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Erwin Schrödinger famously and presciently ascribed
the vehicle transmitting the hereditary information
underlying life to an ‘aperiodic crystal’. We compare
and contrast this, only later discovered to be
stored in the linear biomolecule DNA, with the
information bearing, layered quasi-one-dimensional
materials investigated by the emerging field of chaotic
crystallography. Despite differences in functionality,
the same information measures capture structure and
novelty in both, suggesting an intimate coherence
between the information character of biotic and
abiotic matter—a broadly applicable physics of
information. We review layered solids and consider
three examples of how information- and computation-
theoretic techniques are being applied to understand
their structure. In particular, (i) we review recent
efforts to apply new kinds of information measures
to quantify disordered crystals; (ii) we discuss the
structure of ice I in information-theoretic terms;
and (iii) we recount recent experimental results
on tris(bicyclo[2.1.1]hexeno)benzene TBHB), showing
how an information-theoretic analysis yields additional
insight into its structure. We then illustrate a new
Second Law of Thermodynamics that describes
information processing in active low-dimensional
materials, reviewing Maxwell’s Demon and a new
class of molecular devices that act as information
catalysts. Lastly, we conclude by speculating on how
these ideas from informational materials science may
impact biology.
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1. Introduction
To account for the ‘special properties’ of life—e.g., movement, metabolism, reproduction,
development—the prevailing wisdom from the time of Aristotle into the 19th century was that
organic matter differed in some fundamental way from inorganic matter. While this notion, called
vitalism, may seem quaint to 21st century scientists, it held sway until the chemist Friedrich
Wöhler showed that, unexpectedly, a known organic compound, urea, could be artificially
synthesized from cyanic acid and ammonia [1]. This fabrication process, while different than that
used in biological systems, nonetheless served as an important clue that the divide between living
and nonliving matter was not absolute. Abiotic processes could make substances theretofore
only encountered in biologically derived materials. Additionally, we see that—and not for the
last time—results obtained from one discipline, chemistry, have had important consequences in
another, biology. This confluence of diverse avenues of inquiry coalescing into an ever larger
conceptual picture of Nature is, of course, an oft-repeated theme in the sciences. Other famous
examples include Newton’s discovery that the motion of celestial bodies, such as the moon
planets, and that of terrestrial ones under the influence of gravity, such as the proverbial apple,
both are manifestations of a universal law of gravitational attraction; James Clerk Maxwell’s
unification of electricity and magnetism into his famous equations; and James Prescott Joule’s
demonstration that the caloric was nothing but energy by another name, now formalized in the
First Law of Thermodynamics. Indeed, E. O. Wilson takes the extreme position that all human
knowledge, from the most concrete of the sciences to the least precise of the liberal arts, is
ultimately interlinked [2].

We need not go quite so far as Wilson. It is enough for our purposes to realize that while
‘abiotic’ sciences such as physics, chemistry, astronomy, and geology share obvious strong
interconnections, biology has remained relatively aloof. This is not to say that biology has not
benefited greatly from knowledge transferred to it from other physical sciences. In addition
to the urea example above, note that metabolism is at its core a question of the utilization
and transformation of energy—a notion made concrete and operational in physics. And too,
biology has benefited tremendously from techniques and discoveries made in other sciences.
Indeed, in 1937 Max Delbrück (Nobel Prize Physiology or Medicine 1969) adapted his training
in astrophysics and theoretical physics to probe gene susceptibility to mutations, stimulating
physicists’ interest in biology and establishing molecular biology. More familiar, though, it was
the infamous X-ray diffraction image known as ‘photograph 51’ from the lab of Rosalind Franklin
that provided a key insight leading geneticist James Watson and physicist Francis Crick (Nobel
Prize in Physiology or Medicine 1962) to propose the double helical structure of DNA [3]. Despite
the above, biology is clearly the least well integrated in the family of sciences. We can speculate
that the sheer complexity of life and the novel phenomena it displays are at least partially
responsible for this. Even one of the most basic organisms, Mycoplasma genitalium, has genome
of ‘only’ 580, 070 base pairs [4]. Biology is complicated.

And it is perhaps due to this complication that the mathematical ‘sciences’1 have made their
least impact in theoretical biology. By and large, the advanced mathematical techniques that
saturate any theoretical physics text find no counterpart in biology texts. There is one area,
however, where arguably biology has outpaced her sister sciences: the incorporation of information
theory [5,6] into the description of physical systems. And, we will suggest that biology has carved
a conceptual path that abiotic physical sciences would do well to emulate. Before we move too far
ahead, though, let’s start at the turn of the 20th century and visit one of the many revolutionary
advances that ushered in the era of ‘modern’ physics and that remains today a key probe of
molecular biological structure.

1We take the view that science is fundamentally an experimental endeavor, ultimately dependent on empirical observation.
Pure mathematics, while of enormous interest for both its intellectual vigor and beauty, as well as its practical applications,
need not make appeal to experiment for validation or refutation of its claims and, thus, does not constitute a scientific
discipline.
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2. Structure, Aperiodic Crystals, and Information
The immense conceptual advances in physics made in the first third of the 20th century are legion,
but here we focus on the contributions to the structure of matter. While it is Max von Laue (Nobel
Prize Physics 1914) that is credited with the discovery of the diffraction of X-rays by crystals,
it is the father and son team, Sir William Henry Bragg and William Lawrence Bragg (Nobel
Prize Physics 1915), that receive much of the credit for exploiting it as a tool to determine crystal
structure. For a periodic repetition of some pattern, as one might find in the simple crystals such
as NaCl, the diffraction pattern is dominated by very strong reflections at particular angles, called
Bragg reflections. Much weaker diffuse scattering is known to occur between the Bragg reflections
and had been observed as early as 1912 by Walter Friedrich. While this diffuse scattering can
be explained by the thermal motion of the constituent atoms, it could genuinely be a harbinger
of deviations from perfect periodic order. But the assumption of periodicity greatly simplifies
the analysis of diffraction patterns, and the early years of crystallography were marked with
enormous success in solving for the periodic structures that seemed so common. Indeed, it may
be argued that this research program so successful in describing a particular kind of structure—
periodic structure, “the infinite repetition in space of identical structural units”—came at the cost
of developing alternate theoretical tools.

On the biology front, cognizant of Delbrück’s results on mutations, the prominent physicist
Erwin Schrödinger (Nobel Prize Physics 1933) was busy considering life from a physics point-
of-view. In his now classic 1944 book, What is Life? [7], Schrödinger introduces two concepts
that are of interest to us here. The first is negentropy, or the entropy that an organism exports
to its surroundings to keep its internal entropy low. If one views entropy as a measure of
disorder, then the Second Law of Thermodynamics makes it clear that for an organism to
maintain some structure, it must rid itself of the disorder that accompanies life-maintaining
processes. The second, and equally important, is the idea that the hereditary mechanism that
must exist so that traits of individuals can be passed to offspring could be housed in what he
called an aperiodic crystal. Although H. L. Muller made a similar proposal over twenty years
previous, it was Schrödinger’s advocacy that captured the imagination of Crick and Watson to
seriously investigate this possibility. Schrödinger’s aperiodic crystal was some material substrate,
perhaps a molecule, that lacked strict periodicity. The reason for this is that exact repetition
of a motif, in other words a crystal, is information poor—too poor to carry heredity. Without
some unpredictability, or novelty, nothing new is learned and communicated. It is remarkable
that Schrödinger made this prediction before a quantitative understanding of information was
articulated.

In 1947, three physicists from Bell Telephone Laboratories, John Bardeen, Walter Brattain, and
William Shockley (Nobel Prize Physics 1956) invented a small device that revolutionized the
design of electrical circuits: the transistor, which ushered in the era of electronics. It’s significance
was immediately recognized and a press release was duly issued the next year. Yet, arguably [8],
this was only the second most important announcement to come out of Bell Labs in 1948.
The first came from a thirty-two year-old mathematician, engineer, and cryptographer, Claude
E. Shannon2, in the form of a paper in the Bell System Technical Journal with the unassuming title
“A Mathematical Theory of Communication" [5].

