
arXiv:2011.14235

Refining Landauer’s Stack:
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Nonequilibrium information thermodynamics determines the minimum energy dissipation to
reliably erase memory under time-symmetric control protocols. We demonstrate that its bounds are
tight and so show that the costs overwhelm those implied by Landauer’s energy bound on information
erasure. Moreover, in the limit of perfect computation, the costs diverge. The conclusion is that
time-asymmetric protocols should be developed for efficient, accurate thermodynamic computing.
And, that Landauer’s Stack—the full suite of theoretically-predicted thermodynamic costs—is ready
for experimental test and calibration.
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I. INTRODUCTION

In 1961, Landauer identified a fundamental energetic
requirement to perform logically-irreversible computations
on nonvolatile memory [1]. Focusing on arguably the
simplest case—erasing a bit of information—he found
that one must supply at least kBT ln 2 work energy (≈
10−21J at room temperature), eventually expelling this
as heat. (Here, kB is Boltzmann’s constant and T is the
temperature of the computation’s ambient environment.)
Notably, though still underappreciated, Landauer had
identified a thermodynamically-reversible transformation.
And so, no entropy actually need be produced—energy
is not irrevocably dissipated—at least in the quasistatic,
thermodynamically-reversible limit required to meet Lan-
dauer’s bound.
Landauer’s original argument appealed to equilibrium
statistical mechanics. Since his time, advances in nonequi-
librium thermodynamics, though, showed that his bound
on the required work follows from a modern version of
the Second Law of thermodynamics [2]. (And, when the
physical substrate’s dynamics are taken into account, this
is the information processing Second Law (IPSL) [3].)
These modern laws clarified many connections between
information processing and thermodynamics, such as dis-
sipation bounds due to system-state coarse-grainings [4],
nanoscale information-heat engines [5], the relation of dis-
sipation and fluctuating currents [6], and memory design
[7].
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Additional scalings recently emerged between computa-
tion time, space, reliability, thermodynamic efficiency,
and robustness of information storage [8–10]. In con-
trast to Landauer’s bound, these tradeoffs involve
thermodynamically-irreversible processes, implying that
entropy production and therefore true heat dissipation
is generally required depending on either practicality or
design goals.
In addition to these tradeoffs, it is now clear that substan-
tial energetic costs are incurred when using logic gates
and allied information-processing modules to construct
a computer. Especially so, when compared to custom
designing hardware to optimally implement a particular
computation [11].
Taken altogether these costs constitute a veritable Lan-
dauer’s Stack of the information-energy requirements for
thermodynamic computing. Figure 1 illustrates Lan-
dauer’s Stack in the light of historical trends in the thermo-
dynamic costs of performing elementary logic operations
in CMOS technology. The units there are joules dissi-
pated per logic operation. We take Landauer’s Stack to
be the overhead including Landauer’s bound (kBT ln 2
joules) up to the current (year 2020) energy dissipations
due to information processing. Thus, the Stack is a hier-
archy of energy expenditures that underlie contemporary
digital computing—an arena of theoretically-predicted
and as-yet unknown thermodynamic phenomena waiting
detailed experimental exploration.
To account for spontaneous deviations that arise in small-
scale systems, the Second Laws are now most properly
expressed by exact equalities on probability distributions
of possible energy fluctuations. These are the fluctua-
tion theorems [24], from which the original Laws (in fact,
inequalities) can be readily recovered. Augmenting the
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FIG. 1. Historical trends in thermodynamic costs of performing elementary logic operations in CMOS technology quoted in
energy dissipated (joules) per logic operation. Contemporary experimentally-accessible thermal resolution is approximately
10−24 joules. Landauer’s Stack—Thermodynamic hierarchy of predicted “overhead” energy expenditures due to information
processing that underlie contemporary digital computing, including Landauer’s Principle of logical irreversibility [1] (which is
now seen as a consequence of the broader information processing Second Law 〈W 〉 ≤ kBT ln ∆hµ [3]): (a) Nonreciprocity [12];
(b) Computation rate 1/τ [9, 10]; (c) Accuracy: − ln ε [12]; (d) Storage stability; (e) Circuit modularity [11]; (f) Mismatched
expectations [13, 14]; (g) Transitions between nonequilibrium steady-state storage states [15, 16]; and (h) Quantum coherence
[17]. (2015 and prior portion of figure courtesy M. L. Roukes, data compiled from [18, and citations therein]. Landauer’s Stack
cf. Table I in Ref. [19].) CMOS technology change to 3D device nodes around 2015 make linear feature size and its relation to
energy costs largely incomparable afterwards [20–23]. There are, of course, other sources of energy dissipation in CMOS such as
leakage currents that arise when electrons tunnel from gate to drain through a thin gate-oxide dielectric. Thermodynamically,
this source is a kind of “housekeeping heat”, necessary to support the substrate’s electronic properties but not directly due to
information processing.

Stack, fluctuation theorems apply directly to information
processing, elucidating further thermodynamic restric-
tions and structure [25–28].

The result is a rather more complete accounting for the en-
ergetic costs of thermodynamic computation, captured in
the refined Landauer’s Stack of Fig. 1. In this spirit, here
we report new bounds on the work required to compute in
the very important case of computations driven externally
by time-symmetric control protocols [12]. In surprising
contrast to the fixed energy cost of erasure identified by
Landauer, here we demonstrate that the scaling of the
minimum required energy diverges as a function of accu-
racy and so can dominate Landauer’s Stack. This serves
the main goal in the following to validate and demonstrate
the tightness of Ref. [12]’s thermodynamic bounds and do
so in Landauer’s original setting of information erasure.

In essence, our argument is as follows. Energy dissipation
in thermodynamic transformations is strongly related to
entropy production. The fluctuation theorems establish
that entropy production depends on both forward and

reverse dynamics. Thus, when determining bounds on
dissipation in thermodynamic computing, one has to ex-
amine both when the control protocol is applied in forward
and reverse. By considering time-symmetric protocols we
substantially augment Landauer and Bennett’s dissipa-
tion bound on logical irreversibility [29] with dissipation
due to logical nonselfinvertibility (aka nonreciprocity).
Our results therefore complement recent work on the con-
sequences of logical and thermodynamic reversibility [30].
Parallel work on thermodynamic bounds for information
processing in finite time, and bit-erasure in particular,
include the use of optimized control in the linear response
regime [31–33] and transport theory [34–36]. However, the
cost of nonreciprocity necessarily goes beyond the cost of
finite-time computing, because time-symmetrically driven
computations incur this additional dissipation regardless
of the rate at which they’re executed.

