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Thermodynamic uncertainty relations (TURs) express a fundamental lower bound on the precision
(inverse scaled variance) of any thermodynamic charge—e.g., work or heat—by functionals of the
average entropy production. Relying on purely variational arguments, we significantly extend these
inequalities by incorporating and analyzing the impact of higher statistical cumulants of the entropy
production itself within the general framework of time-symmetrically controlled computation. We
derive an exact expression for the charge that achieves the minimum scaled variance, for which the
TUR bound tightens to an equality that we name Thermodynamic Uncertainty Theorem (TUT).
Importantly, both the minimum scaled variance charge and the TUT are functionals of the stochastic
entropy production, thus retaining the impact of its higher moments. In particular, our results show
that, beyond the average, the entropy production distribution’s higher moments have a significant
effect on any charge’s precision. This is made explicit via a thorough numerical analysis of “swap”
and “reset” computations that quantitatively compares the TUT against previous generalized TURs.
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INTRODUCTION

Recent decades witnessed substantial technological ad-

vances in miniaturization that, today, have culminated

in experimental realizations of nanoscale thermal ma-

chines [1–8]. These devices exhibit three fundamental

features. First, they operate under nonequilibrium con-

ditions, i.e., either by keeping the system in a nonequi-

librium steady-state by means of voltage or temperature

biases or through the application of an external time-

dependent control protocol. This implies that a certain

amount of entropy production Σ—the irreversible dissi-

pation associated with nonequilibrium processes—is al-

ways generated [9]. Crucially, entropy production limits

heat engine and refrigerator performance, constrains the

physical mechanisms underlying complex biological func-

tioning [10], and is the central quantity in Landauer’s

information erasure—the keystone in the bridge between

thermodynamics and information theory. Second, due

to their microscopic nature, the fluctuations of all ther-

modynamic quantities—heat, work, and so on—become

as significant as their average values. Last, but not least,

the laws of quantum mechanics have important repercus-

sions for fluctuations that then have both thermal and
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quantum origins [11–14].

Since Onsager’s and Kubo’s pioneering discovery of

the fluctuation-dissipation relation (FDR) [15–17], de-

termining the universal properties of fluctuations in out-

of-equilibrium processes, as well as their role in dissipa-

tion, has been a cornerstone of stochastic thermodynam-

ics. In the ‘90s, Jarzynski and Crooks generalized the

FDR through the fluctuation relations (FRs) [18–29]. At

the microscopic scale, the FRs refine the famous Second

Law of Thermodynamics ⟨Σ⟩ ≥ 0 by determining the

full distribution of stochastic thermodynamic quantities

and thus their fluctuations. That is, the FRs replaced

the familiar Second law inequality with an equality from

which the Second Law is easily derived through Jensen’s

inequality.

More recently, a third milestone was crossed by con-

necting thermodynamic fluctuations out of equilibrium

to dissipation. These broad results, called thermody-

namic uncertainty relations (TURs), were originally dis-

covered in nonequilibrium steady-states of classical time-

homogeneous Markov jump-processes satisfying local de-

tailed balance [30, 31]. Today, though, TURs have been

generalized to finite-time processes [32–34], periodically-

driven systems [35–41], Markovian quantum systems

undergoing Lindblad dynamics [42–46], and autonomous

classical [33, 47] and quantum [47–52] systems in steady-

states close to linear response.

In all these, TURs bound the fluctuations of

any (time-reversal anti-symmetric stochastic) thermody-
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namic quantity Q by a functional of the average entropy

production ⟨Σ⟩:

ϵ2Q ≡ var(Q)

⟨Q⟩2
≥ f(⟨Σ⟩) . (1)

with ⟨Q⟩ and var(Q) = ⟨Q2⟩ − ⟨Q⟩2 being the average

and variance of Q, respectively. In this way, the scaled

variance ϵ2Q can be seen as the inverse of charge Q’s

signal-to-noise ratio or precision. Since f is generally

a monotonically-decreasing function, TURs express the

trade-off that increased precision in Q inevitably comes

at the cost of more dissipation. Such a no-free-lunch

statement echoes that from the above-mentioned Second

Law. It differs critically, however, as it includes fluctua-

tions of many thermodynamic quantities of interest.

Our work significantly advances this line of inquiry by

treating entropy production on the same footing as other

thermodynamic quantities. In determining the effect of

Σ’s higher statistical moments on the signal-to-noise ra-

tio of thermodynamic charges Q we refine the r.h.s. of

Eq. (1)—i.e., f(⟨Σ⟩)—replacing it with ⟨f(Σ)⟩:

ϵ2Q ≥ g(⟨tanh(Σ/2)⟩) , (2)

where g(x) ≡ x−1 − 1. With this, the bound becomes a

functional of the distribution of stochastic entropy pro-

duction Σ. And so, critically, the bound accounts for all

higher moments.

Notably, these higher moments have become a focus of

attention [53] since they are particularly germane to dis-

sipation management in nanoscale devices—devices that

must be designed to tolerate large and potentially de-

structive fluctuations. For example, entropy production

variance and skewness determine the probability of expe-

riencing a trajectory (i.e., an experimental run) that gen-

erates extreme dissipated heat flowing through the sys-

tem. This, naturally, can damage or disrupt the opera-

tion of new classes of microscopic quantum hardware [54].

In both examples, we compute Eq. (2) and quantita-

tively compare it against several different previously de-

rived TUR bounds. In particular, it is important to stress

that the function g appearing in our Eq. (2) agrees and

reduces to a recent result obtained in Ref. [41], albeit via

a completely different derivation. Our approach, more-

over, focuses on realizing the bound by also finding an

explicit expression for theminimum-variance charge that

saturates Eq. (2). Finding the equality condition in turn

allows for an inversion of the bound—writing the entropy

production as a function of the minimizing charge.

This minimum depends sensitively on the entropy pro-

duction’s higher-order fluctuations. In much the same

way that fluctuation theorems [19, 55, 56] re-frame the

Second Law from an inequality to an equality, the TUT

replaces the bounds set by TUR with a saturable equal-

ity. Applying the TUT to thermodynamic simulations of

bit swap and reset computations, we demonstrate that

charge fluctuations can depart substantially from previ-

ous bounds set by TURs.

MINIMUM SCALED VARIANCE CHARGE

Charges Q are observations of a system S that change

sign under time reversal. Formally, a system trajectory

is the sequence s⃗ ≡ s0sdt · · · sτ−dtsτ , where each st ∈ S is

the system’s state at time t. The charge associated with

a reversed trajectory R(s⃗) ≡ s†τs
†
τ−dt · · · s

†
dts

†
0 is minus

the charge of the forward trajectory:

Q(R(s⃗)) = −Q(s⃗) . (3)

Note that the time-parity operator † is an identity for

time-even variables and multiplies by −1 for time-odd

variables.

The system S may be influenced by an external con-

trol parameter λt at every time t, thereby performing a

computation over the time interval t ∈ (0, τ). Under (i)

time-symmetric control λ†
τ−t = λt and (ii) conjugation of

the distribution under the operation Pr(s, τ) = Pr(s†, 0),

the probability of a reverse trajectory is exponentially

damped by the entropy production [57]:

Pr(R(s⃗),−Σ) = e−Σ Pr(s⃗,Σ). (4)

This is the Detailed Fluctuation Theorem (DFT) for a

Time-Symmetrically Controlled Computation (TSCC).

(App. A details its derivation and scope.)

This DFT [55, 56, 58] includes NESS dynamics for

which the control parameter is constant λt = λt′ . It can

also describe, as explored here, computations that begin

in equilibrium and are then allowed to relax after the

application of a time-symmetric control signal. These

latter symmetries are ubiquitous in computing [59].

The symmetry imposed by TSCC imbues Q’s statistics

with special properties in stochastic nonequilibrium sys-

tems when compared with the entropy production Σ. To

address this, we derive the exact form of the charge Qmin

that achieves minimum scaled variance for any TSCC.

