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Among the predictive hidden Markov models that describe a given stochastic process, the ε-machine
is strongly minimal in that it minimizes every Rényi-based memory measure. Quantum models
can be smaller still. In contrast with the ε-machine’s unique role in the classical setting, however,
among the class of processes described by pure-state hidden quantum Markov models, there are
those for which there does not exist any strongly minimal model. Quantum memory optimization
then depends on which memory measure best matches a given problem circumstance.
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I. INTRODUCTION

When studying classical stochastic processes, we often
seek models and representations of the underlying system
that allow us to simulate and predict future dynamics. If
the process is memoryful, then models that generate it
or predict its future behaviors must also have memory.
Memory, however, comes at some resource cost; both in
a practical sense—consider, for instance, the substantial
resources required to generate predictions of weather and
climate [1, 2]—and in a theoretical sense—seen in ana-
lyzing resource use in thermodynamic systems such as
information engines [3]. It is therefore beneficial to seek
out a process’ minimally resource-intensive implementa-
tion. Notably, this challenge remains an open problem
with regards to both classical and quantum processes.
The mathematical idealization of a system’s behaviors is
its stochastic process, and the study of the resource costs
for predicting and simulating processes is known as com-
putational mechanics (CM) [4–7]. To date CM has largely
focused on discrete-time, discrete-state stochastic pro-
cesses. These are probability measures P (. . . x−1x0x1 . . . )
over sequences of symbols that take values in a finite al-
phabet X . The minimal information processing required
to predict the sequence is represented by a type of hid-
den Markov model called the ε-machine. The statistical
complexity Cµ—the memory rate for ε-machines to simul-
taneously generate many copies of a process—is a key
measure of a process’ memory resources. Where finite, Cµ
is known to be the minimal memory rate over all classical
implementations.
When simulating classical processes, quantum implemen-
tations can be constructed that have smaller memory
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requirements than the ε-machine [8, 9]. The study of
such implementations is the task of quantum computa-
tional mechanics (QCM). Over a wide range of processes,
a particular implementation of quantum simulation—the
q-machine—has shown advantage in reduced memory
rate; often the advantage over classical implementations
is unbounded [10–13]. For quantum machines, the mini-
mal memory rate Cq has been determined in cases such as
the Ising model [11] and the Perturbed Coin Process [14],
where the q-machine attains the minimum rate. Though a
given q-machine’s memory can be readily calculated [15],
in many cases the absolutely minimal Cq is not known.
Another structural formalism, developed parallel to CM,
provides a calculus of quantum informational resources.
This field, termed quantum resource theory (QRT) re-
cently emerged in quantum information theory as a toolkit
for addressing resource consumption in the contexts of en-
tanglement, thermodynamics, and numerous other quan-
tum and even classical resources [16]. Its fundamental
challenge is to determine when one system (a QRT re-
source) can be converted to another using a predetermined
set of free or allowed operations.
QRT is closely allied with two other areas of mathematics,
namely majorization and lattice theory. Figure 1 depicts
their relationships.
On the one hand, majorization is a preorder relation %
on positive vectors (typically probability distributions)
computed by evaluating a set of inequalities [17]. If the
majorization relations hold between two vectors, then
one can be converted to the other using a certain class
of operations. Majorization is used in several resource
theories to numerically test for convertibility between two
resources [18–20].
Lattice theory, on the other hand, concerns partially or-
dered sets and their suprema and infima, if they exist
[21]. Functions that quantify the practical uses of a re-
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FIG. 1. Triumvirate of resource theory, majorization, and
lattice theory.

source are monotonic with respect to the partial orders
induced by convertibility and majorization. For example,
optimization of measures of memory is then related to
the problem of finding the extrema of the lattice. Ma-
jorization and resource convertibility are both relations
that generate lattice-like structures on the set of systems.
The following brings the tools of CM and QRT together
for the first time. Section III starts with a review of ma-
jorization theory for the unfamiliar and introduces strong
and weak optimization which, as we show, have eminently
practical implications for process predictors and simula-
tors. Section IV briefly reviews CM and demonstrates
how strong-weak optimizations shed new light on the
fundamental role of the ε-machine in the hierarchy of im-
plementations for a given process. In particular, among
classical predictive models the ε-machine is strongly min-
imal in that it simultaneously minimizes all measures of
memory. Sections V and VI then take these notions into
the quantum setting, demonstrating the universally ad-
vantageous nature of quantum modeling when it comes to
memory resources, but showing that no analog of (strong
minimal) ε-machines exists in the hierarchy of quantum
machines.

II. PROCESSES, PROBABILITIES, AND
MEASURES

The objects whose probabilities we study span both finite
and infinite spaces, each of which entails its own notation.
Most of the objects of study in the following can be
described with finite probability distributions. Finite here

refers to random variables (e.g., X) that take values in a
finite set (e.g. X ). Distribution refers to the probability
of outcomes x ∈ X given by a vector p := (px) with
components indexed by X that sum to unity:

∑
x∈X px =

1.

Probability vectors may be transformed into one another
by stochastic matrices. Here, we write such matrices as
T := (Ty|x) to represent a stochastic mapping from X
to Y. The matrix components are indexed by elements
x ∈ X and y ∈ Y and the stochasticity constraint is∑
y∈Y Ty|x and Ty|x > 0 for all x ∈ X and y ∈ Y.

The following development works with one object that
is not finite—a stochastic process. Starting with a finite
set X of symbols x (the “alphabet”), a length-` word
w := x1 . . . x` is a concatenation of ` symbols and the
set of these is denoted X `. A bi-infinite word ←→x :=
. . . x−1x0x1 . . . is a concatenation of symbols that extends
infinitely in both directions and the set of these is denoted
X∞.

A stochastic process is a probability distribution over
bi-infinite words. This implies a random variable ←→X
taking values in the set X∞. However, this set is un-
countably infinite, and the notation of measure theory
is required to appropriately work with it [22]. In this
case, probability values are taken over sets rather than
distinct elements. We distinguish probabilities of sets
from those of elements using the symbol P. Often, we
ask for the probability of seeing a given length-` word
w. This asks for the probability of the cylinder set
cw := {←→x :←→x = . . . xtwxt+`+1 . . . for some t ∈ Z} of bi-
infinite words containing word w. The measure then in-
duces a finite distribution p := (pw) over X ` describing a
random variable W :

pw := P (cw) .

When discussing the process as a whole, we refer to it by
its random variable ←→X .

Following these conventions, lowercase boldface letters
such as p and q denote probability vectors; uppercase
boldface letters such as T denote linear transformations
on the probability vectors; and uppercase cursive letters
such as X denote finite sets (and almost always come
with an associated random variable X). Lowercase italic
letters generally refer to elements of a finite set, though p
and q are reserved for components of probability vectors.

Notation for quantum systems follows standard practice.
Cursive letters do double-duty, asH is exclusively reserved
for a Hilbert space, and quantum states are given by
lowercase Greek letters. Linear operators are upper-case
but not boldface.
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III. MAJORIZATION AND OPTIMIZATION

First off, an overview of important relevant concepts from
majorization and information theory is in order. Those
familiar with these may skip to strong/weak optimization
(Def. 3), though the intervening notational definitions
might be useful.
The majorization of positive vectors provides a qualitative
description of how concentrated the quantity of a vector
is over its components. For ease of comparison, consider
vectors p = (pi), i ∈ {1, . . . , n}, whose components all
sum to a constant value, which we take to be unity:

n∑
i=1

pi = 1 ,

and are nonnegative: pi ≥ 0. For our purposes, we
interpret these vectors as probability distributions, as just
discussed in Sec. II.
Our introduction to majorization here follows Ref. [17].
The historical definition of majorization is also the most
intuitive, starting with the concept of a transfer operation.

