delivers an attractor.
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Table 6. Perceptual features available to the foraging robots. Each feature is one bit of
environmental state; the entire perceptual state is a nine-bit value.

Perceptual feature Meaning

red visible A red attractor is visible.

blue visible A blue attractor is visible.

red visible outside homezone A red attractor is visible outside the three meter
radius home zone.

blue visible outside homezone A blue attractor is visible outside the home zone.

red in gripper A red attractor is in the gripper.

blue in gripper A blue attractor is in the gripper.

close to homezone The agent is within 3 meters of the homebase.

close to red bin Close enough to the red delivery area to drop
an attractor in it.

close to blue bin Close enough to the blue delivery area to drop
an attractor in it.

• Global performance-based reinforcement: all agents
are rewarded when any agent delivers an attractor.
• Local shaped reinforcement: each agent is rewarded

progressively as it accomplishes portions of the task
(Matarić, 1997).

Full details on the formulation of these reward func-
tions are provided in Balch (1998).

9.3. Foraging Results: Performance and Diversity in
Simulation

Performance in the multi-foraging task is measured as
the number of objects (attractors) collected and prop-
erly delivered by the robots in a 10 minute trial. Sev-
eral environmental parameters affect the rate at which
the agents collect and deliver the attractors including
the number of attractors, obstacles in the environment,
playing field size and the number of robots.

The following conditions were present in simulation
experiments: 40 attractors (20 of each type, red and
blue) and five 1 m2 obstacles (5% coverage) randomly
distributed about a 10 by 10 meter field with one to
eight simulated robots. In laboratory runs there were
20 attractors and no obstacles (except arena bound-
aries) on a 5 by 10meter playing field with one or two
robots.

Statistical results were gathered in thousands of sim-
ulation trials. Each type of learning system under in-
vestigation was evaluated using one to eight simu-
lated robots in five randomly generated environments.

Performance is evaluated as the number of attractors
collected in 10 minutes. 300 trials were run in each en-
vironment, or 12,000 runs overall. During the experi-
ments, the perceptual state for each robot was logged
at each timestep, thus enabling a post facto calculation
of the proportion of time each robot spent in each state.
Also, the policy for each robot was saved at the end of
each trial for difference and diversity measurements.

Agents are able to learn the task using all three types
of reinforcement. A plot of the average performance
for each learning strategy versus the number of agents
on the team is presented in Fig. 21. (In separate re-
search, the performance of three different hand-coded
systems was also evaluated (Balch, 1999); performance

Figure 21. Performance of foraging teams versus the number of
robots on a team. The error bars indicate 95% confidence intervals.
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of the best hand-coded system (a homogeneous strat-
egy) is included in the graph for comparison).

The plot shows that, of the learning strategies, local
performance-based and heuristic (shaped) reinforce-
ment systems perform best. Performance in the glob-
ally reinforced system is worse than the other learning
teams. Note that the performance plots for teams us-
ing local and shaped rewards are nearly identical and
that one’s confidence interval overlaps the other’s mean
value. Both also overlap the performance of the hand-
coded homogeneous policy. In fact, there is no statisti-
cally significant difference between the homogeneous
hand-coded systems and the best learning systems.
Local and shaped reinforcement systems perform as
well as the best hand-coded system.

Hierarchic social entropy is used to evaluate diver-
sity in the learning teams. The average diversity is com-
puted for robot teams trained with each type of rein-
forcement. Results are plotted versus the size of robot
teams in Fig. 22. In all cases with two or more agents,
the globally reinforced teams are most diverse. In all
but one case the teams using shaped reinforcement are
the least diverse and locally reinforced teams lie be-
tween the two extremes.

