
Santa Fe Institute Working Paper 16-09-021
arxiv.org:1609.05353 [cond-mat.stat-mech]

Leveraging Environmental Correlations:
The Thermodynamics of Requisite Variety

Alexander B. Boyd,1, ∗ Dibyendu Mandal,2, † and James P. Crutchfield1, ‡

1Complexity Sciences Center and Physics Department,
University of California at Davis, One Shields Avenue, Davis, CA 95616

2Department of Physics, University of California, Berkeley, CA 94720, U.S.A.
(Dated: March 11, 2017)

Key to biological success, the requisite variety that confronts an adaptive organism is the set of
detectable, accessible, and controllable states in its environment. We analyze its role in the thermo-
dynamic functioning of information ratchets—a form of autonomous Maxwellian Demon capable of
exploiting fluctuations in an external information reservoir to harvest useful work from a thermal
bath. This establishes a quantitative paradigm for understanding how adaptive agents leverage
structured thermal environments for their own thermodynamic benefit. General ratchets behave
as memoryful communication channels, interacting with their environment sequentially and storing
results to an output. The bulk of thermal ratchets analyzed to date, however, assume memoryless
environments that generate input signals without temporal correlations. Employing computational
mechanics and a new information-processing Second Law of Thermodynamics (IPSL) we remove
these restrictions, analyzing general finite-state ratchets interacting with structured environments
that generate correlated input signals. On the one hand, we demonstrate that a ratchet need not
have memory to exploit an uncorrelated environment. On the other, and more appropriate to bio-
logical adaptation, we show that a ratchet must have memory to most effectively leverage structure
and correlation in its environment. The lesson is that to optimally harvest work a ratchet’s memory
must reflect the input generator’s memory. Finally, we investigate achieving the IPSL bounds on the
amount of work a ratchet can extract from its environment, discovering that finite-state, optimal
ratchets are unable to reach these bounds. In contrast, we show that infinite-state ratchets can go
well beyond these bounds by utilizing their own infinite “negentropy”. We conclude with an outline
of the collective thermodynamics of information-ratchet swarms.
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I. INTRODUCTION

The mid-twentieth century witnessed an efflorescence

in information and control and, in particular, the roles

they play in biological adaptation [1]. Norbert Wiener’s

linear prediction theory [2, 3] and Claude Shannon’s

mathematical theory of communication [4–7] stood out

as the technical underpinnings. It was Wiener, though,

who advocated most directly for a broad development of a

new calculus of control and adaptation, coining the term

“cybernetics” [8, 9]. The overall vision and new meth-

ods of information theory and linear stochastic processes

stimulated a tremendous enthusiasm and creativity dur-

ing this period.

It must be said that, despite substantial efforts

throughout the 1950s and 1960s to develop “general sys-

tems” theories and the like [10, 11], at best, only modest

successes transpired which addressed Wiener’s challenges

for cybernetics [12]. Historians of science claimed, in fact,
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that progress was inhibited by the political tensions be-

tween the West and East during the Cold War [13]. More

practically, one cause was the immodest complicatedness

of the systems targeted—weather control, the brain, and

social design. In short, there simply were not the pow-

erful computational and mathematical tools required to

understand such large-scale, complex systems. This all

said, we must not forget that the intellectual fallouts

from this period—the development of communication,

coding, computation, and control theories—substantially

changed the landscape of the engineering disciplines and

irrevocably modified modern society.

Now, at the beginning of the 21st century, it seems

time to revisit the broad and ambitious goals these early

pioneers laid out. For, indeed, the challenges they in-

troduced are still with us and are evidently starting to

reveal dire consequences of our failure to understand the

dynamics and emergent properties of large-scale complex

systems, both natural and man-made. Optimistically,

very recent developments in nonlinear dynamics [14] and

nonequilibrium thermodynamics [15] give hope to fi-

nally achieving several of their goals, including reframing

them in ways that will facilitate physical implementation.

Here, we elucidate cybernetics’ Law of Requisite Variety
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in light of these recent advances.

W. Ross Ashby was one of cybernetics’s best expos-

itors [16], having an impact that rivaled Wiener’s ad-

vocacy. Principle to Ashby’s approach was his concept

of requisite variety. The requisite variety that confronts

an adaptive system is the set of accessible, detectable,

and controllable states in its environment. In its most

elementary form, Ashby re-interpreted Shannon’s notion

of information-as-surprise, retooling it for broader appli-

cation to biological and cognitive systems [11]. In this,

though, he was anticipated by 30 years by Leo Szilard’s

successful purging of Maxwell Demon [17, 18]: “... a sim-

ple inanimate device can achieve the same essential result

as would be achieved by the intervention of intelligent be-

ings. We have examined the ‘biological phenomena’ of a

nonliving device and have seen that it generates exactly

that quantity of entropy which is required by thermody-

namics”. In laying out the thermodynamic costs of mea-

surement, and so showing any demon is consistent with

the Second Law of Thermodynamics, Szilard not only an-

ticipates by two decades Shannon’s quantitative measure

of information but also Wiener’s conception of cybernet-

ics in which stored information plays a functional role.

The conceptual innovation in Szilard’s analysis, still

largely underappreciated, is his identifying two distinct

kinds of information. On the one hand, there is sur-

prisal; Shannon’s notion that later on lead to an algo-

rithmic foundation for randomness and probability [19–

22]. Its parallel in physics is a system’s thermodynamic

entropy [23]. The Demon monitors statistical fluctua-

tions in its heat-bath environment. On the other hand,

there is information stored as historical contingency and

memory. It is this latter kind that explains the thermody-

namic functionality of Maxwell’s Demon, as it uses stored

information about the thermal fluctuations to convert

them to useful work [24]. This recognition handily re-

solves Maxwell’s Second Law paradox. This information

dichotomy was recently laid bare by mapping Szilard’s

single-molecule engine to chaotic dynamical system; a

mapping so simple that all questions can be analytically

addressed [25]. The role of both informative measure-

ment and its use, when stored, for control illustrates the

complementary role and functional consequences of both

kinds of information in an adaptive system.

In this way, the now-familiar physical setting of

Maxwell’s paradox highlights how the distinction be-

tween information-as-surprise and stored actionable-

information motivated Ashby’s emphasizing requisite va-

riety in adaptation. Detecting environmental fluctu-

ations and acting on their structure (such as tempo-

ral correlations) are critical to the Demon’s function-

ing. Appealing to new results in nonlinear dynamics and

nonequilibrium thermodynamics, the distinction simi-

larly motivates our re-addressing this central concern in

cybernetics, so basic to the operation of adaptive sys-

tems, but in a fully thermodynamic setting: What requi-

site variety (range of historical contexts) must an adap-

tive agent recognize in its environment to realize thermo-

dynamic benefits?

In the following, we first give an overview of our con-

tributions (Sec. II). We mention how Ashby’s law of

requisite variety is faithfully reflected in the behavior of

information engines—autonomous versions of Maxwell’s

Demon. This close connection follows from the bounds

set by the Second Law of Thermodynamics for informa-

tion processing [26–28]. Important for engineered and

biological implementations, we note that these bounds,

and so those specified by Landauer’s Principle [29, 30],

are not generally achievable. The subsequent sections

form the technical components of the development, key

to which is representing an information reservoir in terms

of the outcomes of a hidden Markov process.

Section III considers (i) the meaning of memory for

the input processes of information engines and for the

engines themselves, (ii) their energetics, and (iii) the role

of memory in information thermodynamics more gener-

ally [31, 32]. It is the thermodynamics of memory that

establishes the correspondence between Ashby’s law and

the behavior of information engines. Section IV addresses

the limits on information engines achieving the informa-

tional Second Law bounds. We see that the bounds are

not saturated even by optimal, finite-state engines. We

also mention the curious case of infinite-memory informa-

tion engines that can achieve and then go beyond these

bounds, essentially by leveraging their internal infinite

“negentropy” to generate work [33]. These results bear

directly on the description of Maxwell’s original Demon

and, more contemporarily, stochastic universal Turing

machines built out of information engines. Finally, we

conclude with a summary of our results and their impli-

cations for biological physics and engineering.

II. SYNOPSIS OF MAIN RESULTS

Szilard’s Engine and related Maxwellian Demons are

instances of thermal agents processing environmental in-

formation in order to convert thermal energy into work.

Turning disordered thermal energy into work (ordered

energy) was long thought to violate the Second Law of

Thermodynamics [34]. However, the past century re-

solved the apparent violation by recognizing that infor-

mation processing has unavoidable energy costs. Rolf

Landauer was one of the first to set bounds on informa-

tion processing—specifically, erasing a bit—such that the

work production over a thermodynamic cycle cannot be
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positive, satisfying the Second Law of thermodynamics

[29, 30].

However, if the Demon accesses an information reser-

voir in its environment, it can use the reservoir’s statistics

as a resource to convert thermal energy into work. This

view of a Demon taking advantage of a structured en-

vironment connects back to cybernetics. Just as Ashby

asked how a controller’s variety should match that of its

inputs, we ask how the Demon’s internal structure should

match the structure of an input process, which character-

izes the information reservoir, in order to generate work.

In contrast to cybernetics, though, we consider the vari-

ety inherent in “information ratchets” viewed as thermo-

dynamic systems and, by implication, the variety they

can detect and then leverage in their environments.

