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Abstract. Most of the straight-forward learning approaches in cooperative robotics imply for each learning robot
a state space growth exponential in the number of team members. To remedy the exponentially large state space,
we propose to investigate a less demanding cooperation mechanism—i.e., various levels of awareness—instead of
communication. We defineawarenessas the perception of other robots locations and actions. We recognize four
different levels (or degrees) of awareness which imply different amounts of additional information and therefore
have different impacts on the search space size (2(0),2(1),2(N), o(N),1 whereN is the number of robots in the
team). There are trivial arguments in favor of avoiding binding the increase of the search space size to the number of
team members. We advocate that, by studying the maximum number of neighbor robots in the application context,
it is possible to tune the parameters associated with a2(1) increase of the search space size and allow good learning
performance. We use the cooperative multi-robot observation of multiple moving targets (CMOMMT) application
to illustrate our method. We verify that awareness allows cooperation, that cooperation shows better performance
than a purely collective behavior and that learned cooperation shows better results than learned collective behavior.
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1. Introduction

Cooperative behavior is a subclass of collective be-
haviors (i.e., any behavior of robots in a system having
more than one robot). Cao et al. (1997) in their recently
published extended survey of the cooperative mobile
robotics field define cooperative behavior as follows:
“Given some task specified by a designer, a multiple-
robot system displays cooperative behavior if, due to
some underlying mechanism (i.e., the“mechanism of
cooperation”), there is an increase in the total utility
of the system.” The mechanism of cooperation may
lie in the imposition by the designer of a control or
communication structure, in aspects of the task specifi-
cation, in the interaction dynamics of robot behaviors,
etc. We dismiss the obvious choice of “communica-
tion”, preferring to promote “robot awareness”—a less
complicated issue—as the necessary basic component
for cooperation. Awareness encompasses the percep-
tion of other robot’s locations and actions.

No previous research has investigated awareness in
the context of learning. Related work in robot aware-
ness includes Parker (1995) but that study was re-
stricted to the human-designed policy case. Learning
involves the exploration of the search space to gather
information about the task, and exploitation of the data,
usually through generalization. The main restriction to
the use of learning comes from the size of the search
space—the larger the search space the more difficult
the generalization. Awareness of other robots implies
the addition of several dimensions to the search space
(compared to an application involving a unique robot
or to a pure collective behavior). We recognize four
degrees of awareness of other team members and each
one impacts the search space size differently. In this
paper, we propose a method to select—before starting
the learning and in relation with the application—the
awareness degree and set its parameter. The coopera-
tive multi-robot observation of multiple moving targets
(CMOMMT) application will serve as an illustration.
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Since cooperative robot learning raises, at least, all
the issues attached to robot learning, we review in the
following Section 2 several considerations associated
with single robot learning. In Section 3, we describe
four different degrees of awareness and how they im-
pact the search space size. The following sections are
devoted to the setting of awareness parameters that will
allow cooperation without an unmanageable search
space size. Experimental results presented in Section 4
describe the effects of a limited range and a bounded
arena on the robot’s awareness. Section 5 studies the
relation between the total number of neighbor robots
and the robot policy. Beginning Section 6, we use the
CMOMMT as an illustrative application to report on
the performance associated with robot awareness. Our
first experiment verifies the positive effect of aware-
ness on the performance using human-design policies.
In the following Section 7, we plot the relation be-
tween the robot awareness range and the performance
in CMOMMT. Then, Section 8 presents the results ob-
tained using a lazy reinforcement learning approach.
We review related works in Section 9. Finally, we sum-
marize and offer concluding remarks.

2. Cooperative Robot Learning

Cooperative robot learning can be defined as the auto-
matic modification of the robot behaviors to improve
the team performance in its environment. At least, co-
operative learning presents all the issues associated
with individual robot learning. These issues are related
to the intrinsic nature of the robots, the complexity
of the task to learn and the necessary involvement of
generalization.

2.1. Robot’s Nature

Robots are by definition artifacts using numerical sen-
sors and actuators to deal with the real world. They
are requested to either address today’s unsolved sym-
bol grounding problem (Brooks, 1991), or to rely on
sub-symbolic processing. As long as the grounding
problem of symbols is not solved, symbolic methods
cannot be used (at least alone). So, the burden of coop-
erative learning in robotics falls on the sub-symbolic
approaches. Numerical sensors and actuators allow us
to define—roughly—a computational measure of the
search space size. Ifd is the number of sensors,p
the number of possible sensor readings, and we assume

that all sensors share the samep, then the search space
size is equal, in a first approximation, topd.