Spearman’s Rank-order Correlation Test is used to
evaluate the relationship between diversity and per-
formance in these systems (Press et al., 1988). The
test measures the correlation between rankings in one
dimension (e.g. performance) and another (e.g. di-
versity). Spearman’s test indicates the rankings are
strongly negatively correlated, withr =−0.96. The
probability of the null hypothesis being true (that the

Figure 22. Hierarchic social entropy versus size of the team for
learning teams; larger numbers indicate greater diversity, error bars
indicate 95% confidence intervals.

rankings occur by chance) is 0.000028. Diversity and
performance are negatively correlated in these learning
teams.

9.4. Foraging Results: Performance
on Mobile Robots

To verify the simulation results, the learning systems
were ported to Nomad 150 mobile robots. The Java-
based behavioral configuration system used in this
work enables the behaviors and features to be utilized
on mobile robots and in simulation. Identical control
software was employed in simulation and on the mobile
robots.

Performance was evaluated before and after learning
using local performance-based rewards on one and two
robots. In each case, the robots were initialized with
a random policy (the behavior for each situation is set
randomly), then evaluated in a 10 minute trial. TheQ-
tables were transferred to the simulation system and
trained for 300 trials. After training, the policies were
transferred back to the robots for another evaluation.
The process was repeated five times for each number
of robots. Performance of the robots running learned
policies is summarized in Table 7. A photograph one
of the mobile robot trials is presented in Fig. 20.

Table 7. Summary of performance in learn-
ing foraging robot trials. Policies learned using
local performance-based rewards were used in
all trials.

Performance

Configuration/trial Before training After

1 Robot

Trial 1 1.0 9.0

Trial 2 0.0 10.0

Trial 3 0.0 8.0

Trial 4 0.0 7.0

Trial 5 0.0 8.0

Average 0.2 8.4

2 Robots

Trial 1 0.0 15.0

Trial 2 1.0 15.0

Trial 3 0.0 16.0

Trial 4 1.0 14.0

Trial 5 0.0 13.0

Average 0.4 14.6
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As in simulation the robots perform much better after
the learning phase. However, they do not collect as
many attractors as comparable simulated systems. This
is due to the reduced number of attractors available for
collection.

9.5. Summary of Foraging Experiments

As in the soccer example, experimental results show
that the choice of reinforcement function significantly
impacts the diversity and performance of learning for-
aging teams. Interestingly, the relationship between
diversity and performance in soccer (positive correla-
tion), is exactly opposite the relationship reported for
foraging in this work (negative correlation). The rea-
sons for this difference aren’t known for certain, but we
believe they are due to the differences in task. Soccer
is unavoidably ateamactivity while foraging can be
accomplished by an individual agent. We believe that
when multiple agents are required, it is more likely that
the team will benefit from diversity.

These experiments in foraging show that agents us-
ing local reinforcement strategies converge to more ho-
mogeneous societies and perform better than robots
using a global reward structure. Greater homogeneity
with local reinforcement is due to the fact that indi-
viduals are rewarded for their own actions, thus mak-
ing reinforcement of the same state/action pair more
likely in different agents than with global reinforce-
ment. The relationship between diversity and perfor-
mance is exactly opposite that found in robot soccer
experiments (reported separately), but in both soccer
and foraging, local rewards lead to greater homogene-
ity (Balch, 1998).

The diversity of each system was evaluated using hi-
erarchic social entropy. Globally-rewarded teams were
found to be the most diverse, followed by the locally re-
warded teams. Teams using shaped reinforcement were
the least diverse. This is because agents using shaped
reinforcement are provided more uniform “guidance”
in finding a policy, and are thus less likely to settle on di-
verse solutions. In these learning systems, diversity and
performance are negatively correlated withr = −0.96
and prob= 0.000028.

10. Conclusion

This work is motivated by the idea that behavioral di-
versity should be evaluated as aresult rather than an
initial condition of multirobot experiments. Previously,

researchers configured robot teams as homogeneous
or heterogeneous a priori, then compared performance
of the resulting teams (Fontan and Mataric, 1997;
Goldberg and Mataric, 1997; Parker, 1994). That ap-
proach does not support the study of behavioral diver-
sity as an emergent property in multirobot teams.