Why time-symmetric protocols? Modern digital comput-
ers are driven by sinusoidal line voltages and square-wave
clock pulses. These control signals function as control
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parameters, directly altering the energetics and therefore
guiding dynamics of the computer components. Being
time-symmetric control signals, modern digital comput-
ers must then obey Ref. [12]’s error-dissipation trade-off.
Moreover, the costs apply to even the most basic of com-
putational tasks—such as bit erasure. Here, we present
protocols for time-symmetrically implementing erasure in
two different frameworks and demonstrate that both sat-
isfy the new bounds. Moreover, many protocols approach
the bounds quite closely, indicating that they may in fact
be broadly achievable.
After a brief review of the general theory, we begin with
an analysis of erasure implemented with the simple frame-
work of two-state rate equations, demonstrating the va-
lidity of the bound for different protocols of increasing
reliability. We then expand our framework to fully simu-
lated collections of particles erased in an underdamped
Langevin double-well potential, seeing the same faithful-
ness to the bound for a wide variety of different erasure
protocols. We conclude with a call for follow-on efforts
to analyze even more efficient computing that can arise
from time-asymmetric protocols.

II. DISSIPATION IN THERMODYNAMIC
COMPUTING

Consider a universe consisting of a computing device—
the system under study (SUS), a thermal environment
at fixed inverse temperature β, and a laboratory device
(lab) that includes a work reservoir. The set of possible
microstates for the SUS is denoted S, with s denoting
an individual SUS microstate. The SUS is driven by a
control parameter x generated by the lab. The SUS is
also in contact with the thermal environment.
The overall evolution occurs from time t = 0 to t = τ

and is determined by two components. The first is the
SUS’s Hamiltonian HSL(s, x) that specifies its interaction
with the lab device and determines (part of) the rates of
change of the SUS coordinates consistent with Hamilto-
nian mechanics. We refer to the possible values of the
Hamiltonian as the SUS energies. The second compo-
nent is the thermal environment which exerts a stochastic
influence on the system dynamics.
We design the lab to guarantee that a specific control
parameter value x(t) is applied to the SUS at every time
t over the time interval t ∈ (0, τ). That is, the control
parameter evolves deterministically as a function of time.
The deterministic trajectory taken by the control param-
eter x(t) over the computation interval is the control
protocol, denoted by −→x . The SUS microstate s(t) ex-
hibits a response to the control protocol over the interval,
following a stochastic trajectory denoted −→s .

For a given microstate trajectory −→s , the net energy trans-
ferred from the lab to the SUS is defined as the work,
which has the following form [5]:

W (−→s ) =
∫ τ

0
dt ẋ(t)∂HSL

∂x

∣∣∣
(s(t),x(t))

.

This is the energy accumulated in the SUS directly caused
by changes in the the control parameter.
Given an initial microstate s0, the probability of a mi-
crostate trajectory −→s conditioned on starting in s0 is
denoted:

P (−→s |s0) = Pr−→x
(−→S = −→s |S0 = s0) .

With the SUS initialized in microstate distribution µ0,
the unconditioned forward process gives the probability
of trajectory −→s :

P (−→s ) = P (−→s |s(0))µ0(s(0)) .

Detailed fluctuation theorems (DFTs) [37, 38] determine
thermodynamic properties of the computation by com-
paring the forward process to the reverse process. This
requires determining the conditional probability of trajec-
tories under time-reversed control:

R(−→s |s0) = Pr
R−→x

(−→S = −→s |S0 = s0) .

The reverse control protocol is Rx(t) = x(τ − t)†, where
x† is x, but with all time-odd components (e.g., magnetic
field) flipped in sign. And, the reverse process results from
the application of this dynamic to the final distribution
µτ of the forward process with microstates conjugated:

R(−→s ) = R(−→s |s(0))µτ (s(0)†) .

The Crooks DFT [38] then gives an equality on both the
dissipated work (or entropy production) that is produced
as well as the required work for a given trajectory induced
by the protocol:

βWdiss(−→s ) = ln P (−→s )
R( R−→s ) .

R−→s here is itself a SUS microstate trajectory with
Rs(t) = s(τ − t)†.

Due to their practical relevance, we consider protocols that
are symmetric under time reversal R−→x = −→x . That is, the
reverse-process probability of trajectory −→s conditioned
on starting in microstate s0 is the same as that of the
forward process:

R(−→s |s0) = P (−→s |s0) .
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However, the unconditional reverse-process probability of
the trajectory −→s is then:

R(−→s ) = P (−→s |s(0))µτ (s(0)†) .

This leads to a version of Crooks’ DFT that can be used
to set modified bounds on a computation’s dissipation:

βWdiss(−→s ) = ln P (−→s |s(0))µ0(s(0))
P ( R−→s |s(τ)†)µτ (s(τ)) . (1)

Suppose, now, that the final and initial SUS Hamiltonian
configurations HSL(s, x(τ)) and HSL(s, x(0)) are both
designed to store the same information about the SUS.
The SUS microstates are partitioned into locally-stable
regions that are separated by large energy barriers in these
energy landscapes. On some time scale, a state initialized
in one of these regions has a very low probability of escape
and instead locally equilibrates to its locally-stable region.
These regions can thus be used to store information for
periods of time controlled by the energy barrier heights.
Collectively, we refer to these regions as memory states
M.
Then the probability of the system evolving to a memory
state m′ ∈ M given that it starts in a memory state
m ∈M under either the forward or reverse process is:

P ′(m→ m′) =
∫
d−→s
[[
s(0) ∈ m ∧ s(τ) ∈ m′

]]
P (−→s )∫

d−→s
[[
s(0) ∈ m

]]
P (−→s )

,

where
[[
E
]]
evaluates to one if expression E is true and

zero otherwise.
To simplify the development, suppose that the energy
landscape of each memory state looks the same locally.
That is, up to translation and possibly reflection and
rotation, each memory state spans the same volume in
microstate space and has the same energies at each of
those states. Further, suppose that the SUS starts and
ends in a metastable distribution, differing from global
equilibrium only in the weight that each memory state
is given in the distribution. Otherwise the distribution
looks identical to the global equilibrium at the local scale
of any memory state. This ensures that the average
change in SUS energy is zero, simplifying the change ∆
in nonequilibrium free energy F [12]:

∆F = −β−1∆H(Mt) ,

where H(·) is the Shannon entropy (in nats), and Mt

is the random variable for the memory state at time t.
Finally, suppose that the time reversal of a microstate
changes neither the memory state it exists in nor its equi-
librium probability, for any time during the protocol. This
holds for memory states distinguished primarily by the

positions of the system particles and system Hamiltonians
that are unchanging under time reversal. See Ref. [12] for
details behind these assumptions and generalized bounds
without them.