Definition 1 (Transfer operation). A transfer operation
T on a vector p = (pi) selects two indices i, j ∈ {1, . . . , n},
such that pi > pj, and transforms the components in the
following way:

(Tp)i := pi − ε
(Tp)j := pj + ε ,

where 0 < ε < pi − pj , while leaving all other components
equal; (Tp)k := pk for k 6= i, j.

Intuitively, these operations reduce concentration, since
they act to equalize the disparity between two components,
in such a way as to not create greater disparity in the
opposite direction. This is the principle of transfers.
Suppose now that we have two vectors p = (pi) and
q = (qi) and that there exists a sequence of transfer
operations T1, . . . ,Tm such that Tm ◦ · · · ◦T1p = q. We
will say that p majorizes q; denoted p % q. The relation
% defines a preorder on the set of distributions, as it is
reflexive and transitive but not necessarily antisymmetric.
There are, in fact, a number of equivalent criteria for
majorization. We list three relevant to our development
in the following composite theorem.

Theorem 1 (Majorization Criteria). Given two vectors
p := (pi) and q := (qi) with the same total sum, let their
orderings be given by the permuted vectors p↓ := (p↓i ) and
q↓ := (q↓i ) such that p↓1 > p↓2 > · · · > p↓n and the same for
q↓. Then the following statements are equivalent:
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FIG. 2. Lorenz curves when p and q are comparable and
the first majorizes the second: p % q. Here, we chose p =
(3/4, 1/8, 1/8, 0, 0) and q = (2/5, 1/5, 1/5, 1/10, 1/10). Tick marks
indicate kinks in the Lorenz curve.

1. Hardy-Littlewood-Pólya: For every 1 ≤ k ≤ n,

k∑
i=1

p↓i ≥
k∑
i=1

q↓i ;

2. Principle of transfers: p can be transformed to q
via a sequence of transfer operations;

3. Schur-Horn: There exists a unitary matrix U :=
(Uij) such that q = Dp, where D :=

(
|Uij |2

)
, a

uni-stochastic matrix.

The Hardly-Littlewood-Pólya criterion provides a visual
representation of majorization in the form of the Lorenz
curve. For a distribution p := (pi), the Lorenz curve
is simply the function βp(k) :=

∑k
i=1 p

↓
i . See Fig. 2.

We can see that p % q so long as the area under βq is
completely contained in the area under βp.
The Lorenz curve can be understood via a social analogy,
by examining rhetoric of the form “The top x% of the
population owns y% of the wealth”. Let y be a function
of x in this statement, and we have the Lorenz curve of a
wealth distribution. (Majorization, in fact, has its origins
in the study of income inequality.)
If neither p nor q majorizes the other, they are incompa-
rable.1 (See Fig. 3.)

1 It is worthwhile to note an ambiguity when comparing distri-
butions defined over different numbers of elements. There are
generally two standards for such comparisons that depend on ap-
plication. In the resource theory of informational nonequilibrium
[20], one compares distributions over different numbers of events
by “squashing” their Lorenz curves so that the x-axis ranges from
0 to 1. Under this comparison, the distribution p3 = (1, 0, 0)
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FIG. 3. Lorenz curves when p and q are incompara-
ble. Here, we chose p = (3/5, 1/10, 1/10, 1/10, 1/10) and q =
(1/3, 1/3, 1/3, 0, 0).

As noted, majorization is a preorder, since there may exist
distinct p and q such that p % q and q % p. This defines
an equivalence relation ∼ between distributions. It can
be checked that q % p if and only if the two vectors are
related by a permutation matrix P. Every preorder can be
converted into a partial order by considering equivalence
classes [p]∼.

If majorization, in fact, captures important physical prop-
erties of the distributions, we should expect that these
properties may be quantified. The class of monotones that
quantify the preorder of majorization are called Schur-
convex and Schur-concave functions.

Definition 2 (Schur-convex (-concave) functions). A
function f : Rn → R is called Schur-convex (-concave) if
p % q implies f(p) ≥ f(q) (f(p) ≤ f(q)). f is strictly
Schur-convex (concave) if p % q and f(p) = f(q) implies
p ∼ q.

An important class of Schur-concave functions consists of
the Rényi entropies:

Hα(p) := 1
1− α log2

(
n∑
i=1

pαi

)
.

has more informational nonequilibrium than p2 = (1, 0). In the
following, however, we adopt the standard of simply extending
the smaller distribution by adding events of zero probability. In
this case, p3 and p2 are considered equivalent. This choice is
driven by our interest in the Rényi entropy costs and not in the
overall nonequilibrium. (The latter is more naturally measured
by Rényi negentropies H̄α (p) = log n − Hα (p), where n is the
number of events.)
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FIG. 4. Rényi entropies of the two incomparable distributions
p and q from Fig. 3.

In particular, the three limits:

H(p) := lim
α→1

Hα(p) = −
n∑
i=1

pi log2 pi ,

H0(p) := lim
α→0

Hα(p) = log2 |{1 ≤ i ≤ n : pi > 0}| , and

H∞(p) := lim
α→∞

Hα(p) = − log2 max
1≤i≤n

pi

—Shannon entropy, topological entropy, and min-entropy,
respectively—describe important practical features of a
distribution. In order, they describe (i) the asymptotic
rate at which the outcomes can be accurately conveyed,
(ii) the single-shot resource requirements for the same task,
and (iii) the probability of error in guessing the outcome
if no information is conveyed at all (or, alternatively, the
single-shot rate at which randomness can be extracted
from the distribution) [23, 24]. As such, they play a
significant role in communication and memory storage.
We note that the Rényi entropies for 0 < α < ∞ are
strictly concave.
The example of two incomparable distributions p and q
can be analyzed in terms of the Rényi entropies if we plot
Hα (p) and Hα (q) as a function of α, as in Fig. 4.
The central idea explored in the following is how ma-
jorization may be used to determine when it is possible
to simultaneously optimize all entropy monotones—or,
alternatively, to determine if each monotone has a unique
extremum. Obviously, this distinction is a highly practical
one to make when possible. This leads to defining strong
maxima and strong minima.

Definition 3 (Strong maximum (minimum)). Let S be
a set of probability distributions. If a distribution p ∈ S
satisfies p - q (p % q), for all q ∈ S, then p is a strong
maximum (minimum) of the set S.
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The extrema names derive from the fact that the strong
maximum maximizes the Rényi entropies and the strong
minimum minimizes them. One can extend the definitions
to the case where p 6∈ S, but is the least-upper-bound
such that any other p′ satisfying p′ - q must obey p′ -
p. This case would be called a strong supremum (or in
the other direction a strong infimum). However, these
constructions may not be unique as % is a preorder and
not a partial order. However, if we sort by equivalence
class, then the strongly maximal (minimal) class is unique
if it exists.
In lattice-theoretic terms, the strong maximum is essen-
tially the lattice-theoretic notion of a meet and the strong
minimum is a join [21].
One example of strong minimization is found in quantum
mechanics. Let ρ be a density matrix and X be a maximal
diagonalizing measurement. For a given measurement Y ,
let ρ|Y be the corresponding probability distribution that
comes from measuring ρ with Y . Then ρ|X % ρ|Y for all
maximal projective measurements Y . (This follows from
the unitary matrices that transform from the basis of X
to that of Y and the Schur-Horn lemma.)
Another, recent example is found in Ref. [25], where the
set Bε (p) of all distributions ε-close to p under the total
variation distance δ is considered:

Bε (p) := {q : δ(p,q) ≤ ε} .

This set has a strong minimum, called the steepest dis-
tribution pε, and a strong maximum, called the flattest
distribution pε.
When a strong minimum or maximum does not exist, we
refer to the individual extrema of the various monotones
as weak extrema.