Defining behavioral diversity as an independent
rather than dependent variable enables the examina-
tion of heterogeneity from an ecological point of view.
How and when does diversity arise in robot teams in-
teracting with each other and their environment? This
work provides the necessary quantitative measures for
this new type of investigation.

Simple social entropy, an application of Shannon’s
information entropy (Shannon, 1949) to robot groups,
is proposed as a measure of diversity in robot teams
(Shannon, 1949). It captures important components of
the meaning of diversity, including the number and size
of groups in a society. Researchers in many other fields
also use information theoretic measures of diversity for
the same reason (Wilson, 1992; Lurie et al., 1983; Lurie
and Wagensberg, 1980; Magurran, 1988; Bailey, 1990;
Demetrius, 1992). In order to evaluate the diversity of
a team, however, a way to categorize or differentiate
the behavior of individuals is also required. To address
this, a measure ofbehavioral differencethat provides
for agent categorization is also developed. Difference
refers to disparity between two specific agents, while
diversity is a measure of the entire society.

It was shown that simple social entropy is subject
to several limitations as a diversity metric; in particu-
lar, it does not capture theextentof difference between
separate robot groups. To address this we introduce
hierarchic social entropy,a metric combining simple
social entropy with behavioral difference to provide a
continuous scale of diversity. It captures even minute
differences between societies, while preserving the
basic properties of simple social entropy.

Diversity may not always be desirable. In fact, ex-
perimental results presented in this paper show that
for at least one multirobot task (multi-foraging) ho-
mogeneous robot teams perform better than diverse
teams. The aim of this work is to provide tools en-
abling the investigation of when diversity is important
and which conditions give rise to it in learning teams.
Social entropy provides the objective quantitative
metric required for a principled investigation of these
issues.

This research is focused specifically on diversity
in teams of mechanically similar agents that use
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reinforcement learning to develop behavioral policies.
Evaluation of diversity in teams of mechanically sim-
ilar robots is challenging because when agents differ,
they differ only in their behavior. Behavior is an es-
pecially interesting dimension of diversity in learning
systems since as they learn, agents effectively choose
between a hetero- or homogeneous society. The met-
rics developed in this work will help researchers in-
vestigate the origin and benefits of diversity in these
learning systems.

Important future work includes the application of
these tools in new and different multirobot task do-
mains. The author hopes other researchers will adopt
the measures of behavioral difference and robot team
diversity introduced here in the evaluation of new mul-
tirobot systems. This will provide additional data points
in the multiagent task/reward space and help us derive
the relations between task, reward, diversity and per-
formance more precisely.

Another important direction for future research is the
extension of these tools to a broader range of robotic
systems. The behavioral difference metric, for instance,
is limited to the comparison of deterministic policies.
Can we compare the behavior of agents coded in FSAs
or more complex representations?

Finally, can the results of this research be applied in
other fields? Researchers in behavior-based robotics
often draw inspiration from biology and psychology;
perhaps roboticists can provide tools for the sociobiol-
ogist. It is tempting, for instance, to draw parallels be-
tween robotic behavioral diversity and corresponding
forms of specialization in human and animal societies.
As the research and theory mature we may gain insights
into the origins and benefits of diversity in natural as
well as artificial social systems.
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Notes

1. H(X) is used in coding theory as a lower-bound on the aver-
age number of bits required per symbol to send multi-symbol

messages. The random variableX assumes discrete values in
the set{x1, x2, x3, . . . , xM } (the alphabet to be encoded) andpi

represents the probability that{X = xi }.
2. This task is a simplified version of the task for robots in the

AAAI-97 contest. The simplification is necessary in order to allow
a complete enumeration of the robots’ policies. The complete
system is explained in more detail in Section 9.

3. Note that in thewanderbehavior, the robot’s gripper opens auto-
matically. A transition to thewanderbehavior causes the robot
to drop the attractor and begin a new search.

4. This example experiment is for illustrative purposes only.
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