An information ratchet is an explicit construction of

an autonomous Maxwellian Demon that uses an input

symbol sequence to turn thermal energy into work en-

ergy [26, 35]. The ratchet steadily transduces the input

symbols into an output sequence, processing the input in-

formation into an output while effecting thermodynamic

transformations—implementing a physically embedded,

real-time computation. This is accomplished by driving

the ratchet along the input symbol sequence unidirection-

ally, so that the ratchet (with states in set X ) interacts

once with each symbol (with values in alphabet Y). Dur-

ing the interaction, the ratchet and current symbol make

a thermally activated joint transition from x⊗y ∈ X ⊗Y
to x′ ⊗ y′ with probability [27]:

Mx⊗y→x′⊗y′

= Pr(XN+1 = x′, Y ′N = y′|XN = x, YN = y) .

Because thermal dynamics are reversible, the Markov

chain described by the transition matrix M must have

detailed balance. We define a physical ratchet as one

which can be achieved through such reversible dynamics,

and thus have calculable energetics. (The requirement

of detailed balance comes from the fact that the ratch-

ets correspond to thermal physical systems performing

computation and, thereby, must satisfy this condition in

the absence of external, nonconservative forces, which we

assume to be the case.) The transition matrix M deter-

mines the energetics as well as the ratchet’s information

processing capacity.

Recent work introduces a general computational me-

chanics [14, 36] framework for analyzing thermodynamic

devices that transduce an input process into an output

process [27, 36]. Figure 1 depicts the relative roles of the

input process specified by a finite-state hidden Markov

model (HMM), the ratchet as transducer operating on

the input process, and the resulting output process, also

given by an HMM.
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FIG. 1. Computational mechanics view of an information
ratchet: The input signal (environment) is described by a hid-
den Markov model (HMM) that generates the input symbol
sequence. The ratchet itself acts as a transducer, using its in-
ternal states or memory to map input symbols to output sym-
bols. The resulting output sequence is described by an HMM
that results from composing the transducer with the input
HMM. The current internal state of the input HMM, trans-
ducer, and output HMM are each highlighted by a dashed
red circle. These are the states achieved after the last out-
put symbol (highlighted by a red box) of each machine. We
see that the internal state of the output HMM is the direct
product of the internal state of the transducer and the input
HMM.

The tools of computational mechanics were developed

to quantitatively analyze how a ratchet’s structure should

match that of its input for maximum efficacy, since they

use a consistent notion of structure for general processes

and transformations. In particular, using them we re-

cently established a general information processing Sec-

ond Law (IPSL) for thermodynamically embedded in-

formation processing by finite ratchets that bounds the

asymptotic work per cycle 〈W 〉 in terms of the difference

in entropy rates of the input and output processes, hµ
and h′µ, respectively [27] (see App. B for a proof):

〈W 〉 ≤ kBT ln 2
(
h′µ − hµ

)
. (1)

(Definitions are given shortly in Sec. III.) Employing

entropy rates—the Shannon entropy rate of the symbol

sequence or, equivalently here, the Kolmogorov-Sinai en-

tropy of its generative dynamical system—the bound ac-

counts for all temporal correlations in the input and out-

put processes as well as the single-symbol biases. While

this bound appears similar to that 〈W 〉 ≤ 〈I〉−∆F [37]

on work production in a system with feedback control,

〈I〉 quantifies correlations between the controller and en-



4

vironment rather than temporal correlations induced in

the environment.

Two uses of Eq. (1)’s IPSL suggest themselves. First,

it sets an informational upper bound on the maximum

average work production 〈W 〉 per thermodynamic cycle.

Here, W is the flow of work from the ratchet to an ex-

ternal driver. Second, and complementarily, it places an

energetic lower bound on the minimal work 〈Wd〉 required

to drive a given amount (∆hµ) of computation forward.

Here, Wd = −W is the flow of work from the driver into

the ratchet. In this second use, the IPSL is a substan-

tial extension of Landauer’s Principle. The latter says

that erasing a bit of information requires a minimum

energy expenditure of kBT ln 2 while the IPSL applies

to any kind of computational processing that transforms

an input process to an output process, not simply era-

sure. The first use appears, in this light, as a rough

converse to Landauer’s limit: There is a potential ther-

modynamic benefit of “destroying variety” in the form of

work [29, 30].

Practically, computational mechanics gives a means

to partition the ratchet and input process into differ-

ent cases: memoryful and memoryless. Whether or not

the input process or ratchet have memory substantially

changes the bound on work production. And so, we can

examine how environmental and demon varieties inter-

act. For example, in the case in which temporal correla-

tions (varieties) vanish, the difference between the input’s

single-symbol entropy H1 and the output’s H′1 gives an

analogous bound [38]:

〈W 〉 ≤ kBT ln 2
(
H′1−H1

)
, (2)

Using the single-symbol approximation H1 of the true en-

tropy rate hµ can be quite convenient since H1 is much

easier to calculate than hµ, as the latter requires asymp-

totic (long-range) sequence statistics. (Again, definitions

are given shortly in Sec. III.) Likely, this is why the

H1-bound has appeared frequently to describe ratchet

information processing [26, 32, 39–41]. Also, Eq. (2) is a

rather direct generalization of the Landauer limit, since

the input entropy H1 = 1 bit and the output H′1 = 0 bits

saturate the bound on the work required to drive erasing

a binary symbol. However, a key difference is that Eq.

(1)’s entropy rates are dynamical invariants; unchanged

by smooth transformations [42, 43]. The single-symbol

Shannon entropies are not dynamical invariants. In addi-

tion, the single-symbol bound does not properly account

for the temporal correlations in the input process or those

created by the ratchet in the output process and so leads

to several kinds of error in thermodynamic analysis. Let

us explore these.

First, the average total temporal correlation in a pro-

cess can be quantified by the difference between the

single-symbol entropy and the entropy rate, known as

a process’ length-1 redundancy [44]:

H1−hµ ≥ 0 . (3)

This is the extent to which single-symbol entropy-rate

estimates (H1) exceed the actual per-symbol uncertainty

(hµ); and it is always nonnegative. This measure de-

scribes a type of structure distinct from statistical auto-

correlations. Unless stated otherwise, going forward, the

informational temporal correlations quantified in Eq. (3)

are what we mean by correlations.

How inputs or ratchets create or destroy these correla-

tions determines the relative strength and validity of the

Eq. (1) and Eq. (2) work bounds. These bounds, in turn,

suggest that memoryless ratchets are best for leveraging

memoryless inputs and memoryful ratchets are best for

leveraging memoryful inputs and generating work. How-

ever, it is not clear if and when the bounds are achievable.

So, more effort is required to establish this thermody-

namic version of Ashby’s Law of Requisite Variety.

To address achievability, we turn to a general energetic

framework for calculating ratchet work production [28].

There it was shown that memoryful ratchets can leverage

temporal correlations which memoryless ratchets cannot.

In short, memoryful ratchets are indeed best for leverag-

ing memoryful inputs. This gives an explicit violation

of Eq. (2). However, for memoryless ratchets both Eqs.

(2) and (1) are valid bounds [38]. We show, with proof

given in App. A, that memoryless ratchets are the best

among all finite ratchets at leveraging statistical biases

in memoryless inputs to produce work. Notably, these

ratchets do not achieve the derived upper bounds on work

production, demonstrating fundamental inefficiencies in

the information-to-work conversion in this class of an au-

tonomous Maxwellian Demon.

To approach the bounds described by Eqs. (1) and

(2) it is necessary to go beyond the information process-

ing paradigm of a single finite-memory ratchet that in-

teracts with a single symbol at a time. For instance,

consider a “swarm” of finely tuned ratchets that work

in a sequence, the output of one acting as the input of

the next, and each ratchet being optimized with respect

to its own input. This stepwise, sequential processing

of the information reservoir is more efficient than the

single-ratchet paradigm and is able to approach the up-

per bounds on information processing as the number of

ratchets in the army grows. (This is reminiscent of the

higher efficiency of quasistatic thermodynamic processes

compared to finite-time, irreversible processes.) We re-

serve the detailed analysis of this phenomenon for a later

work since the framework for collective thermodynamics
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is less developed than the single-ratchet setting we focus

on here.

While the IPSL and related bounds on work are sug-

gestive of how the structure of the input matches the

output, the fact that they are unachievable for single in-

formation ratchets means we must reach further to solid-

ify the relationship between input statistics and ratchet

thermodynamics. Exact calculations here for the work

production verify the intuition that the memory of an

optimal ratchet must match the memory of the input.

This leads to a variation on Ashby’s Law of Requisite

Variety: “memory leverages memory”.

In this way, the transducer framework for information

ratchets gives insight into how adaptive agents leverage

structure. Its importance extends far beyond, however,

to general computation. On the one hand, transducers

describe mappings from input sequences to distributions

over output sequences [36, 45] and do so in real time.

Turing machines, on the other, map individual input se-

quences to individual output sequences with no partic-

ular reference to physical time. In this sense, Turing

machines are a subclass of transducers, emphasizing that

transducers are a general model for physical computa-

tion and information processing. However, to do univer-

sal computation, as properly configured Turing machines

can, requires infinitely many states [45]. And, this sug-

gests examining the thermodynamics of infinite-memory

ratchets.

It turns out that infinite ratchets with states having

finite energy differences are pathological in that they vi-

olate both the IPSL and its single-symbol sister bounds

on work production—Eqs. (1) and (2), respectively. The

proof of Eq. (1) assumes a stationary distribution over

the ratchet state and input symbol. This need not ex-

ist for infinite ratchets [27]. In this case structure in

the ratchet’s memory, rather than structure in the in-

formation reservoir, can be used as an additional ther-

modynamic resource to produce work. And, this means

that a framework for general computation requires more

detailed analysis to set bounds on work production that

account for the ratchet’s memory. While we leave this for

upcoming work, it does call into question any discussion

of the thermodynamics of universal computation.