Then we have the following inequality:

β〈Wdiss〉 ≥ ∆H(Mt) +
∑
m∈M

µ′0(m)
∑

m′∈M
d(m,m′), (2)

where:

µ′0(m) =
∫
ds
[[
s ∈ m

]]
µ0(s) and

d(m,m′) = P ′(m→ m′) ln P
′(m→ m′)

P ′(m′ → m) .

See Appendix A for a proof sketch.

Recalling that β 〈Wdiss(−→s )〉 = β(〈W (−→s )〉 − ∆F) and
appealing to the inequality in Eq. (2), we find a simple
bound on the average work over the protocol:

β〈W 〉 ≥
∑
m∈M

µ′0(m)
∑

m′∈M
d(m,m′) (3)

≡ β〈W 〉t-sym
min .

This provides a bound on the work that depends solely on
the logical operation of the computation, but goes beyond
Landauer’s bound.

Since we are addressing modern computing, we consider
processes that approximate deterministic computations
on the memory states. For such computations there
exists a computation function C : M → M such that
the physically-implemented stochastic map approximates
the desired function up to some small error. That is,
P ′(m → C(m)) = 1 − εm where 0 < εm � 1. In fact,
we require all relevant errors to be bound by a small
error-threshold ε � 1. That is, for all C(m) 6= m′, let
P ′(m,m′) = εm→m′ so that 0 ≤

∑
m′ 6=C(m) εm→m′ =

εm ≤ ε� 1.

We can then simplify Eq. (3)’s bound in the limit of small
ε. First, we show that d(m,m′) ≥ 0 for any pair of m,m′
in the small ε limit, where we have:

d(m,m′) = P ′(m→ m′) ln P
′(m→ m′)

P ′(m′ → m)
≥ P ′(m→ m′) lnP ′(m→ m′) .

If C(m) = m′, then P ′(m → m′) = 1 − εm ≥ 1 − ε, so
that:

d(m,m′) ≥ (1− ε) ln(1− ε) ,

which vanishes as ε → 0. And, if C(m) 6= m′, then
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P ′(m→ m′) = εm→m′ , so that:

d(m,m′) ≥ εm→m′ ln εm→m′ ,

which also vanishes as ε → 0. Setting this asymptotic
lower bound on the dissipation of each transition facili-
tates isolating divergent contributions, such as those we
now consider.

An unreciprocated memory transition C(m) = m′ is one
that does not map back to itself: C(m′) 6= m. The
contribution to the dissipation bound is:

d(m,m′) = (1− εm) ln 1− εm
εm′→m

≥ (1− ε) ln 1− ε
ε

.

As ε→ 0, this gives:

d(m,m′) ≥ ln ε−1 . (4)

That is, as computational accuracy increases (ε → 0),
d(m,m′) diverges. This means the minimum-required
work (Eq. (3)) must then also diverge.

We then arrive at our simplified bound for the small-ε high-
accuracy limit from Eq. (3)’s inequality on dissipation
by only including the contribution from unreciprocated
transitions m′ = C(m) for which m 6= C(m′):

β〈W 〉 ≥ ln(ε−1)
∑
m∈M

µ′0(m)
[[
C(C(m)) 6= m

]]
(5)

≡ β〈W 〉approx
min .

In this way, we see how computational accuracy drives
a thermodynamic cost that diverges, overwhelming the
Landauer-erasure cost. A similar logarithmic relationship
between dissipated work and error was demonstrated in
the context of the adaptation accuracy of Escherichia coli
and other simple biological systems [39].

The bound in Eq. (5) also applies to digital computing
such as that performed with dynamic random-access mem-
ory (DRAM). We recognize that its operation places the
device in a nonequilibrium steady state, appearing to
negate the applicability of Crooks’ fluctuation theorem in
Eq. (1). However, the remedy for systems whose steady
states are nonequilibrium is simply to replace the equality
with an inequality, implying that more work must be
dissipated than in the case of a local-equilibrium steady
state [40]. Thus, our derived bounds must still hold for
these modern computing devices.

III. ERASURE THERMODYNAMICS

Inequalities Eqs. (3) and (5) place severe constraints
on the work required to process information via time-
symmetric control on memories. The question remains,
though, whether or not these bounds can actually be
met by specific protocols or if there might be still tighter
bounds to be discovered.
To help answer this question, we turn to the case, origi-
nally highlighted by Landauer [1], of erasing a single bit
of information. This remarkably simple case of comput-
ing has held disproportionate sway in the development
of thermodynamic computing compared to other elemen-
tary operations. The following does not deviate from this
habit, showing, in fact, that there remain fundamental
issues. We explore this via two different implementations:
The first, described via two-state rate equations, and
the second with an underdamped double-well potential—
Landauer’s original, preferred setting.
Suppose the SUS supports two (mesoscopic) memory
states, labeled L and R. The task of a time-symmetric
protocol that implements erasure is to guide the SUS
microscopic dynamics that starts with an initial 50 −
50 distribution over the two memory states to a final
distribution as biased as possible onto the L state. The
logical function C of perfect bit erasure is attained when
C(L) = C(R) = L, setting either memory state to L. The
probabilities of incorrectly sending an L state to R and
an R state to R are denoted εL and εR, respectively.
Error generation is described by the binary asymmet-
ric channel [41]—the erasure channel E with conditional
probabilities:

E =
( Mτ =L Mτ =R

M0=L 1− εL εL
M0=R 1− εR εR

)
.

For any erasure implementation, this Markov transition
matrix gives the error rate εL = εL→R from initial memory
state M0 = L and the error rate εR = εR→R from the
initial memory stateM0 = R.
Noting first that d(m,m) = 0 generically, we then have:

d(L,R) = εL ln εL
1− εR

,

d(R,L) = (1− εR) ln 1− εR
εL

.