Given a TSCC operating over the time interval [0, τ ],

described by probability distribution Pr(s⃗,Σ) over state

trajectories s⃗ and entropy productions Σ, our task is to

find a charge function Q(s⃗) = −Q(R(s⃗)) of the state

trajectories s⃗ that minimizes this scaled variance.

First, we identify a special class of entropy-conditioned

charges, expressed as functions of the entropy production,

that contain a charge with the minimum scaled variance.
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Entropy-Conditioned Charge

We define the entropy-conditioned charge q(Σ) as the

average charge in the system given that system dissipated

entropy Σ:

q(Σ) ≡
∑
Q

QPr(Q|Σ) . (5)

If the entropy production is a function of the state tra-

jectory, as is the case for systems satisfying local detailed

balance, then we can use the entropy-conditioned charge

to define a new function of the trajectories:

Q′(s⃗) ≡ q(Σ(s⃗)) . (6)

Q′ is a well-defined charge within the system, since

Q′(R(s⃗)) = −Q′(s⃗), as shown App. B.

On the one hand, the newly defined entropy-

conditioned charge has the convenient property that its

average ⟨Q′⟩ ≡ ⟨q⟩ is the same as that for the charge used

to define it:

⟨Q′⟩ =
∑
Σ

Pr(Σ)q(Σ)

=
∑
Σ

Pr(Σ)
∑
Q

QPr(Q|Σ)

=
∑
Σ,Q

QPr(Q,Σ)

=
∑
Q

QPr(Q)

≡ ⟨Q⟩ .

On the other hand, the variance of the entropy-

conditioned charge is not the same. When we evaluate

the average square of the newly defined charge:

⟨Q′2⟩ =
∑
Σ

Pr(Σ)q(Σ)2

=
∑
Σ

Pr(Σ)

∑
Q

QPr(Q|Σ)

2

,

we can apply Jensen’s inequality—⟨Q⟩2 ≤ ⟨Q2⟩—to show

that:

⟨Q′2⟩ ≤
∑
Σ

Pr(Σ)

∑
Q

Q2 Pr(Q|Σ)


=

∑
Q,Σ

Pr(Q,Σ)Q2

= ⟨Q2⟩ .

As a result, the entropy-conditioned charge produces

scaled variance that is less than or equal to the charge

used to define it:

ϵ2Q ≥ ϵ2Q′ . (7)

Minimizing Charge

Given that any charge’s scaled variance can be reduced

by finding its corresponding entropy-conditioned charge,

given some TSCC process Pr(s⃗,Σ), we need only find the

function q(Σ) that minimizes the scaled variance ϵ2q =

⟨q2⟩/⟨q⟩2−1. There is a single important constraint that

applies to these functions: q(−Σ) = −q(Σ). Thus, the

optimization is constrained.

However, we can ignore this constraint by using the

TSCC DFT and summing over the state trajectories of

Eq. (4) to produce a familiar relation [57, 60]:

Pr(−Σ) = e−Σ Pr(Σ) . (8)

We use this to express the average q and q2 in terms of

positive entropy productions:

⟨q2⟩ =
∑
Σ>0

Pr(Σ)(1 + e−Σ)q(Σ)2 (9)

⟨q⟩ =
∑
Σ>0

Pr(Σ)(1− e−Σ)q(Σ) .

Thus, ϵ2q can be expressed in terms of only positive en-

tropy productions. The consequence is that q(Σ) is un-

constrained over positive Σ and so the minimum occurs

when:

∂

∂q(Σ)
ϵ2q =

1

⟨q⟩2

(
∂⟨q2⟩
∂q(Σ)

− 2⟨q2⟩
⟨q⟩

⟨q⟩
∂q(Σ)

)
(10)

= 0 ,

for all Σ > 0. Applying the derivative with respect to

the positive-entropy charge q(Σ) to the averages shown

in Eq. (9) yields:

∂⟨q⟩
∂q(Σ)

= (1− ϵ−Σ) Pr(Σ)

∂⟨q2⟩
∂q(Σ)

= (1 + ϵ−Σ) Pr(Σ)2q(Σ) .

Finally, plugging these into Eq. (9), we solve for the

charge with the minimum scaled variance. This yields

our primary result:

qmin(Σ) =
⟨q2min⟩
⟨qmin⟩

1− e−Σ

1 + e−Σ
, (11)
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which applies as long as Σ is in the support of the entropy

distribution.

Note that, even though the expression for the minimal

charge was derived for Σ > 0, it applies to Σ ≤ 0 as well,

due to the condition that a charge must satisfy q(−Σ) =

−q(Σ). Indeed, qmin(0) = 0 and:

qmin(−Σ) =
⟨q2⟩
⟨q⟩

1− eΣ

1 + eΣ

=
⟨q2⟩
⟨q⟩

e−Σ − 1

eΣ + 1

= −qmin(Σ) .

Thus, we found the form of the charge that minimizes

scaled variance. And, it depends exclusively on the pro-

cess’ entropy production:

Qmin(s⃗) = qmin(Σ(s⃗)) .

This result can also be found by recognizing that the

bound described in Ref. [41] is achieved when the charge

is proportional to its averaging observable.

This relation can be inverted as well. If we manage

to discover a maximum-precision charge Qmin(s⃗) for a

thermodynamic process, then the entropy production can

be exactly calculated as a function of the trajectory:

Σ(s⃗) = ln
⟨Q2

min⟩+ ⟨Qmin⟩Qmin(s⃗)

⟨Q2
min⟩ − ⟨Qmin⟩Qmin(s⃗)

. (12)

This second result provides a powerful tool to infer not

only the average entropy production, but the entire dis-

tribution of entropy productions.

Thermodynamic Bound on Scaled Variance

For simplicity, note that we can choose any real

value for k = ⟨q2min⟩/⟨qmin⟩, and the entropy-conditioned

charge qmin(Σ) will minimize the scaled variance. More-

over:

1− e−Σ

1 + e−Σ
= tanh(Σ/2) .

Thus, whatever the TSCC entropy production distribu-

tion Pr(Σ) may be, the charge:

Qmin(s⃗) = k tanh(Σ(s⃗)/2) , (13)

sets a lower bound on all other system charges:

ϵ2Q ≥ ϵ2Qmin (14)

=
⟨tanh(Σ/2)2⟩
⟨tanh(Σ/2)⟩2

− 1 ,

where the constant k = ⟨q2⟩/⟨q⟩ was factored out.

This bound on the scaled variance is tight, as it is real-

ized by our newly defined Qmin(s⃗). For this reason, ϵ
2
Qmin

represents the tightest possible bound on the scaled vari-

ance for TSCC processes Pr(Σ, s⃗).

Once again, the TSCC DFT—Pr(Σ) = eΣ Pr(−Σ)—

allows us to simplify:

⟨tanh(Σ/2)2⟩ =
∑
Σ>0

Pr(Σ)(1 + e−Σ)

(
1− e−Σ

1 + e−Σ

)2

=
∑
Σ>0

Pr(Σ)(1− e−Σ)

(
1− e−Σ

1 + e−Σ

)
= ⟨tanh(Σ/2)⟩. (15)

As a result, we have the simplified bound on the scaled

variance in terms of the entropy production. This yields

our third and final result.

Theorem 1 (Thermodynamic Uncertainty Theorem).

In a TSCC, the scaled variance of any charge Q is

bounded below by Qmin’s scaled variance:

ϵ2Qmin =
1

⟨tanh(Σ/2)⟩
− 1 . (16)

The thermodynamic uncertainty theorem (TUT)

echoes thermodynamic uncertainty relations in that it

relates the minimum variance to the entropy production.

We emphasize, though, that this contrasts with TURs

[57, 60–62] in that it is an equality rather than an in-

equality. Additionally, unlike TURs, which are functions

of the average entropy production ⟨Σ⟩, this bound de-

pends on an average of a function of the entropy. This

means that higher moments of the entropy distribution

appear in the bound, not just the average entropy pro-

duction ⟨Σ⟩. Specifically, with f(x) ≡ tanh(x/2), we can

express the bound in terms of higher moments:

ϵ2Qmin =
1

f(⟨Σ⟩) +
∑∞

n=2
f(n)(⟨Σ⟩)

n! ⟨(Σ− ⟨Σ⟩)n⟩
− 1 .