Following are the major contributions:

1. To address the role of memory in ratchets, we intro-

duce thermodynamically predictive definitions of

memory for both the input string and the ratchet

which performs a computation on the input.

2. The validity of IPSL bounds changes depending on

whether or not the input or ratchet are separately

or together memoryful or memoryless.

3. The memory dependence of IPSLs implies that,

if the IPSL derived in our previous work [27] is

achievable, then we arrive at a thermodynamic Law

of Requisite Variety [11].

4. However, our exact analysis of memoryless ratch-

ets driven by memoryless inputs tells us that to

achieve IPSL bounds we must go beyond the class

of individual autonomous ratchets that operate on

a single bit at a time. The Law of Requisite Variety

may not hold for such generalized ratchets.

5. Fortunately, we also complete a suite of results

about information ratchets that show memoryful

ratchets are best for leveraging memoryful inputs

and memoryless ratchets are best for leveraging

memoryless inputs. This confirms the Law of Req-

uisite Variety from a dynamical perspective, inde-

pendent of IPSLs.

6. While the results hold for finite ratchets, for the

potentially unphysical case of infinite ratchets, both

IPSLs and the Law of Requisite Variety fail: an

infinite ratchet can violate IPSL bounds, extracting

more energy than a memoryless input allows.

With this overview laid out, with the goals and strat-

egy stated, we now are ready to delve into memory’s role

in information-engine thermodynamics and the achiev-

ability of the IPSL and its related bounds.

III. MEMORY

To explore how a ratchet’s structure “matches” (or

not) that of an environmental signal requires quantify-

ing what is meant by structure. In terms of their struc-

ture, both ratchets and environmental inputs can be ei-

ther memoryless or memoryful and this distinction de-

lineates a ratchet’s thermodynamic functioning via the

IPSL. This section introduces what we mean by the dis-

tinction, describes how it affects identifying temporal cor-

relations, and shows how it determines bounds on work

production and functionality. The results, though, can

be concisely summarized. Figure 2 presents a tableau of

memoryless and memoryful ratchets and inputs in terms

of example HMM state-transition diagrams. Figure 3

then summarizes IPSL bounds for the possible cases.

A. Process memory

The amount of memory in the input or output pro-

cesses is determined by the number of states in the min-

imal representative dynamics that generates the associ-

ated sequence probability distributions. We make this
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FIG. 2. Ratchets and input and output signals can be either memoryful or memoryless. For the input or output signal to be
memoryless, the generating (minimal) HMM must have more than one internal state. The action of a ratchet can be represented
in two different ways: either by a detailed Markov model involving the joint state space of the ratchet and an input symbol or
by a symbol-labeled Markov dynamic on the ratchet’s state space. We call the latter the transducer representation [36]. Similar
to the input and output signals, if the (minimal) transducer has more than one internal state, then the ratchet is memoryful.

definition clear in the following section and show that it

is relevant to predicting thermodynamic bounds.

While there are many ways to generate a process,

HMMs are a particularly useful representation of gener-

ating mechanisms. For example, they describe a broader

class of processes than finite-order Markov models, since

they can generate infinite Markov-order processes using

only a finite number of hidden states [44].

Here, we use the Mealy representation of HMMs [46–

49], which consists of a set S of internal states and an al-

phabet A of symbols that are emitted. As with a Markov

chain, transitions between hidden states in S are made

according to conditional probabilities. However, the gen-

erated symbols in Y are emitted during transitions be-

tween hidden states, rather than when entering states

[50]. The Mealy HMM dynamic is specified by a set of

symbol-labeled transition matrices:

T (yN )
sN→sN+1

= Pr(YN = yN , SN+1 = sN+1|SN = sN ) ,

which give the joint probability of emitting yN and tran-

sitioning to hidden state sN+1 given that the current hid-

den state is sN . For the special class of unifilar HMMs

the current hidden state s and emitted symbol y uniquely

determine the next hidden state s′(s, y). Helpfully, for

unifilar HMMs the generated process’ entropy rate hµ is

exactly given by the state-averaged uncertainty in the

emitted symbols given the current state [44]:

hµ = lim
N→∞

H[YN |Y0:N ]

= lim
N→∞

H[YN |SN ]

=
∑
s∈S

πs lim
N→∞

H[YN |SN = s]

= −
∑
s∈S

πs
∑
y∈Y

T
(y)
s→s′(s,y) log2 T

(y)
s→s′(s,y) ,

where πs is the steady-state distribution over the hidden

states. A process’ ε-machine is its minimal unifilar HMM

generator, where minimality is determined by having the

smallest internal-state Shannon entropy [14]:

lim
N→∞

H[SN ] = − lim
N→∞

∑
s∈S

Pr(SN = s) log2 Pr(SN = s)

= −
∑
s∈S

πs log2 πs

≡ Cµ .

where in the last line we defined the process’ statisti-

cal complexity Cµ. Since hµ gives an exact expression

for process entropy rate and Cµ a unique definition of

process memory [51], throughout we represent processes

by their ε-machines. An ε-machine’s internal states are

called causal states.

Broadly, the memory of an ε-machine refers to its hid-

den states. As shown in Fig. 2, memoryless input pro-

cesses have ε-machines with a single state: |S| = 1. The
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sequence distributions for such processes are given by a

product of single-symbol marginal distributions. For a

stationary process, the single-symbol marginal entropy

H1 is the same for every symbol:

H1 ≡ H[YN ] for all N ∈ N. (4)

For memoryless processes, the entropy rate is the same

as the single-symbol entropy:

hµ = lim
N→∞

H[YN |Y0:N ]

= lim
N→∞

H[YN ]

= H1 .

This means that their difference vanishes:

H1−hµ = 0 . (5)

Thus, there are no temporal correlations in the symbol

string, since H1−hµ quantifies the informational correla-

tion of individual input symbols with past inputs:

H1−hµ = lim
N→∞

(H[YN ]− H[YN |Y0:N ])

= lim
N→∞

I[YN : Y0:N ] , (6)

where I[W : Z] is the mutual information of random vari-

ables W and Z [52].

For memoryful input processes, as shown in Fig. 2,

there are multiple causal states for the ε-machine: |S| >
1. In other words, sequence probabilities cannot be bro-

ken into a product of marginals. And so, in general, we

have:

H1 > hµ .

Thus, there are temporal correlations in the input pro-

cess:

H1−hµ > 0 . (7)

This means that individual symbols of the input sequence

share information with past inputs. In the maximally

correlated case, every symbol is exactly predictable from

its past. As a result the entropy rate vanishes and the

temporal correlation measure in Eq. (6) is equal to the

single-symbol entropy.

To summarize, memoryless input signals have a single

causal state and, thus, do not exhibit temporal correla-

tions, since they have no way to store information from

the past. Meanwhile, memoryful inputs have multiple

hidden states that are used to transmit information from

the past to the present and so express temporal correla-

tions.

B. Ratchet memory

From the perspective of information processing, the

ratchet is a transducer that interacts with each symbol

in the input sequence in turn, converting it into a out-

put symbol stored in the output sequence [27, 36]. The

ratchet is a form of communication channel [52]. One

that is determined by a detailed-balanced Markov dy-

namic:

MxN⊗yN→xN+1⊗y′N
= Pr(Y ′N = y′N , XN+1 = xN+1|XN = xN , YN = yN )

over the ratchet’s state space X and a symbol alphabet

Y. This is the probability that the ratchet ends in state

xN+1 and writes a symbol y′N to the output sequence,

given that the input symbol was yN and the ratchet’s

state was xN before the symbol-state interaction interval.

The Markovian dynamic describes the behavior of the

joint event (ratchet-state ⊗ symbol-value) during the

interaction transition and leads to the transducer rep-

resentation of the ratchet’s functionality, illustrated in

Fig. 2. As we use the terms, the ratchet refers to the

physical device implementing the Markovian dynamic,

whereas transducer refers to the computational mechan-

ics state-transition machine (ε-transducer) that captures

its information-theoretic functionalities in a compact way

[36]. The form of the transducer is:

M
(y′N |yN )
xN→xN+1 = MxN⊗yN→xN+1⊗y′N . (8)

The distinction between the Markov dynamic and the

transducer representation is best illustrated graphically,

as in the second column of Fig. 2.

The definition of a ratchet’s memory involves its ε-

transducer representation. In other words, memory is

related to the size of the ratchet’s causal state space |X |
in its ε-transducer representation. (The very definition of

ε-machines and ε-transducers entails that they have the

minimal set of states for a given input, output, or input-

output process.) As seen in the top middle of Fig. 2,

memoryless ratchets have only a single internal (hidden)

state: |X | = 1. Thus, the ratchet behaves as a memory-

less channel from input to output [52]. And, in this, it

reduces temporal correlations in the input signal:

H′1−h′µ ≤ H1−hµ , (9)

according to the Data Processing Inequality [52]. As

shown by Eq. (6) the difference between the single sym-
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bol entropy and the entropy rate is the mutual informa-

tion between the infinite past symbols and the current

symbol. If the channel is memoryless, then YN → Y ′N
and Y0:N → Y ′0:N , so by applying the Data Processing In-

equality twice, we find I[Y ′N ;Y ′0:N ] ≤ I[YN ;Y0:N ]. Thus,

the change in single-symbol entropy is a lower bound for

the change in entropy rates [38]. In contrast, a memory-

ful ratchet has more than one state, |X | > 1, and behaves

as a memoryful channel [36]; bottom right of Fig. 2.

How the ratchet transduces the current input to the

current output depends on in which state it is. As a

result, the ratchet can create correlations in the output

such that, regardless the input process:

H′1−h′µ ≥ 0 . (10)

Several explicit constructions of the output process based

on given input and ratchet are shown in the last column

of Fig. 2.