So, the bound of Eq. (3) simplifies to:

β〈W 〉t-sym
min = 1

2εL ln εL
1− εR

+ 1
2(1− εR) ln 1− εR

εL

=
(1

2 − 〈ε〉
)

ln 1− εR
εL

, (6)
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where 〈ε〉 = (εL+εR)/2 is the average error for the process.
Notice further that C(C(L)) = L but C(C(R)) 6= R, indi-
cating that only the computation on R is nonreciprocal.
Therefore, the bound of Eq. (5) simplifies to:

β〈W 〉approx
min = 1

2 ln(ε−1) . (7)

Applying Eq. (7) to DRAM directly provides a quanti-
tative comparison beyond a formal divergence of energy
costs. Contemporary DRAM exhibits a range of “soft”
error rates around 10−22 failures per write operation [42].
In fact, each write operation is effectively an erasure. (The
quoted statistic is an average of 4, 000 correctable errors
per 128 MB DIMM per year.) Using Eq. (7), this gives a
thermodynamic cost of 25 kBT , which is markedly larger
than Landauer’s kBT ln 2 factor. It is also, just as clearly,
smaller by a factor of roughly 10 than the contemporary
energy costs per logic operation displayed in Fig. 1. These
numerical results on the ability to meet our bounds for
the case of bit erasure support the conclusion that mod-
ern computers can still be improved in efficiency, despite
that efficiency being ultimately limited by the bounds
we introduced. The conclusion is further reinforced by
the numerical simulations in the following sections that
nearly achieve our theoretical bounds.

A. Erasure with Two-state Rate Equations

A direct test of time-symmetric erasure requires only a
simple two-state system that evolves under a rate equa-
tion:

dPr(Mt = m)
dt

(8)

=
∑
m′

[
rm′→m(t) Pr(Mt = m′)− rm→m′(t) Pr(Mt = m)

]
,

obeying the Arrhenius equations:

rR→L(t) = Ae−∆ER(t)/kBT and
rL→R(t) = Ae−∆EL(t)/kBT ,

where the states are labeled {L,R} and the terms ∆ER(t)
and ∆EL(t) in the exponentials are the activation energies
to transit over the energy barrier at time t for the Right
and Left wells, respectively.
These dynamics can be interpreted as a coarse-graining
of thermal motion in a double-well potential energy land-
scape V (q, t) over the positional variable q at time t.
Above, A is an arbitrary constant, which is fixed for
the dynamics. q∗R and q∗L are the locations of the Right

and Left potential well minima, respectively. Thus, as-
suming that q = 0 is the location of the barrier’s maxi-
mum between them, we see that the activation energies
can be expressed as ∆ER(t) = V (0, t) − V (q∗R, t) and
∆EL(t) = V (0, t) − V (q∗L, t). By varying the potential
energy extrema V (q∗R, t), V (q∗L, t), and V (0, t) we control
the dynamics of the observed variables {L,R} in much
the same way as is done with physical implementations
of erasure where barrier height and tilt are controlled in
a double-well [43].
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FIG. 2. Time-symmetric control protocol for implement-
ing moderately-efficient erasure. This should be compared
to Landauer’s original time-symmetric protocol [1]. It
starts by tilting—increasing the difference in potential en-
ergy (V (q∗R, t)− V (q∗L, t))/kBT between L and R. We increase
this value such that transitions are more likely to go from R
to L. Then we reduce the barrier height V (0, t) to increase the
total flow rate. Finally, we reverse the previous steps, cutting
off the flow by raising the barrier, then untilting.

Deviating from previous investigations of efficient erasure,
where Landauer’s bound was nearly achieved over long
times [43, 44], here the constraint to time-symmetric
driving over the interval t ∈ (0, τ) results in additional
dissipated work. As Landauer described [1], erasure can
be implemented by turning on and off a tilt from R to L—
a time-symmetric protocol. However, to achieve higher
accuracy, we also lower the barrier while the system is
tilted energetically towards the L well.
Consider a family of control protocols that fit the profile
shown in Fig. 2. First, we increase the energy tilt from R
to L via the energy difference V (q∗R, t)−V (q∗L, t) measured
in units of kBT . This increases the relative probability of
transitioning R to L. However, with the energy barrier
at it’s maximum height, the transition takes quite some
time. Thus, we reduce the energy barrier V (0, t) to its
minimum height halfway through the protocol t = τ/2.
Then, we reverse the protocol, raising the barrier back
to its default height to hold the probability distribution
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fixed in the well and untilt so that the system resets to
its default double-well potential.
Increasing the maximum tilt—given by V (q∗R, τ/2) −
V (q∗L, τ/2) at the halfway time—increases erasure ac-
curacy. Figure 3 shows that the maximum error ε =
max{εR, εL} decreases nearly exponentially with increased
maximum energy difference between left and right, going
below 1 error in every 1000 trials for our parameter range.
Note that ε starts at a very high value (greater than 1/2)
for zero tilt, since the probability εR = ε of ending in the
R well starting in the R well is very high if there is no
tilt to push the system out of the R well.
Figure 3 also shows the relationship between the work
and the bounds described above. Given that our system
consists of two states {L,R} and that we choose a control
protocol that keeps the energy V (q∗L, t) on the left fixed,
the work (marked by green +s in the figure) is [5]:

〈W 〉 =
∫ τ

0
dt
∑
s

Pr(St = s)∂tV (s, t)

=
∫ τ

0
dtPr(Mt = R)∂tV (q∗R, t) .