(17)

Since this minimum is achievable by a well-defined charge

Qmin, it sets the tightest possible bound that can be de-

termined using all moments of the entropy production

distribution.

Equation (16) agrees and coincides with Eq. (16) of
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Ref. [41], which was derived through a completely dif-

ferent method. Namely, it was derived by means of a

“Hilbert uncertainty relation” that leverages the repro-

ducing element implied by the Riesz representation theo-

rem for any Hilbert space equipped with an appropriate

inner product. This uncertainty relation was shown to

reduce to an equation of the form of Eq. (2). Our ap-

proach is complementary as it investigates how the re-

lation stems from thermodynamics through a detailed

fluctuation theorem (DFT).

While reaching the same conclusion, our method has

additional merits. First, it clearly highlights its relation

to other previously generalized TUR bounds, also ob-

tained from the requirement of a DFT. Thus, it gives

quantitative comparisons, as shown shortly. Second,

it determines a physically realizable minimum-variance

charge Qmin(s⃗) that saturates Eq. (16). Moreover, it pro-

vides an analytic inversion though Eq. (12) that may pro-

vide a path to new entropy production estimation meth-

ods.

Finally, it is worth pointing out that Eq. (8) holds valid

also in the case of systems in non-equilibrium steady-

state [24]. In this case, one can define the steady-state

average current J = limt→+∞ Q/t and its diffusion co-

efficient Var(J) = limt→+∞ Var(Q)/t [63] and arrive at

a TUT for the scaled variance ϵ2J analogous to Eq. (16)

except for the entropy production Σ being replaced by its

rate σ = limt→+∞ Σ/t. The resulting minimum variance

current jmin can then be found to be given by

jmin(Σ) =
⟨j2min⟩
⟨jmin⟩

1− e−σ

1 + e−σ
(18)

is interestingly reminiscent of the recently introduced

hyper-accurate currents [64, 65], defined as those possess-

ing the maximum signal-to-noise ratio. The precision of

these current can be used, therefore, to bound the preci-

sion of any other thermodynamic current. This is much

in the spirit of Eq. (18). However, the form of these cur-

rents was found within classical and quantum thermo-

electrics assuming coherent transport in the Landauer-

Büttiker formalism. In contrast, our work derives them

by imposing the TSCC symmetry Eq. (8).

COMPARISON TO PAST UNCERTAINTY

RELATIONS

The burgeoning variety uncertainty relations [30–44,

47–49] naturally begs for direct comparisons. Here, we

summarize several relevant comparisons. Barato and

Seifert [61] derived the first TUR, finding that precision

could not be maximized without a corresponding increase

in the average entropy production:

ϵ2Q ≥ 2

⟨Σ⟩
≡ ϵ2BS , (19)

where the subscripts on the latter refer to the original

Barato-Seifert (BS) bound on scaled variance.

Further exploration found that detailed fluctuation

theorems [55, 56] can be used to establish modified ther-

modynamic uncertainty relations. Reference [57] as well

as Ref. [60] used Eq. (4) to demonstrate that the scaled

variance is bounded below by:

ϵ2Q ≥ 2

e⟨Σ⟩ − 1
≡ ϵ2HVV (20)

ϵ2Q ≥ csch2[g(⟨Σ⟩/2)] ≡ ϵ2TGGL , (21)

where g(x) is the inverse of x tanh(x). (We again label

bounds for the authors.) The ϵ2TGGL bound is the tightest

possible bound on scaled variance that can be determined

from the average entropy [60]. Comparing these bounds

independent of the TUT, one sees in Figs. 1 and 2 that

they are ordered:

ϵ2BS(⟨Σ⟩) > ϵ2TGGL(⟨Σ⟩) > ϵ2HVV(⟨Σ⟩) . (22)

(See App. C for a proof.) Note that, since ϵ2TGGL and

ϵ2HVV were derived from the TSCC DFT, which is our

starting point as well, the minimum scaled variance is

bounded below by these TURs, but not necessarily ϵ2BS.

With ϵ2Qmin’s exact form determined, though, a natu-

ral next question is how close the previous bounds, all

depending only on the average entropy production ⟨Σ⟩,
are to the actual minimum.

Fortunately, Ref. [60] also showed that a particular

bimodal distribution:

Pr
min

(Σ) ∝ δ(Σ− a) + e−aδ(Σ + a)

achieves the lower bound ϵ2TGGL. This is the simplest

distribution satisfying Pr(−Σ) = e−Σ Pr(Σ). That is, it

consists of a delta function at entropy production Σ = a

and then contains a mirror of that entropy production

at Σ = −a reduced by the exponential factor e−a. Any

other NESS entropy distribution can be constructed from

a superposition of such distributions.

We investigate our new minimum scaled variance ϵ2Qmin

by exploring a variety of possible distributions. We take

a similar strategy for each, breaking the entropy distri-

bution into the piece-wise function:

Pr(Σ|µ, σ2) = n(µ, σ2)

e
(Σ−µ)2

2σ2 if Σ ≥ 0

eΣe
(−Σ−µ)2

2σ2 if Σ < 0
. (23)
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Figure 1. Thermodynamic Uncertainty Theorem versus
TURs: Three dashed lines show previous TURs—ϵ2BS, ϵ

2
HVV,

and ϵ2TGGL—all functions of average entropy production ⟨Σ⟩.
While they make nearly identical predictions for small en-
tropy production, they diverge as entropy increases, setting
very different bounds for average entropy production as low as
⟨Σ⟩ = 2kB. In contrast, the minimum scaled variance ϵ2Qmin

is not strictly a function of average entropy. The entropy dis-
tribution Pr(Σ|µ, σ2) depends on the variance parameter σ2

and is displayed on a sliding scale from high to low variance
(from light to dark). σ2 ranges from ≈ 8 × 10−3 to 8 × 103.
While µ is adjusted to keep ⟨Σ⟩ fixed. This yields entropy dis-
tributions of the form shown on the right. The lowest values
of Σ2 and var(Σ) closely match ϵ2TGGL. As σ2 increases, the
variance of the entropy production increases and the curve
becomes lighter, achieving and surpassing the dashed line for
ϵ2BS. Between these two extremes, there is a purple dashed
line that gives the minimum scaled variance of normal en-
tropy distributions.

Here:

n(µ, σ2) =

∫ ∞

0

e
(Σ−µ)2

2σ2 dΣ+

∫ 0

−∞
eΣe

(−Σ−µ)2

2σ2 dΣ

is the normalization factor. In essence, our probability

distribution is a normal distribution with average µ and

variance σ2 over the positive interval. And, the TSCC

DFT defines the distribution to be Pr(Σ) = eΣ Pr(−Σ)

on the negative interval.

The variance σ2 and average µ of the positive entropy

portion determine the distribution Pr(Σ|µ, σ2). In the

limit σ2 ≪ kBµ, the positive entropy distribution is

nearly a delta function, roughly recovering the distribu-

tion Prmin(Σ) proposed by Ref. [60]. The left side of

Fig. 1 shows this, where σ2 ≈ 10−3kBµ, corresponding

to a two-peaked distribution. In this case, ϵ2Qmin closely

matches the bound ϵ2TGGL, as expected. However, Fig.

1 also shows that the average entropy production is not

the sole determinant of the charge’s minimum scaled vari-

ance.

As the variance σ2 of the positive normal distribution

increases, Fig. 1 shows that the minimum scaled vari-

ance increases. Amidst that progression is a special dis-

tribution, where σ2 = 2kBµ, for which Pr(Σ|µ, σ2) is a

normal distribution over the full range of entropy pro-

duction. It can be directly shown that the variance for

a normal distribution that satisfies the TSCC DFT must

be σ2 = 2kBµ. We highlight this special case with a

purple dashed line in Fig. 1 and a blue dashed line in

Fig. 2. NESS systems under Markovian dynamics, the

most frequently studied subclass of TSCC processes, ap-

proach a normal entropy production distribution in the

long-time limit provided they are ergodic. (See App. D.)