C. Thermodynamics of memory

This section considers the role of memory in the ther-

modynamic efficacy of information engines. In particular,

we consider the average work production per cycle 〈W 〉.
The role can be explored in two complementary ways:

either following the IPSL and related bounds, Eqs. (1)

and (2), or from the exact expression of 〈W 〉.

1. Information Processing Second Law bounds

The thermodynamics of memory is summarized in Fig.

3’s table, where each row considers a different combina-

tion of input process and ratchet. This section addresses

each cell in the table individually.

Consider the case of memoryless input and a mem-

oryless ratchet. In Eq. (9), we saw that the temporal

correlations in the input signal cannot be increased by

such ratchets. Since the input signal is memoryless, the

output signal must also be memoryless. For memoryless

signals, however, we saw via Eq. (5) that the entropy

rate hµ is the same as the single-symbol entropy H1. We

conclude that the temporal correlations vanish in both

the input and output and, thus, that the single-symbol

entropy input-to-output difference difference is the same

as the entropy-rate difference:

H′1−h′µ = H1−hµ .

As a result both Eqs. (1) and (2) give the same bound

on the the average rate of work production:

〈W 〉 ≤ kBT ln 2 ∆ H1 (11)

= kBT ln 2 ∆hµ , (12)

This is noted at the right column in the table’s first row.

Consider now the case of memoryful input with, again,

a memoryless ratchet. A memoryful input contains tem-

poral correlations that are decreased by the memoryless

ratchet, from Eq. (9). The same equation implies that

the single-symbol entropy difference is an upper bound on

the entropy-rate difference. As a result, Eq. (2) provides

a quantitatively tighter bound on the work production

compared to the IPSL of Eq. (1) [38]:

〈W 〉 ≤ kBT ln 2 ∆ H1

≤ kBT ln 2 ∆hµ ,

These observations suggest that memoryless ratchets

cannot leverage temporal correlations, since the stricter

bound (single symbol) on work production stays fixed

as we hold the single-symbol entropy fixed but vary the

temporal correlations in the input. It appears that to

leverage temporal correlations, one must use a memoryful

ratchet.

We now address the case of memoryful ratchets. First,

consider the case of memoryless inputs (no temporal cor-

relations: hµ = H1). From Eq. (10), we know that mem-

oryful ratchets can create correlations in the output. In

other words, the output signal is generally memoryful,

implying H′1−h′µ ≥ 0. As a result, H′1−h′µ ≥ H1−h′µ,

which implies ∆hµ ≤ ∆ H1. And so, the change in en-

tropy rate is a stricter bound than the change in single-

symbol entropy:

〈W 〉 ≤ kBT ln 2 ∆hµ

≤ kBT ln 2 ∆ H1 ,

as seen in Table 3’s second row. We explored this in

some detail previously [27]. By calculating ∆hµ, we

found a novel type of functionality in which the ratchet

used stored work energy to increase temporal correlations

in the input while simultaneously increasing the single-

symbol uncertainty. The above relations also imply that

memoryless ratchets may be best suited for leveraging

memoryless input processes, since the bounds on work

production for memoryless ratchets are higher than the

bounds for memoryful ratchets.

Consider now a memoryful input driving a memory-

ful ratchet. In this case, memory in the ratchet is useful

for work production. A companion work [28] considers a

maximally correlated, period-2 input process, that has no

single-symbol negentropy to leverage (H1 = 1 bit of in-
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FIG. 3. The informational (IPSL) bounds on work that use ∆hµ or ∆ H(1) depend critically on input signal and ratchet
memory. In all finite memory cases, ∆hµ is a valid bound on 〈W 〉/kBT ln 2, but the same is not true of ∆ H1, as indicated in
the far right column on thermal relations. The bounds shown in column have kBT ln 2 set to unity, so that the relations can
be shown in compact form. If the ratchet is memoryless, then ∆ H1 is a valid and stronger bound than ∆hµ, because these
channels decrease the temporal temporal correlations in transducing input to output. For a memoryless input with memoryful
ratchet, ∆ H1 is still a valid bound, but it is a weaker bound than ∆hµ, because a memoryful ratchet typically creates temporal
correlations in its output. However, in the case where both input and output are memoryful, the ∆ H1 bound is invalid. It is
violated by systems that turn temporal correlations into work by using ratchet memory to synchronize to the input memory.

formation), but that has maximal temporal correlations

(H1−hµ = 1 bit). Notably, the single-symbol bound in-

dicates that no work can be produced, since ∆ H1 ≤ 0

regardless of the output. Critically, though, the IPSL

bound indicates that work production is possible, since

h′µ − hµ > 0 as long as the output has some uncertainty

in each sequential symbol. Indeed, Ref. [28] constructs

a ratchet that produces positive work: 〈W 〉 = kBT
1−δ
e ,

where δ ∈ (0, 1). Thus, the single-symbol bound is vio-

lated, but the IPSL bound is satisfied, as shown in Fig. 3’s

last row.

The final case to consider, in fact, is left out of Fig. 3:

infinite-memory ratchets. This is because infinite mem-

ory ratchets do not necessarily have a steady state, so the

IPSL bound in Ref. [27] does not hold. There are, as yet,

no predictions for infinite-memory ratchets based on the

information measures of the input or output processes.

However, this is an intriguing case. And so, we turn to

infinite ratchets in Sec. IV C.

Stepping back, Fig. 3’s table details a constructive

thermodynamic parallel to Ashby’s Law of Requisite

Variety: Memory can leverage memory. However, the

bounds do not constitute existence proofs, since it is

not yet known if the specified bounds are achievable.

Though, we constructed an example of a temporally

correlated process that is best leveraged by memoryful

ratchets, it is possible that there is an alternative tem-

porally correlated input process that is best leveraged by

a memoryless ratchet. Similarly, we see that the bounds

on memoryless inputs are stricter for memoryful ratchets

than for memoryless ratchets. If these bounds are not

achievable, however, then this does not translate into a

statement about the ratchet’s actual efficiency in produc-

ing work.

Before addressing the puzzle of achievability, we need

to determine the work production.

2. Exact work production

An exact expression for the average work production

rate was introduced in Ref. [28]:

〈W 〉 = kBT
∑

x,x′∈X
y,y′∈Y

πx⊗yMx⊗y→x′⊗y′ ln
Mx′⊗y′→x⊗y
Mx⊗y→x′⊗y′

, (13)
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where {πx⊗y} is the steady-state joint probability distri-

bution of the ratchet and the input symbol before inter-

action. Heuristically, the formula can be understood in

the following way. At the beginning of the interaction

interval, the ratchet and the incoming bit have proba-

bility πx⊗y to be in state x ⊗ y. Thus, the joint system

has the probability πx⊗yMx⊗y→x′⊗y′ to make the tran-

sition x ⊗ y → x′ ⊗ y′. Since M specifies a detailed-

balanced thermal dynamic, the amount of energy ex-

tracted from the reservoir in each transition is given by

the log-ratio ln(Mx′⊗y′→x⊗y/Mx⊗y→x′⊗y′). The right-

hand side of Eq. (13) therefore gives the average energy

extracted from the heat reservoir every thermodynamic

cycle. From the First Law of Thermodynamics, this must

be the ratchet’s average work production, since its energy

is fixed in the steady state. Not only does the expres-

sion confirm our physical law of requisite memory, it also

expands our understanding of the validity of IPSL-like

bounds, as we see below.

Irrespective of the nature of the input, consider the

case of memoryless ratchets for which we have:

πx⊗y = lim
N→∞

Pr(XN = x, YN = y)

= lim
N→∞

Pr(YN = y)

= Pr(YN = y) ,

simply the single-symbol probabilities of the input pro-

cess. This follows since there is only a single ratchet

state x. Thus, from Eq. (13), the only dependence the

work has on the input process is on the latter’s single-

symbol distribution. In short, memoryless ratchets are

insensitive to correlations in the inputs. To leverage cor-

relations beyond single symbols in the input process it is

necessary to add memory to the ratchet, as discussed in

the previous section and in our companion work [28].

Conversely, as App. A establishes, if the input process

is memoryless, there is no energetic advantage of using

finite memoryful ratchets for binary input processes. For

any finite memoryful ratchet that extracts work using

the input process, there exists a memoryless ratchet that

extracts at least as much work.

These two results confirm the intuition that to be ther-

modynamically optimal a ratchet’s memory must match

that of the input: Memoryful ratchets best leverage

memoryful inputs and memoryless ratchets best leverage

memoryless inputs.

IV. ACHIEVABILITY OF BOUNDS

The IPSL bound on average work production rate was

derived based on the Second Law of Thermodynamics

applied to the joint evolution of the ratchet, the input-

output symbol sequence, and the heat reservoir. Since

the Second Law is merely an inequality, it does not guar-

antee that the bounds are actually achievable, at least

for the class of information engines considered here. In

point of fact, we saw that the bound cannot be saturated

by memoryless ratchets. A somewhat opposite picture

is presented by infinite-memory ratchets. And, under-

standing these is a necessity if we wish to build a thermo-

dynamics of general computation; that is, of physically

embedded universal Turing machines. As we will show

shortly, infinite-memory ratchets can violate the IPSL

bound since they can leverage the steady, indefinite in-

crease in their own entropy to reduce the entropy of the

heat reservoir, in addition to the contributions from an

input signal. The following analyzes these cases individ-

ually.

A. Memoryless ratchets

This section applies the work expression of Eq. (13)

to find optimal memoryless ratchets and then compares

their optimal work production to the preceding informa-

tion thermodynamics bounds to determine their achiev-

ability. Understanding the relationships between the

memory of the ratchet and that of the input process, as

discussed above, deepens the interpretation of the analy-

sis. Since memoryless ratchets are insensitive to correla-

tions, our calculated work productions are not only the

work productions for memoryless inputs, but the work

productions for all inputs with the same single-symbol

statistical biases.