IV. STRONG MINIMALITY OF THE
ε-MACHINE

We spoke in the introduction of simulating and predicting
processes; this task is accomplished by hidden Markov
models (HMMs) [26]. Here, we study a particular class of
HMMs which we term finite predictive models (FPM).2

Definition 4 (Finite predictive model). A finite pre-
dictive model is a triplet M := (R,X , {T(x) : x ∈ X})
containing:

2 The following uses the words machine and model interchangeably.
Machine emphasizes the simulative nature of the implementation;
model emphasizes the predictive nature.

1. a finite set of hidden states R

2. a finite alphabet X

3. nonnegative transition matrices T(x) :=
(
T

(x)
r′|r

)
,

labeled by symbols x ∈ X with components indexed
by r, r′ ∈ R

satisfying the properties:

1. Irreducibility: T :=
∑
x∈X T(x) is stochastic and

irreducible.
2. Unifilarity: T (x)

r′|r = Px|rδr′,f(r,x) for some stochastic
matrix Px|r and deterministic function f .

A finite predictive model is thought of as a dynamical ob-
ject; the model transitions between states r, r′ ∈ R at each
timestep while emitting a symbol x ∈ X with probabili-
ties determined by the transition matrices T(x) := (T (x)

r′|r).
Unifilarity ensures that, given the model state r ∈ R and
symbol x ∈ X , the next state r′ ∈ R is unique.
What makes this model predictive? Here, it is the unifilar-
ity property that grants predictivity: In a unifilar model,
the predictive state provides the most information pos-
sible about the future behavior as compared to other
nonunifilar models [6].
Given a FPM M, the state transition matrix T has a
single right-eigenvector π of eigenvalue 1, by the Perron-
Frobenius theorem, satisfying Tπ = π. We call this state
distribution the stationary distribution. The finite set R
and distribution π form a random variable R describing
the asymptotic distribution over hidden states.
A stationary3 stochastic process←→X is entirely determined
by specifying its probability vectors p(`) := (p(`)

w ) over
words w = x1 . . . x` of length `, for all ` ∈ Z+. Using
the stationary distribution π we define the process ←→XM

generated by M using the word distributions p(`)
w :=

1>T(x1) · · ·T(x`)π, where w := x1 . . . x` and 1 is the
vector with all 1’s for its components. If we let δr be a
distribution on R that assigns the state r ∈ R probability
1, then the vector p(`)

r := (p(`)
w|r) with components p(`)

w|r :=
1>T(x1) · · ·T(x`)δr is the probability of seeing word w

after starting in state r.4

Given a model with stationary distribution π, we define
the model’s Rényi memory as Hα (M) := Hα (π). This
includes the topological memory H0 (M), the statistical

3 A process is stationary if it is time-invariant.
4 This portrait of a process, in terms of stochastic matrices, is
introduced in Refs. [27–29] and has important parallels to the
matrix product state formalism. Reference [30] explores these
parallels in the quantum setting.
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memoryH (M) = H1 (M), and the min-memoryH∞ (M).
Given a process ←→X , we define the Rényi complexity as [4]

C(α)
µ

(←→
X
)

:= min
M:←→X=←→XM

Hα (M)

These include the topological complexity C(0)
µ , the sta-

tistical complexity Cµ := C
(1)
µ , and the min-complexity

C
(∞)
µ .

The question, then, of strong or weak optimization with
regards to memory in prediction and simulation is really
the question of whether, for a given process ←→X , a par-
ticular model achieves all C(α)

µ (strong optimization), or
whether a separate model is required for different values
of α (weak optimization). As each α may have practical
meaning in a particular scenario, this question is highly
relevant for problems of optimal modeling.
Among the class of FPMs, a particularly distinguished
member is the ε-machine, first considered in Ref. [4]. We
use the definition given in Ref. [31].

Definition 5 (Generator ε-machine). A generator
ε-machine is a finite predictive model M := (S,X , {T(x) :
x ∈ X}) such that p(`)

s = p(`)
s′ for all ` ∈ Z+ implies

s = s′ for s, s′ ∈ S.

In other words, a generator ε-machine must be irreducible,
unifilar, and its states must be probabilistically distinct,
so that no pair of distinct states predict the same future.
An important result of computational mechanics is that
the generator ε-machine is unique with respect to the
process it generates [31].

Theorem 2 (Model-Process Uniqueness Theorem).
Given an ε-machine M, there is no other ε-machine that
generates ←→XM.

This is a consequence of the equivalence of the genera-
tor definition with another, called the history ε-machine,
which is itself provably unique (up to isomorphism) [6]. A
further important result is that the ε-machine minimizes
both the statistical complexity Cµ and the topological
complexity C(0)

µ [6].
To fix intuitions, and to begin introducing majorization
concepts into CM, we will now consider several example
processes and their models.
First, consider the Biased Coin Process, a memoryless
process in which, at each time step, a coin is flipped with
probability p of generating a 1 and probability 1− p of
generating a 0. Figure 5 displays three models for it.
Model (a) is the process’ ε-machine, and models (b) and
(c) are each 2-state alternative finite predictive models.
Notice that in both models (b) and (c), the two states
generate equivalent futures.

(a)
A0:p 1:1 − p

(b)
B C0:p

1:1 − p

1:1 − p

0:p

(c)
D E0:p

1:1 − p

0:p
1:1 − p

FIG. 5. The diagrammatic form of a FSM is read as follows.
The colored circles represent hidden states from the finite set
R. The edges are labeled by a blue number, the symbol x,
and a probability p. The edges with symbol x represent the
transition matrix T(x) := (T (x)

r′|r), where the tail of the arrow is
the starting state r, the head is the final state r′, and p = T

(x)
r′|r.

(a) ε-Machine for a coin flipped with bias p. (b) Alternate
representation with bias p to be in state B and 1− p to be in
state C. (c) Alternate representation with biases p to stay in
current state and 1− p to switch states.

Continuing, Fig. 6 displays two alternative models of the
Even-Odd Process. This process is uniformly random
save for the constraint that 1s appear only in blocks of
even number and 0s only in blocks of odd number. We
see in Fig. 6(a) the process’ ε-machine. In Fig. 6(b), we
see an alternative finite predictive model. Notice that its
states E and F predict the same futures and so are not
probabilistically distinct. They both play the role of state
C in the ε-machine, in terms of the futures they predict.
Majorization, and Lorenz curves in particular, allow us to
compare the various models for each of these processes—
see Fig. 7. We notice that the ε-machine state distribution
always majorizes the state distribution of the alternative
machines.
The key to formalizing this observation is the following
corollary of Model-Process Uniqueness Theorem:

Corollary 1 (State Merging). Let M := (R,X , {T(x) :
x ∈ X}) be a finite predictive model that is not an
ε-machine. Then the machine created by merging its
probabilistically equivalent states is the ε-machine of the
process ←→XM generated by M.

Proof. Let ∼ be the equivalence relation where r ∼ r′ if
p(`)
r = p(`)

r′ for all ` ∈ Z+. Let S consist of the set of
equivalence classes [r]∼ generated by this relation. For
a given class s ∈ S, consider the transition probabilities
associated with each r ∈ s. For each x ∈ X such that
Px|r > 0, there is a outcome state rx := f(x, r). Compar-
ing with another state in the same class r′ ∈ s, we have
the outcome state r′x := f(x, r′).
For the future predictions of both states r and r′ to be
equivalent, they must also be equivalent after seeing the
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FIG. 6. (a) ε-Machine for Even-Odd Process. (b) Refinement
of the Even-Odd Process ε-machine, where the ε-machine’s
state C has been split into states E and F .

symbol x. That is, p(`)
w|r = p

(`)
w|r′ for all w and ` also implies

p
(`+1)
xw|r = p

(`+1)
xw|r′ for all x, w and `. But p(`+1)

xw|r = p
(`)
w|rx

,
and so we have rx ∼ r′x for all x ∈ X .
The upshot of these considerations is that we can define a
consistent and unifilar transition dynamic {T̃(x) : x ∈ X}
on S given by the matrices T̃ (x)

s′|s := T̃
(x)
r′|r for any r ∈ s

and r′ ∈ s′. It inherits unifilarity from the original model
M as well as irreducibility. It has probabilistically distinct
states since we already merged all of the probabilistically
equivalent states. Therefore, the resulting machine MS :=
(S,X , {T̃(x) : x ∈ X}) is the ε-machine of the process←→
XM generated by M; its uniqueness follows from Model-
Process Uniqueness Theorem.