Interestingly, the minimal variance charges of the typical

asymptotic behavior in NESSs clearly violate the original

TUR given by ϵ2BS in the long-time limit.

If we continue beyond the normal distribution to higher

variances depicted with lighter colors in Fig. 1, the min-

imum scaled variance ϵ2Qmin continues to increase, until

it surpasses the bound ϵ2BS [61]. Thus, by changing the

parameter σ2 of the NESS distribution Pr(Σ|µ, σ2) and

its variance var(Σ) as well as other higher moments of

the entropy distribution Pr(Σ), the TUT interpolates be-

tween the ϵ2TGGL and ϵ2BS TURs. Moreover, we can find

entropy distributions that far exceed even the ϵ2BS bound.

THERMODYNAMIC SIMULATIONS

The entropy production distribution Pr(Σ|µ, σ2) is

convenient to examine, but it is not obvious how it can

be physically generated. We now describe two compu-

tational protocols that are able to show similar breadth

of behavior, but are firmly rooted in dynamical models

of physical processes. Both are TSCCs in that they are

implemented with time symmetric control of a potential

energy landscape. The thermal influence of the environ-

ment is simulated using Langevin dynamics.

Both TSCC protocols used to generate Fig. 2 follow

the same qualitative structure. The system begins in

equilibrium with a thermal reservoir, exposed to a stor-

age potential U store. At t = 0, a computational poten-

tial U comp is applied until t = τ and then the system is

re-exposed to U store and allowed to relax back to equilib-

rium. The stochastic entropy production over this entire

trajectory is given by the stochastic work w(x⃗), since the

free energy change is zero:

β−1Σ(x⃗) = w(x⃗)−∆F (24)

= w(x⃗) . (25)

Since the potential energy is constant except for the two

quenches q0 and qτ at times t = 0 and t = τ , the stochas-

tic work is given by the sum of the work invested during
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Figure 2. Comparing TURs: Bounds ϵ2BS > ϵ2TGGL > ϵ2HVV in solid lines (blue, red, and black, respectively) and specific thermal
processes with dashed lines. The blue dashed line is the minimum scaled variance ϵ2Gaussian of any process that generates a
Gaussian entropy production distribution, which is achieved in the long-time limit of NESS processes; see App. D. The red
dashed line is the minimum scaled variance ϵ2Discrete of an ideal discrete erasure. We compare two computational classes to the
these bounds. (Left) we plot 1366 different time-symmetric erasures. As expected (see App. E 1) they are bounded by the
scaled variance of the ideal discrete erasure ϵ2Discrete, which lies well above the bounds ϵ2TGGL and ϵ2HVV. A number of erasure
operations are well above the minimum ϵ2TGGL set by ϵ2BS. (Right) we plot the result 1193 different bit-flips. As with the erasure
protocol, many computations are above the ϵ2BS bound. However, many computations achieve a minimum scaled variance well
below the discrete erasure bound ϵ2Discrete. Many computations are quite close to the strongest possible TUR ϵ2TGGL, indicating
that this theoretical bound is indeed achievable with TSCCs.

these quenches. Thus, the entropy generated by a trajec-

tory from t = 0 until t = τeq when the system equilibrates

can be calculated from its coordinates at t = 0 and t = τ

as:

β−1Σ(x⃗) =wq0 + wqτ

=U comp(x0)− U store(x0)

+ U store(xτ )− U comp(xτ ) . (26)

(Note that τeq is generally longer than τ , but need not be

much longer if the system relaxes quickly) A large enough

ensemble of initial conditions allows for an estimate of the

entropy production distribution and, through Eq. (16),

for an estimate of the minimum scaled variance that can

be achieved by any charge defined on the system.

Reset

First, consider a simple reset protocol. Here, U store is

an asymmetric double square-well potential with wells of

depths D0 and D1, widths ℓ, and centered at x = ±L.

(See Fig. 3.) A system x is initially set up in equilibrium

with this potential at a temperature T . The U comp for

the reset is shown in Fig. 3. The left well is turned

into a ramp leading to the right one, and the right well’s

energy is lowered. This causes nearly all realizations of

the process to fall into the right well, hence the name

“reset”.

As the wells narrow, the variance of different work val-

ues conditioned on being in the left or right at t = 0

shrinks—with the intent of mirroring the narrow bimodal

distribution considered in the previous section. The anal-

ysis in the preceding sections suggest that the minimum

scaled variance for a narrow bimodal distribution, as cal-

culated by Eq. (16) should agree with the ϵ2TGGL bound.

However, this distribution can never be a true bimodal

distribution due to the necessary presence of 0 entropy

production events.

The presence of these events causes the true ϵ2Qmin to be

somewhat larger than ϵ2TGGL. To investigate this, a suite

of 1366 simulations was performed using overdamped

Langevin dynamics to simulate trajectories while using a

Monte Carlo Markov Chain (MCMC) inspired approach

to find parameters for which ϵ2Qmin is minimized (See

App. E 2 for simulation parameters and details.) Figure

2 shows the resulting entropy productions in minimum-

variance charges. Some computations are considerably

less precise than specified by ϵ2BS—the original TUR—

but many lie well below this bound. As expected, all

computations are less precise than the bounds ϵ2TGGL and

ϵ2HVV, but none of them come very close to the tightest

theoretical bound given by ϵ2TGGL.

The result of the minimization provides numerical evi-

dence that the reset operations do indeed follow a bound

above ϵ2TGGL. Further investigation revealed that the
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Figure 3. Potential energy landscapes during (a) storage (U store), (b) the reset computation, and (c) the swap computation.
The offset from D0 in the right well during the reset computation creates the same energy barrier as the left well during the
storage potential.

TUT can be easily specialized to a 2-level rate-equation

system that, in turn, provides an analytic expression for

a “discrete bound”, derived in App. E 1. While this

bound lies below the one for a normally distributed en-

tropy production, Fig. 2 shows that it lies far above

previous bounds—ϵ2TGGL and ϵ2HVV—that used only the

TSCC DFT in Eq. (4). The reset process simulations

are numerical evidence that the bound is, miraculously,

quite tight for the continuous-space Langevin system de-

spite being derived using a discrete-state system; see Fig.

2. This example showcases Eq. (16)’s flexibility, as we see

it can be used to set operationally useful regime and/or

protocol specific bounds by including information about

the system of interest.

Swap

The swap operation has the same U store, but the com-

putational potential for the swap is a harmonic potential

(see Fig. 3). If the system were isolated, it would un-

dergo a harmonic oscillation. Exactly halfway through

the oscillation, the particles that were in the left (right)

well of U store would be located where the right (left)

well is. Thus, turning U store back on at this point

would implement a “swap” operation between asymmet-

ric wells. This type of protocol also persists for un-

derdamped dynamics: the system undergoes the same

oscillation approximately, with some amount of dissipa-

tion and stochasticity. The work cost to implement this

protocol approaches a bimodal distribution, with parti-

cles starting in the left well costing an energy value near

D0−D1 and those starting in the right yielding an energy

surplus near D1 −D0. This distribution is sharpened by

narrower wells and lower damping coefficients.

Rather than minimizing ϵ2Qmin, the point of this sim-

ulation is to showcase that ϵ2Qmin faithfully captures all

cases—from where ϵ2TGGL is tight to where ϵ2BS is tight

to where neither is a good approximation. The proto-

col described above generates the bimodal distribution

that saturates ϵ2TGGL under some cases, but can also

produce entropy production distributions where the min-

imal scaled variance is well above ϵ2BS. To showcase

this variety, a parameter-searching algorithm was used

to explore the space of ϵ2Qmin over 1193 parameter sets

rather than the minimization algorithm in the reset sim-

ulations. Again, the simulation details and parameters

can be found in App. E 3. The entropy and scaled vari-

ance of these swaps are shown on the right-hand side of

Fig. 2. They span the same space of possibilities shown

for Pr(Σ|µ, σ2) in Fig. 1: some lying above ϵ2BS and some

TSCCs sitting just above the minimum set by ϵ2TGGL.