A memoryless ratchet’s memory consists of a single

state. As a result, the Markovian dynamic M acts only

on individual input symbols. Thus, the work for any

input process is a function only of its single-symbol dis-

tribution πy = Pr(YN = y) (given M):

〈W 〉 = kBT
∑
y,y′∈Y

πyMy→y′ ln
My′→y
My→y′

.

Here, we discuss in detail the particular case of a mem-

oryless ratchet driven by binary inputs. The relevant

class of transducers comprises all two-state HMMs over

the state space {A} ⊗ {0, 1}, where A is the ratchet’s

sole state. Since the transducers’ state space is two-

dimensional, the Markovian dynamic M is guaranteed to

be detailed balanced. Moreover, we can parametrize this

class by two transition probabilities p and q, as shown in

Fig. 4. This, then, allows us to optimize over p and q to

maximize work production.

For the ratchet shown in Fig. 4 driven by a process
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A⊗ 1 A⊗ 0

p

q

1− p 1− q

FIG. 4. All possible memoryless ratchets that operate on a
binary input, parametrized by transition probabilities p and
q.

with single-symbol probabilities Pr(YN = 0) = b and

Pr(YN = 1) = 1− b, the average work done is a function

of b, p, and q:

〈W 〉(b, p, q) = kBT (b− b′) ln
p

q
, (14)

where b′ = b′(b, p, q) = (1−q)b+(1−b)p is the probability

Pr(Y ′N = 0) of symbol 0 in the output. The expression for

b′ follows from the dynamic depicted in Fig. 4, whereas

Eq. (14) follows from the fact that work ln(p/q) is gained

for each transformation 0 → 1. For a given input bias

b, optimization of the ratchet’s transducer dynamic to

produce maximal work yields ratchet parameters pmax(b)

and qmax(b):

[qmax(b), pmax(b)] =

{
[ 1−b
bΩ(e(1−b)/b) , 1], 1/2 ≤ b ≤ 1

[1, b
(1−b) Ω(eb/(1−b)) ], 0 ≤ b < 1/2

,

where the function Ω(·) is defined implicitly as Ω(zez) =

z. To confirm that these are indeed the maximal param-

eters for a given input b ∈ [0, 1], note that 〈W 〉(b, p, q) is

concave down over the physical parameter range p, q ∈
[0, 1]. For b < 1/2, plugging q = 1 and p = b/(1 −
b)Ω(eb/(1− b)) into partial derivatives of the work yields

∂〈W 〉/∂q ≥ 0 and ∂〈W 〉/∂p = 0. However, since q is

already at its maximum, this a local maximum for the

allowed parameter range. And, since the work is concave

down, we know that this local maximum is the global

maximum. The same can be shown for b ≥ 1/2 by using

the symmetry with respect the simultaneous exchanges

{p ↔ q, b ↔ 1 − b}. Figure 5 shows how the optimal

parameters depend on input bias Pr(YN = 0) = b.

Substituting qmax and pmax into the work production

expression, we find the maximum:

〈W 〉max(b) = 〈W 〉(b, pmax(b), qmax(b)) ,

yielding the solid (blue) curve in Fig. 6. The curve is the

maximum work production 〈W 〉max(b) of a memoryless

ratchet for an input with bias b. This may seem like a

limited result at first, since it was calculated by driving

a memoryless ratchet with memoryless inputs. However,

memoryless ratchets are insensitive to temporal corre-

b

qmax(b) :

pmax(b) :

1

e0.0 0.2 0.4 0.6 0.8 1.0

0.4

0.5

0.6

0.7

0.8

0.9

1.0

FIG. 5. Optimal ratchet parameters pmax(b) (solid orange
line) and qmax(b) (dashed blue line) are mirror images about
b = 1/2. For b < 1/2, we set pmax(b) < 1 and qmax = 1 so
that the interaction transition 1 → 0 has a positive energy
change ∆E1→0 = kBT ln(q/p) and, thus, absorbs heat from
the thermal reservoir. The same reasoning applies to b > 1/2,
where pmax(b) = 1 and qmax < 1. In the unique case where
the input is all 1s, the most effective ratchet for generating
work has pmax = 1/e. Both functions realize a minimum value
of 1/e, as shown.

lations, and finite memory ratchets are no better than

memoryless ratchets when driven by memoryless inputs,

as discussed in the next section. Thus, the blue curve also

represents the maximum work production of memoryless

ratchets with memoryful inputs as well as of memoryful

ratchets with memoryless inputs, as long as the proba-

bility of an input 0 is b.

To compare work production directly with the IPSL

and related bounds, Eqs. (1) and (2), we need to calculate

the changes in single-symbol entropy difference ∆ H1 and

entropy-rate difference ∆hµ. Reminding ourselves that

the ratchet is memoryless, these differences are the same

if we assume the input to be memoryless. We find:

∆ H1 = ∆hµ(b, p, q)

= HB(b′)−HB(b) ,

with HB(z) = H({z, 1 − z}) for z ∈ [0, 1], the binary

entropy function [52]. We obtain the bounds for an opti-

mal ratchet, for a given input bias b, by substituting pmax

and qmax for p and q, respectively. We plot this optimal

bound as the dashed line (orange) in Fig. 6. Even though

we maximized over the memoryless ratchet’s parameters

(p and q), the output work 〈W 〉max(b) falls far short of

the bounds set on it, as the solid (blue) curve lies be-

low the dashed (orange) curve except exactly at b = 1/2,

where there is zero work production. This demonstrates

that there are inherent inefficiencies in memoryless infor-

mation ratchets.

There is a second source of inefficiency for memoryless
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FIG. 6. Maximum work production 〈W 〉max for any input
bias b is kBT/e (horizontal dashed line) and so ratchets do not
achieve the IPSL upper bound 〈W 〉 ≤ kBT∆hµ(b, pmax, qmax)
that derives from pure informational properties of the in-
put and output processes. Also, ∆hµ(b, pmax, qmax) itself is
slightly less than the absolute maximum possible change in
entropy ∆hmax(b) given an input bias b. This means that a
memoryless ratchet does not leverage all of the single-symbol
statistical order in the input. This is also true of memoryful
ratchets when driven by memoryless processes of the same in-
put bias. Appendix A tells us that the blue curve is also the
maximal work production for these ratchets with memoryless
inputs.

ratchets. The maximum possible bound for the generated

work comes from the case where there are no statistical

biases and no correlations left in the output sequence,

so that the output has maximum Shannon entropy. In

this case we have b′ = 1/2, the maximal entropy change

being:

∆hmax(b) = 1−HB(b) .

Figure 6 plots the corresponding bound as a dashed line

(green), showing that it lies above the actual change in

entropy for an optimal ratchet. Thus, not all of the order

in the input sequence is being leveraged to generate work.

In fact, the output bias b′(b, pmax, qmax) for an optimal

ratchet is generally not equal to 1/2.

B. Optimal memoryless ratchets versus memoryful

ratchets

At this point we may ask: Is it possible to surpass

the optimal memoryless ratchet in terms of work pro-

duction with a memoryful ratchet? The answer seems to

be negative for memoryless inputs. More to the point,

Appendix A proves the following statement:

For memoryless, binary inputs work produc-

tion by the optimal memoryless ratchet can-

not be surpassed by any memoryful ratchet.

Thus, by optimizing over memoryless ratchets, we can

actually determine the optimum work production over

all finite memoryful ratchets. Appendix A proves that

for sequences of binary symbols, memoryless ratchets are

optimal for producing work.

This has a number of implications. First of all, it

means that the dashed (blue) curve in Fig. 6 is not only

a bound on the work production of a memoryless ratchet

for any input with bias b, but it is also a bound on the

work production of any finite memory ratchet with a

memoryless input with the same bias. Second, in partic-

ular, the work production is at most kBT/e, as shown by

the dashed (red) horizontal line.

Third, importantly, this line is less than the conven-

tional Landauer bound of kBT ln 2. It may seem counter-

intuitive that no single ratchet can autonomously achieve

the Landauer bound, but this is a natural result of

dynamics of this class of autonomous Maxwellian De-

mon. Between each interaction interval, as the ratchet

switches between inputs, the Hamiltonian changes in-

stantaneously and discontinuously. As a result, the

ratchet and bit exist in a nonequilibrium distribution,

which dissipates unrecoverable heat as it relaxes towards

the Boltzmann distribution.

Finally, to achieve entropic bounds, the joint state of

the ratchet and bit should follow the Boltzmann distri-

bution during the interaction. However, to do this while

also performing meaningful computation, it is necessary

to implement some form of adiabatic protocol [53]. The

latter can be implemented either by dynamically control-

ling the ratchet’s energies over the interaction interval or

by stringing together a series of ratchets, each one gradu-

ally updating the distribution of it’s input infinitesimally.

Appendix A’s observation also suggests that multiple

ratchets in series—the output sequence of one is input

to the next—cannot be represented as a single finite-

memory ratchet that interacts with one bit at a time

and only once. This is because we can surpass the work

production of an optimal memoryless ratchet with multi-

ple ratchets interacting with multiple symbols at a time,

as we noted already. Ratchets composed in series form a

fundamentally different construction than a single mem-

oryful ratchet; a topic of some biological importance to

which we will return elsewhere.