This work increases almost linearly as the error reduces
exponentially.
As a first comparison, note that the Landauer bound
〈W 〉Landauer

min = −kBT∆H(Mt) (marked by orange ×s in
the figure) is still valid. However, it is a very weak bound
for this time-symmetric protocol. The Landauer bound
saturates at kBT ln 2. Thus, the dissipated work—the gap
between orange ×s and green +s—grows approximately
linearly with increasing tilt energy.
In contrast, Eq. (6)’s bound 〈W 〉t-sym

min for time-symmetric
protocols is much tighter. The time-symmetric bound
is valid: marked by blue circles that all fall below the
calculated work (green +s). Not only is this bound much
stricter, but it almost exactly matches the calculated
work for a large range of parameters, with the work only
diverging for higher tilts and lower error rates.
Finally, the approximate bound 〈W 〉approx

min = kBT
2 ln ε−1

(marked by red +s) of Eq. (7), which captures the error
scaling, behaves as expected. The error-dependent work
bound nearly exactly matches the exact bound for low
error rates on the right side of the plot and effectively
bounds the work. For lower tilts, this quantity does not
bound the work and is not a good estimate of the true
bound, but this is consistent with expectations for high
error rates. This approximation should only be employed
for very reliable computations, for which it appears to
be an excellent estimate. Thus, the two-level model of
erasure demonstrates that the time-symmetric control
bounds on work and dissipation are reasonable in both
their exact and approximate forms at low error rates.
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FIG. 3. (Top) Maximum error ε (blue dots) decreases approxi-
mately exponentially with increasing maximum tilt. The latter
is given by the maximum energy difference between the right
and left energy well V (q∗R, τ/2)− V (q∗L, τ/2). (Bottom) Work
〈W 〉 (green +s), scaled by the inverse temperature β = 1/kBT ,
increases with increasing maximum tilt and decreasing error.
The Landauer work bound 〈W 〉Landauer

min (orange ×s) is a very
weak bound, asymptoting to a constant value rather than
continuing to increase, as the work does. The bound 〈W 〉t-sym

min
(blue circles) on time-symmetrically driven protocols, on the
other hand, is a very tight bound for lower values of maxi-
mum tilt. The work deviates from the time-symmetric bound
for higher tilts. Finally, the approximate bound 〈W 〉approx

min
(red +s), which scales as ln ε−1, is not an accurate bound
over the entire range, but it very closely matches the exact
time-symmetric bound 〈W 〉t-sym

min for small ε, as expected.

B. Erasure with an Underdamped Double-well
Potential

The physics in the rate equations above represents a
simple model of a bistable thermodynamic system, which
can serve as an approximation for many different bistable
systems. One possible interpretation is a coarse-graining
of the Langevin dynamics of a particle moving in a double-
well potential. To explore the broader validity of the
error–dissipation tradeoff, here we simulate the dynamics
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of a stochastic particle coupled to a thermal environment
at constant temperature and a work reservoir via such
a 1D potential. Again, we find that the time-symmetric
bounds are much tighter than Landauer’s, reflecting the
error–dissipation tradeoff of this control protocol class.
Consider a one-dimensional particle with position and
momentum in an external potential and in thermal contact
with the environment at temperature T . We consider a
protocol architecture similar to that of Sec. IIIA, but
with additional passive substages at the beginning middle
and end: (i) hold the potential in the symmetric double-
well form, (ii) positively tilt the potential, (iii) completely
drop the potential barrier between the two wells, (iv) hold
the potential while it is tilted with no barrier, (v) restore
the original barrier, (vi) remove the positive tilt, restoring
the original symmetric double-well, and (vii) hold the
potential in this original form.
As a function of position q and time t, the potential then
takes the form:

V (q, t) = aq4 − b0bf (t)q2 + c0cf (t)q ,

with constants a, b0, c0 > 0. The protocol functions bf (t)
and cf (t) evolve in a piecewise linear and time-symmetric
manner according to Table I, where t0, t1, . . . , t7 =
0, τ/12, 3τ/12, 5τ/12, 7τ/12, 9τ/12, 11τ/12, τ . The poten-
tial thus begins and ends in a symmetric double-well
configuration with each well defining a memory state.
During the protocol, though, the number of metastable
regions is temporarily reduced to one. Figure 4 (top three
panels) shows the protocol functions over time as well as
the resultant potential function at key times for one such
set of protocol parameters; see nondimensionalization in
App. II. At any time, we label the metastable regions
from most negative position to most positive the L state
and, if it exists, the R state.

t t0 t1 t2 t3 t4 t5 t6 t7

bf (t)
∣∣∣∣1 ∣∣∣∣ 1

∣∣∣∣ t3−tt3−t2

∣∣∣∣0 ∣∣∣∣ t−t4t5−t4

∣∣∣∣ 1
∣∣∣∣1 ∣∣∣∣

cf (t)
∣∣∣∣0 ∣∣∣∣ t−t1t2−t1

∣∣∣∣ 1
∣∣∣∣1 ∣∣∣∣ 1

∣∣∣∣ t6−tt6−t5

∣∣∣∣0 ∣∣∣∣
TABLE I. Erasure protocol.

We simulate the motion of the particle with underdamped
Langevin dynamics:

dq = vdt

mdv = −
(
∂

∂q
V (q, t) + λv

)
dt+

√
2kBTλ r(t)

√
dt ,

where λ is the coupling between the thermal environment

t0 t1 t2 t3 t4 t5 t6 t7

t0 t1 t2 t3 t4 t5 t6 t7
time

1 1

0 0

1 1

Po
sit

io
n

FIG. 4. Erasure via an underdamped double-well potential:
Protocol functions b(t) (top panel, blue) and c(t) (second panel,
orange) are symmetric in time, guaranteeing the potential
function (third panel) to evolve symmetrically in time. Due
to the spatial asymmetry in the potential over the majority
of the protocol, however, erasure to state L (x < 0) typically
occurs, evidenced by the evolution of the system position for
100 randomly-chosen trajectories (bottom panel, black). The
L and R states merge into one between times t2 and t3 and
separate again between times t4 and t5. A single trajectory
(bottom panel, green) shows the typical behavior of falling
into the x < 0 region by time t3 and remaining there when
the L state is reintroduced for the rest of the protocol.

and particle, m is the particle’s mass, and r(t) is a mem-
oryless Gaussian random variable with 〈r(t)〉 = 0 and
〈r(t)r(t′)〉 = δ(t− t′). The particle is initialized to be in
global equilibrium over the initial potential V (·, 0). Figure
4 (bottom panel) shows 100 randomly-chosen resultant
trajectories for a choice of process parameters.
The work done on a single particle over the course of the
protocol with trajectory

(
q(t)

)
t
is [5]:

W =
∫ τ

0
dt
∂V (q, t)
∂t

∣∣∣
q=q(t)

.