The state-merging procedure here is an adaptation of
the Hopcroft algorithm for minimization of deterministic
finite (nonstochastic) automata, which is itself an imple-
mentation of the Nerode equivalence relation [32]. The
Hopcroft algorithm has been applied previously to analyze
synchronization in ε-machines [33].
Using Corollary 1, we prove this section’s main result.

Theorem 3 (Strong Minimality of ε-Machine). Let

(a)

0 1 2
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1
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p

1

(b)

0 1 2 3 4 5

0

6/7

1

0

4/7
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FIG. 7. (a) Lorenz curves for Fig. 5(a)’s ε-machine and Fig.
5(b)’s alternative predictor of the Biased Coin Process. (b)
Same comparison for the Even-Odd Process ε-machine Fig.
6(a) and alternative predictor Fig. 6(b).

MS := (S,X , {T̃(x) : x ∈ X}) be the ε-machine of pro-
cess ←→X and MR := (R,S, {T(x) : x ∈ X}) be any other
finite generating machine. Let the stationary distributions
be πS :=

(
πs|S,

)
and πR :=

(
πr|R

)
, respectively. Then

πS % πR, with equivalence ∼ only when MS and MR
are isomorphic.

Proof. By Corollary 1, the states of the ε-machine MS
are formed by merging equivalence classes s = [r] on
the finite predictive model MR. Since the machines are
otherwise equivalent, the stationary probability πs|S is
simply the sum of the stationary probabilities for each
r ⊆ s, given by πr|R. That is:

πs|S =
∑
r∈s

πr|R .

One can then construct πR from πS by a series of transfer
operations in which probability is shifted out of the state
s into new states r. Since the two states are related by a
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series of transfer operations, πS % πR.

It immediately follows from this that not only does the
ε-machine minimize the statistical complexity Cµ and the
topological complexity C(0)

µ , but it also minimizes every
other Rényi complexity C(α)

µ as well. That this was so for
Cµ and C(0)

µ has previously been proven; the extension
to all α is a new result here.
The uniqueness of the ε-machine is extremely important
in formulating this result. This property of ε-machines
follows from the understanding of predictive models as par-
titions of the past and of the ε-machines as corresponding
to the coarsest graining of these predictive partitions [6].
Other paradigms for modeling will not necessarily have
this underlying structure and so may not have strongly
minimal solutions. Indeed, in the following we will see
that this result does not generalize to quantum machines.

V. STRONG QUANTUM ADVANTAGE

A pure-state quantum machine can be generalized from
the classical case by replacing the classical states s with
quantum state vectors |ηs〉 and the symbol-labeled transi-
tion matrices T(x) with symbol-labeled Kraus operators
K(x).5 The generalization is called a pure-state quantum
model (PSQM).

Definition 6 (Pure-state quantum model). A pure-state
quantum model is a quintuplet M := (H,X ,S, {|ηs〉 : s ∈
S}, {K(x) : x ∈ X}) consisting of:

1. a finite-dimensional Hilbert space H

2. a finite alphabet X

3. pure states |ηs〉 indexed by elements s ∈ S in a finite
set S

4. nonnegative Kraus operators K(x) indexed by sym-
bols x ∈ X

satisfying the properties:

1. Completeness: The Kraus operators satisfy∑
xK

(x)†K(x) = I.
2. Unifilarity: K(x) |ηs〉 ∝

∣∣ηf(s,x)
〉
for some determin-

istic function f(s, x).

5 The definition here using Kraus operators can be equivalently
formulated in terms of a unitary quantum system [34]. While that
alternate definition is more obviously physical, our formulation
makes the classical parallels explicit.

This is a particular kind of hidden quantum Markov model
(HQMM) [35] in which we assume the dynamics can be
described by the evolution of pure states. This is prac-
tically analogous to the assumption of unifilarity in the
classical predictive setting.
It is not necessarily the case that the states {|ηs〉} form
an orthonormal basis; rather, nonorthonormality is the
intended advantage [8, 9]. Overlap between the states
allows for a smaller von Neumann entropy for the process’
stationary state distribution. We formalize this notion
shortly.
It is assumed that the Kraus operators have a unique
stationary density matrix ρπ analogous to a classical
model’s stationary state π. One way to compute it is
to note the matrix Px|s = 〈ηs|K(x)†K(x) |ηs〉 and the
function s 7→ f(s, x) together determine a finite predictive
model as defined above. The model’s stationary state
π := (πs) is related to the stationary density matrix of
the quantum model via:

ρπ =
∑
s

πs |ηs〉 〈ηs| .

The process generated by a pure-state quantum model has
the length-` word distribution, for words w = x1 . . . x`:

p(`)
w := Tr

[
K(x`) · · ·K(x1)ρπK

(x1)† · · ·K(x`)†
]
.

The eigenvalues {λi} of the stationary state ρπ form a
distribution λ = (λi). The Rényi entropies of these
distributions form the von Neumann-Rényi entropies of
the states:

Sα (ρπ) = Hα (λ) .

We noted previously that for a given density matrix, these
entropies are strongly minimal over the entropies of all
projective, maximal measurements on the state. Given
a model M with stationary state ρπ, we may simply
write Sα (M) := Sα (ρπ) as the Rényi memory of the
model. Important limits, as before, are the topological
memory S0 (M), the statistical memory S (M) = S1 (M),
and the min-memory S∞ (M), which represent physical
limitations on memory storage for the generator.
To properly compare PSQMs and FPMs, we define the
classical equivalent model of a PSQM.

Definition 7 (Classical equivalent model). Let M :=
(H,X ,S, {|ηs〉 : s ∈ S}, {K(x) : x ∈ X}) be a
pure-state quantum model, with probabilities Px|s :=
〈ηs|K(x)†K(x) |ηs〉 and deterministic function f(s, x)
such that K(x) |ηs〉 ∝

∣∣ηf(s,x)
〉
. Its classical equiva-

lent Mcl = (S,X , {T(x) : x ∈ X}) is the classical fi-
nite predictive model with state set S, alphabet X , and
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symbol-based transition matrices T(x) =
(
T

(x)
s′|s

)
given by

T
(x)
s′|s = Px|rδr′,f(r,x).

Each PSQM M generates a process ←→XM, which is the
same process that is generated by the classical equivalent
model: ←→XMcl =←→XM.
We now prove that a classical equivalent model for a
PSQM is always strongly improved in memory by said
PSQM.

Theorem 4 (Strong quantum advantage). Let M :=
(H,X ,S, {|ηs〉 : s ∈ S}, {K(x) : x ∈ X}) be a pure-state
quantum model with stationary state ρπ, and let Mcl be the
classical equivalent model with stationary state π := (πs)
(with s = 1, . . . , n). Let D := dimH and N := |S|.
(We have N ≥ D: if not, then we can take a smaller
Hilbert space that spans the states.) Let λ = (λi) be an
N -dimensional vector where the first D components are
the eigenvalues of ρπ and the remaining elements are 0.
Then λ % π.