Shannon’s main premise is that information is a degree of surprise. Given an information
source X—a set of messages {x} that occur with probabilities {Pr(x)}—an individual message’s
self-information is H(x) =− log2 Pr(x). Thus, predictable events (Pr(x) = 1) are not informative—
H(x) = 0, since they are not surprising. Wholly unpredictable events, such as the flips of a
fair coin, are highly informative: H(Heads) =− log2

1
2 = 1. When using logarithms base 2 the

information unit is a bit or binary digit. Shannon’s first major result was to show that the average
self-information, what he called the entropy paralleling Boltzmann and Gibbs in vocabulary
and notation, H[X] =−

∑
x∈X Pr(x) H(x) measures how compressible a source’s messages

2In a perhaps unexpected overlap to our narrative, Shannon’s PhD thesis from Massachusetts Institute of Technology (1940)
was titled An Algebra for Theoretical Genetics and explored the mathematics of genetic recombination.
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are. However, quantifying information was simply preliminary to Shannon’s main motivation.
Working for the Bell Telephone Company, a communications enterprise, his main goal was to lay
out operational constraints for communicating information over noisy, error-prone transmission
equipment, which he formalized as a communication channel. The result was his most famous and
far-reaching result: As long as the source entropy is less that the channel’s transmission capacity—
H[X]< C—then, even if errors are introduced there is a way to encode the source messages such
that the receiver observing the noisy channel output can exactly reconstruct the original messages.
This single result is key to almost all communication technologies that drive today’s modern
economies.

Shannon himself was rather careful to distance his quantitative theory on the amount of
information in a source from discussions of that information’s meaning or semantic content [9].
His goal was the operational result just recounted that did not require knowing what information
was being communicated. However, as we will explain, his measure of information and its
semantics turn out to provide a central and quantitative tool for understanding the organization
of materials that are more than periodic crystals—materials that are not regular repetitions of
identical unit cells. We call this application of Shannon’s information theory to material structure
“chaotic crystallography”, for reasons that will become evident.

What kinds of materials are not crystals? An obvious class is those in which atoms of random
kinds are randomly placed in space. The resulting dichotomy—materials are either periodic or
random—is too simple a view. There is a spectrum. A first example, one controversial in its
time, came in the discovery of quasi-crystals [10]: Metals with long-range orientational order, an
icosahedral phase, but no translational symmetry. This fell so far outside of the periodic-random
dichotomy that it was some years after experimental detection that quasi-crystals were widely
accepted (Nobel Prize in Chemistry 2011).

We now know that the spectrum of material structures between periodic crystals and
amorphous materials is populated by much more than quasi-crystals. First are the so-called
aperiodic crystals that exhibit sharp diffraction peaks, but not lattice periodicity [11]. The
mathematics of such aperiodic orders has blossomed [12]. Many disordered materials, however,
exhibit broadband diffraction patterns but also have a large degree of organization. These are
what we now call chaotic crystals. The aperiodic crystals, by way of comparison, are seen to lie in
the narrow boundary region between periodic and chaotic crystal materials.

Given this wide spectrum, one needs tools that readily describe processes that range
from periodicity to randomness and capture the intermediate semi-ordered, semi-disordered
structures. Information theory is one of those tools. We will describe how it applies to material
structure, forming the endeavor of chaotic crystallography. A compelling insight is that though
we start with a focus just on surprise and prediction, we are led to novel notions of structure,
partial symmetries, and information storage.

3. From Information Measures to Structure
Although fundamental to the practice of science, a thorough understanding of the information
obtained from individual measurements has only recently been examined in detail [13,14]. The
key issues at hand are easily stated: Given a history of such measurements, how much does
one learn from any particular observation? How much of the past is useful for predicting the
results of future measurements? To what degree is a measurement simply randomness, and not
structure? How much information obtained in the present is transmitted to the future? Perhaps
not surprisingly, considering these questions in the light of information theory [6] revealed a
number of new computational and informational measures that give important insights into how
correlations are manifested in different kinds of structure.

As noted above, the workhorse of information theory is the Shannon entropy [5] of a random
variable X : H(X) =−

∑
x∈X Pr(x) log2 Pr(x), where the x are the possible realizations of the

discrete variable X and Pr(x) is the probability of observing x. While Shannon entropy has
many interpretations, most useful here is that it is the average amount of information an
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H[X]

(a)

hµ

ρµ

(b)

rµ

bµ

qµ

bµ

(c)

rµ

wµ

(d)

Figure 1. Dissecting the information H[X] learned from a measurement of a single random variable X . (Figure

from James et al. [13], used with permission.)

observation reveals when measuring that variable. Real measurements are often sequential in
time and one might expect that there are correlations between measurements. The extension
of the Shannon entropy to a series of measurements follows naturally by replacing the single
random variable X with the sequence X1, X2, . . . XL of random variables—often written XL—
and the realization of a single measurement x by the series of measurements x1, x2, . . . xL, the
latter conveniently denoted xL. Thus, by considering successively longer pasts —X−1, then
X−2X−1, and so on—one can quantify how less uncertain a measurement of X0 is. Or, stated
differently, we can quantify how much knowledge of the past reduces the information learned in
the present: H[X0]≥H[X0|X−1]≥H[X0|X−1, X−2]≥ . . ., where we introduced the conditional
Shannon entropy H[X|·]. It is also useful to consider the entropy rate hµ, the information learned
on average per observation, having seen an infinite past: hµ = H[X0| . . . X−3X−2X−1].

Since information theory was originally developed in the context of communication, imagined
as a temporal progression of symbols, a natural notion of past, present, and future permeated the
theory. Operating under this prejudice introduced a preferred arrow of time. As a consequence,
the utility of conditioning current measurements, or observed symbols, on future observations
was not obvious. From a mathematical point of view, of course, there is no inherent impediment
to doing this. However, replacing a time series by a spatial one lifts the directional prejudice,
opening a way to identify other measures of information that treat the past and future on equal
footing [13,15–18].

As an example, consider a single measurement of the random variable X . The theoretical
maximum amount of information that one can possibly learn is just H[X], see Fig. (1a). However,
if there are correlations or regularities in the data, some of this could have been anticipated from
previous observations. Let us call this part the redundancy rate ρµ = I[X0 : . . . X−3X−2X−1]—
the mutual information between the present X0 and the past . . . X−3X−2X−1. The other part of
the information could not be anticipated; it truly is random and is just hµ. Thus, the amount of
information available in a measurement naturally decomposes into these two parts, as shown in
Fig. (1b).

However, further conditioning yields further decomposition of each of these. First, the random
portion hµ breaks into two parts: the ephemeral information rate rµ and the bound information rate
bµ. The ephemeral information rate rµ = H[X0| . . . X−3X−2X−1, X1X2X3 . . .] is the information
that exists only in the present. It is not predictable from the past nor is it communicated to
the future. Existing only in the present, it is ephemeral. The bound information rate bµ = I[X0 :

X1X2X3 . . . | . . . X−3X−2X−1] is the information shared between the present and future, but is



6

rsta.royalsocietypublishing.org
P

hil.
Trans.

R
.S

oc.
A

0000000
..................................................................

not in the past. As such, it measures the rate at which spontaneously generated information (hµ)
is actively stored by a system. Second, the redundancy rate also breaks into two parts, the first
again being bµ and a second part called the enigmatic information rate qµ. The latter is three-way
mutual information I[. . . X−3X−2X−1 :X0 :X1X2X3 . . .] shared between the past, the present,
and the future.

The net “decomposition” of the information H[X0] in a single measurement is illustrated in
Fig. (1c). This is only a sampling of the possible ways that information can be semantically
partitioned between the past, present, and future. Figure (1d), for example, is a decomposition
into dissipated rµ and useful information wµ. Moreover, other additional measures, discussed
by James et al. [13,14,19], have been defined and explored. Importantly, they now can all be
analytically calculated from a process’s ε-machine [20,21], once that is in hand.

4. Chaotic Crystallography
Armed with this new arsenal of structural information measures, a detailed, quantitative picture
of how information is shared between the past, present, and future is made plain. With these in
mind, intrinsic computation is defined as how systems store, organize, and transform historical
and spatial information [22,23]. Different processes may have quantitatively and qualitatively
different kinds of intrinsic computation, and understanding these differences gives insight into
how a system is structured [24].

Chaotic crystallography (ChC) [21,25–30] then is the application of these information- and
computation-theoretic methods to discover and characterize structure in materials. It reinterprets
the time axis, used above for pedagogical reasons, for a one-dimension spatial coordinate along
some direction in a material. The choice of the name is intended to be evocative: we retain
the term “crystallography” to emphasize continuity with past goals of understanding material
structure; and we introduce the term “chaotic” to associate this new approach with notions of
disorder, complexity, and information processing. Using chaotic crystallography we can describe
the ways in which this information decomposition quantitatively captures crystal structure—
distinguishing structure that might be expected, i.e., repetitive periodic structure, from that
structure not expected, i.e., faulting structure.

