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Stochastic thermodynamics has largely succeeded in characterizing both equilibrium and far-from-
equilibrium phenomena. Yet many opportunities remain for application to mesoscopic complex
systems—especially biological ones—whose effective dynamics often violate detailed balance and
whose microscopic degrees of freedom are often unknown or intractable. After reviewing excess and
housekeeping energetics—the adaptive and homeostatic components of a system’s dissipation—we
extend stochastic thermodynamics with a trajectory class fluctuation theorem for nonequilibrium
steady-state, nondetailed-balanced complex systems. We then take up the neurobiological examples
of voltage-gated sodium and potassium ion channels to apply and illustrate the theory, elucidating
their nonequilibrium behavior under a biophysically plausible action potential drive. These results
uncover challenges for future experiments and highlight the progress possible understanding the
thermodynamics of complex systems—without exhaustive knowledge of every underlying degree of
freedom.

I. INTRODUCTION

Nonequilbrium phenomena pervade nature: In their many
forms, energy gradients send hurricanes and wildfires
to ravage, volcanoes to form and erupt, life to emerge.
Mesoscopic complex systems—a planetary climate, for-
est ecosystems, the human body—consist of microscopic
degrees of freedom that are inaccessible, intractable, or
simply unknown. In point of fact, the human body’s
biochemistry relies essentially on out-of-equilibrium dy-
namics to function, adapt, and maintain homeostasis; its
myriad degrees of freedom are only ever partially accessi-
ble. Similarly, mesoscopic and complex systems provide
fertile grounds for honing and applying tools to analyze
real-world nonequilibrium processes.
Describing energetic fluxes in complex systems—
developing a suitable mesoscopic nonequilibrium
thermodynamics—remains an ongoing challenge: mathe-
matics and physics difficulties continue to hinder deeper
understanding of how these systems operate and function.
The following leverages and extends tools from stochastic
thermodynamics and information theory to address these
challenges. To demonstrate the techniques, it takes
up two suitably complex, mesoscopic neurobiological
systems: voltage-gated ion channels.

A. Nonequilibrium steady states

A system is typically called nonequilibrium in two distinct
senses. The first, and most common, refers to nonequi-
librium processes—say, induced by rapid environmental
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driving—wherein a system evolves through a series of
transient configurations. When the environmental drive
remains fixed, such a system remains out of equilibrium as
it relaxes to some stationary distribution over its states,
determined by the environmental parameters. If that
stationary distribution corresponds to a thermodynamic
equilibrium, we say the system possesses an equilibrium
steady state (ESS), irrespective of its (perhaps highly
nonequilibrium) driven, transient dynamics.
The second sense refers not to the transient behavior but
to the nature of the stationary distributions: a nonequi-
lbrium steady-state (NESS) system is one whose steady
states are themselves out of thermodynamic equilibrium.
This is simply achieved by contact with two heat baths
at different temperatures. Rayleigh-Bénard convection
[1] exemplifies this phenomenon: the temperature gradi-
ent between the top and bottom boundaries ensures a
constant flux of energy through the fluid, from the hot-
ter to the cooler, even when the gradient remains fixed
indefinitely. In this case it is not enough to identify the
energetic fluxes due to the system’s transient dynamics;
we must also identify the energy required to maintain
steady-state conditions in the first place.
NESSs appear even without multiple heat baths. For
example, by optically dragging a bead through viscous
fluid [2]—an experimental realization of nonconservative
force-driven Langevin dynamics—by coarse-graining mi-
crostates [3]; or by contact with reservoirs of distinct
electrochemical potentials—the case in virtually all com-
mon electrical circuits via Joule heating [4]. They emerge
as well in the voltage-gated ion channels we consider.
A first attempt to give NESS systems a full thermody-
namic framing defined the housekeeping heat Qhk as the
portion of the total heat Q that maintains NESS condi-
tions [5]. (In this, the total heat is that energy exchanged
between a system and its thermal environment, often
idealized as a fixed-temperature bath.) What remains is
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the energy exchanged owing to the system’s relaxation to
steady state, termed the excess heat Qex:

Q = Qex + Qhk. (1)

Contrast this with an equilibrium system’s steady states,
which by definition exchange no net energy with the
thermal environment. In this setting, Qhk = 0 and so all
dissipated heat is excess: Qex → Q. In other words, Qex
in the NESS setting carries the same meaning as total
heat Q in the ESS setting, and vice versa.