2.2. Exploration Technique

The primary goal of learning is to provide—
automatically—an increase of the performance of the
robot behavior. There are two main sub-symbolic ap-
proaches used in robot learning, they differ by the way
the exploration is accomplished. Supervised learning
lets the human operator do the exploration of the search
(or situation) space. The learning algorithm will con-
vert it to an exploration of the space of possible policies.
Then, the effective size of the search space has no influ-
ence on the learning—as long as the selected examples
are representative. The number of learning samples de-
pends on the size of the possible policies space, but not
(at least not directly) on the situation space size. Super-
vised learning implies that the human operator knows
how to execute the task given to the robot, or at least
knows how to select the relevant examples representa-
tive of the task.

Reinforcement learning (Watkins, 1989; Sutton
et al., 1998) changes the task description level, only
requiring from the human operator a performance mea-
sure of the desired behavior (Kaelbling et al., 1996;
Dorigo, 1996). In reinforcement learning, exploration
is a necessary step. In the absence of bias (discussed
in the next paragraph), the exploration process searches
the entire situation-action space.

Due to the difficulties associated with building the
learning sample base in supervised learning, even
for applications involving a unique robot (Heemskerk
et al., 1996), we select reinforcement learning as our
paradigm for cooperative learning.

2.3. Limited Number of Samples

Even without involving the battery life time, which is
restricted in the better case to a few hours, the me-
chanical nature of the actuators only allows a lim-
ited number of actions to be performed during an
experiment. To insure the convergence of the learn-
ing phase, despite this limited number of available
samples, two—non exclusive—different approaches
are proposed: generalization and biases. Neural-based
reinforcement learning implementations have demon-
strated high efficiency in generalization (Lin, 1992;
Sehad et al., 1994; Kretchmar et al., 1997). The number
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of samples needed to estimate a function of several vari-
ables to a given level of accuracy grows exponentially
with the number of variables. Therefore, the general-
ization performance is proportional to the ratio number
of samples over the search space size. A huge search
space normally limits the performance of the learning
and it is common practice to reduce the search space
size by using biases (Santos et al., 1998). Numerous
biases have been described in the literature and can
be ranked using the amount of the search space left
for exploration (Touzet, 1998). The most drastic ones
reduce so much the size of the situation-action space
that a complete, or near complete, exploration becomes
possible (Mataric, 1997a). In (Mataric, 1997b) for ex-
ample, there are efficient foraging policies that take
into account the local distribution of the pucks, or the
other robot’s positions, and which cannot be obtained
by the a priori given repertoire of fixed behaviors (safe
wandering, dispersion, resting, homing) and the predi-
cate conditions (have puck, at home, near intruder,
night time). In Mataric’s case, the small size of the
search space impedes the development of unforeseen
learned solutions, and learning does not apply when
a complete modelization or a complete exploration is
available. A more limited use of biases—at the cost of
the necessary involvement of generalization techniques
(Touzet, 1997)—reduces the search space size without
jeopardizing the learning.

3. Robot Awareness Degree and the Search
Space Size

Specifically associated with cooperative mobile robo-
tics is the need for each robot to take into account the
others. Communication, because it implies an emit-
ter, a receiver, a message, etc., is a very complex way

Figure 1. The four degrees of awareness that a robot can exhibit (relative to the otherN members of the group) and their impact on the number
of inputs of the search space size of the individual robot.n is the number of sensors used to perceive the world situation.δ is a fixed set of
additional inputs to represent the knowledge about all the other members of the group (δ < N). σ is a set of additional inputs used for each
other member (N ≤ σ < n ∗ N).

to achieve cooperation. It is our opinion that aware-
ness of other team member’s positions and actions is
more appropriate, in particular in the context of sub-
symbolic learning. It may not be always feasible to
obtain awareness without communication, but this is
an independent issue. Parker (1995) distinguishes three
approaches of robot awareness from implicit awareness
through a teammate’s effect on the world (no explicit
interaction between the robots), to passive observation
of a teammate’s actions or goals (result from robots
sensing one another), to explicit communication of a
teammate’s actions or goals.