(a) Material Informatics of Faults and Defects
Since classical crystallography [31–33] largely concentrates on periodic structures, it encounters
difficulty classifying structures that do not fit this paradigm. Most efforts have centered on
describing how a crystal, that presumably could have been perfectly ordered, falls short of
this ideal. For example, in close-packed structures, Frank [34] distinguished two kinds of layer
faults: intrinsic and extrinsic. For intrinsic faults, each layer in the material may be thought of as
belonging to one of two crystal structures: either that to the left of the fault or that to the right. It
is as if two perfect, undefected crystals are glued together and the interface between them is the
fault. In contrast, it may be that a particular layer cannot be thought of as a natural extension of the
crystal structure on either side of the fault. These are extrinsic faults. Another classification scheme
has its origins in the mechanism that produced the fault. In close-packed structures, commonly
encountered faults include growth faults—i.e., those that occur during the crystal growth process;
deformation faults—which are often associated with some post-formation mechanical stress to the
crystal; and layer-displacement faults—which can occur by diffusion between adjacent layers. As
each is defined in relation to its parent crystal structure, each kind of crystal structure typically
has its own distinctive morphology for each kind of fault.

The result is a confusing menagerie of stacking sequences that deviate from the normal. This
collection may not be exhaustive, depending on how large of a neighborhood one considers
nor may particular sequences be unambiguously assigned to a particular kind of fault structure.
Indeed, in the event that there are multiple kinds of faults, or multiple mechanisms for producing
faults, an attempted analysis of the fault structure may be indeterminate [26]. Faulting may also
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H[X:0] H[X1:]

H[X0]

rµ

bµbµ
qµ

σµ

Figure 2. Information diagram showing the information anatomy of H[X0] in the context of the full spatial stacking

of layers in a chaotic crystal. Let X0 be the layer of interest, X:0 be an arbitrarily long but finite section of the

specimen to the left of X0, and X1: similarly be an arbitrarily long but finite section of the specimen to the right of

X0. The leftX:0 partitions H[X0] into two pieces: hµ and ρµ. The rightX1: then partitions those into rµ, two bµs

and qµ. (Recall Fig. 1 which decomposed only H[X0].) This leaves a component σµ, the elusive information, that

is shared by the left and right, but is not in the present layer. When positive, it indicates that not all of the correlation

between left and right half-configurations is contained in locally and so there are internal hidden mechanisms that

carry the correlation [19]. (Figure from James et al. [13]. Used with permission.)

be classified in terms of how faults are spatially related to each other. The absence of correlation
between faults implies random faulting. Alternatively, the presence of a fault can influence the
probability of finding another fault nearby. This latter phenomenon is called nonrandom faulting
and is not uncommon in heavily defected specimens. Lastly, in some materials faults appear
to be regularly interjected into the specimen, and this is referred to as periodic faulting. Screw
dislocations are thought to be a common cause for these latter faults [35].

These phenomenological categorizations, while often helpful and sensible, especially for
weakly faulted crystals, are not without difficulties. First, it is clear that each is grounded in the
assumption that the native, or ideal, state of the specimen must be a periodic structure. This bias,
perhaps not intentionally, relegates nonperiodic stacking to less stature, as is evident in the use
of the term “fault”. It may be rather that disorder is the natural state of the specimen [36], in
which case employing a framework that incorporates this feature of matter upfront will prove
more satisfactory. In fact, it is not even clear that periodic order should be the ground state for
many kinds materials, even for those with finite-range interactions and in the absence of fine-
tuning of energetic coupling parameters between layers [37], as is found in axial next-nearest
neighbor Ising (ANNNI) models [38]. Second, an analysis of the stacking structure based on these
categories may not be unambiguous, especially in the case of heavy faulting. Third, this entire
view is only tenable in the limit that a parent crystal exists; i.e., it only applies in the weak faulting
limit.

Consistency can be brought to this complicated picture of material structure by using
information theory [39]. A complementary view may be postulated by asking how information
is shared and distributed in a crystal, and a natural candidate for this kind of analysis is to
employ the information measures above. Although the previous exposition used a temporal
vocabulary of a past, present, and future, there is no mathematical change to the theory if instead
we adopt the view that the observed sequences are spatial configurations. That is, there are
measurements that are to the left of the present measurement, the present measurement itself,
and those measurements to the right of the current measurement. For quasi-one-dimensional
materials we think of each measurement as the orientation of a layer. This view of a sequence
of layer orientations translates to an information diagram or I-diagram, as shown in Figure 2. There,
we see how information is shared between the different halves of the specimen and the current
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layer. The information measures given in terms of mutual information can be interpreted as layer
correlations within in the specimen. Importantly, although one typically averages them over the
crystal, it is possible instead to not perform that average, but examine them layer-by-layer. As
shown in James et al. [14], information-theoretic measures can be quite sensitive to changes in
system parameters and we expect will provide a barometer quantifying important aspects of
material structure.

As an example, electronic structure calculations arising from one-dimensional potentials are
known to depend on pairwise correlations [40,41], with the transmission probability spectrum
of an electron through such potentials often governed by the correlation length. Information-
theoretic quantities, with their more nuanced view of correlation lengths in terms of conditional
and mutual informations, give a more detail picture of the role of disorder in electronic structure.
One of the simpler and more common measures of all-way correlation is the mutual information
between the two halves of a specimen: the excess entropy E = I[. . . X−3X−2X−1 :X0X1X2 . . .].
Inspection of the information diagram reveals its decomposition into information atoms: E =

bµ + qµ + σµ.
Additionally, not only is the global structure important, but local defects can introduce local

deviations from average structure, as seen in Anderson localization [41]. This is a current area of
research interest [42]. Similarly, regions of charge surplus or depletion can effect other properties,
such as the transmission of light. The area of disordered photonics attempts to understand and
exploit such structures for new technologies [43].

Thus, a number of questions can be asked concerning the distribution of information in the
crystal as revealed in its structure. For example, how much information is obtained from the
current measurement? Is this shared with its neighbors or is it localized? Considering questions
such as these leads to a new categorization of disordered structure in crystals.

(b) Chaotic Crystals: Structure in Disorder
The net result is a consistent, quantitative, and predictive theory of structure in disordered
materials that extends beyond faulting and weak disorder and that applies to the full spectrum of
material structure from ideal periodic crystal to amorphous materials and complex long-ranged
mixtures in between. As Ref. [44] notes, in short, we have a new view of what crystals are and can
be. Reference [39] reviews how this works in detail.

The term “chaotic crystal” has been used in two previous contexts. In 1991 Leuschner [45]
introduced several models of structure for one-dimensional crystals, capable of producing
completely periodic, quasiperiodic, and chaotic behavior. The latter was accomplished using
the Logistic Map [22] as a generator of uncertainty in the stacking sequence—in effect using it
as a random number generator. Later, Le Berre et al. [46], in the context of steady-state pattern
formation of two-dimensional systems, defined a chaotic crystal as “any structure without long
range order, but spatially statistically homogeneous”. Our use of the term is both less restrictive,
in accounting for long-range order, and more general, in allowing for a wide range of types of
disorder. It should be apparent that the chaotic crystal we describe here is just the kind of crystal
that Schrödinger imagined as the carrier of heredity. While he called it an aperiodic crystal, that
term has been usurped to describe a very special kind of deviation from periodicity, the kind that
is found to preserve sharp peaks in the diffraction pattern [11]. Thus, we use the term chaotic
crystal to indicate a broader notion of noncrystallinity, one that encompasses structures with a
nonzero entropy density, as is needed for any structure to house information.

Let’s illustrate how chaotic crystallography applies to real-world materials—the closed-packed
structures of ice and a complex molecule used to probe the chemistry of benzene’s aromaticity.
Then, combining these results with previous chaotic crystallographic analyses of zinc sulfide
(ZnS), we demonstrate how a unified vision of organization in materials is emerging.
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(i) Layer Disorder in Ice I

Although often thought of as merely the medium of life—albeit an essential one3—there has
been growing appreciation of the active role that water plays in biological processes. As an
example, Ball [47,48] cites the generic interaction of two proteins. If both are dissolved in
the cellular medium, the intervening water molecules must be removed for an interaction to
occur. Water is, of course, polar, and displacing the last few layers of water may be nontrivial,
depending on for instance to what degree the protein activation sites are either hydrophilic or
hydrophobic. Additionally, one should expect properties of thin water films, such as viscosity, to
deviate significantly from their bulk properties. Even the simulation of complex polypeptides is
incomplete without considering the influence of water [47]. As another example, there is evidence
that life engineers and precipitates the formation of ice. Without the influence of impurities to act
as centers of inhomogeneous ice nucleation, water in clouds can be expected to freeze at 235 K
via homogeneous ice nucleation. Impurities such as soot, metallic particles, and biological agents
can raise this temperature. A particularly effective biological agent is the bacterium Pseudomonas
syringae that, due to protein complexes on its cell surface, can initiate freezing at temperatures as
high as 271 K [49]. Although its particular role may be highly varied depending on circumstances,
regarding water as merely “the backdrop on which life’s molecular components are arrayed" [47]
is quite untenable.