For both the reset and swap, we see that the mini-

mum scaled variance tends to increase as the variance of

the entropy-production distribution increases. In short,

higher moments of entropy production are critically im-

portant in predicting the precision of computations.

CONCLUSION

We introduced two equalities that provide an explicit

expression for the most accurate charge in any entropy

production distribution that satisfies Eq. (4) and for the

minimal scaled variance it achieves. Analogous to the

transition from the Second Law inequality to the fluctu-

ation relations of Crooks and Jarzynski, we developed a

treatment of the entropy production that recognizes it

as a stochastic quantity with proper fluctuations. This

treatment yields a result—the Thermodynamic Uncer-

tainty Theorem—that is (i) an equality rather than an

inequality and (ii) depends on the stochastic entropy pro-

duction’s fluctuations rather than on only its average

value.
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Equation (12) provides an inversion of the TUT—an

expression for the entropy production as a function of

the minimizing charge Qmin. Methods for estimating en-

tropy production using TUR saturation conditions have

already been established and tested [66–69] and so a nat-

ural continuation of this is to apply these methods to

TUT inversion as well. The previous analyses have been

limited to short-time behavior, systems that saturate the

ϵ2BS bound or to systems obeying Langevin dynamics.

Analogous investigations of the TUT, being derived un-

der very general assumptions, may provide an important

missing piece to these previous explorations.

The TUT also allows for straightforward derivations of

new system- or dynamic-specific TURs. Our simulations

demonstrated that overdamped reset operations adhere

to their TUT-derived bound ϵ2Discrete, while the under-

damped swap operations are free of ϵ2Discrete and can ap-

proach the ϵ2TGGL bound. Tuning the higher moments of

entropy production allows us to interpolate between the

maximum precision ϵ2TGGL set by Ref. [60] and the orig-

inal TUR ϵ2BS = 2
⟨Σ⟩ [61]. Nonequilibrium steady states

generally approach a Gaussian entropy-production dis-

tribution, so their higher moments produce charges that

are more precise than predicted by ϵ2BS but less precise

than ϵ2TGGL.

Our simulations showed that there are both reset and

swap operations for which the minimum variance charge

is even less precise than predicted by ϵ2BS. The relation-

ship indicates that, independent of the average entropy

production, higher variance in the entropy production

leads to less precise charges. This analysis opens up the

opportunity to investigate, in more detail, the specific

effects that higher moments impose upon the entropy

production. Equation (17) gives the formal relationship,

but it remains to be seen how these effects manifest in

practice.
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Appendix A: Time Symmetrically Controlled

Computation Detailed Fluctuation Theorem

While Crooks originally derived the Detailed Fluctua-

tion Theorem (DFT) within the context of detailed bal-

anced Markov dynamics [56], Jarzynski provided an el-

egant proof of a generalization with a rather appealing

set-up [55]. With a system S that is controlled by an

external parameter and weakly coupled to a collection of

thermal reservoirs (each specified by its respective tem-

perature T ), he proved that the joint probability of a

state trajectory s⃗ ≡ s0st1 · · · stN−2
sτ and the environ-

mental entropy production, defined as the heat entropy

generated in each reservoir:

Q ≡
∑
T

QT

T
,

is exponentially damped under time reversal. This frame-

work can be applied to a wide variety of computations

over the time interval t ∈ (0, τ) and can operate with-

out the constraints of detailed balance, since there are

multiple reservoirs.

Specifically, using random variable notation where cap-

ital letters denote the random variable and lower case

letters denote their realizations, Ref. [55] shows that:

Pr(Q = −q, S⃗ = R(s⃗)|S0 = s†τ , Λ⃗ = R(λ⃗))

Pr(Q = q, S⃗ = s⃗|S0 = s0, Λ⃗ = λ⃗)
= e−q, (A1)

where we set Boltzmann’s constant to kB = 1 for ease of

notation. Here, control protocol λ⃗ ≡ λ0 · · ·λτ is the pa-

rameter trajectory over the computation interval (0, τ).

The time reversal operator R operates on trajectories

by reversing the sequence and flipping the sign of time-

antisymmetric variables (e.g., magnetic fields and mo-

mentum): R(λ⃗) ≡ λ†
τ · · ·λ

†
0. Beyond weak coupling, Ref.

[55] assumes Hamiltonian dynamics and that the ther-

mal baths are initially independently distributed in their

respective Boltzmann distributions.

This differs from the Crooks fluctuation theorem in

that s⃗ represents a potentially discrete sequence of states

taken at potentially irregular times ti ∈ (0, τ) and in that

it also includes dependence on the entropy production

Q in the probability. However, in the limit (i) where

s⃗ constitutes a nearly complete description of the state

trajectory, (ii) the environmental entropy production is

a deterministic function of the state trajectory, and (iii)

there is only one heat bath, the results of Refs. [55, 56]
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are similar.

In essence, both detailed fluctuation theorems recover

thermodynamic properties of a forward experiment by

comparing trajectory probabilities to those of a reverse

experiment. The forward experiment is determined by

the control protocol λ⃗, which determines the probability

of state trajectories and heats conditioned on the initial

state S0, but also depends sensitively on the initial dis-

tribution of the system f0(s0). f is used to indicate that

it is the probability of the forward experiment, and the

subscript 0 indicates initial time t = 0. This then pro-

vides the instantaneous distribution of the system in the

forward experiment at all times t:

ft(s) ≡
∑
s0

Pr(St = s|S0 = s0, Λ⃗ = λ⃗)f0(s0) .

Similarly, the reverse experiment must be prepared in

some distribution r0(s0), yielding the instantaneous dis-

tribution of the system in the reverse experiment at all

times:

rt(s) ≡
∑
s0

Pr(St = s|S0 = s0, Λ⃗ = R(λ⃗))r0(s0) .

The state of preparation of the forward and reverse ex-

periment is essential for determining the system’s total

entropy production.

The total entropy production due to control λ⃗ in the

forward experiment must also include the change in sys-

tem surprisal [70]:

Σ = + ln
f0(s0)

fτ (sτ )
.

Substituting into the DFT of Eq. (A1), yields a relation

for total entropy production as well:

Pr(Q = −q, S⃗ = R(s⃗)|S0 = s†τ , Λ⃗ = R(λ⃗))

Pr(Q = q, S⃗ = s⃗|S0 = s0, Λ⃗ = λ⃗)
= e−Σ+ln

f0(s0)

fτ (sτ )

or:

Pr(Q = −q, S⃗ = R(s⃗)|S0 = s†τ , Λ⃗ = R(λ⃗))

Pr(Q = q, S⃗ = s⃗|S0 = s0, Λ⃗ = λ⃗)

fτ (sτ )

f0(s0)
= e−Σ .

To parallel Crooks’ original examination of fluctuation theorems [56], we would like to express probabilities of total

entropy production, rather than environmental entropy production. En route, note that the conditional probability

of total entropy production under forward control can be expressed:

Pr(∆Stot = Σ|Q = q, S⃗ = s⃗, Λ⃗ = λ⃗) = δ
Σ,q+ln

f0(s0)

fτ (sτ )

.