Proof. We know that:

ρπ =
∑
s∈S

πs |ηs〉 〈ηs|

=
∑
s∈S
|φs〉 〈φs| ,

where |φs〉 := √πs |ηs〉. However, we can also write ρπ in
the eigenbasis:

ρπ =
d∑
i=1

λi |i〉 〈i|

=
d∑
i=1
|ψi〉 〈ψi| ,

where |ψi〉 :=
√
λi |i〉. Then the two sets of vectors can be

related via:

|φs〉 =
d∑
i=1

Usi |ψi〉 ,

where Usi is a n × d matrix comprised of d rows of or-
thonormal n-dimensional vectors [36]. Now, we have:

πs = 〈φs|φs〉

=
d∑
i=1
|Usi|2λi .

Note that Usi is not square, but since we have taken λi = 0
for i > d, we can simply extend Usi into a square unitary
matrix by filling out the bottom n − d rows with more

orthonormal vectors. This leaves the equation unchanged.
We can then write:

πs =
n∑
i=1
|Usi|2λi .

Then by Theorem 1, λ % π. �

It helps to recall now that majorization is a preorder,
which means we could have π ∼ λ, in which case there
would be no advantage per se. This happens when |Usi|2
is a permutation matrix. However, one quickly sees that
this is true if and only if {|ηs〉} are orthogonal. Thus, any
nonorthogonality in the quantum states automatically
induces advantage.

Corollary 2. Sα(M) ≤ Hα (Mcl) for all α ≥ 0, with
equality for 0 < α <∞ if and only if the states {|ηs〉} of
M are orthogonal.

As in the classical case, it immediately follows from this
that not only is the classical equivalent model improved
upon by its corresponding PSQM in terms of S0(M) and
S(M) (as was previously known in certain cases), but it
is improved in all Rényi memories Sα(M).
Many alternative pure-state quantum models may de-
scribe the same process. The “first mark”, so to speak, for
quantum models is the q-machine, which directly embeds
the dynamics of the ε-machine into a quantum system
while already leveraging the memory advantage due to
quantum state overlap. The notion of the q-machine orig-
inates in [8], and its definition was further refined in Refs.
[9, 15]. We use an equivalent definition first introduced in
Ref. [34]; however, there an equivalent unitary formalism
is used instead of Kraus operators.

Definition 8 (q-Machine). Given an ε-machine M :=(
S,X , {T(x) : x ∈ X}

)
, where T

(x)
ss′ := Px|sδs′,f(s,x) for

some deterministic function f(s, x), construct the corre-
sponding q-machine in the following way:

1. The states |ηs〉 are built to satisfy the recursive
relation:

〈ηs|ηs′〉 =
∑
x∈X

√
Px|sPx|s′

〈
ηf(s,x)|ηf(s′,x)

〉
.

2. H is the space spanned by the states |ηs〉.
3. The Kraus operators K(x) are determined by the

relations:

K(x) |ηs〉 =
√
Px|s

∣∣ηf(s,x)
〉
.

Then Corollary 2 can be applied here. The q-machine
is matched in memory by the ε-machine when and only
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when the states |ηs〉 are orthogonal, 〈ηs|ηs′〉 = δss′ . The
recursive relation becomes:

δss′ =
∑
x∈X

√
Px|sPx|s′δf(s,x)f(s′,x) .

This holds if and only if δf(s,x)f(s′,x) = δss′ for all x
satisfying Px|s, Px|s′ > 0. This constrains the structure of
the ε-machine: two distinct states s and s′ cannot map
to the same state on the same symbol. In other words,
given a state and an incoming symbol, the previous state
must be determined. Such a structure is called co-unifilar
[37]. Examples of co-unifilar machines are shown in Figs.
5(a) and (c).
To be clear, then, the q-machine offers strict advantage
over any ε-machine which is not co-unifilar and matches
the ε-machine when it is co-unifilar. That the q-machine
offers statistical memory advantage with respect to the
ε-machine was previously shown in Ref. [9] and with
respect to topological memory in Ref. [14]. Theorem 4
implies those results as well as advantage with respect to
all Rényi measures of memory.
One can check that the q-machine satisfies the complete-
ness relations and has the correct probability dynamics
for the process generated by the ε-machine.

VI. WEAK QUANTUM MINIMALITY

An open problem is to determine the minimal quantum
pure-state representation of a given classical process. This
problem is solved in some specific instances such as the
Ising model [11] and the Perturbed Coin Process [14]. In
these cases it is known to be the q-machine. We denote
the smallest value of the Rényi entropy of the stationary
state as:

C(α)
q

(←→
X
)

:= min
M:←→XM=←→X

Sα (M) ,

called the quantum Rényi complexities, including the lim-
its, the quantum topological complexity C(0)

q , the quantum
min-complexity C(∞)

q , and the quantum statistical com-
plexity Cq := C

(1)
q .

If a strongly minimal quantum pure-state model exists,
these complexities are all attained by the same pure-state
model. Our primary result here is that there are processes
for which this does not occur.
We start by examining two examples. The first, the MBW
Process introduced in Ref. [35], demonstrates a machine
whose q-machine is not minimal in the von Neumann
complexity. Consider the process generated by the 4-state
MBW machine shown in Fig. 8.
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C

B

D

1/2

1/4

1/4

1/2

1/4

1/4

1/2

1/4

1/4
1/2

1/4

1/4

FIG. 8. The 4-state MBW Process as a Markov chain (which
is the ε-machine).

This process’ HMM is simply a Markov chain, and its rep-
resentation in Fig. 8 is its ε-machine. Denote this classical
representation by M4. If we take {|A〉 , |B〉 , |C〉 , |D〉} as
an orthonormal basis of a Hilbert space, we can construct
the q-machine with the states:

|ηA〉 := 1√
2
|A〉+ 1

2 (|C〉+ |D〉) ,

|ηB〉 := 1√
2
|B〉+ 1

2 (|C〉+ |D〉) ,

|ηC〉 := 1√
2
|C〉+ 1

2 (|A〉+ |B〉) , and

|ηD〉 := 1√
2
|D〉+ 1

2 (|A〉+ |B〉) .

Since it is a Markov chain, we can write the Kraus opera-
tors as Kx := |ηx〉 〈εx|, where 〈εx|ηx′〉 ∝√Px′|x. This is
a special case of the construction used in Ref. [13]. For
q-machines of Markov chains, then, the dual basis is just
〈εx| = 〈x|. We denote the q-machine model of the 4-state
MBW Process as Q4.

Let’s examine the majorization between Q4 and the
Markov model via the Lorenz curves of λ, the eigen-
values of ρπ, and the stationary state of the Markov chain.
See Fig. 9.

It turns out that there is a smaller quantum model em-
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FIG. 9. Lorenz curves for the 4-state MBW ε-machine M4
and the associated q-machine Q4.
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FIG. 10. Lorenz curves for the 4-state MBW q-machine Q4
and a dimensionally-smaller model D4.

bedded in two dimensions, with states:

|η′A〉 := |0〉 ,
|η′B〉 := |1〉 ,

|η′C〉 := 1√
2

(|0〉+ |1〉) , and

|η′D〉 := 1√
2

(|0〉 − |1〉) .

In this case, 〈ε′x| = 1√
2 〈η

′
x| derives the q-machine. This

gives the proper transition probabilities for the 4-state
MBWmodel. We denote this dimensionally-smaller model
D4. Figure 10 compares the Lorenz curve of its stationary
eigenvalues λ′ to those of Q4. One sees that it does not
majorize the q-machine, but it does have a lower statistical
memory: S(D4) = 1.0 and S(Q4) ≈ 1.2 bit. (On the
other hand, the q-machine has a smaller min-memory,
with S∞(D4) = 1.0 and S∞(Q4) ≈ 0.46.)
Now consider something in the opposite direction. Con-
sider the 3-state MBW model, denoted M3 and displayed
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FIG. 11. 3-state MBW Process as a Markov chain (which is
the process’ ε-machine).

in Fig. 11. This is a generalization of the previous ex-
ample to three states instead of four. We will compute
the corresponding q-machine Q3 and show that there also
exists a dimensionally-smaller representation D3. In this
case, however, D3 is not smaller in its statistical memory.