Given the structural simplicity of a water molecule—H2O—and its importance to biological
as well as other natural systems, it is perhaps surprising that, in both its liquid and solid forms,
H2O remains somewhat mysterious. In the liquid state, water molecules form “networks", where
the connections are made from hydrogen bonds, giving the substance considerable structure. So
too, ice shows considerable and variable structure. There are no less than fifteen known distinct
polymorphs of ice (usually specified by Roman numerals) [50], although some of them only exist
under conditions too extreme to be commonly observed terrestrially [51] and some as well are
metastable. Additionally, as thermodynamic conditions change, these different polymorphs can
undergo solid-state transformations from one form to another. The common polymorph usually
encountered in everyday life called is hexagonal ice (ice Ih). Another form, cubic ice (ice Ic)4,
has been observed to coexist with ice Ih at temperatures as high as 240 K [53]. Above 170 K,
ice Ictransforms irreversibly to ice Ih. There are also structures that have significant disorder,
sometimes called stacking-disordered ice abbreviated (ice Isd) by Malkins et al. [54] and (ice Ich) by
Hansen et al. [55], with the subscript ‘ch’ in the latter designation indicating that it is a mixture of
ice Ic and ice Ih.

Structurally, ice I (ice Ih, ice Ic, ice Isd) can be thought of as a layered material. The oxygens
in the water molecules organize into layers consisting of six-member puckered rings [54]5. These
layers can further assume only three possible stacking orientations, called A, B, or C, just as in
close-packed structures [56]. The layers are organized so that upon scanning the material, the
layers form double layers, where each individual layer in this double layer must have the same
orientation. Additionally, just as in the close-packed case, adjacent double layers may not have
the same orientation. Since stacking faults are confined to interruptions between the double layers,
one usually takes a double layer as a modular layer (ML) [57], and labels it by A, B, or C. Thus,
ice Ih is given by . . . ABAB . . . (or equivalently . . . BCBC . . . or . . . CACA . . . ), and ice Ic by
. . . ABCABC . . . (or equivalently . . . CBACBA . . . ). It is sometimes more convenient to work
with an alternative notation, called the Wyckoff-Jagodzinski notation [56]. One considers triplets
of MLs, and labels the center ML as either h or c, depending on whether it is hexagonally (h)
3The necessity of water to life has come under significant scrutiny [47].
4 Emphasizing the uncertainty of the state of knowledge of ice, it has recently been suggested that ice Ic is not, in fact, a form
of ice that has been observed in its pure form. Instead, Malkin et al. [52] contend that previous reports of ice Ic are really the
disordered form. Whether or not this will be confirmed by additional studies, ice Ic gives a convenient boundary condition
on the possible structures that could exist. We will proceed as though ice Ic does exist, but this doesn’t affect our discussion
or conclusions.
5Note that the position of the oxygens does not uniquely fix the positions of the hydrogens. In ice I, of the four possible
positions that may be occupied by a hydrogen, only two are, and these are usually taken to be random. Thus, ice I is referred
to as proton disordered. We do not consider proton disordering in our analysis.
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Figure 3. (left) The stacking of layers in hexagonal ice (ice Ih). The vertical axis is normal to the (0001) basal surface

of hexagonal ice. Only oxygen atoms (red spheres), which are connected by hydrogen bonds (gray lines), are shown.

(center ) The stacking of layers in cubic ice (ice Ic), with the vertical axis normal the (111) plane. (right) An example of a

stacking sequence that may come from stacking disordered ice (ice Isd). The layers are marked depending on whether

the layer is hexagonally (H) or cubically (C) related to its neighbors. Adapted from Malkin et al. [52]. Used with permission.

or cubically (c) related to its neighbors. For example, the inner most four MLs of the stacking
sequence ABCBCA would be written as chhc. It should be apparent that any stacking structure,
whether ordered or disordered, can be expressed as some hc-sequence. The ice Ih stacking
structure is displayed in Figure (3, left) and ice Ic is in Figure (3, center). A possible disordered
stacking sequence is shown in Figure (3, right).

However, despite a recent flurry of theoretical, simulation, and experimental studies [49,52–55,
57–61], there is still much that is not understood about the formation of ice or the transformations
between the various polymorphs [50]. In an effort to understand the coexistence of ice Ih and ice Ic
at low temperatures, Thürmer and Nie [53] examined their formation on Pt via scanning tunneling
microscopy and atomic force microscopy. They find a complex interplay between initial formation
of ice Ih clusters that grow by layer nucleation and eventually coalesce. The details of the
coalescence and the nature of domain boundaries between nucleation centers strongly influence
whether subsequent growth is ice Ih or ice Ic. Importantly, they demonstrate that ice films of
arbitrary thickness can be imaged at molecular layer resolution. Several groups [52,54,55,58] have
applied the disorder model of Jagodzinski [62,63] to simulated or experimental X-ray diffraction
patterns, using a range of influence between layers, called the Reichweite, of s= 2, 3, 4. They find
that it is necessary to use s= 4 to describe some samples. Molecular dynamics simulations [60]
showed that ice crystallizing at 180 K contains both ice Ic and ice Ih in a ratio of 2:1. While
other molecular dynamics simulation studies [64] found that pairs of point defects can play an
important role in shifting layers in ice I. Yet other molecular simulations [65] suggested that a yet
new phase of ice, called ice 0, may provide a thermodynamic explanation for some features of ice
growth.

Chaotic crystallography yields important insights into the kinds of appropriate models and
the nature of stacking processes observed, as well as aids in comparing experimental, simulation,
and theoretical studies. In this way, chaotic crystallography provides a common platform to relate
these diverse observations and calculations.

Let’s begin with the models used. The ε-machines that describe ice Ih and ice Ic are shown
in Figs. (4a) and (4b). They are quite similar, both having but one state and one transition each.
Computationally, they are quite simple. Also simple is the ε-machine shown in Fig. (4c). There
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(d) Ice Isd, s = 3
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c|γ2

h|γ̄2c|α2

h|ᾱ2

c|β2

h|β̄2

(e) Ice Isd, s = 4

Figure 4. ε-Machines describing the stacking of ice I. Nodes represent causal states and are connected by arcs labeled

s|p, where s is the symbol emitted and p is the probability of making such a transition. (a) The ε-machine for ice Ih and (b)

ice Ic. Models for disordered stacking sequences of close-packed structures were introduced by Jagodzinski [62,63]. The

model parameter specifying the range of influence between MLs is called the Reichweite s. (c) The simplest ε-machine

in the hc-notation that gives an ice Isd stacking sequence. (d) The ε-machine for s= 3 ice Isd and (e) s= 4 ice Isd.

are two transitions from a single state, with the probability of a c being α0 and an h being ᾱ0.6

It is apparent that the previous two models are just special cases of this latter one. We recognize
that these three models describe independent and identically distributed (IID) stacking processes.
They imply no correlations between the symbols. However, the coding scheme used here, the
transformation of the ABC-notation to the Wyckoff-Jagodzinski notation, builds in stacking
constraints and effectively gives a two-ML influence distance. We identify this range of influence
as the Reichweite s.

The next model commonly used is Jagodzinski’s s= 3 disorder model in Fig. (4d). Here, the
next symbol in the sequence depends only on the previous symbol (either h or c), making this a
first-order Markov model. The last model explored in the literature is Jagodzinski’s s= 4 disorder
model, and this is depicted in Fig. (4e). Now, the probability of observing the next symbol depends
on the previous two symbols, we recognize this as a second-order Markov model. Again, the
mapping of the ABC-notation to the Wyckoff-Jagodzinski notation folds in an extra two-ML
range of influence in terms of the physical stacking of MLs. It is apparent that one could continue
this process, considering ever larger Reichweite, i.e., higher-order Markov models, indefinitely.
However, finite-range Markov processes are only a small fraction of the possible finite-state
processes that one could consider. By finite-state, we mean that there are a finite number of
states; but this does not mean that the range of influence need be finite. Simulations of simple
solid-state transformations in ZnS (also a close-packed structure) from the hexagonal stacking
structure to the cubic one produced stacking processes with an infinite range of influence [27].
Thus, we are led to suspect that despite the excellent agreement between experimental and
theoretical diffraction patterns reported by some researchers for ice I, the real process may belong
to a computationally more sophisticated class. Chaotic crystallography, with its emphasis on
information- and computation-theoretic measures, allows one to recognize the possibility and
indeed to ask the relevant questions.

6Here and elsewhere we adopt the convention that a bar over a variable means one minus that variable, i.e., x̄= 1− x.
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Figure 5. (left) Molecular structure of TBHB. Black spheres represent carbon atoms while the white are hydrogen

atoms. (right) The so-called “skeletal formula” representation of TBHB. Adapted from Michels-Clark et al. [68], used

with permission.