We can then evaluate:

Pr(∆Stot = Σ, S⃗ = s⃗|S0 = s0, Λ⃗ = λ⃗)f0(s0) =
∑
q

δ
Σ,q+ln

f0(s0)

fτ (sτ ,)

Pr(Q = q, S⃗ = s⃗|S0 = s0, Λ⃗ = λ⃗)f0(s0) (A2)

Pr(∆Stot = Σ, S⃗ = s⃗|Λ⃗ = λ⃗) = eΣ
∑
q

δ−Σ,−q+ln
fτ (sτ )
f0(s0)

Pr(Q = −q, S⃗ = R(s⃗)|S0 = s†τ , Λ⃗ = R(λ⃗))fτ (sτ ),

Pr(∆Stot = Σ, S⃗ = s⃗|Λ⃗ = λ⃗) = eΣ
∑
q

δ−Σ,−q+ln
fτ (sτ )
f0(s0)

Pr(Q = −q, S⃗ = R(s⃗)|Λ⃗ = R(λ⃗)) ,

where we introduced the unconditioned process that

comes from forward control λ⃗ and starting in the initial

distribution f0(s0):

Pr(∆Stot = Σ, S⃗ = s⃗|Λ⃗ = λ⃗)

≡ Pr(∆Stot = Σ, S⃗ = s⃗|S0 = s0, Λ⃗ = λ⃗)f0(s0) .

We also introduced unconditioned process of the reverse

experiment that comes from initializing the system in the

conjugate of the final distribution of the forward experi-
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ment r0(s) = fτ (s
†) and reversing the control sequence:

Pr(Q = q, S⃗ = s⃗|Λ⃗ = R(λ⃗))

≡ Pr(Q = q, S⃗ = s⃗|S0 = s0, Λ⃗ = R(λ⃗))r0(s0) .

Substituting in −q for the environmental entropy pro-

duction and R(s⃗) for the state sequence yields the right-

hand term in the last line of Eq. (A2).

We want to evaluate the probability of entropy pro-

duction in the reverse experiment as well. Denoting the

final system distribution that results from the reverse ex-

periment as rτ (s), the total entropy production is:

Σ = q+ ln
r0(s0)

rτ (sτ )
,

meaning that:

Pr(∆Stot = Σ, S⃗ = s⃗|Λ⃗ = R(λ⃗))

=
∑
q

δ
Σ,q+ln

r0(s0)

rτ (sτ )

Pr(Q = q, S⃗ = s⃗|Λ⃗ = R(λ⃗)) .

Comparing with Eq. (A2), we evaluate the probabil-

ity of realizing the reverse sequence R(s⃗) and minus the

entropy production −Σ, while summing over −q rather

than q:

Pr(∆Stot = −Σ, S⃗ = R(s⃗)|Λ⃗ = R(λ⃗))

=
∑
q

δ
−Σ,−q+ln

r0(s
†
τ )

rτ (s
†
0)

Pr(Q = −q, S⃗ = R(s⃗)|Λ⃗ = R(λ⃗)).

If we want to satisfy a parallel equality to the Crooks

fluctuation theorem:

Pr(∆Stot = Σ, S⃗ = s⃗|Λ⃗ = λ⃗) (A3)

= eΣ Pr(∆Stot = −Σ, S⃗ = R(s⃗)|Λ⃗ = R(λ⃗)),

for all reverse distributions Pr(Q = q, S⃗ = s⃗|Λ⃗ = R(λ⃗)),

then it must be true that:

δ−Σ,−q+ln
fτ (sτ )
f0(s0)

= δ
−Σ,−q+ln

r0(s
†
τ )

rτ (s
†
0)

.

Thus, the following must also hold:

fτ (sτ )

f0(s0)
=

r0(s
†
τ )

rτ (s
†
0)

.

Since we chose r0(s) = fτ (s
†), the final distribution of

the system in the reverse experiment must be the same

as the conjugate of the initial distribution in the forward

experiment:

rτ (s) = f0(s
†) . (A4)

This nuance was recognized in Crooks’ original result

[56], though it has sometimes been lost to history.

There is a litany of different cases in which rτ (s) =

f0(s
†) is violated. That is, the extension of Crooks’

fluctuation theorem shown in Eq. (A3) does not hold

necessarily. For instance, if we choose a control proto-

col that erases a uniform distribution over {↑, ↓}, taking
f0(s) = 1/2 to fτ (s) = δs,↓, but does so time symmetri-

cally, then rτ (s) = δs,↓ ̸= f(s†) = 1/2.

However, in the special case of time-symmetric

control—R(λ⃗) = λ⃗—we see a useful simplification. If the

final distribution of the forward experiment happens to

conjugate the initial state distribution—fτ (s) = f0(s
†)—

then the initial distribution of the reverse control experi-

ment is the same for the forward control—r0(s) = f0(s).

The resulting final system distribution under reverse con-

trol is also the same—rτ (s) = fτ (s)—since the forward

and reverse experiment apply the same control protocol

to the same initial distribution.

This guarantees the condition in Eq. (A4) that rτ (s) =

f0(s
†). And so, we see that:

Pr(Σ, s⃗) = eΣ Pr(−Σ, R(s⃗)) ,

where we shortened the notation to Pr(Σ, s⃗) ≡
Pr(∆Stot = Σ, S⃗ = s⃗|Λ⃗ = λ⃗) for convenience. This is the

Time-Symmetric Control Computation Detailed Fluctu-

ation Theorem (TSCC DFT) that follows from assuming

time-symmetric control λ⃗ = R(λ⃗) and conjugating the

state distribution under the computation fτ (s) = f0(s
†).

This differs slightly but importantly from the condi-

tions for the TSCC DFT described in Ref. [57] that in-

stead assumed the starting state is preserved—fτ (s) =

f0(s)—under the computation. This assumption may

fail to produce the desired fluctuation theorem if the

control acts differently on the conjugate of the initial

distribution. In this case, the computation has a dif-

ferent effect on the starting distribution of the reverse

protocol r0(s) ≡ fτ (s
†), which is also equal to the con-

jugate of the initial distribution of the forward experi-

ment, since fτ (s
†) = f0(s

†). The distribution will not be

preserved under the computation: rτ (s) ̸= r0(s). Since

r0(s) = f0(s
†), the condition for the DFT in Eq. A4 is

not met. The assumptions of Ref. [57] are sufficient,

though, when the initial distribution is time reversal

symmetric—f0(s
†) = f0(s). The latter is often the case

in biochemical systems, where the time-antisymmetric

momentum variables are thermalized with respect to a

single heat bath. This is also the case for many NESSs.
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Appendix B: Well-defined charge

Let us define a functionQ′ of state trajectories in terms

of the entropy-conditioned charge:

Q′(s⃗) ≡ q(Σ(s⃗)) ,

where the entropy conditioned charge is defined:

q(Σ) ≡
∑
Q

QPr(Q|Σ) .

Note that we can evaluate Q′ for the time-reversal of a

trajectory:

Q′(R(s⃗)) = q(Σ(R(s⃗))) .

The TSCC fluctuation theorem:

Pr(R(s⃗),−Σ) = e−Σ Pr(s⃗,Σ),

implies both a marginalized version:

Pr(−Σ) = e−Σ Pr(Σ) ,

as well as equality of the conditional probabilities:

Pr(R(s⃗)| − Σ) = Pr(s⃗|Σ) .

Thus, the entropy conditioned charge is an odd function

of the entropy:

q(−Σ) =
∑
Q

QPr(Q| − Σ)

=
∑
Q,s⃗

QPr(Q, s⃗| − Σ)

=
∑
Q,s⃗

QδQ,Q(s⃗) Pr(s⃗| − Σ)

=
∑
s⃗

Q(s⃗) Pr(s⃗| − Σ)

=
∑
s⃗

Q(R(s⃗)) Pr(R(s⃗)| − Σ)

=
∑
s⃗

−Q(s⃗) Pr(s⃗|Σ)

= −q(Σ) .

Having assumed that Σ is a function of the state tra-

jectory, we can re-express the TSSC fluctuation theorem:

Pr(R(s⃗))δΣ(R(s⃗)),−Σ′ = e−Σ′
Pr(s⃗)δΣ′,Σ(s⃗),

This can only be true if the entropy production is itself

a charge Σ(R(s⃗)) = −Σ(s⃗). Thus, we see that our new

function of the trajectories Q′ is indeed a charge as well:

Q′(R(s⃗)) = q(Σ(R(s⃗)))

= q(−Σ(s⃗))

= −q(Σ(s⃗))

= −Q′(s⃗) .