B. Approach

Equilibrium thermodynamics and equilibrium statistical
mechanics prove insufficient to analyze nonequilibrium
processes [6]. That said, recent advances in stochastic
thermodynamics now successfully describe fluctuations
in a variety of far-from-equilibrium systems. This has
been done both in the first sense (relaxation to ESSs)
[7–10] and in the second (NESSs) [11–13]. Ref. [14] gives
a recent review.
The following applies and extends these advances to ana-
lyze two complex neurobiological systems: voltage-gated
sodium and potassium ion channels [15]—biophysical sys-
tems that originally motivated introducing master equa-
tions for NESSs [16]. This elucidates, for the first time,
their nonequilibrium behavior under the realistic, dy-
namic environmental drive of an action potential spike.
In doing so, a toolkit emerges whose validity extends to a
host of other mesoscopic complex systems—even those for
which a purely energetic interpretation is impossible or
problematic—provided a relatively small set of constraints
on their effective dynamics.
Our development unfolds as follows. First, Sec. II lays
out the relevant notation for our model classes and in-
troduces appropriate excess thermodynamic functionals
for describing them, ending with Sec. II C which elab-
orates on the relationship between housekeeping heat,
(ir)reversibility, and detailed balance. Sec. III reviews
fluctuation theorems, which bind nonequilibrium thermo-
dynamic fluctuations to steady-state quantities. It closes
in Sec. III C with our primary theoretical result: the first
full trajectory class fluctuation theorem valid for NESS
systems.
Moving to applications, Sec. IV introduces our example
neurobiological systems: voltage-gated sodium and potas-
sium ion channels embedded in neural membranes. Sec. V
then applies the techniques developed in the preceding
theory to the channels, illustrating and comparing their
responses under realistic action potential spikes.
These results serve three roles. First, they show how
the trajectory class fluctuation theorem evades the diver-
gences implied by real-world systems with one-way only
transitions. Second, they quantitatively demonstrate how
failing to account for housekeeping dissipation violates

related fluctuation theorems, suggesting an important
direction for experimental effort. Finally, despite marked
differences between the ion channels’ steady-states, the
results show how to directly compare the channels’ excess
energetics. This both circumvents implied housekeeping
divergences and allows for meaningful comparisons be-
tween their adaptive responses to the same environmental
stimulus.

II. PRELIMINARIES

The central object here is the finite-length controlled
stochastic process X0:N

.= X0X1X2 . . . XN , where Xi ∈
X is the random variable corresponding to the state of
a system under study (SUS) at times {ti ∈ R : i =
0, . . . , N}. We call a specific realization x0:N a trajectory.
The process’ dynamics are not stationary; rather, they are
driven by a protocol α0:N . Fig. 1 illustrates the scheme.

X0 X1 X2
. . .

α1 α2 α3 . . .

x0 x1 x2 . . .

PROTOCOL

PROCESS

TRAJECTORY

(realizes)

FIG. 1. Interaction between the stochastic process X0:N ,
protocol α0:N , and realized (observed) trajectories x0:N .

We place the following constraints on the SUS.

1. Each system parameter αi leads to a stationary and
ergodic stochastic process, realized by holding the pro-
tocol fixed indefinitely at αi. This implies a unique
would-be steady-state distribution παi associated to
each αi.

2. The state and protocol spaces are of even parity, in the
sense that we do not negate their values under time
reversal, defined precisely later. Sec. II C discusses
removing this assumption.

We emphasize these are all that is required for the main
theoretical result and for meaningful definitions of the
excess and housekeeping functionals. Importantly, we do
not require dynamics of any particular form or possessing
any particular structure—Markovian, Langevin, detailed-
balanced, Hamiltonian, master equation, coupled to ideal
baths, and so on—beyond that specified by the two condi-
tions above. We do not require states to be microscopic;
they can correspond to arbitrary or unknown coarse grain-
ings. With this in mind, even the discrete succession of
events is flexible. In particular, from any continuous-time
dynamic we may generate a corresponding discrete-time
one for appropriately small time steps.
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While one cannot, in this most general setting, deter-
mine energetics, the fluctuation theorems introduced hold
independently and exactly—and at any level of system
description. We state the fluctuation theorems in this
setting for two primary reasons: first, for clarity of deriva-
tion; second, with an eye toward future applications be-
yond thermodynamic systems to generally nonstationary
stochastic processes.

A. The thermodynamic system

That said, generality can hinder ease of application. To
this end, when presenting the theoretical tools we fre-
quently return to the relevant example “thermal system”
of Fig. 2. This is a SUS coupled to an ideal heat bath at
inverse temperature β = 1/kBT , an ideal work reservoir
parameterized by α, and an auxiliary reservoir repre-
senting the otherwise unaccounted-for degrees of freedom.
Furthermore, we assign to each SUS state x an energy
Eα(x). Finally, while the example system does not assume
(order-1) Markov dynamics, it does assume no dynamical
dependency on times before t0. That is, the system’s
initial preparation is sufficient to determine the stochastic
dynamics during the protocol.