How can we observe or deduce the presence of such sophisticated stacking processes? One
way is improved inference techniques. While chaotic crystallography has an inference algorithm,
ε-machine spectral reconstruction theory [25,26] that detects finite-range processes from diffraction
patterns, there is the possibility of extending it to include infinite-order processes. Also, the
simulation studies discussed earlier can result in disordered stacking sequences and there are
techniques, such as the subtree merging [22] and Bayesian Structure Inference [66] algorithms,
that can discover these finite-state but infinite-range processes from sequential data. This suggests
that the appropriate level of comparison between theory, simulation, and experiment is not some
signal (the diffraction pattern), but rather the stacking process itself, as specified by the ε-machine.
Chaotic crystallography is a platform for such comparison.

Also, by studying the ε-machine’s causal architecture, i.e., the arrangement of causal states and
the transitions connecting them, it is possible to discover the kinds of faults present. Indeed, this
was done for ZnS polytypes [26,28]. Recently, several different kinds of faults where proposed
for ice I [57], and a proper analysis of the associated ε-machine, combined with theoretical
and experimental studies, can elucidate which faults are important in a particular specimen.
This could be quite valuable, as there are many possible routes of formation for disordered ice
specimens, and different mechanisms, such as solid-state transformations versus growth, likely
leave a discernible fingerprint in the causal architecture.

(ii) Organization of Aromaticity

Benzene is famous for it’s curious “aromatic” character that stems directly from the six π

electrons shared between its six carbon atoms and hovering above and below the plane of its
carbon-atom ring. To understand this character, chemists are trying to localize the delocalized
π electrons, partly to understand benzene’s physical character and partly to find new ways to
control chemical reactivity and discover new synthetic paths. One goal is to engineer benzene’s
novel electronic motif to act as a controllable reaction catalyst. There is an active research program
to modify benzene’s aromatic properties by adding on “bicyclic” rings outside the main ring.
This led to the creation of tris(bicyclo[2.1.1]hexeno)benzene (TBHB). TBHB’s structure is critical
to understanding how to localize benzene’s π electrons [67].

We recount recent experimental probes of TBHB’s structure, demonstrating how an
information-theoretic analysis yields additional insight. TBHB is a largely planar molecule that
has attracted attention as one of the first confirmed mononuclear benzenoid hydrocarbons with
a cyclohexatriene-like geometry [69]. Figure 5 (left) shows the molecular structure of TBHB, and
Fig. 5 (right) gives a schematic formula representation. Of particular interest is the central benzene
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ring, where the internal angles of the carbon-carbon bonds are all 120◦, but there is remarkable
alteration of the two inequivalent bond lengths between the carbons (1.438(5) - 1.349(6) Å) [69].
Of additional interest is the crystallographic structure of TBHB. Here, two crystal morphologies
are observed, monoclinic and hexagonal [70]. For this latter structure, X-ray diffraction studies
reveal significant diffuse scattering along rods in reciprocal space, a hallmark of planar disorder.
Figure 6 (left) shows the positions of the diffuse rods in reciprocal space, and Fig. 6 (right) gives an
illustration of the average layer structure of TBHB. We will call the extension of this configuration
into a two-dimensional periodic array a ML for TBHB.

Of more recent interest [68,71], and the problem that concerns us here, is quantifying and
describing the disordered stacking structures observed in TBHB. In order to do this, we must
specify the possible ML-ML stacking arrangements and establish a convenient nomenclature to
express extended stacking structures. The stacking rules and conventions for layers of TBHB can
be summarized as follows:7 (i) While there are three ways that two MLs can be stacked, they
are geometrically equivalent and are related by a rotation of 120◦ about the stacking direction.
Thus, there is only single kind of ML-ML relationship. (ii) For triplets of MLs, there are two
geometrically inequivalent stacking arrangements. For the case where a molecule in the (i+ 2)th

ML is directly above one in the ith ML, this arrangement is called eclipsed. The other distinct
possibility is that the (i+ 2)th ML occupies one of the other two positions. These are geometrically
equivalent, being related by a mirror operation, and are called bent. However, as one advances
along the stacking direction, these latter two can be differentiated as rotating in either a clockwise
or an anticlockwise fashion. Together, then, we need to distinguish between three different triplets
of stacking sequences: an eclipsed triplet, which we symbolize by e, a clockwise bent triplet which
we will symbolize by l, and an anticlockwise bent triplet, symbolized by r.8 We collect these
possibilities into the set A= {r, l, e}.

Let us imagine a sliding window that permits observation of but three MLs at a time. That
three-ML sequence is then assigned a symbol from A. The window then increments along the
stacking direction by one ML, so that the last ML in the sequence becomes hidden, and a new ML
is revealed. This new three-ML sequence can again be specified by one of the symbols in A, such
that the four-ML sequence is given by a two-letter sequence from A. Thus, a physical stacking
sequence can be written as sequence over the set of these triplets, A= {r, l, e}.

Recently, Michels-Clark et al. [68] compared three different methods of determining stacking
structure for disordered TBHB from diffraction patterns: differential evolution, particle swarm
optimization, and a genetic algorithm. Although computationally intensive, they find excellent
agreement between calculated and reference diffraction patterns, obtaining an R-factor fitness of
R= 0.0077(3) for their best case differential evolution algorithm. We analyze that case in detail
now.

Michels-Clark et al. [68] assume a second-order Markov process in the rle-notation9, so
that the probabilities of successive symbols are dependent on only the two previous symbols
seen, i.e., A2 = {rr, rl, re, lr, ll, le, er, el, ee}, which they call structural motifs. Michels-Clark
et al. [68] directly report that the probability seeing e following a pair of e’s as e2 = Pr(e|ee) =

0.008, which is only two standard deviations above 0. In addition, the probability of the
ee sequence itself is only 0.00033. Thus, we neglect the ee sequence when we construct the
hidden Markov model and take the remaining eight two-symbol histories as our set of causal
states: {Srr,Srl,Sre,Slr,Sll,Sle,Ser,Sel}. Table 1 of Michels-Clark et al. [68] relates transition
probabilities between structural motifs to model parameters, so that we can directly calculate
transition parameters from any solution of model parameters. Taking the values for the best case
differential evolution solution given in their Table 2, we calculate these probabilities. The resulting
7The stacking rules given here may seem nonintuitive. Both Burgi et al. [71] and Michels-Clark et al. [68] give excellent and
extended discussions of the stacking possibilities and the geometrical and chemical constraints that cause them. We only
synopsize those results, and the interested reader is urged to consult these references for a detailed explanation.
8To ease the burden of the nomenclature we will introduce shortly, we are using {l, r} for these triplet sequences, instead of
the {bL, bR} used in Michel-Clark et al. [68]. However, there is no change in meaning between these two sets.
9Note, however, that since each symbol implies information about the arrangement of three MLs, in terms of the MLs their
stacking process is fourth-order Markovian.
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Figure 6. (left) Schematic illustration of the reciprocal space plane hk0. Circles represent the positions of the diffuse

scattering (h− k 6= 3n) and crosses the positions of the Bragg-like reflections (h− k= 3n). (right) Average layer

structure for TBHB with the layer symmetry being p(6)2m. A two-dimensional array of TBHB molecules thus arranged is

called a modular layer (ML). Adapted from Bürgi et al. [71], used with permission.

ε-machine is shown in Fig. 7. In this way, we can give a chaotic crystallographic interpretation of
that stacking process.

With their relatively large asymptotic state probabilities (0.23) and their large inter-state
transition probabilities (0.97), there is one causal state cycle [25,26] that dominates the ε-machine:
[SrrSrlSllSlr]. This causal state cycle gives rise to the observed parent structure (rrll)∗. There are
two kinds of deviations from this structure: (i) those that weakly connect the four causal states of
this dominant causal state cycle, intra-causal state state faults, and (ii) those that break out of the
dominant causal state cycle and visit peripheral causal states, inter-causal state faults.

Of the first kind, one can think of two cases, the insertion of a symbol or the deletion of a
symbol into the normal stacking sequence. The self-state transition loops on Sll and Srr have the
effect of inserting an extra modular layer:

. . . l l r r l l l r r l l . . . ,

or

. . . l l r r l l r r r l l . . . ,

where the inserted symbol as observed by scanning from the left is underlined. Conversely, the two
transitions Slr→Srl and Srl→Slr have the effect of deleting a symbol, i.e.:

. . . l l r r l l r | l l . . . ,

or

. . . l l r r l | r r l l . . . ,

where the pike ‘|’ indicates the position of the deleted symbol as the sequence is scanned from the
left. Faulting structures of this kind are often referred to as extrinsic (insertion of a symbol) and
intrinsic (deletion of a symbol), respectively. For the specimen analyzed here, there is a probability
of 0.01 that one of these faults will occur in dominant causal state cycle [SrrSrlSllSlr] as each
causal state is visited.