Figure 5 shows the net average work over time for an
erasure process, comparing it to (i) the Landauer bound,
(ii) the exact bound of Eq. (6), and (iii) the approxi-
mate bound of Eq. (7). Notice that the final net aver-
age work lies above all three, as it should and that the
time-symmetric bounds presented here are tighter than
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Landauer’s.

t0

t0

t1

t1

t2

t2

t3

t3

t4

t4

t5

t5

t6

t6

t7

t7

time

1 1

0 0

1 1

2 2

3 3

4 4

5 5

6 6

7 7W
W Landauer

min

W t sym
min

W approx
min

FIG. 5. Average work in kBT over time for an erasure (black).
Calculated from the simulation-estimated values εL and εR,
Landauer’s bound is given by the dashed yellow line and our
approximate and exact bounds (Eqs. (7) and (6)) are given in
dashed red and blue lines, respectively.

We repeat this comparison for an array of different param-
eters for the erasure protocol. As described in App. II, we
vary features of the dynamics—including mass m, temper-
ature T , coupling to the heat bath λ, duration of control
τ , maximum depth of the potential energy wells, and
maximum tilt between the wells. Nondimensionalization
reduces the relevant parameters to just four, allowing us
to explore a broad swathe of possible physical erasures
with 735 different protocols. For each protocol, we sim-
ulate 100,000 trajectories to estimate the work cost and
errors εR and εL of the operation.
Figure 6 compares the work spent for each of the 735
erasure protocols to the sampled maximum error ε =
max(εL, εR). Each protocol corresponds to a green cross,
whose vertical position corresponds to the shifted work
〈W 〉shift, which accounts for inhomogeneities in the error
rate. Note that the exact bound 〈W 〉t-sym

min from Eq. (6)
reduces to a simple relationship between work and error
tolerance ε when the errors are homogeneous εR = εL = ε:

〈W 〉t-sym
ref =

(
1
2 − ε

)
ln 1− ε

ε
,

which we plot with the blue curve in Fig. 6. The cost of
inhomogeneities in the error is evaluated by the difference
between this reference bound and the exact work bound.
This cost is added to the calculated work for each protocol
to determine the shifted work:

〈W 〉shift = 〈W 〉+ 〈W 〉t-sym
ref − 〈W 〉t-sym

min ,

such that the vertical distance between 〈W 〉shift and
〈W 〉t-sym

ref in Fig. 6 gives the true difference 〈W 〉−〈W 〉t-sym
min

10−5 10−4 10−3 10−2 10−1 100

ε

0

2

4

6

8

10

12 β〈W 〉t-sym
ref :

β〈W 〉approx
min :

β〈W 〉Landauer
min :

β〈W 〉shift:

FIG. 6. Reference bound 〈W 〉t-sym
ref (blue line) lower bounds

all of the shifted works 〈W 〉shift (green markers), often quite
tightly. The approximate bound 〈W 〉approx

min (red dashed line)
rapidly converges with decreasing error to 〈W 〉t-sym

ref . Time-
asymmetric protocols can do better, needing only to satisfy
Landauer’s bound 〈W 〉Landauer

min (orange dotted line).

between the average sampled work and exact bound for
the simulated protocol.
Figure 6 shows that the shifted average works for all of the
simulated protocols in green, including error bars, all lay
above the reference work bound in blue. Thus, we see that
all simulated protocols satisfy the bound 〈W 〉 ≥ 〈W 〉t-sym

min .
Furthermore, many simulated protocols end up quite close
to their exact bound. There are protocols with small
errors, but they have larger average works. The error–
dissipation tradeoff is clear.
The error–dissipation tradeoff is further illustrated in
Fig. 6 by the red line, which describes the low-ε asymptotic
bound 〈W 〉approx

min given by Eq. (7). In this semi-log plot,
it rather quickly becomes an accurate approximation for
small error.
Finally, Fig. 6 plots the Landauer bound 〈W 〉Landauer

min as
a dotted orange line. It is calculated using the final proba-
bility of the R mesostate. The bound is weaker than that
set by 〈W 〉t-sym

ref . As ε→ 0, the gap between 〈W 〉t-sym
ref and

〈W 〉Landauer
min in Fig. 6 relentlessly increases. The stark dif-

ference in the energy scale of the time-symmetric bounds
developed here and that of the looser Landauer bound
shows a marked tightening of thermodynamic bounds on
computation.
Notably, the protocol Landauer originally proposed to
erase a bit requires significantly more work than his bound
kBT ln 2 to reliably erase a bit. This extra cost is a di-
rect consequence of his protocol’s time symmetry. It
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turns out that time-asymmetric protocols for bit era-
sure have been used in experiments that more nearly
approach Landauer’s bound [45, 46]. Although, it is not
clear to what extent time asymmetry was an intentional
design constraint in their construction, since there was
no general theoretical guidance until now for why time-
symmetry or asymmetry should matter. Figures 6 and
3 confirm that Ref. [46]’s time-asymmetric protocol for
bit erasure—where the barrier is lowered before the tilt,
but then raised before untilting—is capable of reliable
erasure that is more thermodynamically efficient than any
time-symmetric protocol could ever be.
These underdamped simulations drive home the point
that our bounds are independent of the details of the
dynamics used for computation. Our results are very
general in that regard. As long as the system starts
metastable and is then driven by a time-symmetric proto-
col, the error–dissipation tradeoff quantifies the minimal
dissipation that will be incurred (for a desired level of
computational accuracy) by the time the system relaxes
again to metastability.

IV. CONCLUSION

We adapted Ref. [12]’s thermodynamic analysis of time-
symmetric protocols to give a detailed analysis of the
trade-offs between accuracy and dissipation encountered
in erasing information.
Reference [12] showed that time symmetry and metasta-
bility together imply a generic error–dissipation tradeoff.
The minimal work expected for a computation C is the
average nonreciprocity. In the low-error limit—where
the probability of error must be much less than unity
(ε� 1)—the minimum work diverges according to:

β〈W 〉approx
min =

〈[[
C(C(M0)) 6=M0

]]〉
M0

ln(ε−1)

Of all of this work, only the meager Landauer cost
∆ H(Mt), which saturates to some finite value as ε→ 0,
can be thermodynamically recovered in principle. Thus,
irretrievable dissipation scales as ln(ε−1). The reciprocity
coefficient