The q-machine Q3 of this Markov chain is given by the
states:

|ηA〉 :=
√

2
3 |A〉+ 1√

6
(|B〉+ |C〉) ,

|ηB〉 :=
√

2
3 |B〉+ 1√

6
(|A〉+ |C〉) , and

|ηC〉 :=
√

2
3 |C〉+ 1√

6
(|A〉+ |B〉) ,

and Kraus operators defined similarly to before. We can
examine the majorization between the q-machine and the
Markov model by plotting the Lorenz curves of λ, the
eigenvalues of ρπ, and the stationary state of the Markov
chain, shown in Fig. 12.

The lower-dimensional model D3 is given by the states:

|ηA〉 := |0〉 ,

|ηB〉 := 1
2 |0〉+

√
3

2 |1〉 , and

|ηC〉 := 1
2 |0〉 −

√
3

2 |1〉 ,

with 〈ε′x| =
√

2
3 〈η′x|. This gives the proper transition

probabilities for the 3-state MBW model. Figure 13
compares the Lorenz curve of its stationary eigenvalues
λ′ to that of Q3. We see that it does not majorize Q3.
And, this time, this is directly manifested by the fact
that the smaller-dimension model has a larger entropy:
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FIG. 12. Lorenz curves for the 3-state MBW ε-machine M3
and the associated q-machine Q3.
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FIG. 13. Lorenz curves for the 3-state MBW q-machine, Q3
and a dimensionally-smaller model D3.

S(D3) = 1.0 and S(Q3) ≈ 0.61 bit.
After seeing the ε-machine’s strong minimality with re-
spect to other classical models and its strong maximality
with respect to quantum models, it is certainly tempting
to conjecture that a strongly minimal quantum model ex-
ists. However, the examples we just explored cast serious
doubt. None of the examples covered above are strong
minima.
One way to prove that no strong minimum exists for, say,
the 3-state MBW process requires showing that there
does not exist any other quantum model in 2 dimensions
that generates the process. This would imply that no
other model can majorize D3. Since this model is not
strongly minimal, no strongly minimal solution can exist.
Appendix A proves exactly this—thus, demonstrating
a counterexample to the strong minimality of quantum
models.

Counterexample (Weak Minimality of D3). The quan-
tum model D3 weakly minimizes topological complexity

Model space

ε

Qu
an
tu
m
m
od
els

Classical predictors

M
em

o
ry

co
st

FIG. 14. Proposed majorization saddle structure of model-
space: The ε-machine (labeled ε) is located at a saddle-point
with respect to majorization, where classical deviations (state-
splitting) move up the lattice and quantum deviations (utiliz-
ing state overlap) move down the lattice.

for all quantum generators of the 3-state MBW Process;
consequently, the 3-state MBW Process has no strongly
minimal quantum model.

VII. CONCLUDING REMARKS

Majorization provides a means to compare a process’ alter-
native models in both the classical and quantum regimes.
When it holds, majorization implies the simultaneous
minimization of a large host of functions. As a result we
showed that:

1. The ε-machine majorizes all classical predictive mod-
els of the same process and so simultaneously mini-
mizes many different measures of memory cost.

2. The q-machine, and indeed any quantum realization
of the ε-machine, always majorizes the ε-machine,
and so simultaneously improves on all the measures
of memory cost.

3. For at least one process, there does not exist any
quantum pure-state model that majorizes all quan-
tum pure-state models of that process. Thus, while
an ε-machine may be improved upon by different
possible quantum models, there is not a unique one
quantum model that is unambiguously the “best”
choice.

Imagining the ε-machine as an invariant “saddle-point” in
the majorization structure of model-space, Fig. 14 depicts
the implied geometry. That is, we see that despite its non-
minimality among all models, the ε-machine still occupies
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a topologically important position in model-space—one
that is invariant to one’s choice of memory measure. How-
ever, no similar model plays the topologically minimal
role for quantum pure-state models.

The quantum statistical complexity Cq has been offered
up as an alternative quantum measure of structural
complexity—a rival of the statistical complexity Cµ [38].
One implication of our results here is that the nature
of this quantum minimum Cq is fundamentally different
than that of Cµ. This observation should help further
explorations into techniques required to compute Cq and
the physical circumstances in which it is most relevant.

That the physical meaning of Cq involves generating an
asymptotically large number of realizations of a process
may imply that it cannot be accurately computed by only
considering machines that generate a single realization.
This is in contrast to Cµ which, being strongly minimized,
must be attainable in the single-shot regime along with
measures like C(0)

µ and C(∞)
µ .

In this way, the quantum realm again appears ambiguous.
Ambiguity in structural complexity has been previously
observed in the sense that there exist pairs of processes,←→X
and ←→Y , such that Cµ

(←→
X
)
> Cµ

(←→
Y
)
but Cq

(←→
X
)
<

Cq

(←→
Y
)
[39]. The classical and quantum paradigms for

modeling can disagree on simplicity—there is no universal
Ockham’s Razor. How this result relates to strong versus
weak optimization deserves further investigation.

The methods and results here should also be extended to
analyze classical generative models which, in many ways,
bear resemblances in their functionality to the quantum
models [40–42]. These drop the requirement of unifilarity,
similar to how the quantum models relax the notion of
orthogonality. Important questions to pursue in this vein
are whether generative models are strongly maximized by
the ε-machine and whether they have their own strong
minimum or, like the quantum models, only weak minima
in different contexts.

We also only explored finite-state, discrete-time processes.
Processes with infinite memory [43] and continuous gen-

eration [44, 45] are also common in nature. Applying our
results to understand these requires further mathematical
development.
We close by noting that we have committed a sleight of
hand here, using the tools of resource theory to study CM
and, particularly, memory in stochastic processes. This is
still far from formulating a resource theory of memory. It
is also far from applying the memoryful logic of CM to
extend resource theory, which often studies memoryless
collections of resources, in which there is no temporal
structure. Both of these directions will be developed
elsewhere and, in doing so, will likely shed significant
light on the above questions.

ACKNOWLEDGMENTS

The authors thank Fabio Anza, John Mahoney, Cina
Aghamohammadi, and Ryan James for helpful discussions,
as well as Felix Binder for clarifying suggestions. As a
faculty member, JPC thanks the Santa Fe Institute and
the Telluride Science Research Center for their hospitality
during visits. This material is based upon work supported
by, or in part by, John Templeton Foundation grant 52095,
Foundational Questions Institute grant FQXi-RFP-1609,
the U.S. Army Research Laboratory and the U. S. Army
Research Office under contract W911NF-13-1-0390 and
grant W911NF-18-1-0028, and via Intel Corporation sup-
port of CSC as an Intel Parallel Computing Center.

AUTHOR CONTRIBUTIONS STATEMENT

SPL and JPC conceived of the project, developed the
theory, and wrote the manuscript. SPL performed the
calculations. JPC supervised the project.

COMPETING FINANCIAL INTERESTS
STATEMENT

The authors declare that they have no competing financial
interests.

[1] E. N. Lorenz. Deterministic nonperiodic flow. J. Atmos.
Sci., 20:130, 1963.

[2] E. N. Lorenz. The problem of deducing the climate from
the governing equations. Tellus, XVI:1, 1964.

[3] A. B. Boyd, D. Mandal, and J. P. Crutchfield. Identifying
functional thermodynamics in autonomous Maxwellian
ratchets. New J. Physics, 18:023049, 2016.