Such taxonomy is interesting to classify between
cooperative robotics applications, but it does not help
when it comes to building a cooperative learning ap-
plication. It is more useful to evaluate robot awareness
through its impact on the number of the robot inputs
and, therefore, on the search space size. In Fig. 1, we
distinguish four degrees of robot awareness of other
members of the team. Figure 2 displays the number of
dimensionsd (i.e., robot’s inputs) of the search space
size vs. the number of robots for each degree of aware-
ness. Let us remember that the search space size= pd,
with p the number of possible sensor readings.

3.1. 2(0) Additional Information

This case is the lower bound in term of search space size
increase (i.e., no increase). The existing situation inputs
(n) are sufficient for coding information about the other
group members. This is the interaction via environment
case. The problem is to extract (before any cooperation)
the information relative to the other robots from the in-
put world situation—not an easy task. For example,
when Premvuti and Yuta (1996) consider communi-
cation for mobile robots, they emphasize the need of
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Figure 2. Number of dimensions of the search space size vs. num-
ber of robots (N) for each of the 4 degrees of awareness (2(0), o(N),
2(N),2(1)). The parameter values (cf. Fig. 1) aren = 16,δ = 16,
σ = 2 andN = [1, 30].

so-called implicit communication during cooperation,
but not surprisingly, the authors conclude suggesting
that, with the current technology, “implicit communi-
cation” should be done through the help of commu-
nication network of the multiple robot system—i.e.,
explicit communication.

3.2. o(N) Additional Information

This case is the upper bound in term of search space
size increase (i.e., maximum increase). The objective
is to get as much information as possible, for exam-
ple by sharing then inputs of the otherN robots. The
result is comparable as having duplicated sets of central
supervisors, one for each individual. The search space
size is the combination of the individual search spaces
(n ∗ N).

3.3. 2(N) Additional Information

A less demanding case compared too(N) is to use a
limited awareness. For example, our application field
being mobile robotics, we can choose to use orientation
and distance to another robot as the pertinent informa-
tion. The number of inputs associated here (σ = 2)
is much smaller then then previously requested. The
search space size isσ ∗ N. Each robot of the team is
taken into account.

3.4. 2(1) Additional Information

With the previous degree of awareness, the number
of robots has a direct, and dramatic, influence on the
search space size. We would like to be able to provide
awareness independently of the numberN of robots,
for example by using a fixed set of additional inputs
(δ) to represent the knowledge about the other mem-
bers of the group (how to obtain such knowledge is
not relevant in this paper). The limitation (related to
a fixed amount of additional knowledge space) is that
the individual labeling of each group member is im-
possible as soon as the number of robots surpasses the
number of added inputs. This will not be a problem if
we can verify that cooperation is nevertheless achieved
using this awareness level. The question to answer is
“What should be the value ofδ so that there is no dif-
ference in awareness quality with degree2(N) (with
δ < σ ∗ N < n ∗ N)?”

4. Number of Neighbor Robots
(Non-Cooperative Policy)

Real applications imply a limited range of the robot
awareness, which means that certainly only a subset of
all the team members can be sensed at a given time by
a member of the team. We will use that observation to
compute the value of the parameterδ. A bounded arena,
by limiting the spreading of the robots, has certainly a
counter-effect. Figure 3 shows the bounded arena and
the robots equipped with a 360◦ field of view of limited
range.

The mean value of the number of robots sensed
by any member of the group can be easily computed.

Figure 3. Bounded arena with 14 robots moving randomly. The
radius of the arena is 5, the radius of the sensory perception range of
the robots is 1. At the top of the figure, 3 robots sense each other.
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Figure 4. Maximum number of robots perceived by a robot vs. the
number of robots (N = [1, 30]) and vs. the radius of the bounded
arena [1, 9]. The behavior of the robots is random walk. The sensory
perception radius for each robot is 1. The results displayed are the
maximum of 5 different experiments, each one of 600 iterations.
Remember that for a robot at the border of the arena the sensory
perception area is not maximum (part of it lays outside the arena),
which explains why, for an arena size of 1, the number of perceived
robots is not equal to the team size.