〈[[
C(C(M0)) 6=M0

]]〉
M0

depends only on the
deterministic computation to be approximated. This
points out likely energetic inefficiencies in current in-
stantiations of reliable computation. It also suggests
that time-asymmetric control may allow more efficient
computation—but only when time-asymmetry is a free
resource, in contrast to modern computer architecture.
The results here verified these general conclusions for
erasure, showing in detail how tight the bounds can be
and, for high-reliability thermodynamic computing, how
they overwhelm Landauer’s. It may be fruitful to explore

the ideas behind our results in explicitly quantum, finite,
and even zero-temperature systems. Refined versions of
Landauer’s bound and other thermodynamic results can
be obtained for such models [47, 48]. Also, explicit con-
sideration of finite-time protocols can reveal efficiency
advantages when treating ensembles of systems under
majority-logic decoding [49–51]. Perhaps analogous re-
finements of the results presented here can be found as
well.
Despite the almost universal focus on information erasure
as a proxy for all of computing, we now see that there is
a wide diversity of costs in thermodynamic computing.
Looking to the future, these costs must be explored in
detail if we are to design and build more capable and
energy efficient computing devices. Beyond engineering
and sustainability concerns, explicating Landauer’s Stack
will go a long way to understanding the fundamental
physics of computation—one of Landauer’s primary goals
[52]. In this way, we now better appreciate the suite of
thermodynamic costs—what we called Landauer’s Stack—
that underlies modern computing.
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Appendix A: Proof of Exact Bound for Time-Symmetric Protocols

Here, we prove Eq. (2). This is an exact bound under the following conditions: the protocol is time-symmetric; it
operates on systems that start and end in metastable equilibrium; the corresponding metastable regions look the same
in state space versus energy up to translation, rotation, and reflection in state space; the memory states are symmetric
under time reversal; and the equilibrium probability of a microstate at any time does not change under time reversal
of the microstate. These conditions are all met in a wide variety of computational processes, including the bit erasure
processes studied here. For a more general bound that applies under fewer restrictions, see Ref. [12].

We start with Eq. (1), Crooks’ DFT applied to time-symmetric protocols:

βWdiss(−→s ) = ln P (−→s |s(0))µ0(s(0))
P ( R−→s |s(τ)†)µτ (s(τ))

= ln P (−→s )
R( R−→s ) .

To help with the algebra, we introduce a second way to define reverse process probabilities:

Q(−→S = −→s ) = Q(−→s ) = R( R−→s ) = P ( R−→s |s(τ)†)µτ (s(τ)) .

We also allow both P and Q to take as arguments system microstate trajectories −→s , pairs of initial and final memory
states −→m = (m(0),m(τ)), or a combination of the two, where −→m may even appear as a condition. We define the
time reverse of the pair of initial and final memory states as R−→m = R(m(0),m(τ)) = (m(τ)†,m(0)†) =

(
m(τ),m(0)

)
.

(Note that m† ≡ {s† : s ∈ m} and we explicitly assume in the following that the each memory state is time-reversal
invariant; i.e., m† = m for all m ∈M.) For example, the probability of observing the reverse trajectory R−→s in the
reverse process conditioned on observing the reverse of the pair of initial and final memory states R−→m is:

Q(−→s |−→m) = Q(−→S = −→s |−→M = −→m) = Q(−→S = −→s ,−→M = −→m)
Q(−→M = −→m)

= Q(−→s ,−→m)
Q(−→m)

=
Pr R−→x (−→S = R−→s ,−→M = R−→m|S0 = s(τ)†)µτ (s(τ))∫

d−→s ′ Pr R−→x (−→S = R−→s ′,−→M = R−→m|S0 = s′(τ)†)µτ (s′(τ))
,

where −→M is the random variable for the pair of initial and final memory states.

To derive Eq. (2), we first show that the average dissipated work is bounded by a Kullback–Leibler divergence on
forward process memory state distributions compared with reverse process memory state distributions. Letting −→M be
the set of all possible pairs of initial and final memory states:

〈βWdiss〉 =
∫
d−→s P (−→s ) ln P (−→s )

Q(−→s )

=
∑
−→m∈
−→
M

∫
−→m
d−→s P (−→s ,−→m) ln P (−→s ,−→m)

Q(−→s ,−→m)

=
∑
−→m∈
−→
M

∫
−→m
d−→s P (−→s |−→m)P (−→m) ln P (−→s |−→m)P (−→m)

Q(−→s |−→m)Q(−→m)

=
∑
−→m∈
−→
M

P (−→m) ln P (−→m)
Q(−→m) +

∑
−→m∈
−→
M

P (−→m)
∫
−→m
d−→s P (−→s |−→m)P (−→s |−→m)

Q(−→s |−→m)

= DKL [P || Q]−→M +
∑
−→m∈
−→
M

P (−→m) DKL [P (·|−→m) || Q(·|−→m)]−→m ,

where DKL [· || ·]−→M is the Kullback–Leibler divergence for distributions over all −→m ∈ −→M and DKL [· || ·]−→m is that for all
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−→s consistent with −→m. Since Kullback–Leibler divergences are nonnegative, we arrive at the following inequality:

〈βWdiss〉 ≥ DKL [P || Q]−→M .

Second, we show that the above Kullback–Leibler divergence equals the righthand side of Eq. (2).

To help with this second task, we start by establishing that Q(M0 = m|Mτ = m′) = P (Mτ = m|M0 = m′). We
have:

Q(M0 = m|Mτ = m′) = Q(M0 = m,Mτ = m′)
Q(Mτ = m′) .

The denominator is simply the probability of observing the memory state m′ at the end of the forward process:

Q(Mτ = m′) =
∫
−→m
d−→s Pr−→x

(−→S = R−→s ,M0 = m′
†|S0 = s†τ )µτ (sτ )

=
∫
−→m
d−→s Pr−→x

(−→S = R−→s |S0 = s†τ )µτ (sτ )

=
∫
m′
dsτµτ (sτ )

= P (Mτ = m′) .

Since the process begins and ends in a metastable distribution, the probability of observing a particular microstate
given some memory state is the same as the probability of observing that microstate given that the system has locally
equilibrated to that memory state. And, since the process is time symmetric, the starting and ending local equilibrium
distributions are the same. That is, letting π(m′)

t (s) denote the local equilibrium probability of observing microstate s
given memory state m′ at time t:

P (Sτ = sτ |Mτ = m′) = π(m′)
τ (sτ ) = π

(m′)
0 (sτ ) .

Additionally:

P (Sτ = sτ |Mτ = m′) =
P (Sτ = sτ )

[[
sτ ∈ m′

]]
P (Mτ = m′)

=
µτ (sτ )

[[
sτ ∈ m′

]]
P (Mτ = m′) .