A second kind of fault breaks out of this dominant causal state cycle on emission of an e.
There is a 0.02 probability of this happening at each causal state in the dominant causal state
cycle. Generically, these transitions are given by Syz→Sze, where y, z ∈ {l, r}. Then, one almost
always (0.98 probability) observes that the symbol following e is opposite the one that preceded
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Figure 7. TBHB causal-state architecture. The alphabet is A= {l, r, e}. In this nomenclature, the process is second-

order Markovian and, thus, causal states are specified by the last two symbols observed. The causal states are labeled

with their asymptotic state probabilities. There is one closed cycle that dominates the graph, and that is the four-state

loop [SrrSrlSllSlr ] (green transition arcs). That this nearly periodic sequence is so well represented suggests that this

structure is nearly crystalline, i.e. periodic, but does have faults.

the e, i.e.:

Sxr→Sre→Sel or

Sxl→Sle→Ser .

In other words, an e is almost always sandwiched between two unlike symbols drawn from l and
r. There is a 0.50 probability that the sequence will return to the dominant causal state cycle at
this point on emission of either a l or r. If not, then another e is observed. Thus, even though pairs
of e’s (ee) are unlikely (and, in fact, prohibited in this ε-machine) the probability of observing two
e’s separated by a single r or l is surprisingly large. It appears that they may ‘clump’ into small
regions.

(iii) Towards a Unified View of Material Structure

How does all of this fit together? Let’s contrast the chore of the crystallographer tasked with
determining the structure of a periodic material and nonperiodic one. For the full three-
dimensional periodic case, there are seven possible crystal systems: triclinic, monoclinic, orthogonal,
tetragonal, cubic, trigonal, and hexagonal. One, of course, can be more specific and note that there
are 230 crystallographic space groups. A periodic crystal must belong to one and only one of
them. Thus, crystallography is equipped with tools that partition the space of all possible crystal
structures into a finite number of nonoverlapping sets. Of all the bewildering number ways
one might imagine putting atoms together in a periodic three-dimensional array, this limited
classification system exhausts the possibilities. One can discuss the similarities between the
different systems [72] and otherwise approach a genuine understanding of varieties of possible
structures. But can the same be said for nonperiodic materials?

To simplify the discussion, let’s confine our attention to the one-dimensional case of stacking
1000 MLs. Let’s suppose that this is over an alphabet of two. How many possible stacking
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sequences are there? Well, there are 21000 ≈ 10301. Given that there are about 1080 protons in the
observable universe, it is clear that a comprehensive listing is simply not possible. And if it were,
it is questionable how helpful it would be. For these disordered materials, then, we are forced
to appeal to statistical methods. Instead of a classification scheme fine-grained at the level of
individual sequences, we instead collect all sequences that have the same statistical properties into
a set. Colloquially, each set is represents a stacking process. Operationally, we attempt to identify
to which process a particular sequence belongs, and then we analyze the process in lieu of the
particular sequence.

Each of the graphs in Fig. 4 and Fig. 7 specifies a particular process and defines a hidden
Markov model. While there are still an infinite number of possible processes in the limit of
indefinitely long sequences, a kind of order has been imposed. We can, for example, enumerate
all the processes over a two-symbol alphabet with just one state. There is but one, and it is shown
in Fig. 4c. (Figs. 4a,b are just special cases of Fig. 4c.) For two-state binary processes, there are
thirteen [66].10 For binary processes, the number of distinct processes up to six states has been
tabulated [73]. Thus, chaotic crystallography does for disordered materials much the same service
that classical crystallography does for perfectly ordered ones: it organizes and structures the space
of possible atomic arrangements. Further, it allows comparison of the hidden Markov models
between different materials in much the same way that crystal structures of different materials
are compared according to which, for example, crystal system they belong.

We contend then that the hidden Markov models describing not only different specimens of the
same material, but different materials altogether can be compared, either by direct examination
of the graphical model of the process or by information measures that characterize various
computational requirements. As an example, we can compare measures of intrinsic computation
between the two materials considered in the previous subsections as well as that of a third
layered material, ZnS. Of the many measures one can select, we choose to examine these
materials’ informational organization via a complexity-entropy diagram [23]. A complexity-entropy
diagram plots, for each stacking process, the entropy rate hµ of a symbol sequence discussed in
Section § 3 and the mutual information between two halves of the specimen, the excess entropy E,
introduced in Sec. § 4. These measures can be calculated directly from the hidden Markov model
for the stacking processes.

We begin with ice. Note that ice Ic and ice Ih are both described by single-state machines
and, thus, each half of the crystal shares no information with the other half, giving E(Ic) =

E(Ih) = 0 bits. Similarly, being perfectly ordered, we find hµ(Ic) = hµ(Ih) = 0 bits/ML. For ice
Isd, we calculate this quantity for a number of experimental specimens reported in the literature.
Malkin et al. [52] performed X-ray diffraction studies of several samples of ice I that has been
recrystallized from ice II and heated at rates between 0.1 to 30 K per minute over temperature
ranges of 148 - 168 K. They use the s= 4 Jagodzinski disorder model to analyze their results,
and we find by direct calculation from the data given in their Table 4 that these information
measures cluster in the range of E(Isd)≈ 0.10− 0.15 bits and hµ(Isd)≈ 0.75− 0.90 bits/ML.
Murray et al. [58] carried out similar studies on ice I deposited as amorphous ice from the vapor
phase onto a glass substrate at 110 K. The sample was subsequently warmed at a rate of 1 K
per minute, and they report diffraction patterns recorded at selected temperatures in the range
of 125 - 160 K. They too analyzed the diffraction patterns using the s= 4 Jagodzinski disorder
model, although they found that memory effects were negligible. We find by direct calculation
from the data given in their Table 1 that these information measures cluster near E(Isd)≈ 0 bits
and hµ(Isd)≈ 0.95− 1.00 bits/ML. We can do the same for TBHB. We find E(TBHB) = 1.9 bits
and hµ(TBHB) = 0.27 bits/ML. For comparison, we also consider these quantities for several
specimens of ZnS analyzed elsewhere [28]. Lastly, to contrast with these disordered samples, we
consider a one-dimensional process that has characteristics similar to those of a quasicrystal, the
Thue-Morse Process (TM) [74]. Like a quasicrystal, it is completely ‘ordered’, but nonperiodic.
10We brush aside some technicalities here. In this enumeration, we require that each state transition to only one successor
state on the emission of a particular symbol, a property called unifilarity. These details, while important, do not detract from
our main point here that process space over a finite alphabet can be systematically ordered.
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We have limN→∞E(TM) =∞ bits, where N is the number of layers in the specimen, and
hµ(TM) = 0 bits/ML.

Since the maximum possible stacking disorder is 1 bit/ML for ice I, we can see that disordered
ice I really is, well, disordered. Additionally, very little information (E) is shared between the
different halves. There is little one can predict about one half of the specimen knowing the
other half. The clustering of the these information measures does lend credibility to the notion
that ice Isd is a ‘new’ form of ice. We would, however, exercise caution in referring to this as a
distinct thermodynamic phase of ice. Observe that it is not only not well defined in stacking-
sequence space, i.e. there are many sequences that correspond to ice Isd, but we also see from
the spread of information measures on the complexity-entropy diagram, it is not well defined in
process-space either. We prefer the interpretation that these specimens are chaotic crystals, each
being described by a different hidden Markov model and each exhibiting different measures of
information processing. Thus, they really do not constitute a separate phase in the same sense
that ice Ic and ice Ih are. Ice Isd is, at least at the moment, an umbrella term for ice I with a
largely randomly stacking of hexagonal and cubic layers. We do note that information-theoretic
measures can distinguish between ice Isd samples having different histories of under different
thermodynamic conditions.

In contrast to the near complete disorder of these ice Isd specimens, the TBHB sample appears
to be much more organized. Not only is more information shared between the two halves, but
the entropy rate is much less. Indeed, as noted before, there is a prominent cycle on the graph
of Fig. 7 that is nearly periodic. ZnS presents an intermediate case. Its specimens are similar to
ice I in that they are either grown disordered or caught in the transformation between crystalline
phases: a hexagonal phase and a cubic one. Generically, however, ZnS appears to have more
structured intermediate states, suggesting a more structured transformation, likely as a result of
significant constraints on the types disordering mechanisms in play. We can speculate that though
ice I and ZnS can both be described as close-packed structures, the disordering and transformation
mechanisms are at least quantitatively, if not qualitatively, different for each.

Examining Fig. 8, we see that the complexity-entropy diagram also provides a partitioning
for the kinds of structures that can can exist. For example, any periodic process has zero
entropy, thus on a complexity-entropy diagram all perfect crystals are confined to the vertical
axis. This, then, makes concrete just how special crystallinity is. Similarly, quasicrystals inhabit
the upper left corner of the diagram, also confined to the vertical axis. Thus, while quite
interesting, quasicrystals are informationally rather special organizations. All the space to the
right of the vertical axis is occupied by entropic crystals—just the kinds of specimen that chaotic
crystallography is ideally suited to describe. Thus, chaotic crystallography introduces tools to
quantify these structures and represents a significant expansion over the domain of classical
crystallography.