[4] J. P. Crutchfield and K. Young. Inferring statistical
complexity. Phys. Rev. Let., 63:105–108, 1989.

[5] J. P. Crutchfield. The calculi of emergence: Computation,
dynamics, and induction. Physica D, 75:11–54, 1994.

[6] C. R. Shalizi and J. P. Crutchfield. Computational me-
chanics: Pattern and prediction, structure and simplicity.
J. Stat. Phys., 104:817–879, 2001.



14

[7] J. P. Crutchfield. Between order and chaos. Nature
Physics, 8:17–24, 2012.

[8] M. Gu, K. Wiesner, E. Rieper, and V. Vedral. Quantum
mechanics can reduce the complexity of classical models.
Nature Comm., 3(762), 2012.

[9] J. R. Mahoney, C. Aghamohammadi, and J. P. Crutchfield.
Occam’s quantum strop: Synchronizing and compress-
ing classical cryptic processes via a quantum channel.
Scientific Reports, 6:20495, 2016.

[10] C. Aghamohammadi, J. R. Mahoney, and J. P. Crutchfield.
Extreme quantum advantage when simulating classical
systems with long-range interaction. Scientific Reports,
7(6735), 2017.

[11] W. Y. Suen, J. Thompson, A. J. P. Garner, V. Vedral, and
M. Gu. The classical-quantum divergence of complexity
in modelling spin chains. Quantum, 1:25, 2017.

[12] A. J. P. Garner, Q. Liu, J. Thompson, V. Vedral, and
M. Gu. Provably unbounded memory advantage in
stochastic simulation using quantum mechanics. New
J. Physics, 19:103009, 2017.

[13] C. Aghamohammadi, S. P. Loomis, J. R. Mahoney, and
J. P. Crutchfield. Extreme quantum memory advantage
for rare-event sampling. Phys. Rev. X, 8:011025, 2018.

[14] J. Thompson, A. J. P. Garner, J. R. Mahoney, J. P.
Crutchfield, V. Vedral, and M. Gu. Causal asymmetry in
a quantum world. Phys. Rev. X, 8:031013, 2018.

[15] P. M. Riechers, J. R. Mahoney, C. Aghamohammadi, and
J. P. Crutchfield. Minimized state-complexity of quantum-
encoded cryptic processes. Phys. Rev. A, 93(5):052317,
2016.

[16] B. Coecke, T. Fritz, and R. W. Spekkens. A mathematical
theory of resources. Info. Comput., 250:59–86, 2016.

[17] A. W. Marshall, I. Olkin, and B. C. Arnold. Inequalities:
Theory of Majorization and Its Applications. Springer,
New York, NY, 3 edition, 2011.

[18] M. A. Nielsen. Conditions for a class of entanglement
transformations. Phys. Rev. Lett., 83(436), 1999.

[19] M. Horodecki and J. Oppenheim. Fundamental limitations
for quantum and nanoscale thermodynamics. Nature
Comm., 4(2059), 2013.

[20] G. Gour, M. P. Müller, V. Narasimhachar, R. W.
Spekkens, and N. Y. Halpern. The resource theory of
informational nonequilibrium in thermodynamics. Phys.
Rep., 583:1–58, 2015.

[21] G. Grätzer. Lattice Theory: Foundation. Springer, Basel,
2010.

[22] D. Lind and B. Marcus. An Introduction to Symbolic
Dynamics and Coding. Cambridge University Press, New
York, 1995.

[23] R. Renner and S. Wolf. Smooth Rényi entropy and ap-
plications. In IEEE Information Theory Society, editor,
2004 IEEE Intl. Symp. Info. Th.: Proceedings, page 232,
Piscataway, N.J., 2004. IEEE.

[24] M. Tomamichel. A Framework for Non-Asymptotic Quan-
tum Information Theory. PhD thesis, ETH Zurich, Zurich,
2012.

[25] M. Horodecki, J. Oppenheim, and C. Sparaciari. Extremal
distributions under approximate majorization. J. Phys.

A: Math. Theor., 51(305301), 2018.
[26] D. R. Upper. Theory and Algorithms for Hidden Markov

Models and Generalized Hidden Markov Models. PhD
thesis, University of California, Berkeley, 1997. Published
by University Microfilms Intl, Ann Arbor, Michigan.

[27] J. P. Crutchfield, P. Riechers, and C. J. Ellison. Exact
complexity: Spectral decomposition of intrinsic computa-
tion. Phys. Lett. A, 380(9-10):998–1002, 2016.

[28] P. M. Riechers and J. P. Crutchfield. Spectral simplicity
of apparent complexity. I. The nondiagonalizable metady-
namics of prediction. Chaos, 28(033115), 2018.

[29] P. M. Riechers and J. P. Crutchfield. Spectral simplic-
ity of apparent complexity. II. Exact complexities and
complexity spectra. Chaos, 28(033116), 2018.

[30] C. Yang, F. C. Binder, V. Narasimhachar, and M. Gu.
Matrix product states for quantum stochastic modelling.
2018. arXiv:1803.08220 [quant-ph].

[31] N. F. Travers and J. P. Crutchfield. Equivalence of
history and generator ε-machines. arxiv.org:1111.4500
[math.PR].

[32] J. Hopcroft. An n logn algorithm for minimizing states in
a finite automaton. In A. Paz Z. Kohavi, editor, Theory
of Machines and Computations, pages 189–196, New York,
1971. Academic Press.

[33] N. F. Travers and J. P. Crutchfield. Exact synchronization
for finite-state sources. J. Stat. Physics, 145:1181–1201,
2011.

[34] F. C. Binder, J. Thompson, and M. Gu. A practical,
unitary simulator for non-Markovian complex processes.
Phys. Rev. Lett., 120:240502, 2017.

[35] A. Monras, A. Beige, and K. Wiesner. Hidden quantum
Markov models and non-adaptive read-out of many-body
states. Appl. Math. Comput. Sci., 3:93, 2011.

[36] L. P. Hughston, R. Jozsa, and W. K. Wootters. A com-
plete classification of quantum ensembles having a given
density matrix. Phys. Lett. A, 183:12–18, 1993.

[37] J. P. Crutchfield, C. J. Ellison, J. R. Mahoney, and R. G.
James. Synchronization and control in intrinsic and de-
signed computation: An information-theoretic analysis of
competing models of stochastic computation. CHAOS,
20(3):037105, 2010.

[38] R. Tan, D. R. Terno, J. Thompson, V. Vedral, and M. Gu.
Towards quantifying complexity with quantum mechanics.
Eur. J. Phys. Plus, 129:191, 2014.

[39] C. Aghamohammadi, J. R. Mahoney, and J. P. Crutchfield.
The ambiguity of simplicity in quantum and classical
simulation. Phys. Lett. A, 381(14):1223–1227, 2017.

[40] W. Löhr and N. Ay. Non-sufficient memories that are
sufficient for prediction. In J. Zhou, editor, Complex Sci-
ences 2009, volume 4 of Lecture Notes of the Institute for
Computer Sciences, Social Informatics and Telecommuni-
cations Engineering, pages 265–276. Springer, New York,
2009.

[41] W. Löhr and N. Ay. On the generative nature of prediction.
Adv. Complex Sys., 12(02):169–194, 2009.

[42] J. B. Ruebeck, R. G. James, J. R. Mahoney, and J. P.
Crutchfield. Prediction and generation of binary Markov
processes: Can a finite-state fox catch a Markov mouse?



15

Chaos, 28(013109), 2018.
[43] J. P. Crutchfield and S. Marzen. Signatures of infinity:

Nonergodicity and resource scaling in prediction, com-
plexity and learning. Phys. Rev. E, 91(050106), 2015.