However, cooperation and, therefore robot awareness,
is particularly needed when there are a lot of neighbor
robots. So, instead of the mean value of the number
of robots, we prefer to study the maximal number of
sensed robots by a team member. Over an infinite period
of time, the maximal number of sensed robots would
be the number of team members (less one). However,
typical application time length is much shorter (a time
period of 600 moves (per robot) has been selected).
Figure 4 shows the maximum number of robots per-
ceived by a robot in respect to the size of the arena and
the total number of robots. The robot policy is random
walk, the robots are initially spread randomly (uniform
distribution) over the entire arena. These experimen-
tal conditions will also be the initial conditions of the
learning (exploration phase). A value ofδ = 16 seems
appropriate. We will verify in the next sections that it
is appropriate under conditions closer to the selected
application (CMOMMT).

5. Number of Neighbor Robots
(Cooperative Policy)

In the previous sections (4 & 5), we assume that the
robot policy is random walk. A number of policies
would certainly allow a better spatial distribution of
the robots, but will they reduce de facto the number of
robots within sensory range? In the CMOMMT (Parker,
1997) application, a team of robots with 360◦ field of
view sensors of limited range has to maximize the ob-
servation time of a set of targets moving randomly (5%
probability to change direction, maximum speed less

than the maximum robot speed), in a bounded arena.
We say that a robot is monitoring a target when the tar-
get is within that robot’s observation sensory field of
view. The objective is to maximize the collective time
during which targets are being monitored by at least
one robot. The radius of the sensory robot range is less
than the size of the arena, implicating that robots have
to move to maintain observational contact. In this con-
text, A-CMOMMT (Parker, 1997) is certainly the most
effective human-designed robot policy. It combines low
and high level control algorithms. Local control of a
robot team member is based upon a summation of force
vectors, which are attractive for nearby targets and re-
pulsive for nearby robots. High-level reasoning control
involves the computation of a probability that no other
robot is already monitoring the target and a probability
that a target exists, modeled as a decay function based
upon when the target was most recently seen, and by
whom.

Results displays in Fig. 5 show that for a large num-
ber of robots (5 to 30), as long as the radius of the arena
is not ridiculously small (e.g., 30 robots in an arena of
size 1), the number neighbor robots does not vary very
much (around 7). This suggests that cooperation policy
(here A-CMOMMT) has an impact on the distribution
of the robots, and therefore on the maximum number
of sensed robots.

However, it must be emphasized that learning—in
particular, in its early exploration stage if starting in
tabula rasacondition—will be much closer to non-
cooperative policy than cooperative ones. Therefore,
a selection ofδ based on a non-cooperative behavior
is coherent. The number of available targets has lit-
tle effect on the results since the built-in awareness in

Figure 5. Maximum number of robots perceived by each robot vs.
the number of robots (N = [1, 30]) and vs. the radius of the bounded
arena [1, 9]. Each robot uses an A-CMOMMT policy. The sensory
perception radius for each robot is 1. The results displayed are the
maximum of 5 different experiments, each one of 600 iterations.
Compared to Fig. 4, we see that the highest values are almost iden-
tical, which confirm our previous conclusion.
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A-CMOMMT allows only the nearest robot to follow
a given target. On the contrary, the behavior of the
targets (e.g., targets avoiding robots) may have a huge
impact on the number of robots within sensory range—
but it will have no influence during the early stage
(exploration) of the learning.

6. Collective vs. Cooperative Policies

An important issue is to verify that robot’s awareness
has an impact on the team performance when accom-
plishing its task. We use CMOMMT as a benchmark
application. In Fig. 6, we plot the performances of the
team withno robot awareness vs. the size of the arena
and vs. the number of robots. The performance is com-
puted as the percentage of observed targets (by the
group). There are 15 targets. Each robot is equipped
with a behavior that places it at the geographical center
of the sensed targets; it does not take into account the
other robot positions.

The experimental results point out several surprising
things: the performance variation is, on the average,
small; the influence of the number of robots is only
slightly perceptible; the initial drop of performance for
very small arena sizes (1–2) is huge and very large arena
sizes allow better performances than smaller ones.