Although we maintain that understanding structure in itself is a worthy enough goal, we
are mindful that one of the fruits to be harvested from this inquiry is the possible exploitation
of the connection between structure and function11. The interrelationship between structure and
material properties is quite well known. Carbon can exist as face-centered cubic crystal and, when
a specimen is so ordered, we call it a diamond. More commonly, carbon is found in hexagonal
sheets and is known as graphite. Carbon can also be arranged as nanotubes and spherical shells
informally called Bucky balls. And, though each of these is equivalent by composition, their
material properties are vastly different. Structure matters. Less drastically, different kinds of
stacking structures change material properties in more subtle ways. Brafman and Steinberger
[76] noticed that by changing from one kind of periodic stacking structure in ZnS to another,
the degree of birefringence changes. Indeed, this change appeared to depend on only a single
parameter, the hexagonality, which is the fraction of layers hexagonally related to their neighbors,
given by Pr(h). And, perhaps consequentially, it did so in a very smooth and predictable way. We
know that stacking structure affects other material properties, such as the diffraction pattern and,
11We are reminded here of the well known epigram by Louis Sullivan, “Form ever follows function” [75]. Although uttered
in the context of architecture, it applies equally well to materials.
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process for each material as well as their entropy densities.

clearly, the correlation functions. It requires little imagination to speculate that other properties
may be similarly affected.

Let us then return to the case of stacking 1000 MLs. Suppose we task a materials scientist to
investigate the possible material properties obtainable from different stacking sequences. Even
in the simple binary case, as we saw above, there are approximately 10301 such sequences. Thus,
(the admittedly naive approach of) a detailed sequence-by-sequence analysis is unfeasible—either
experimentally, theoretically, or via simulation. Yet absent any theory of disorder in materials,
such a brute force investigative approach might be thought necessary. A chaotic crystallography
perspective immediately equips the materials scientist with tools to approach the problem.
She knows, for instance, that many materials properties are dictated by and calculable from
knowledge of the stacking process alone. Thus, instead of trying to tackle the problem sequence-
by-sequence, it is profitable instead to approach it process-by-process. Although the space is
still enormous, it is considerably smaller and, importantly, is now systematized. Starting with
simple processes and proceeding to more complex ones, might, for example, be an effective
strategy.12 Furthermore, properties may not even depend on the stacking process details, but
may instead correlate with overall statistical properties or information theoretic measures. The
case of the birefringence of ZnS hints at this. A single statistical parameter correlates with the
12Chaotic crystallography has tools for quantifying the complexity of the stacking process [25,39], so this notion of treating
simple processes first can be made operational.
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observed birefringence; at least for periodic stacking sequences. Also, the diffraction pattern
is known to depend only on the pairwise correlations between MLs. It is well known that
different stacking processes can have the same correlation functions, suggesting that an even
less fine-grained approach may be profitable. To the extent that transmission properties through
disordered potentials depend only on correlation functions [41], here too a less fine-grained
approach may be useful.

One may object and question whether we are guaranteed that all material properties are the
same for all realizations of a process. We are not. However, theoretical results suggesting the
important parameters to consider, coupled with experimental observations and the outcomes of
simulations, can give confidence that a particular property under study is an ensemble property.
Unquestionably, much of the connection between information-theoretic properties and materials
properties remains unexplored. Along the lines presented here and paralleling Schrödinger’s
principled, but speculative thoughts about life’s organization, the abundant hints of intimate
connections are too promising and possible rewards of finding and exploiting such connections
are too rich to not explore.

We note too that the exercise of predicting material properties from structure is by no means
academic: The Materials Genome Project [77] is a coordinated and dedicated effort spanning
theoretical, experimental, and simulation studies attempting to do just this. Given the sheer
variety of possible arrangements of atoms, an organizational scheme that structures the space
of possibilities is an absolute necessity. Otherwise, researchers will find themselves relying on
intuition—formidable certainly, but all too often unreliable—alone to propose and assemble
possible configurations with novel material properties. Without too much exaggeration, it is a
akin to banging on a keyboard hoping to finger out one of Shakespeare’s sonnets: Possible yes,
but ever so much more likely if one knows the rules of English grammar.

5. Thermodynamics of Material Computation
Up to this point, we focused exclusively on informational properties embedded in the
static structure of “chaotic” materials, ignoring temporal dynamics ... of their growth, their
functional behavior in the “wild”, and the like. A full story, though, requires a thermodynamic
accounting of the informational aspects of such materials—the energetics of their equilibrium and
nonequilibrium configurations, the energetics of how they come to be, how they are transformed,
and what functions they support. Here, to illustrate the connections between intrinsic information
and energetic costs, we briefly review recent explorations of Maxwell’s Demon and a ratchet
model that describes how molecular “engines” can store and process information as they traverse
a control sequence.

(a) Szilard’s Single-Molecule Engine
Biological macromolecules [78–80] perform tasks that involve the simultaneous manipulation of
energy, information, and matter. Though we can sometimes identify such functioning—in the
current gating of a membrane ion channel [81,82] that supports propagating spike trains along a
neuronal axon or in a motor protein hauling nutrients across a cell’s microtubule highways [78]—
it is not well understood. Understanding calls on a thermodynamics of nanoscale systems that
operate far out of equilibrium and on a physics of information that quantitatively identifies
organization and function. At root, we must rectify this functioning with the entropy generation
dictated by the Second Law of Thermodynamics. James Clerk Maxwell introduced the Demon
that now bears his name to highlight the essential paradox. If a Demon can measure the state of
a molecular system and take actions based on that knowledge, the Second Law can be violated:
sorting slow and fast molecules onto separate sides of a partition creates a temperature gradient
that a heat engine can convert to useful work. In this way, Demon “intelligence”—or, in our
vocabulary, information processing—can convert thermal fluctuations (disorganized energy) to
work (organized energy).
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In 1929 Leo Szilard introduced an ideal Maxwellian Demon for examining the role of
information processing in the Second Law [83]; a thought experiment that a decade or so later
provided an impetus to Shannon’s communication theory [84]. Szilard’s Engine consists of three
components: a controller (the Demon), a thermodynamic system (a molecule in a box), and a heat
reservoir that keeps both thermalized to a temperature T . It operates by a simple mechanism of a
repeating three-step cycle of measurement, control, and erasure. During measurement, a barrier
is inserted midway in the box, constraining the molecule either to box’s left or right half, and
the Demon memory changes to reflect on which side the molecule is. In the thermodynamic
control step, the Demon uses that knowledge to allow the molecule to push the barrier to the
side opposite the molecule, extracting

∫
P dV = kBT ln 2 work from the thermal reservoir. In

the erasure step, the Demon resets its finite memory to a default state, so that it can perform
measurement again. The periodic protocol cycle of measurement, control, and erasure repeats
endlessly and deterministically. The net result being the extraction of work from the reservoir
balanced by entropy created by changes in the Demon’s memory. The Second Law is respected
and the Demon exorcised, since dumping that entropy to the heat bath requires a work flow that
exactly compensates energy gained during the control step.

Connecting nonlinear dynamics to the thermodynamics of Szilard’s Engine, we recently
showed that its measurement-control-erasure barrier-sliding protocol is equivalent to a discrete-
time two-dimensional map from unit square to itself [85]. This explicit construction establishes
that Szilard’s Engine is a chaotic system whose component maps are thermodynamic
transformations—what we now call a piecewise thermodynamical system. An animation of the
Szilard Engine, recast as this chaotic dynamical system, can be viewed at http://csc.

ucdavis.edu/~cmg/compmech/pubs/dds.htm.
What does chaos in the Szilard Engine mean? The joint system generates information—

information that the Demon must keep repeatedly measuring to stay synchronized to the
molecule’s position. On the one hand, information is generated by the heat reservoir through
state-space expansion during control. This is the chaotic instability in the Engine when viewed
as a dynamical system. And, on the other, information is stored by the Demon (temporarily) so
that it can extract energy from the reservoir by allowing the partition to move in the appropriate
direction. To return the Engine to the same initial state, that stored information must be erased.
This dynamically contracts state-space and so is locally dissipative, giving up energy to the
reservoir.

The overall information production rate is given by the Engine’s Kolmogorov-Sinai entropy
hµ [86]. This measures the flow of information from the molecular subsystem into the Demon:
information harvested from the reservoir and used by the Demon to convert thermal energy
into work. Simply stated, the degree of chaos determines the rate of energy extraction from the
reservoir. Moreover, in its basic configuration with the barrier placed in the box’s middle and its
memory states being of equal size, the Demon’s molecule-position measurements are optimal.
It uses all of the information generated hµ by the thermodynamic system: All of the generated
information hµ is bound information bµ; none of the generated information is lost (rµ vanishes).