C. Infinite-memory ratchets

We emphasized that the very general IPSL bound on

information processing based on input-output entropy

rate change holds for finite-state ratchets. What hap-

pens if infinite memory is available to a ratchet? This

section constructs infinite-memory ratchets that can vi-
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olate both Eqs. (1) and (2) and, by implication, Lan-

dauer’s bound. The intuition behind this is that, due to

the infinite memory, the ratchet can continue indefinitely

to store information that need not be written to the out-

put. In effect, an apparent violation of the IPSL bound

arises since the hidden degrees of freedom of the ratchet’s

memory are not accounted for.

Nonetheless, infinite-memory ratchets offer intriguing

possibilities for thermodynamic and computational func-

tionality. While finite-memory ratchets can do mean-

ingful computations and can even be appropriate models

for, say, biological organisms that have finite information-

processing capacities and response times, they cannot

be computation universal in the current architecture

[54, 55]. More precisely, a one-way universal Turing ma-

chine (UTM), like our ratchet, that reads its input once

and never again, requires an “internal” infinite work tape

to read from and write on. So, an infinite-state ratchet

of our type is needed to emulate the infinite bidirectional

read-write tape of the usual UTM [45].

Appendix A shows that memoryless ratchets are able

to extract the most work from memoryless binary input

processes, under the assumption that the ratchet’s mem-

ory is finite. Without finiteness the proof breaks down,

since an asymptotic state distribution may not exist over

infinite states [56]. In addition, the proof of Eq. (1) fails

for the same reason. Thus, we turn to other tools for un-

derstanding the behavior in this case. The expression for

work production still holds, so despite not having gen-

eral informational bounds on work production, we can

still calculate the exact work production for a prototype

infinite ratchet.

Here, we present an infinite-state ratchet with finite

energy-differences between all states. Our main result

is that it produces more work than any finite memory

ratchet for a given input. More to the point, it violates

both the bounds in Eqs. (1) and (2). This demonstrates

the need for the finite-memory assumption in developing

Landauer and IPSL bounds. Consider, for example, an

input process of all 1s. According to Sec. IV A, the max-

imum amount of work that can be extracted from this

input by a memoryless ratchet is given by:

〈W 〉max =
kBT

e
.

The discussion in App. A indicates that this should be

the maximum amount of work that can be extracted by

any finite-memory ratchet (for the same input). However,

the infinite-state ratchet shown in Fig. 7 produces twice

as much work, as we now show:

〈W 〉∞ =
2kBT

e
.

The infinite-state ratchet also violates both of the IPSL

and single-symbol bounds, Eqs. (1) and (2), since

kBT ln 2 is an upper bound for the work generation in

all binary input processes according to these bounds,

whereas 2/e > ln 2.

Let’s describe the structure and dynamics of the

infinite-state ratchet in Fig. 7 in detail. This ratchet

has a countably infinite number of states Ai, with i ∈
{0, 1, 2, . . .}. In other words, the ratchet state space is

X = {A0, A1, A2, . . .}. The joint dynamic of the ratchet

and the interacting symbol is shown in Fig. 7, where

the arrows indicate allowed transitions and the number

along the arrow, the associated transition probabilities.

Apart from the case i = 0, only the following transi-

tions are allowed: Ai ⊗ 1 → {Ai±1 ⊗ 1, Ai+1 ⊗ 0} and

Ai⊗ 0→ Aj ⊗ 1 with j = i/2 for even i and (i− 1)/2 for

odd i. If the incoming symbol is 0, the only transition al-

lowed involves a simultaneous change in the ratchet state

and symbol, switching over to state Aj(i) if it started in

state Ai and the symbol switching to 1. The only ex-

ception is the case i = 0 in which the ratchet stays in

the same state, while the symbol switches to 1. If the

incoming symbol is 1, there are generally three possible

transitions: Ai ⊗ 1 → Ai±1 ⊗ 1 and Ai ⊗ 1 → Ai+1 ⊗ 0.

The first two transitions occur with equal probabilities

1/2 − 1/e, while the third transition occurs with proba-

bility 1/e. For i = 0, there are four transitions possible:

A0⊗1→ {A0⊗1 (self-loop), A1⊗1, A0⊗0, A1⊗1}. The

transition probabilities are shown in the figure.

We can assign relative energy levels for the joint states

Ai ⊗ {0, 1} based on the transition probabilities. Since

the (horizontal) transitions Ai⊗1↔ Ai+1⊗1 have equal

forward and reverse transition probabilities, all the joint

states Ai ⊗ 1 have the same energy. Any state Ai ⊗ 0 is

higher than the state Aj(i)⊗1 by an energy:

∆EAi⊗1→Aj⊗0 = kBT ln
1

1/e

= kBT .

As a result, all states Ai⊗0 have the same energy, higher

than that of the states Ai ⊗ 1 by kBT . This energy dif-

ference is responsible for producing the work. When the

ratchet is driven by the all-1s process, if it is in an Ai⊗0

state after the previous interaction transition, then the

switching transition changes the state to Ai ⊗ 1 gaining

∆EAi⊗0→Ai⊗1 = kBT in work. The probability of being

in a YN = 0 state after an interaction interval is 2/e, so

the work production is 〈W 〉 = 2kBT/e, as stated above.

The reason this infinite-state ratchet violates the

information-theoretic bounds is that those bounds ignore

the asymptotic entropy production in the ratchet’s inter-

nal state space. There is no steady state over the infinite
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FIG. 7. Infinite-state ratchet that violates the IPSL and single-symbol bounds, Eqs. (1) and (2), respectively. The ratchet
state-space is X = {A0, A1, A2, . . .}: all states effectively have the same energy. The symbol values Y = {0, 1} differ by energy
∆E = kBT , with 0 having higher energy. The black arrows indicate the possible interaction transitions among the shown
joint states of the ratchet and symbol during the interaction interval. For example, transitions A0 ⊗ 1 ↔ A1 ⊗ 1 are allowed
whereas transitions A0 ⊗ 0 ↔ A1 ⊗ 0 are not. The dashed black lines show interaction transitions between the shown joint
states and joint states that could not be shown. Briefly, for i ≥ 1, there can be only the following interaction transitions:
Ai ⊗ 1 → {Ai±1 ⊗ 1, A2i ⊗ 0, A2i+1 ⊗ 0} and Ai ⊗ 0 → Aj(i) ⊗ 1 with j(i) = i/2 for even i and (i − 1)/2 for odd i. For the
i = 0 transitions, see the diagram. Every interaction transition is followed by a switching transition and vice versa. The red
dotted lines are the possible paths for driven switching transitions between the joint states, which correspond to the production
or dissipation of work. During the switching interval, the only allowed transitions are the vertical transitions between energy
levels Ai ⊗ 0↔ Ai ⊗ 1. The probability of these transitions depends on the input bias.

set of states and this leads to continual entropy produc-

tion within the ratchet’s state space X . For the spe-

cific case of the all-1s input process note that, before the

interaction interval, the joint state-space distribution of

the ratchet and the incoming symbol must be positioned

over only Ai ⊗ 1 states. This is due to the fact that the

switching transition always changes the symbol value to

1. From a distribution {Pr(XN = Ai, YN = 1)}i∈{0,1,...}
over the Ai⊗ 1 states at time N , the interaction interval

spreads the joint distribution to both Ai ⊗ 0 and Ai ⊗ 1

states. However, they are reset to a new distribution over

the Ai ⊗ 1 states {Pr(XN+1 = Ai, YN+1 = 1)}i∈{0,1,...}
after the following switching transition. This leads to a

spreading of the probability distribution—and, therefore,

to an increase in entropy—in the ratchet space X after

each time step.

Figure 8 demonstrates the spreading by setting the ini-

tial joint ratchet-symbol state X0⊗Y0 to A0⊗ 0 and let-

ting the distribution evolve for N = 15 time steps over

the ratchet states. The ratchet states are indexed by i

and the time steps are indexed by N , going from 1 to 15.

The curves show the probabilities Pr(XN = Ai) of the

ratchet at time step N being in the ith ratchet state. By

filling the area under each distribution curve and plotting

the ratchet-state index in logarithm base 2, we see that

the distribution’s support doubles in size after every time

step. This indicates an increase in the ratchet’s internal

entropy at each time step. This increase in internal en-

P
r(

X
N

=
A

i)

log2(i)

N = 1 :

N = 15 :
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FIG. 8. Evolution of infinite-ratchet state distribution start-
ing from an initial distribution peaked over the set X , whose
states are indexed Ai. The state distribution curves are plot-
ted over 15 time steps, starting in red at time step N = 1 and
slowly turning to blue at time stepN = 15. With each sequen-
tial step, the support of the ratchet state distribution doubles
in size, leading to increasing uncertainty in the ratchet state
space and so increasing state entropy.

tropy is responsible for the violation of the IPSL bounds

in Eqs. (1) and (2).

We have yet to discover a functional form for a steady

state that is invariant—that maps to itself under one

time-step. We made numerical estimates of the ratchet’s

entropy production, though. From the distributions



15

N

hW i

kBT ln 2�hµ

kBT ln 2(�hµ + �H[XN ])

E
(k

B
T

)

0 2 4 6 8 10 12 14
0.4

0.6

0.8

1.0

1.2

FIG. 9. The dashed (orange) line indicates average work pro-
duction 〈W 〉 per time step. It lies above the dotted (green)
curve that indicates the IPSL entropy-rate bound on 〈W 〉
(Eq. (1)), indicating a violation of the latter. The interpre-
tation of the violation comes from the solid (blue) curve that
indicates the joint entropy production of the input process
and the ratchet together. We see a violation of the entropy-
rate bound since there is continuous entropy production in
the ratchet’s (infinite) state space.

shown in Fig. 8, we calculated the ratchet’s state en-

tropies at each time step N . The entropy production

∆ H[XN ] = H[XN+1]− H[XN ] at the Nth step is shown

in Fig. 9. We see that the sum ∆ H[XN ] + ∆hµ of the

changes in ratchet entropy and symbol entropy upper

bounds the work production. Note that only the ∆hµ
curve lies below the work production. Thus, while this

infinite ratchet violates the IPSL bounds of Eqs. (1) and

(2), it still satisfies a more general version of the Second

Law of Thermodynamics for information ratchets—Eq.