The logical explanation consistent with these results
is that, having no knowledge about other robot posi-
tions, a robot often chooses to track an already tracked
target. Despite the fact that initialization spreads robots
and targets uniformly over the entire arena surface,
during the 600-iterations experiment there are lots of

Figure 6. Percentage of observed targets (by the group) vs. the
number of robots (N = [1, 30]) and vs. the radius of the bounded
arena [1, 9]. Each robot uses a non-cooperative policy that tries
to place it at the geographical center of the sensed targets. There
are 15 randomly moving targets. The sensory perception radius for
each robot is 1. The results displayed are the mean of 5 different
experiments, each one of 600 iterations.

Figure 7. Percentage of observed targets (by the group) vs. the
number of robots (N = [1, 30]) and vs. the radius of the bounded
arena [1, 9]. Each robot uses the A-CMOMMT policy, and therefore
is aware of the position of the other robots in its sensor field of range.
There are 15 randomly moving targets. The sensory perception ra-
dius for each robot is 1. The results displayed are the mean of 5
different experiments, each one of 600 iterations.

opportunities for a robot to become useless in follow-
ing already tracked targets. However, this explanation
does not work for larger arena results. In fact, in this
case, there is less chance for a given robot to encounter
already tracked targets. The initial impressive perfor-
mance for an arena size of 1 comes from the fact
that, since the robot perception radius is also 1, there
is only a very small influence of the robot policy on
performance.

Using A-CMOMMT policy for the robots (i.e.,
adding robot awareness), we obtain the results dis-
played in Fig. 7 (same conditions as Fig. 6). Here,
the performance is monotonic in respect to the size
of the arena and the number of robots. A maximum
value of 100% is easily reached for small arenas, and
an increased size for the arena surface implies a con-
tinuous decrease for the percentage of targets under
observation. There are only 15 targets in the arena, so
the advantage of additional robots after 8–10 is limited.

Figure 8 plots the increase in performance associ-
ated with the use of robot awareness (A-CMOMMT
policy, Fig. 7) vs. the purely collective behavior (cf.
Fig. 6). The difference in performance can reach 60%.
The impact of robot awareness is particularly notable
with small arena sizes (2–6), pointing out the advantage
of being able to maintain a minimal distance between
team members and being able to select untracked tar-
gets. The effect of the number of robots is logically
positive for small arena size (2–6), and becomes null for
large arenas, where robots (and targets) have so much
space available that they do not come close to each
other anymore. The limited robot awareness range im-
plies that after a given size of the arena (8–9), robot
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Figure 8. Percentage of observed targets due to robot awareness
vs. the number of robots (N = [1, 30]) and vs. the radius of the
bounded arena [1, 9]. Each robot uses the A-CMOMMT policy, and
therefore is aware of the position of the other robots. There are 15
randomly moving targets. The sensory perception radius for each
robot is 1. This graph shows the difference between Fig. 6 results
and Fig. 7 results (i.e., cooperation vs. collective policies).

awareness is of no more use. The effect of large robot
numbers is to slow the disappearance of the usefulness
of robot awareness (particularly visible for arena sizes
between (2–7)).

It must be note that despite the impression that multi-
robots systems performs well only for small values of
arena size, the performance of mobile robots is way
above that of stationary ones (even well placed). Let
us compute the ratio arena under observation versus
arena surface for a group of stationary non overlapping
robots. We take the case of a group of 30 robots, an
arena of radius 10 and 15 targets (cf. Fig. 7). The ratio
is equal to 30% of the surface under observation, which
account for an average number of 4.5 targets under ob-
servation, to compare with the number of 7.5 reported
on Fig. 7.

7. Influence of the Robot Awareness Range
on the Performance

The previous section has reported the large impact on
the performance of the robot awareness. Certainly, the
larger the robot awareness range, the better the per-
formance is. However, a large robot awareness range
implies a large number of neighbor robots to take into
account. It is not desirable to allow a too large number
of sensed robots, because of its effect on the dimen-
sionality of the search space. In fact, it would be in-
teresting to be able to reduce as much as possible the
robot awareness range.

In this section, we study the influence of the robot
awareness range on the performance. In the case of
A-CMOMMT policy, the repulsive force between the

Figure 9. Function defining the magnitude of the repulsive force
vector to nearby robots.

robots is defined in Fig. 9. If the robots are too close
together (<d1), they repel strongly. If the robots are far
enough apart (>d2), they have no effect upon each other
in terms of the force vector calculations. The repulsive
force magnitude scales linearly between these cases
([d1, d2]).