Appendix C: Proof of ϵ2Q ≥ ϵ2Qmin ≥ ϵ2TGGL

Start by considering the expressions for the two TUR

bounds ϵ2qmin
and ϵ2TGGL. These bound the noise-to-

signal ratio (or scaled variance) ϵ2Q ≡ Var(Q)/⟨Q⟩2 of any
charge Q—assumed to be anti-symmetric under time-

reversal—in the steady-state regime under the constraint

that the probability distribution for the entropy produc-

tion Σ satisfies the fluctuation relation symmetry:

Pr(−Σ) = Pr(Σ)e−Σ . (C1)

Our main result is that, under no additional assump-

tions about the distribution over Σ, the following bound

holds:

ϵ2Q ≥ ϵ2qmin

≡ 1

⟨tanh(Σ/2)⟩
− 1 . (C2)

Rather, the other bound, proven in Ref. [60], shows that

if in addition to the above the entropy production aver-

ages and generic charge, i.e., ⟨Σ⟩ and ⟨Q⟩, Σ and Q are

fixed and satisfy a joint fluctuation relation symmetry of

the form:

Pr(−Σ, Q) = Pr(Σ, Q)e−Σ ,

then the following TUR bound can be derived:

ϵ2Q ≥ ϵ2TGGL (C3)

≡ csch2(g(⟨Σ⟩/2)) ,

where g(⟨Σ⟩) is the function inverse of ⟨Σ⟩ tanh(⟨Σ⟩).
Is there a relationship between these two bounds? The

following provides an affirmative answer.

The first step re-expresses the righthand side of

Eq. (C3) as:

ϵ2Q ≥ ϵ2TGGL ≡ 1

tanh2(g(⟨Σ⟩/2))
− 1

by using the identity csch2(x) + 1 = 1/ tanh2(x). To
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proceed, define the following quantities:

z(Σ) ≡ tanh2
(
Σ

2

)
h(Σ) ≡ Σ tanh

(
Σ

2

)
.

Furthermore, introduce the inverse function of h(Σ) and

denote it g: g(h(Σ)) = Σ. Notice that this is possible

since h(Σ) is a monotonically increasing function of Σ

whenever Σ ≥ 0. This is not a limitation, since, thanks to

the fluctuation relation symmetry Eq. (C1), it amounts

to considering:

⟨(. . .)⟩ ≡
∑
Σ

(. . .) Pr(Σ)

=
∑
Σ>0

(. . .) Pr(Σ)
(
1 + e−Σ

)
.

To employ these quantities note that the composite

function w(h) ≡ f(g(h)) is a concave function of h (when

h ≥ 0), since w′(h) > 0 and w′′(h) < 0. This allows ex-

ploiting Jensen’s inequality where the “norm” is given by

the average ⟨. . .⟩ calculated with the probability distri-

bution Pr(Σ)(1 + e−Σ), as just noted. This gives rise to

the inequality:〈
tanh

(
Σ

2

)2
〉

= ⟨z(Σ)⟩

= ⟨z(g(h(Σ)))⟩
≤ z(g(⟨h(Σ)⟩))
= z(g(⟨Σ⟩)) , (C4)

where the last line used the fact that ⟨Σ⟩ = ⟨h(Σ)⟩. No-

tice that the quantity appearing on the the inequality’s

righthand side—z(g(⟨Σ⟩))—is nothing other than the de-

nominator in the first term of Eq. (C3)’s righthand side.

The final step to conclude the proof then consists in

realizing that Eq. (15) means that inequality Eq. (C4)’s

lefthand side is the denominator in the first term of

Eq. (C2)’s righthand side.

In view of Eq. (C4) it immediately follows that:

ϵ2qmin
≥ ϵ2TGGL .

Appendix D: Central Limit Theorem For Entropy

Production in Markovian NESSs

A NESS’s dynamics are described by a bi-infinite pro-

cess Pr(S−∞:∞) that is stationary (Pr(Sτ :τ ′ = sτ :τ ′) =

Pr(Sτ+∆t:τ ′+∆t = sτ :τ ′) for all ∆t. Here, Sτ :τ ′ ≡
SτSτ+dt · · ·Sτ ′−dtSτ ′ . We shift trajectory notation from

s⃗ to sτ :τ ′ , since we partition the trajectory into segments

sτ :τ ′ when establishing the central-limit theorem for en-

tropy production.

A common assumption is that processes are Marko-

vian [56]. In this case, a process can be expressed as the

product:

Pr(Sτ :τ ′ = sτ :τ ′) = π(sτ )

τ ′−dt∏
t=τ

Mst→st+dt
,

where Ms→s′ ≡ Pr(St+dt = s′|St = s) is the con-

ditional probability of transitions between states and

π(s) ≡ Pr(St = s) is the steady state probability.

Applying Crooks fluctuation theorem [56] to a NESS

with fixed control, the entropy production is:

Σ(sτ :τ ′)/kB = ln
Pr(Sτ :τ ′ = sτ :τ ′)

Pr(Sτ :τ ′ = R(sτ :τ ′))

= ln
π(sτ )

∏τ ′−dt
t=τ Mst→st+dt

π(sτ ′)
∏τ ′−dt

t=τ Ms†t+dt→s†t

.

Adding ln
∏τ′−dt

t=τ+dt π(st)∏τ′−dt
t=τ+dt π(st)

= 0 gives:

Σ(sτ :τ ′)/kB = ln

∏τ ′−dt
t=τ π(st)Mst→st+dt∏τ ′−dt

t=τ π(st+dt)Ms†t+dt→s†t

=

τ ′−dt∑
t=τ

ln
π(st)Mst→st+dt

π(st+dt)Ms†t+dt→s†t

=

τ ′−dt∑
t=τ

Σ(st:t+dt)/kB .

We can now appeal to the central limit theorem for

Markov Chains [71].

Define a new process Pr(Y−∞:∞) that constitutes a

two-time sliding window of the states Yt = StSt+dt. Since

the underlying process Pr(S−∞:∞) is Markov, so is the

sliding window process Pr(Y−∞:∞):

Pr(Yt = stst+dt|Yt−dt = st−dtst)

= Pr(St+dt = st+dt|St = st)

= Mst→st+dt
.

Also define a function of every realization of the sliding

window process as the entropy production of that state

sequence:

g(Yt = stst+dt) ≡ Σ(stst+dt) .

According to the Markov Chain Central Limit Theorem,

if Pr(Y−∞:∞) is ergodic, then the entropy production
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over a time interval (0, τ) averaged over time τ :

Σ(S0:τ )

τ
=

τ−dt∑
t=0

Σ(StSt+dt)

τ

=

τ−dt∑
t=0

g(Yt)

τ
,

approaches a normal distribution as τ becomes large.

(Full conditions are described in Theorem 9 of Ref. [71].)

Note that it may be possible to generalize this to non-

Markovian NESS processes by instead defining a pro-

cess where individual elements are longer sliding windows

Yt ≡ St:t+∆t, and then identifying the conditions under

which the total entropy splits into a sum of entropy pro-

ductions over each window. However, we leave this for

later exploration.

Appendix E: Simulations

The following provides details on the reset and swap

simulations.

1. Discrete Bound

To see why the reset operation as described cannot gen-

erate a truly bimodal distribution, consider a simplified

version of the continuous-state dynamics that implement

the reset operation: a two-level system operating in the

regime of rate equation dynamics.

Here, the “potential energy landscape” is defined sim-

ply by setting the energy levels of the two states x ∈
{A,B}. The U store energy levels are EA = E and EB = 0

so that the equilibrium distribution over the two states is

given by ρ0 = (Pr(X0 = A),Pr(X0 = B)) = (pE , 1−pE).

Then, U comp swaps the two energy levels so that EA = 0

and EB = E. Let τ be long enough that the system has

time to equilibrate to U comp, yielding ρτ = (1− pE , pE).

Using Eq. (26) reveals only three possible outcomes for

Σ(x0, xτ ):

Σ(A,A) = Σ(B,B) = 0

Σ(B,A) = −Σ(A,B) = 2βE .