[44] J. P. Crutchfield and S. Marzen. Structure and random-
ness of continuous-time, discrete-event processes. J. Stat.
Phys., 169(2):303–315, 2017.

[45] T. J. Elliot, A. J. P. Garner, and M. Gu. Quantum
self-assembly of causal architecture for memory-efficient
tracking of complex temporal and symbolic dynamics.
arxiv.org:1803.05426.



16

Appendix A: Appendix: Weak Minimality of D3

Here, we prove that D3 is the unique 2D representation
of the 3-state MBW process. We show this by considering
the entire class of 2D models and applying the complete-
ness constraint.
We note that a pure-state quantum model of the 3-state
MBW process must have three states |ηA〉, |ηB〉, and |ηC〉,
along with three dual states 〈εA|, 〈εB |, and 〈εC | such that:

〈εA|ηA〉 = eiφAA

√
2
3 ,

〈εA|ηB〉 = eiφAB
1√
6
, and

〈εA|ηC〉 = eiφAC
1√
6
,

〈εB |ηA〉 = eiφBA
1√
6
,

〈εB |ηB〉 = eiφBB

√
2
3 , and

〈εB |ηC〉 = eiφBC
1√
6
,

and:

〈εC |ηA〉 = eiφCA
1√
6
,

〈εC |ηB〉 = eiφCB
1√
6
,

〈εC |ηC〉 = eiφCC

√
2
3 .

We list the available geometric symmetries that leave the
final stationary state unchanged:

1. Phase transformation on each state, |ηx〉 7→
eiφx |ηx〉;

2. Phase transformation on each dual state, |εx〉 7→
eiφx |εx〉; and

3. Unitary transformation |ηx〉 7→ U |ηx〉 and 〈εx| 7→
〈εx|U†.

From these symmetries we can fix gauge in the following
ways:

1. Set 〈0|ηx〉 to be real and positive for all x.

2. Set φAA = φBB = φCC = 0.

3. Set 〈0|ηA〉 = 0 and set 〈1|ηB〉 to be real and positive.

These gauge fixings allow us to write:

|ηA〉 = |0〉 ,
|ηB〉 = αB |0〉+ βB |1〉 , and
|ηC〉 = αC |0〉+ eiθβC |1〉 ,

for αB , αC ≥ 0, βB =
√

1− α2
B and βC =

√
1− α2

C and
a phase θ.
That these states are embedded in a 2D Hilbert space
means there must exist some linear consistency conditions.
For some triple of numbers c = (cA, cB , cC) we can write:

cA |ηA〉+ cB |ηB〉+ cC |ηC〉 = 0 .

Up to a constant, this triplet has the form:

(cA, cB , cC) =
(
eiθαB

βC
βB
− αC , −eiθ

βC
βB

, 1
)
.

Consistency requires that this relationship between vec-
tors is preserved by the Kraus operator dynamic. Consider
the matrix A := (Axy) = (〈εx|ηy〉). The vector c must
be a null vector of A; i.e.

∑
y Axycy = 0. This first

requires that Axy be degenerate. One way to enforce this
to check that the characteristic polynomial det(A− λI3)
has an overall factor of λ. For simplicity, we compute the
characteristic polynomial of A

√
6:

det(
√

6A− λI3) =
(2− λ)3 +(
ei(φAB+φBC+φCA) + ei(φBA+φCB+φAC )

)
−

(2− λ)
(
ei(φAB+φBA) + ei(φAC +φCA) + ei(φBC+φCB)

)
.

To have an overall factor of λ, we need:

0 = 8 +
(
ei(φAB+φBC+φCA) + ei(φBA+φCB+φAC )

)
− 2

(
ei(φAB+φBA) + ei(φAC+φCA) + ei(φBC+φCB)

)
.

Typically, there will be several ways to choose phases to
cancel out vectors, but in this case since the sum of the
magnitudes of the complex terms is 8, the only way to
cancel is at the extreme point where φAB = −φBA = φ1,
φBC = −φCB = φ2, and φCA = −φAC = φ3 and:

φ1 + φ2 + φ3 = π .

To recapitulate the results so far, A has the form:

A = 1√
6

 2 eiφ1 −ei(φ1+φ2)

e−iφ1 2 eiφ2

−e−i(φ1+φ2) e−iφ2 2

 .
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We now need to enforce that
∑
y Axycy = 0. We have the

three equations:

2cA + eiφ1cB − ei(φ1+φ2)cC = 0 ,
2cB + e−iφ1cA + eiφ2cC = 0 , and

2cC + e−iφ2cB − e−i(φ1+φ2)cA = 0 .

It can be checked that these are solved by:

cA = ei(φ1+φ2)cC and
cB = −eiφ2cC .

Taking our formulation of the c vector, we immediately
have βB = βC = β (implying αB = αC = α), φ2 = θ,
and:

e−iφ3 = α(1− eiθ)
= −2iα sin(θ)eiθ/2

= α sin(θ)ei(θ−π)/2 .

This means:

α = 1
2

∣∣∣∣csc
(
θ

2

)∣∣∣∣ and

φ3 = −θ + sgn(θ)π
2 ,

where we take −π ≤ θ ≤ π and sgn(θ) is the sign of θ.

Note, however, that for−π3 < θ < π
3 , we have | csc(θ)| > 1,

so these values are unphysical. Thus, we see that all
parameters in our possible states |ηx〉, as well as all the
possible transition phases, are dependent on the single
parameter θ. To construct the dual basis, we start with
the new forms of the states:

|ηA〉 = |0〉 ,
|ηB〉 = α |0〉+ β |1〉 , and
|ηC〉 = α |0〉+ eiθβ |1〉 .

We note directly that we must have:

〈εA|0〉 =
√

2
3 ,

〈εB |0〉 = 1√
6
e−iφ1 , and

〈εC |0〉 = 1√
6
eiφ3 ,

from how the dual states contract with |ηA〉. These can

be used with the contractions with |ηB〉 to get:

〈εA|1〉 = 1
β

√
2
3

(
1
2e

iφ1 − α
)
,

〈εB |1〉 = 1
β

√
2
3

(
1− 1

2αe
−iφ1

)
, and

〈εC |1〉 = 1
2β

√
2
3
(
e−iφ2 − αeiφ3

)
.

It is quickly checked that these coefficients are consistent
with the action on on |ηC〉 by making liberal use of e−iφ3 =
α(1− eiθ).
Recall that with the correct dual states, the Kraus opera-
tors take the form:

KA = |ηA〉 〈εA| ,
KB = |ηB〉 〈εB | , and
KC = |ηC〉 〈εC | .

Completeness requires:

|εA〉 〈εA|+ |εB〉 〈εB |+ |εC〉 〈εC | = I .

Define the vectors ux = 〈εx|0〉 and vx = 〈εx|1〉. One
can check that the above relationship implies

∑
x u
∗
xux =∑

x v
∗
xvx = 1 and

∑
x uxv

∗
x = 0. However, for our model,

it is straightforward (though a bit tedious) to check that:∑
x

u∗xux = 2
3 + 1

6 + 1
6 = 1 and

∑
x

v∗xvx = 1
β2
(
1 + α2 − α cosφ1

)
.

Using the definitions of α, β, and φ1, the second equation
can be simplified to:

∑
x

v∗xvx =
2 + csc2 θ

2
4− csc2 θ

2
.

This is unity only when csc2 θ
2 = 1, which requires that

θ = π. This is, indeed, the model D3 that we have already
seen.
This establishes that the only two-dimensional pure-state
quantum model which reproduces the 3-state MBW pro-
cess is the one with a nonminimal statistical memory
S(ρπ). This means there cannot exist a quantum rep-
resentation of the 3-state MBW process that majorizes
all other representations of the same. For, if it existed,
it must be a two-dimensional model and also minimize
S(ρπ).
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