The increase in the surface awareness area is propor-
tional to the square of the robot awareness range (e.g.,
if the range is multiplied by 2, then the surface is multi-
plied by 4). Figure 10 displays the additional percent-
age of observed targets due to a robot awareness range
multiplied by 2 (from a range of 0.5 to a range of 1).
The robot policies are A-CMOMMT and there are 15
randomly moving targets. We see that a larger robot
awareness range automatically implies a better per-
formance. Reducing the dimensionality of the search

Figure 10. Percentage of additional observed targets due to a robot
awareness range multiplied by 2 (from a range of 0.5 to a range of
1) vs. the number of robots (N = [1, 30]) and vs. the radius of the
bounded arena [1, 9]. The robot policies are A-CMOMMT and there
are 15 randomly moving targets. The sensory perception radius for
each robot is 1. The results displayed are the mean of 5 different
experiments, each one of 600 iterations.
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space—the number of neighbor robots—by a decrease
of the robot awareness range has a direct negative im-
pact on the performance and should be avoided. A com-
promise has to be found between a too large number of
neighbors and a too small number of neighbors.

8. Cooperative vs. Collective Learning

Until now, we have studied the impact of robot aware-
ness upon learning (in fact, the search space size) with-
out the help of any learning experiment. Our case study
sets the parameterδ (so that we are in a2(1) awareness
degree) to 16. Therefore, we will use 16 additional in-
puts to represent the information about neighbor robots
in CMOMMT learning experiments. Each robot situa-
tion is a vector of 2∗16 components.2 The first 16 com-
ponents code the position and orientation of the targets.
It simulates a ring of 16 sensors uniformly distributed
around the robot body. Each sensor measures the dis-
tance to the nearest target. The sensor position around
the body gives the orientation. The second ring of 16
components codes in the same manner the position and
orientation of neighbor robots (how to distinguish be-
tween targets and robots is not relevant here, but cer-
tainly the sonar values have to be completed with other
information). The maximum range allowing a target or
a robot to be seen is 1. The actions of each robot are
rotation and forward move distance. With the objec-
tive of reducing the number of actual moves during the
behavior synthesis—and therefore the time required
by an experiment—we use a lazy learning approach
(Aha, 1997).

8.1. Lazy Learning

In a lazy learning approach, the computation of the
inputs is delayed until the necessity arises. In a first
phase, lazy learning samples the situation-action space
and stores the succession of events in memory. In
a second phase, lazy learning probes the associative
memory for the best move. The sampling process stores
the successive situation-action pairs generated by a ran-
dom action selection policy, whereas the questioning of
the memory involves complicated computations: clus-
tering, pattern matching, etc. Using lazy learning and
reinforcement function probing in the associative mem-
ory (Sheppard et al., 1997), the exploration phase can
be done only once, stored and used later by all future
experiments. This way, an experiment only requires a

test phase: a measure of the performance of the learn-
ing. The learning phase occurs during the probing of
the memory and involves lots of computations. How-
ever, the computation time requirements are negligible
compared to the robot mechanical time requirements.
This way, an experiment in cooperative robotics is even
shorter (effective time) than an experiment involving
just one robot and eager learning. It must be empha-
sized that, because it is independent of the nature of the
desired behavior, in lazy learning the initial exploration
phase is unique.

Sheppard et al. (1997) propose to probe the memory
with the reinforcement function. Their objective is to
provide a method for predicting the rewards for some
state-action pairs without explicitly generating them.
They call their algorithm lazy Q-learning. For the cur-
rent real world situation, a situation matcher locates all
the states in the memory that are within a given dis-
tance. If the situation matcher has failed to find any
nearby situations, the action comparator selects an ac-
tion at random. Otherwise, the action comparator ex-
amines the expected rewards associated with each of
these situations and selects the action with the highest
expected reward. This action is then executed, resulting
in a new situation. There is a fixed probability (0.3) of
generating a random action regardless of the outcome
of the situation matcher. New situation-action pairs are
added to the memory, along with aQ-value computed
in the classical way. Among similar situation-action
pairs in the memory, an update of the storedQ-values
is made. There is a limit to the genericness of this
lazy memory because theQ-values associated with the
situation-action pairs only apply for a particular behav-
ior. With the desire of reducing as much as possible the
learning time and also of preserving the genericness
of the lazy memory, we modified the algorithm in the
following way: the situation matcher always proposes
the set of nearest situations—no maximum distance is
involved—and there is no random selection of actions
by the action comparator. Also, theQ-values are not
stored with the situation-action pairs, but are computed
dynamically as the need arises.