Since the system has been given time to equilibrate,

the state at time t = 0 is not correlated with the state at

time t = τ . And so, the probabilities of these different

events can be readily calculated, yielding the complete

distribution of entropy production:

Pr(Σ(A,A)) = Pr(Σ(B,B)) = pE ∗ (1− pE)

Pr(Σ(A,B)) = p2E

Pr(Σ(B,A)) = (1− pE)
2 .

For the two-level system, pE = e−βE/(1 + e−βE). For

any antisymmetric function Q(Σ) = −Q(−Σ), we have:

⟨Q(Σ)⟩(E) = Q(2βE)((1− pE)
2 − p2E)

= Q(2βE)(1− 2pE)

= Q(2βE)
1− e−βE

1 + e−βE

= Q(2βE) tanh(βE/2) .

The zero-entropy events do not appear directly in the

first line since Q(0) = 0 for any function Q that is odd

in Σ. We use this to directly calculate both the average

entropy production:

⟨Σ⟩(E) = 2βE tanh(βE/2) , (E1)

and the minimum variance charge for the distribution

(through Eq. (16)):

ϵ2Qmin(E) =
1

⟨tanh(Σ/2)⟩
− 1

=
1

tanh(βE) tanh(βE/2)
. (E2)

We then use parameter E to find the effective bound that

Eq. (11) sets for a given average entropy production in

the discrete reset process.

2. Reset

The reset simulation used nondimensionalized over-

damped Lanvegin dynamics:

dx = −Ω∂xU(x, t)dt+ ξ
√
2 r(t)

√
dt .

Here, r(t) is a memoryless Gaussian variable, and all pa-

rameters and variables have been scaled to be dimen-

sionless by the scheme q′ = q · qc. q′ is a dimensional

quantity with qc a scaling factor and q the dimensionless

variable. The dimensionless simulation parameters Ω and

ξ are combinations of the scaling factors and the familiar

dimensional Langevin parameters. For all overdamped

simulations Ω = ξ = 1. This represents a relationship

between the system’s physical parameters, but the exact

relationship is not important for our purposes. Note also

that we choose our scaling factor for energies to be kBT
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so that the potential energy is in thermal energy units.

The computational potential used for the reset is

shown in Fig. 3 and was held for τ = 2 time units.

The left well is turned into a ramp leading in the right

one, and the right well’s energy is lowered. This causes

nearly all process realizations to fall into the right well;

hence the operation name reset. As the wells narrow,

the variance of different work values conditioned on be-

ing in the left or right at t = 0 shrink. However, this

distribution can never be bimodal due to the necessary

presence of 0 entropy production events. As such, we

expect the minimum scaled variance of any charge from

these simulations to follow the “discrete bound” derived

in following section.

To demonstrate that this class of protocol obeys the

bound, a suite of 1366 simulations was performed using a

Monte Carlo Markov Chain (MCMC) inspired approach

to find parameters for which ϵ2Qmin, as estimated by Eq.

(16), is minimized. On each algorithm iteration, a new

value was chosen for 2 (chosen randomly, with replace-

ment) of the 4 parameters L, ℓ,D0, D1 using a Gaussian

distribution centered on its current value, checking to

make sure that ℓ < L andD0 > D1. After performing the

simulation and measuring ϵ2Qmin, the proposed parame-

ter change was accepted with certainty if the new ϵ2Qmin

was less than the original and accepted with a probabil-

ity p ∝ e−∆ϵ2Qmin if it was greater. To keep the algorithm

from exploring an untenable range of parameter space,

jumps for which the average entropy production did not

satisfy 1.5 ≤ ⟨βΣ⟩ ≤ 6 were rejected.

The end result is that for the simulations in Fig. 2

the parameters were sampled from the following ranges,

though not uniformly or independently: L ∈ (.2, 1.2),

ℓ ∈ (0, 1.1), D0 ∈ (1, 6.2) and D1 ∈ (.2, 3.6). Here, L, ℓ

are in units of the nondimensional position and D0, D1

in units of kBT .

3. Swap

The swap simulations used nondimensionalized under-

damped Langevin dynamics:

dx = vdt

dv = −λvdt−Θ∂xU(x, t)dt+ η
√
2λ r(t)

√
dt ,

A similar scaling strategy as that described for reset

leads to three dimensionless parameters: λ, Θ, and η.

Θ = η = 1 for all simulations. However, λ, which param-

eterizes the system’s coupling to its thermal environment,

was allowed to vary.

The computational potential for the swap is a har-

monic potential with k = mπ2; see Fig. 3. If λ = 0,

the system undergoes a harmonic oscillation with a pe-

riod of 2 time units. Exactly halfway through the oscil-

lation, the particles that were in the left (right) well of

U store should now be located where the right (left) well

is. Thus, turning U store back on at t = 1 implements

a “swap” operation between asymmetric wells. Due to

the underdamped dynamics, this type of protocol also

persists in the case of nonzero λ: the system undergoes

the same oscillation approximately, with some amount

of dissipation and stochasticity. The work cost to im-

plement this protocol approaches a bimodal distribution,

with particles starting in the left well costing an energy

value near D0 −D1 and those starting in the right yield-

ing an energy surplus near D1 −D0. This distribution is

sharpened by narrower wells and lower values of λ.

Rather than minimizing ϵ2Qmin, the goal of this simula-

tion is to demonstrate that ϵ2Qmin faithfully captures all

cases—from where ϵ2TGGL is tight to where ϵ2BS is tight

to where neither is a good approximation. The proto-

col described above generates the bimodal distribution

that saturates ϵ2TGGL under some cases, but can also pro-

duce entropy production distributions where the minimal

scaled variance is well above ϵ2BS.

To showcase this variety, an MCMC approach was

again used. On each iteration of algorithm, a new value

was chosen for 3 (chosen randomly, with replacement)

of the 5 parameters L, ℓ, D0, D1, and λ using a Gaus-

sian distribution centered on its current value, checking

to make sure that ℓ < L, D0 > D1, and λ > 0. In this

case, all jumps for which ⟨Σ⟩ fell between 2 and 5 were

accepted. And, those that did not were accepted with

a probability that exponentially decayed in |⟨Σ⟩ − 3.5|.
Figure 2 plots a suite of 1193 simulations, that stem

from 8 different starting points for λ ∈ (0, .15), but all

other parameters the same. As the algorithm evolved,

all free parameters were allowed to shift with the result

being that parameters were sampled from the following

ranges: L ∈ (.14, .68), ℓ ∈ (0, .39), D0 ∈ (1.2, 10.5) and

D1 ∈ (.39, 3.6), and λ ∈ (0, .2).

4. Simulation Details

Each dot in the simulation plot was calculated from an

ensemble of 50, 000 trajectories sampled from the equi-

librium distribution, using a Monte Carlo method. To

reduce errors, the averages shown in Fig. 2 were calcu-

lated using only the positive entropy production events

according to Eq. (9), which assumes a system that obeys

the TSCC DFT. This numerical trick does not alter any

of the qualitative results, but allows for plots in which

the error bars are small enough to not be relevant given

the plot’s scale. For example, Fig. 4 plots the same sim-



16

1 2 3 4 5 6

10 1

100

2  b
ou

nd
s

2
jmin

BS
HVV
TGGL
gaussian 2

j min

discrete bound

0

1

2

3

4

5

6

7

8

va
r(

)/(
2

)

�2Qmin

gaussian �2Qmin

Figure 4. Same simulation data that in Fig. 2, but with
3σ error bars calculated from the full simulation, rather than
only the well-sampled positive events.

ulation data as that in Fig. 2, but with 3σ error bars

calculated from the full simulation, rather than only the

well-sampled positive events.

The Langevin simulations of the dimensionless equa-

tions of motion for both the underdamped and over-

damped cases employed a fourth-order Runge-Kutta

method for the deterministic portion and the Euler-

Maruyama method for the stochastic portion of the inte-

gration with dt set to 5× 10−5. Python NumPy’s Gaus-

sian number generator was used to generate the memory-

less Gaussian variable r(t).
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