We then have:

Q(M0 = m|Mτ = m′) =
∫
s0∈m,sτ∈m′ d

−→s Pr−→x (−→S = R−→s ,M0 = m′
†
,Mτ = m†|S0 = s†τ )µτ (sτ )

P (Mτ = m′)

=
∫
s0∈m,sτ∈m′

ds0 dsτ Pr−→x
(Sτ = s†0|S0 = s†τ )π(m′)

0 (sτ )

=
∫
s†∈m,s′†∈m′

ds ds′ Pr−→x
(Sτ = s|S0 = s′)π(m′)

0 (s′†)

=
∫
s∈m†,s′∈m′†

ds ds′ Pr−→x
(Sτ = s|S0 = s′)π(m′)

0 (s′†) .

Note that in the second to last line we simply changed the symbols denoting the variables of integration.

We now invoke our assumption that the memory partitions are chosen to be time-reversal invariant, such that m† = m

for all m ∈ M. If we furthermore assume that the equilibrium probability of a microstate does not change under
time reversal, then time-reversal symmetry of the memory states implies that the local equilibrium probability of a
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microstate does not change either:

π
(m)
0 (s) = π

(m)
0 (s†) .

We therefore have:

Q(M0 = m|Mτ = m′) =
∫
s∈m,s′∈m′

ds ds′ Pr−→x
(Sτ = s|S0 = s′)π(m′)

0 (s′)

=
∫
−→m
d−→s Pr−→x

(−→S = −→s ,Mτ = m|S0 = s0)π(m′)
0 (s0)

= P (Mτ = m|M0 = m′) .

This allows us to rewrite the memory-state trajectory probability under the reverse process in terms of forward process
probabilities:

Q(M0 = m,Mτ = m′) = Q(Mτ = m′)Q(M0 = m|Mτ = m′)
= P (Mτ = m′)P (Mτ = m|M0 = m′)
= µ′τ (m′)P (Mτ = m|M0 = m′) .

We now show that DKL [P || Q]−→M equals the right hand side of Eq. (2), completing the proof:

DKL [P || Q]−→M =
∑
−→m∈
−→
M

P (−→m) ln P (−→m)
Q(−→m)

=
∑

m,m′∈M
P (m,m′) ln P (m,m′)

Q(m,m′)

=
∑

m,m′∈M
P (m,m′) ln µ′0(m)P (m′|m)

µ′τ (m′)P (m|m′)

=
∑

m,m′∈M
P (m,m′) lnµ′0(m)−

∑
m,m′∈M

P (m,m′) lnµ′τ (m′) +
∑

m,m′∈M
P (m,m′) ln P (m′|m)

P (m|m′)

=
∑
m∈M

µ′0(m) lnµ′0(m)−
∑

m′∈M
µ′τ (m′) lnµ′τ (m′) +

∑
m∈M

µ′0(m)
∑

m′∈M
P (m′|m) ln P (m′|m)

P (m|m′)

= −H(M0) +H(Mτ ) +
∑
m∈M

µ′0(m)
∑

m′∈M
d(m,m′)

= ∆H(Mτ ) +
∑
m∈M

µ′0(m)
∑

m′∈M
d(m,m′) ,

where H(Mt) is the entropy of the memory state at time t.

II. LANGEVIN SIMULATIONS OF ERASURE

To help simulate a wide variety of protocols, we first nondi-
mensionalize the equations of motion, using variables:

q′ =
√

2a
b0
q , t′ = 2akBT

b0λ
t , v′ = λ

kBT

√
b0
2av , and

V ′ = 1
kBT

V .

Note that the position scale
√
b0/2a is the distance

from zero to either well minima in the default poten-
tial V (·, 0) = V (·, τ). Substitution then provides the
following nondimensional equations of motion:

dq′ = v′dt′

m′dv′ = −
(
∂

∂q′
V ′(q′, t′) + v′

)
dt′ +

√
2r(t′)

√
dt′ ,
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with:

m′ = 2amkBT

b0λ2 ,

which is the first nondimensional parameter to specify an
erasure process.

The nondimensional potential can be expressed as:

V ′(q′, t′) = α
(
q′4 − 2b′f (t′)q′2 + ζc′f (t′)q′

)
,

where:

α = b20
4akBT

and ζ = c0

√
2a
b30

are two more nondimensional parameters to specify and:

b′f (t′) = bf

(
2akBT

b0λ
t

)
and c′f (t′) = cf

(
2akBT

b0λ
t

)
simply express bf and cf with the nondimensional time
as input. The fourth and final nondimensional parameter
is the nondimensional total time:

τ ′ = 2akBT

b0λ
τ .

To explore the space of possible underdamped erasure
dynamics, we simulate 735 different protocols, deter-
mined by all combinations of the following values for the
four nondimensional parameters: m′ ∈ {0.25, 1.0, 4.0},
α ∈ {2, 4, 7, 10, 12}, ζ ∈ {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7},

and τ ′ ∈ {4, 8, 16, 32, 64, 128, 256}. 105 trials of each
parameter set were simulated.
For the simulations of Figs. 4 and 5, we set m′ = 1, α = 7,
ζ = 0.4, and τ ′ = 100. Figure 6 shows that the (error,
work) pairs obtained for these various dynamics fill in
the region allowed by our time-symmetric bounds. These
bounds can indeed be tight, but it is quite possible to
waste more energy if the computation is not tuned for
energetic efficiency.
To update particle position and velocity each time step,
we used fourth-order Runge–Kutta integration for the
deterministic portion of the equations of motion and a
simple Euler method in combination with a Gaussian
number generator for the stochastic portion. To determine
the time step size, we considered a range of possible
time steps for 81 of the possible 735 parameter sets and
looked for convergence of the sampled average works and
maximum errors ε, again using 105 trials per parameter
set.
The maximum errors were stable over the whole range of
tested step sizes. Exploring decreasing step sizes, a step
size of 0.0025 was chosen since there the average works
stopped fluctuating within 5σ of their statistical errors
for all 81 parameter sets. The error bars presented for
the average works in Fig. 6 were then generously set to be
5 times the estimated statistical errors, which were each
obtained by dividing the sampled standard deviation by
the square root of the number of trials. Error bars for the
maximum errors were set to be the statistical errors of
εL or εR, depending on which was the maximum, whose
statistical errors were obtained by assuming binomial
statistics.
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