The key to successful application of the lazy
Q-learning algorithm is the identification of similar
situations. We use a measure of similarity of the fol-
lowing form:

similarity(a, b) =
p∑
i

(|sa(i )− sb(i )|) (1)
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wheresa andsb are two situations andp is the number
of components of the situation. The smaller the value
measured, the greater is the similarity.

8.2. Cooperative Lazy Learning

Cooperative reinforcement learning requires a method
to distribute the reinforcement values among the group
members. We, and others from the multi-agent com-
munity in particular, are pursuing our research efforts
in this direction, but our results have not yet reached
the quality of the human-defined A-CMOMMT. They
will nevertheless allow us to demonstrate the impact of
robot awareness in CMOMMT applications. Figure 11
shows the increase of performance associated with
robot awareness vs. a purely collective behavior.3 Each
robot behavior (cooperative or collective) is learned
through lazy reinforcement learning. The dimension-
ality of the search space is 32 (targets+ robots) for
cooperative behavior, and only 16 (targets) for collec-
tive behavior. The lazy memory is obtained through
an initial exploration (length 120 iterations) involving
10 targets and 5 robots, the policies for targets and
robots were random action selection. The reinforce-
ment function we use is the following:+1 if one (or
more) targets have been acquired compared to the pre-
vious situation,−1 if one (or more) targets have been
lost, or 0 otherwise. Each iteration the probabilities
of direction change for a target was 5%, where it was
100% for a robot. The total number of situation-action
pairs in the associative memory is 600(=120∗ 5).

Compared to Fig. 8, we see that the impact of robot
awareness is less noticeable in our learning experiment:

Figure 11. Percentage of observed targets due to robot awareness
(cooperative-collective) vs. the number of robots (N = [1, 30]) and
vs. the radius of the bounded arena [1, 9]. Each robot learns its
behavior using lazy reinforcement learning. There are 15 randomly
moving targets. The sensory perception radius for each robot is 1.
This graph is obtained in similar conditions as those of Fig. 8, except
for the behaviors, which are learned here.

a maximal improvement of 25% (compared to 60%).
However the shape of both surfaces are similar: the
preferred arena size is between 2 and 6, and the greater
the number of robots, the more important the impact on
the performance. The counter-effect of very large are-
nas is easily spotted, in particular for small numbers of
robots. In this case, awareness seems to slightly hurt
the performance. This is due to the fact that the collec-
tive behavior is learn with a smaller search space size
(2(0)) compared to (2(1)) for the cooperative behav-
ior. Since there is very little, or no effect of coopera-
tion, the ratio of the search space size vs. the number of
learning sample is smaller for the collective behavior
learning case (allowing better learning performance).

9. Related Works

Ono and Fukumoto (1997) are interested in reducing
the search space size so as to allow multi-agent re-
inforcement learning. The main idea underlying their
approach is that each agent’s learning component is
decomposed into independent modules, each focusing
on one agent. The learning results of these components
are combined by a mediator using a simple heuristic
procedure (the greatest mass merging strategy). Their
approach is based on a reduction of the search space
size by a decomposition into multiple sub-goals, ini-
tially proposed by Whitehead (1993) for one agent.
They illustrated the use of their modular architecture
with a modified version of the pursuit problem: in a
20× 20 toroidal grid world, a single prey and four
hunter agents. The behavior of the prey is random walk.
A hunter has a limited field of view and can differenti-
ate between prey and hunters. For each other agent, a
module is used that takes into account (only) the relative
position of that agent and the prey: this is an aware-
ness associated with a2(N) increase in the number of
dimensions. The field of view range (i.e., robot aware-
ness range) is small enough to drastically reduce the
search space size, even using such awareness degree
(cf. Section 8).