(A7) of Ref. [27]:

〈WN 〉 ≤ kBT ln 2 (HN+1−HN ) , (15)

where WN is the work gain at the Nth time step and

HN = H[XN , YN :∞, Y ′0:N ] is the joint Shannon entropy of

the ratchet and the input and output symbol sequences

YN :∞ and Y ′0:N , respectively, at time t = N . As we can

see, this bound is based on not only the input and output

process statistics, but also the ratchet memory.

CONCLUSION

How an agent interacts with and leverages it’s environ-

ment is a topic of broad interest, from engineering and

cybernetics to biology and now physics [16, 57]. Gen-

eral principles for how the structure of an agent must

match that of its environment will become essential tools

for understanding how to take thermodynamic advantage

of correlations in structured environments, whether the

correlations are temporal or spatial. Ashby’s Law of Req-

uisite Variety—a controller must have at least the same

variety as its input so that the whole system can adapt

to and compensate that variety and achieve homeostasis

[16]—was an early attempt at such a general principle of

regulation and control. In essence, a controller’s variety

should match that of its environment. Above, parallel-

ing this, we showed that a near-optimal thermal agent

(information engine) interacting with a structured input

(information reservoir) obeys a similar variety-matching

principle.

For an efficient finite-state information ratchet, the

ratchet memory should reflect the memory of the input

process. More precisely, memoryless ratchets are optimal

for leveraging memoryless inputs, while memoryful ratch-

ets are optimal for leveraging memoryful inputs. This can

be appreciated in a two different ways.

On the one hand, the first comes from information

processing properties of the ratchet and input and the

associated IPSL bounds on work. The operation of

memoryless ratchets can only destroy temporal correla-

tions. These ratchets’ work production is still bounded

by single-symbol entropy changes, as in Eq. (2). And,

since memoryless input processes only produce single-

symbol correlations (statistical biases), the memoryless

ratchet bound of Eq. (2) allows for maximal work produc-

tion. Thus, according their bounds, memoryless ratchets

and inputs produce the most work when paired.

On the other hand, in the second view memoryful in-

put processes exhibit multiple-symbol temporal correla-

tions. And, the entropy rate bound of Eq. (1) suggests

that the memoryful input processes can be used to pro-

duce work in a memoryful ratchet, but not a memory-

less one. More precisely, we can conceive of memoryful

input processes whose single-symbol statistics are unbi-

ased (equal proportions of 0s and 1s, in case of binary

alphabet) but the entropy rate is smaller than the single-

symbol entropy: hµ < H1 (= ln 2 for a binary alphabet).

In this case, since the single-symbol entropy is already

at its maximum possible value, memoryless ratchets are

unable to extract any work. Since the memoryful ratch-

ets satisfy the IPSL bound of Eq. (1), however, they can

extract work from such memoryful processes. One such

example is studied in detail by Ref. [28]. (For a quantum-

mechanical ratchet, compare Ref. [58].) Thus, memoryful

ratchets are best paired with memoryful inputs. This and

its complement result—memoryless inputs are optimally

used by memoryless ratchets—is biologically suggestive.

If one observes memory (temporal correlations) in the

transduction implemented by a biomolecular assembly,

for example, then it has adapted to some structured en-

vironment.

We summarized the role of memory in thermodynamic
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processes in Fig. 3 which considers each of the four pos-

sible combinations of memoryful or memoryless ratchets

with memoryful or memoryless input.

While the Second Law of Thermodynamics determines

the IPSL and related bounds discussed here, it does

not follow that the bounds are achievable for the class

of information ratchets considered. Based on an ex-

act method for calculating the average work produc-

tion [28], we saw that there are indeed situations where

the bounds are not achievable (Fig. 6). In Sec. IV A, we

saw that memoryless ratchets cannot generally saturate

their bound (Eq. (2)). Furthermore, based on the results

of App. A we could prove that finite memoryful ratch-

ets fare no better than memoryless ratchets at leveraging

memoryless inputs. Thus, not even memoryful ratchets

can extract the maximum amount of work possible from

a memoryless input. There are some hints, though, as to

what the architecture of information engines should be to

extract the maximum possible work allowed by the Sec-

ond Law. We alluded to one such situation in Sec. IV A

involving a “swarm” of memoryless, optimized ratchets.

The unattainability of the IPSL bound observed above

pertains to the architecture of information engines where

there is only a single ratchet that interacts with one en-

vironmental signal value at a time. This leads one to

speculate that multiple ratchets interacting with differ-

ent signals—say, chained together so that the output of

one is the input of another—will lead to a closer approach

to the bound. Simply having multiple copies of the opti-

mal memoryless ratchets one after another, however, will

not necessarily address unattainability. Interestingly, de-

pending on input bias b, there may be oscillations in the

amount of work that is gained per cycle. And, even with

infinitely many ratchets chained together sequentially, we

may still be far from the IPSL bound. Based on our intu-

ition about thermodynamically reversible processes, we

postulate that to approach the bound more closely we

need increasingly many memoryless ratchets, each opti-

mized with respect to its own input. We leave the veri-

fication of this intuition for a future investigation. This

does suggest, though, architectural trade-offs that should

manifest themselves in evolved biological thermodynamic

processes.

To complete our exploration of the role of memory

in thermodynamic processes, we considered infinite-state

ratchets, which are necessary if we wish to physically

implement universal Turing machines with the unidirec-

tional information ratchets. Infinite ratchets, however,

pose a fundamental challenge since the IPSL entropy-

rate bound on work production does not apply to them.

The proof of the bound (Eq. (1) [28]) is based on the

assumption that the ratchet reaches a steady state after

interacting with sufficiently many input symbols. This

need not be the case for infinite-state ratchets. In fact,

the numerical investigations of Sec. IV C indicate that the

probability distribution in the state space of an infinite

ratchet can continue to spread indefinitely, without any

sign of relaxing to a steady state; recall Fig. 8. By cal-

culating both the average work production per time step

and the amount of change in the entropy rate, Fig. 9

showed that there is a violation of the IPSL and related

bounds. This necessitates a modification of the IPSL for

infinite-state ratchets. The appropriate bound, though,

has already been presented in a previous work [28], which

we quoted in Eq. (15). This relation shows that the work

production is still bounded by the system’s entropy pro-

duction; only, we must include the contribution from the

ratchet’s internal state space on top of the entropy-rate

difference of the input and the output HMMs.

We close by highlighting the close correspondence be-

tween information ratchets and biological enzymes. Most

directly, it is possible to model the biomimetic enzymes

following the design of information ratchets [59]. The

correspondence goes further, though. In Sec. II, we dis-

cussed how a swarm of ratchets acting cooperatively may

be more efficient than individual information ratchets,

even if they are quite sophisticated. A similar phe-

nomenon holds for enzymes where the enzymes along

a metabolic pathway assemble to form a multi-enzyme

complex—a “swarm”—to affect faster, efficient reaction

turnover, known as substrate channeling [60].
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Appendix A: Optimally Leveraging Memoryless

Inputs

It is intuitively appealing to think that memoryless in-

puts are best utilized by memoryless ratchets. In other

words, the optimal ratchet for a memoryless input is a

memoryless ratchet. We prove the validity of this intu-

ition in the following. We start with the expression of
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work production per time step:

β〈W 〉 =
∑

x,x′,y,y′

πx⊗yMx⊗y→x′⊗y′ ln
Mx′⊗y′→x⊗y
Mx⊗y→x′⊗y′

=
∑

x,x′,y,y′

πx⊗yMx⊗y→x′⊗y′ ln
πx′⊗y′Mx′⊗y′→x⊗y
πx⊗yMx⊗y→x′⊗y′

−
∑

x,x′,y,y′

πx⊗yMx⊗y→x′⊗y′ ln
πx′⊗y′

πx⊗y
,

with β = 1/kBT . The benefit of the decomposition in the

second line will be clear in the following. Let us introduce

several quantities that will also be useful in the following:

p(x, y, x′, y′) = πx⊗yMx⊗y→x′⊗y′ ,

pR(x, y, x′, y′) = πx′⊗y′Mx′⊗y′→x⊗y ,

πXx =
∑
y

πx⊗y ,

πYy =
∑
x

πx⊗y ,

pX(x, x′) =
∑
y,y′

p(x, y, x′, y′) , and

pY (y, y′) =
∑
x,x′

p(x, y, x′, y′).

For a memoryless input process, sequential inputs are

statistically independent. This implies YN and XN are

independent, so the stationary distribution πx⊗y can be

written as a product of marginals:

πx⊗y = πXx π
Y
y . (A1)

In terms of the above quantities, we can rewrite work for

a memoryless input process as:

β〈W 〉 = −DKL(p‖pR)

−
∑
y,y′

pY (y, y′) ln
πYy′

πYy
−
∑
x,x′

pX(x, x′) ln
πXx′

πXx
,

where DKL(p‖pR) is the relative entropy of the distribu-

tion p with respect to pR [52]. Note that the last term in

the expression vanishes, since the ratchet state distribu-

tion is the same before and after an interaction interval:∑
x

pX(x, x′) =
∑
x

pX(x′, x) = πXx′ , (A2)

and so:∑
x,x′

pX(x, x′) ln
πXx′

πXx

=
∑
x,x′

pX(x, x′) lnπXx′ −
∑
x,x′

pX(x, x′) lnπXx

=
∑
x′

πXx′ lnπXx′ −
∑
x

πXx lnπXx

= 0 .