Critically, the dynamical Szilard Engine shows that a widely held belief about the
thermodynamic costs of information processing—the so-called Landauer Principle [87–91]:
each erased bit costs kBT ln 2 of dissipated energy and the act of measurement comes at no
thermodynamic cost—is at best a special case [85,92–94]13. As the partition location varies and
the Demon memory cells change size, both measurement and erasure can dissipate any positive
or negative amount of heat. Specifically, there are Szilard Engine configurations that directly
violate Landauer’s Principle: erasure is thermodynamically free and measurement is costly—an
anti-Landauer Principle. The result is that the Szilard Engine achieves a lower bound on energy
dissipation expressed as the sum of measurement and erasure thermodynamic costs. In this, the
Szilard Engine captures an optimality in the conversion of information into work that is analogous
to a Carnot Engine’s optimal efficiency when converting a difference in thermal energies to work.
13Early on, von Neumann [92, Lecture 4] discussed the general costs of information processing and transmission without
falling into the trap of assigning costs only to information erasure.

http://csc.ucdavis.edu/~cmg/compmech/pubs/dds.htm
http://csc.ucdavis.edu/~cmg/compmech/pubs/dds.htm
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(b) Information Catalysts
Szilard’s Engine is one of the simplest controlled thermodynamic devices that lays bare the
tension between the Second Law and functionality of an information-gathering entity or
subsystem (the Demon). The net work extracted exactly balances the thermodynamic (entropic)
costs. This was Szilard’s main point, though we see that his Engine was not very functional,
merely consistent with the Second Law. The major contribution was that, long before Shannon’s
information theory, Szilard recognized the importance of the Demon’s information acquisition
and storage in resolving Maxwell’s paradox.

This allows us to move to a more sophisticated device that uses a reservoir of information
(a string of random bits) to extract net positive work from a heat reservoir. To set the stage for
the thermodynamics we are interested in, but staying in the spirit of complex materials, let’s re-
imagine the Szilard Engine implemented as an enzyme macromolecule whose conformational
states implement the measurement-control-erase protocol. Moreover, let this enzyme traverse
a one-dimensional periodic crystal—say, a strand of DNA—reading its successive base-
pairs to obtain individual Measurement, Control, Erase protocol commands. The preceding
thermodynamics and informational analysis thus apply to such a molecular engine—an actively
controlled system that can rectify fluctuations, being only temporarily, locally inconsistent with
the Second Law.

Let’s go one step further, though, to imagine a functional enzyme that over a thermodynamic
cycle extracts net positive work from an information reservoir to store or release energy as it
assembles or disassembles a chain of small molecular components. In this, we replace the one-
dimensional ”control” molecule with a set of random bits that come into local equilibrium with
the enzyme. As they do, the enzyme’s dynamic shifts to catalyze assembling the components. The
shift allows the enzyme to selectively use energy from a reservoir, say an ATP-rich environment
whose molecules the machine accesses when energy is needed (ATP→ ADP) or given up (ADP
→ ATP). Figure 9 illustrates the new, functional molecular machine.

In this way, the imagined enzyme acts as an information catalyst that facilitates, via what are
otherwise thermodynamically unfavorable reactions, the assembly of the chain of molecular
components. In the 1940s, Leon Brillouin [95] and Norbert Wiener [96], early pioneers in
the physics of information, viewed enzymes as just these kinds of catalysts. In particular,
Brillouin proposed a rather similar “negative catalysis” as the molecular substrate that generated
negentropy—the ordering principle Schrodinger identified as necessary to sustain life processes
consistent with the Second Law. Only much later would such “information molecules” be
championed by the evolutionary biologists John Maynard Smith and Eors Szathmary [97].

We recently analyzed the thermodynamics of a class of memoryful information catalysts [98]
for which all correlations among system components could be explicitly accounted. This gave
an exact, analytical treatment of the thermodynamically relevant Shannon information change
from the input information reservoir (bit string with entropy rate hµ) to an exhaust reservoir
(bit string with entropy rate hµ′). The result was a refined and broadly applicable Second Law
that properly accounts for the intrinsic information processing reflected in the accumulation of
temporal correlations. On the one hand, the result gives an informational upper bound on the
maximum average work 〈W 〉 extracted per cycle:

〈W 〉 ≤ kBT ln 2 (hµ
′ − hµ) ,

where kB is Boltzmann’s constant and T is the environment’s temperature. On the other hand,
this new Second Law bounds the energy needed to materially drive transforming the input
information to the output information. That is, it upper bounds the amount −〈W 〉 of input work
to a physical system to support a given rate of intrinsic computation, interpreted as producing a
more ordered output—a reduction in entropy rate.

This Second Law allows us to identify the Demon’s thermodynamic functions. Depending on
model parameters, it acts as an engine, extracting energy from a single reservoir and converting it
into work (〈W 〉> 0) by randomizing the input information (hµ′ − hµ > 0), or as an information
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Figure 9. Information catalyst: An enzymatic molecular Maxwellian Demon thermalizes with a succession of random bits

(information reservoir), each changing its catalytic activity to overcome energy barriers to assemble a chain of simple

molecular components. The environment, at constant temperature T , provides energy-rich molecules needed to drive the

catalyzed reactions and the chain component molecules. (Cf. the information ratchet of Ref. [98].)

eraser, erasing information (hµ′ − hµ < 0) in the input at the cost of the external input of
work (〈W 〉< 0). Moreover, the Demon supports a counterintuitive functionality. In contrast to
previous erasers that only decreased single-bit uncertainty H[X0], it sports a new kind of eraser
that removes multiple-bit uncertainties by adding correlation (temporal order), while single-bit
uncertainties are actually increased (H′[X0]−H[X0]> 0). This modality leads to a provocative
interpretation of life processes: The existence of natural Demons with memory (internal states)
is a sign that they have been adapted to leverage temporally correlated fluctuations in their
environment.

6. Conclusions
We have come a long way from Schrödinger’s prescient insight on aperiodic crystals. We argued,
across several rather different scales of space and time and several distinct application domains,
that there is an intimate link between the physics of life and understanding the informational
basis of biological processes when viewed in terms of life’s constituent complex materials. We
noted, along the way, the close connection between new experimental techniques and novel
theoretical foundations—a connection necessary for advancing our understanding of biological
organization and processes. We argued for the importance of structure and strove to show
that we can now directly and quantitatively talk about organization in disordered materials, a
consequence of breaking away from viewing crystals as only periodic [44,99]. These structured-
disordered materials, in their ability to store and process information, presumably played a role in
the transition from mere molecules to material organizations that became substrates supporting
biology [100]. For biology, of course, its noncrystalline “disorder” is much much more, it encodes
the information necessary for life. Thus, biological matter is more than wet, squishy “soft matter”;
it is informational matter. DNA, RNA, and proteins are molecules of information [95–97]. So much
so that DNA, for example, can be programmed [101–103]. And, in a complementary way, the
parallels driving our development here perhaps give an alternative view of “material genomics”
[77].

What distinguishes biological matter from mere physical matter is that the information in
the former encodes organization and that organization takes on catalytic function through
interactions in a structurally diverse environment. Moreover and critically, these characters are
expressed in a way that leads to increasingly novel, complex chemical structures—structures
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that form into entities with differential replication rates [104]. And the high-replication entities,
in turn, modify the environment, building “niches” that enhance replication; completing a
thermodynamic cycle, whose long-term evolutionary dynamics are thought to be creatively
open-ended.

We saw that pondering Schrödinger’s view of the physical basis of life raised questions of
order, disorder, and structure in one-dimensional materials. Chaotic crystallography emerged as
an overarching theory for the organization of close-packed materials. It gave a consistent way
to describe, at one and the same time, order and disorder in layer stacking in ice and aromatic
compounds and, generally, in one-dimensional chaotic crystals. And, in this, it hints at a role that
local (dis)ordering can play in enhancing how biomolecules function synergistically in solution.
The issue of biological function forced us to probe more deeply into its consistency with the
Second Law of Thermodynamics. We then turned to consider two simple cases of Maxwellian
molecular Demons to illustrate that the Second Law of Thermodynamics is perfectly consistent
with the informational character and functionality of smart molecules—that thermodynamics can
begin to describe the energetics of such information catalysts.

Admittedly, we addressed only in a cursory way several major challenges an informational
view of matter poses. Shannon introduced information as surprise and we showed that
this readily led to seeing how information is stored, created, and transmitted. We only just
broached the abiding question, however, of how these kinds of information contribute to
material functionality. Szilard’s Engine and related information catalysts hinted at how we
will come to analyze functional information in complex materials and biomolecules. Hopefully,
the informational perspective will be sufficiently fruitful to extend to analyzing how such
structured objects function in their environments—how, for example, water plays a critical role in
biomolecular interactions and function.
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