Kube and Zhang (1994) simulations of a collec-
tive box-pushing behavior involve robots equipped
with a goal sensor, an obstacle sensor and a robot
sensor. No learning is involved—the robot policies
are user-defined. Each behavior is implemented as a
“Braitenberg vehicle” (Braitenberg, 1984). The arbitra-
tion between behaviors uses fixed priority assignment
in a subsumption approach. A second approach tested
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for behavior arbitration is to train an adaptive logic net-
work through a supervised learning procedure. The au-
thors do not give details about the way the robot sensor
intervenes; therefore, it is impossible to determine the
degree of awareness. Moreover, the extremely small
number of actions available to insure cooperation (in
follow, the robot sensor is used to direct the robot to the
nearest sensed neighbor; inslow, the robot reduces its
velocity whenever neighbor robots are detected) tends
to deny, in our opinion, the term “cooperation” to this
work.

Balch and Arkin (1994) in their desire to create a de-
sign methodology for multiagent reactive robotic sys-
tems have been interested in choosing correctly the
number of agents and the communication mechanisms.
They define 4 levels of communication:no communi-
cation where the robots are able to discriminate be-
tween robot, attractors and obstacles,state communi-
cationwhere robots are able to detect the internal state
of other robots,goal communicationwhere the sender
must deliberately send or broadcast the information and
implicit communicationwhich corresponds to commu-
nication through the environment (no act of deliberate
transmission). It must be pointed out that these authors
are not interested in learning, therefore they did not
address the issue related to the search space size. In-
terestingly, their results demonstrate that, at least for
the three experimented tasks of forage, consume and
graze, cooperation emerges with the “no communica-
tion” paradigm. The maximum improvements are: for-
age task, goal vs. no communication (19%); consume
task, state vs. no communication (10%) and graze task,
state or goal vs. no communication (1%). Their con-
clusion is that for some tasks, higher levels of com-
munication can slightly improve performance, but for
other inter-agent communication is apparently unnec-
essary. This last remark agrees with our selection of
“robot awareness”—instead of “communication”—as
the necessary basic component for cooperation.

10. Conclusion

Cooperative behavior definition points out the neces-
sity for a mechanism of cooperation that we translate
in robot awareness of other team members. The search
space size is of tremendous importance for the learning
ability (the smaller the better), therefore we have pre-
sented the different degree of awareness in respect to
their influences on the search space size (no awareness:
2(0), restricted awareness:2(1), awareness of all:

2(N) and complete communication:o(N)). We have
presented a method to elect a2(1) awareness using
the fact that the sensors have limited range. The care-
ful study of themaximumnumber of neighbor robots
(instead of the total number of robots) allows to set the
parameterδ. The maximum number of neighbor robots
is dependent on the arena size, the awareness range, and
also on the robot policies. The cooperative multi-robot
observation of multiple moving targets (CMOMMT)
domain is used as an illustrative application—but our
method is generic and can be applied to many applica-
tions. It consists in studying the maximum number of
neighbor robots in the beginning of the learning phase
(exploration) so as to be able to determine the appro-
priate value ofδ. Environmental conditions, like the
size of the arena or the range of the sensors, must also
to be taken into consideration.

A lazy reinforcement learning approach showed
better performance for cooperation than collective
behavior and compared well with the best-known
human-designed policy (A-CMOMMT). The increase
of performance is up to 25% using lazy reinforcement
learning and 60% using human-designed policy.

The experimental confirmations were obtained in
simulation, but it is our opinion that this does not af-
fect the legitimacy of awareness for cooperative robot
learning, nor does it affect the validity of the method.
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Notes

1. Explanations on this standard asymptotic notation can be found
in Cormen T., Leiserson and C. Rivest R., Introduction to Algo-
rithms, MIT Press, 1990.

2. CESAR facilities provide 4 Nomad 200 mobile robots for coop-
erative robotic experiments. The Nomad 200 is equipped, among
other sensory modalities, with a ring of 16 infra-red sensors and
another ring of 16 sonar sensors.

3. There are several issues of importance for lazy reinforcement
learning performance. The first is the quality of the reinforce-
ment function, the second is the quality of the sampling (size,
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representativity), and the third is the quality of the probing pro-
cess (generalization). The state-of-the-art in these domains only
allows us to assume that non-optimal values and criterion were
used in the experiments reported here. However, it is our opinion
that this does not alter the illustrative quality of Fig. 11.
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