Thus, we find find the average work production to be:

β〈W 〉 = −DKL(p‖pR)−
∑
y,y′

pY (y, y′) ln
πYy′

πYy
. (A3)

Let us now use the fact that the coarse graining of any

two distributions, say p and q, yields a smaller relative

entropy between the two [52, 61]. In the work formula,

pY is a coarse graining of p and pYR is a coarse graining

of pR, implying:

DKL(pY ‖pYR) ≤ DKL(p‖pR) . (A4)

Combining the above relations, we find the inequality:

β〈W 〉 ≤ −DKL(pY ‖pYR)−
∑
y,y′

pY (y, y′) ln
πYy′

πYy
.

Now, the marginal transition probability pY (y, y′) can

be broken into the product of the stationary distribu-

tion over the input variable πYy and a Markov transition

matrix MY
y→y′ over the input alphabet:

pY (y, y′) = πYy M
Y
y→y′ ,

which for any ratchet M is:

MY
y→y′ =

1

πYy
pY (y, y′)

=
1

πYy

∑
x,x′

πx⊗yMx⊗y→x′⊗y′

=
1

πYy

∑
x,x′

πXx π
Y
y Mx⊗y→x′⊗y′

=
∑
x,x′

πXx Mx⊗y→x′⊗y′ .

We can treat the Markov matrix MY as corresponding

to a ratchet in the same way as M . Note that MY is

effectively a memoryless ratchet since we do not need to

refer to the internal states of the corresponding ratchet.

See Fig. 2. The resulting work production for this ratchet
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〈WY 〉 can be expressed as:

β〈WY 〉 =
∑
y,y′

πYy M
Y
y→y′ ln

MY
y′→y

MY
y→y′

= −DKL(pY ‖pYR)−
∑
y,y′

pY (y, y′) ln
πYy′

πYy

≥ β〈W 〉 .

Thus, for any memoryful ratchet driven by a memoryless

input we can design a memoryless ratchet that extracts

at least as much work as the memoryful ratchet.

There is, however, a small caveat. Strictly speaking,

we must assume the case of binary input. This is due to

the requirement that the matrix M be detailed balanced

(see Sec. II) so that the expression of work used here is

appropriate. More technically, the problem is that we

do not yet have a proof that if M is detailed balanced

then so is MY , a critical requirement above. In fact,

there are examples where MY does not exhibit detailed

balance. We do, however, know that MY is guaranteed

to be detailed balanced if Y is binary, since that means

MY only has two states and all flows must be balanced.

Thus, for memoryless binary input processes, we estab-

lished that there is little point in using finite memoryful

ratchets to extract work: memoryless ratchets extract

work optimally from memoryless binary inputs.

Appendix B: An IPSL for Information Engines

Reference [27] proposed a generalization of the Sec-

ond Law of Thermodynamics to information processing

systems (IPSL, Eq. (1)) under the premise that the Sec-

ond Law can be applied even when the thermodynamic

entropy of the information bearing degrees of freedom

is taken to be their Shannon information entropy. This

led to a consistent prediction of the thermodynamics of

information engines. It was also validated through nu-

merical calculations. This appendix proves this assertion

for the class of information engines considered here. The

key idea is to use the irreversibility of the Markov chain

dynamics followed by the engine and by the information

bearing degrees of freedom to derive the IPSL inequality.

For the sake of presentation, we introduce new notation

here. We refer to the engine as the demon D, following

the original motivation for information engines. We re-

fer to the information-bearing two-state systems as the

bits B. According to our set up, D interacts with an in-

finite sequence of bits, B0B1B2 . . . as shown in Fig. 10.

The figure also explains the connection of the current

terminology to that in the main text. In particular, we

show two snapshots of our setup, at times t = N and

Y’0	 Y’1	 Y’2	 …	 Y’N-1	 YN	 YN+1	 …	

Y’0	 Y’1	 Y’2	 …	 Y’N-1	 Y’N	 YN+1	 …	

B0	 B1	 B2	 …	 BN-1	 BN	 BN+1	 …	

Time	t	=	N	

Time	t	=	N+1	

MD⌦BN

D	

FIG. 10. The demon D interacts with one bit at a time for
a fixed time interval; for example, with bit BN for the time
interval t = N to t = N + 1. During this, the demon changes
the state of the bit from (input) YN to (output) Y ′N . There
is an accompanying change in D’s state as well, not shown.
The joint dynamics of D and BN is governed by the Markov
chain MD⊗BN .

t = N + 1. During that interval D interacts with bit

BN and changes it from (input) symbol YN to (output)

symbol Y ′N . The corresponding dynamics is governed by

the Markov transition matrix MD⊗BN
which acts only on

the joint subspace of D and BN .

Under Markov dynamics the relative entropy of the

current distribution with respect to the asymptotic

steady-state distribution is a monotonically decreasing

function of time. We now use this property for the tran-

sition matrix MD⊗BN
to derive the IPSL. Denote the

distribution of D’s states and the bits B at time t by

PDB0:∞(t). Here, B0:∞ stands for all the information-

bearing degrees of freedom [62]. The steady-state dis-

tribution corresponding to the operation of MD⊗BN
is

determined via:

lim
n→∞

Mn
D⊗BN

PDB0:∞(N) = πeq
DBN

PB0:∞/N
(N) (B1)

≡ πs(N) , (B2)

where πeq
DBN

denotes the steady-state distribution:

MD⊗BN
πeq

DBN
= 0

and PB0:∞/N
(N) the marginal distribution of all the bits

other than the N -th bit at time t = N . We introduce

πs(N) in Eq. (B2) for brevity.

The rationale behind the righthand side of Eq. (B1) is

that the matrix MD⊗BN
acts only on D and BN , sending

to their joint distribution to the stationary distribution

πeq
DBN

(on repeated operation), while leaving intact the

marginal distribution of the rest of B. The superscript eq

emphasizes the fact the distribution πeq
DBN

is an equilib-

rium distribution, as opposed to a nonequilibrium steady-

state distribution, due to the assumed detailed-balance

condition on MD⊗BN
. In other words, πeq

DBN
follows the
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Boltzmann distribution:

πeq
DBN

(D = x,BN = y) = eβ[FDBN
−EDBN

(x,y)] (B3)

for inverse temperature β, free energy FDBN
, and en-

ergy EDBN
(x, y). In the current notation we express the

monotonicity of relative entropy as:

D(PDB0:∞(N)‖πs(N)) ≥ D(PDB0:∞(N + 1)‖πs(N)),

(B4)

where D(p‖q) denotes the relative entropy of the distri-

bution p with respect to q:

D(p‖q) =
∑
i

p(i) ln

[
p(i)

q(i)

]
over D’s states i. The IPSL is obtained as a consequence

of inequality Eq. (B4), as we now show [63].

First, we rewrite the lefthand side of Eq. (B4) as:

D(PDB0:∞(N)‖πs(N))

= −HDB0∞(N) ln 2−
∑

DB0:∞

PDB0:∞(N) lnπs(N)

= −HDB0∞(N) ln 2−
∑
DBN

PDBN
(N) lnπeq

DBN

−
∑

DB0:∞/N

PDB0:∞/N
(N) lnPB0:∞/N

(N)

= −HDB0∞(N) ln 2− βFDBN
+ β〈EDBN

〉(N)

+ HB0:∞/N
(N) ln 2 . (B5)

The first line applies the definition of relative entropy.

Here, HX denotes the Shannon entropy of random vari-

able X in information units of bits (base 2). The second

line employs the expression of πs(N) given in Eq. (B2).

The final line uses the Boltzmann form of πeq
DBN

given in

Eq. (B3). Here, 〈EDBN
〉(N) denotes the average energy

of D and the interacting bit BN at time t = N .

Second, in a similar way, we have the following expres-

sion for the righthand side of Eq. (B4):

D(PDB0:∞(N + 1)‖πs
N )

= −HDB0:∞(N + 1) ln 2 + HB0:∞/N
(N) ln 2

+ β〈EDBN
〉(N + 1)− βFDBN

. (B6)

Note that the marginal distribution of the noninteracting

bits B0:∞/N does not change over the time interval t = N

to t = N + 1 since the matrix MD⊗BN
acts only on D

and BN , and the Shannon entropy of the noninteracting

bits remains unchanged over the interval.

Third, combining Eqs. (B4), (B5), and (B6), we get
the inequality:

ln 2∆ HDB0;∞ −β∆〈EDBN
〉 ≥ 0 , (B7)

where ∆ HDB0;∞ is the change in the Shannon entropy

of D and B and ∆〈EDBN
〉 is the change in the average

energy of D and B over the interaction interval.

Fourth, according to the ratchet’s design, D and B are

decoupled from the work reservoir during the interaction

intervals. (The work reservoir is connected only at the

end points of intervals, when one bit is replaced by an-

other.) From the First Law of Thermodynamics, the in-

crease in energy ∆〈EDBN
〉 comes from the heat reservoir.

In other words, we have the relation:

∆〈EDBN
〉 = 〈∆Q〉 , (B8)

where ∆Q is the heat given to the system. (In fact,

Eq. (B8) is valid for each realization of the dynamics,

not just on the average, since the conservation of energy

holds in each realization.)

Finally, combining Eqs. (B7) and (B8), we get:

ln 2∆ HDB0:∞ −β〈∆Q〉 ≥ 0 , (B9)

which is the basis of the IPSL as demonstrated in

Ref. [27]; see, in particular, Eq. (A7) there.
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