SUS

T α

aux

Qhk

Qex

W

∆Eaux

FIG. 2. A thermal system and its interactions with various
baths. While heat and work reservoirs (labeled with tempera-
ture T and parameter α, respectively) are ideal, by design we
assume nothing about the auxiliary or “aux” reservoir, and
so label its energetic contribution by ∆Eaux to avoid confu-
sion with well-defined terms like heat and work. The labels
and arrow directions indicate energetic fluxes to-from the sys-
tem. Notably, we allow for nonequilibrium steady states and
functionally split the total heat Q into the excess heat Qex—
corresponding to adaptive dissipation—and housekeeping heat
Qhk—referring to homeostatic dissipation.

These additional restrictions allow identifying the ener-
gies associated to each dynamical functional—introduced
shortly. While these constraints are minimal, they still
allow the SUS to be a coarse-grained representation. In

general, this implies that the energetic fluxes are bounds
rather than strict equalities [3].
Of paramount importance—and missing from most ide-
alized thermal schemes—is the presence of the auxiliary
bath. The heat and work reservoirs are each proxies for
distinct kinds of coarse-grained degrees of freedom with
distinct internal structures: the heat reservoir is an in-
finitely large source of purely thermal energy; the work
reservoir is an entropyless source of energy, whose role is
to set the SUS’s energetic landscape via parameters α.
In contrast, there are no restrictions on the auxiliary
reservoir’s structure. It is unnecessary when describing
the SUS’s effective state (or energy) at any particular time.
Partly, the auxiliary reservoir stands in for coarse-graining
out unknown degrees of freedom by unknown schemes.
In the case of Rayleigh-Bénard convection, the auxiliary
reservoir is a heat bath at a different temperature T2. To
take another example, in an information ratchet scheme,
the auxiliary reservoir may represent the information tape
interacting with the ratchet system [17–19].
Yet the relevance of the auxiliary bath goes beyond this:
specifically, Sec. II C shows that it is a necessary source
for maintaining NESS conditions in this idealized picture.
Altogether, Fig. 2 captures a large class of mesoscopic
physical, chemical, biological, and engineered systems
that exhibit nonequilibrium steady states, but that have
additional structure and are in contact with at least one
thermal environment. We note an important distinction:
the “heats” to which we refer in the thermal system
context are always associated to the heat bath defined
in Fig. 2, and “works” associated to α. We avoid calling
any fluxes between the auxiliary bath and the system
heat or work, since we place no a priori restriction on its
structure.
Subsequent sections develop tools for calculating the asso-
ciated heats and works and for bounding their nonequilib-
rium fluctuations. Practically, this suggests experimental
calorimetry and introduces a valuable way to calibrate
effective models—such as, for example, those of the ion
channels we take up later.

B. Excess energetics

For an ESS system in contact with a single heat bath, the
familiar First Law defines work W and heat Q as distinct
contributions to its energy change over the course of a
protocol [8]:

∆E =
∫

∂αEα(x) dα︸ ︷︷ ︸ +
∫

∂xEα(x) dx︸ ︷︷ ︸
.= W − Q. (2)

That is, W denotes a difference in system energy owing
to a change in protocol—a change in the overall energy
landscape—and Q denotes the difference owing to a change
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in system state—a dissipative signature of its adaptation
to environmental conditions.
In contrast, the general setting may not provide a mean-
ingful notion of energy. Worse, even in the restricted case
of Fig. 2, we can no longer define total heat for a NESS
system by Eq. (2): it leads to contradiction.
To see this, consider a fixed protocol at α and a system
poised already in the distribution πα. By definition then
W = 0 and so ⟨W ⟩ = 0, where ⟨·⟩ denotes a weighted
average over all possible paths. We also have ⟨∆E⟩ =
∆ ⟨πα|Eα⟩ = 0, where:

⟨πα|Eα⟩ .=
∫

x∈X
πα(x)Eα(x). (3)

Yet we cannot have ⟨Q⟩ = 0, for by Eq. (1):

⟨Q⟩ = ⟨Qhk⟩
̸= 0 , (4)

since this is a NESS system. In other words, the observed
housekeeping flux, leaving no signature in the state ener-
gies, must come from somewhere outside of the system
coupled to single ideal heat and work reservoirs. This is
precisely what the auxiliary bath provides: in this case
∆Eaux = Qhk.
However, there is an alternative to energy. Since to every
parameter α is an associated steady-state distribution πα,
we can define the steady-state surprisal:

ϕα(x) .= − ln πα(x) ; (5)

so called since it is the Shannon self-information [20] of
observing state x under the distribution πα.
Taking the surprisal’s state average under this distribution
yields its Shannon entropy (or, for continuous-state spaces,
its differential entropy):

⟨πα|ϕα⟩ .=
∫

x∈X
πα(x)ϕα(x)

= H[πα] . (6)

To see how the surprisal relates to energy, consider the
canonical ensemble of statistical mechanics—the ESS ver-
sion of Fig. 2, with Qhk = 0 and so no auxiliary bath—
where πα is the Boltzmann distribution [21]. Then:

− ln πα(x) = β(Eα(x) − F eq
α )

= ϕα(x) , (7)

where F eq
α is the equilibrium free energy (the familiar

logarithm of the canonical partition function).
Eq. (7) motivates yet another moniker for ϕα(x): the
nonequilibrium potential. In this sense, steady-state sur-
prisal is analogous to a generalized energy. However,
it remains a meaningful characterization of a system’s
steady-state distribution—via its information-theoretic
interpretation—even when energy is not meaningful.

Leveraging this, an analogous First Law for ϕα(x) defines
the excess heat and work:

∆ϕ =
∫

∂αϕα(x) dα︸ ︷︷ ︸ +
∫

∂xϕα(x) dx︸ ︷︷ ︸
.= Wex − Qex. (8)

As with their nonexcess counterparts, these quantities
characterize distinct dynamical contributions to a change
in steady-state surprisal: Wex capturing that due to a
changing protocol, which sets the steady-state probability
landscape; Qex monitoring a system’s adaptation to its
environment.

For Fig. 2’s thermal system, these conveniently convert
to energies: Wex → βWex and Qex → βQex. And, they
agree with other standard formulations of excess ther-
modynamic functionals [11, 13]. Using Eq. (7) and tak-
ing the ESS limit of Boltzmann-distributed steady-states
yields: (i) Qex → βQ—with equilibrium steady states, all
dissipated heat is excess—and (ii) Wex → β(W − ∆F ),
leading to its classification as an excess environmental
entropy production [13].

We stress, though, that the excess work and heat—and
the steady-state surprisal—retain dynamical meaning in-
dependent of Boltzmann or even energetic assumptions.
In this way, Eq. (7) is a guidepost for thermodynamic
interpretation. It is not, however, a strict equivalence. In
point of fact, as we will see, sodium channels (as with other
NESS systems) lack a well-defined steady-state free en-
ergy [13]. Nevertheless, Eq. (8) describes—tractably—two
functionally distinct aspects of their response to dynamic
environments.

C. Detailed balance and housekeeping

The housekeeping heat remains. Recall that it corre-
sponds to energy dissipated to maintain NESSs, as in
Eq. (1). Phenomenologically, Eq. (1) provided a satis-
factory answer. However, our excess heat definition only
required would-be steady-state distributions exist. The
definition of total heat, in contrast, depended explicitly on
well-defined state energies. This difference led to problems
with NESSs.

The upshot is that a more general definition of house-
keeping heat is called for. In particular, it should depend
only on the stochastic dynamics and, when added to
excess heat, it should give a reasonable generalization
of total heat. Naturally, we also require interpretability
and that it reduces to the corresponding well-understood
thermodynamic terms in the appropriate limits.

To these ends, but in a slightly more general form than
previously reported, we define housekeeping heat to ex-
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plicitly allow non-Markovian dynamics:

Qhk
.= ln Pr (X1:N = x1:N | X0 = x0 ; α0:N )

Pr (X1:N = xN−1:0 | X0 = xN ; αN :0)

+ ln
N−1∏
i=0

παi+1( xi )
παi+1(xi+1) . (9)

Observe that the first term is a log-ratio of conditioned
path probabilities. The denominator is the numerator’s
time reversal: the probability of obtaining the reversed
path xN :0 conditioned on starting in the state xN and
subject to the reversed protocol αN :0. The second term
is exactly −Qex by the discrete form of Eq. (8). And so,
by identifying Q .= Qex + Qhk, housekeeping heat is a
component of the generalized total heat Q.
In the (single heat bath) thermal example, one recovers
units of energy as Q → βQ and Qhk → βQhk. And,
the resulting total heat is consistent with formulations
based on microscopic reversibility [9]. Equivalently, we
could have started with this microscopic reversibility con-
dition for even state spaces and arrived at the appropriate
housekeeping heat.
With this in mind, consider relaxing the even state space
assumption. Doing so and keeping the appropriate micro-
scopic reversibility condition allows for an analogous split-
ting of housekeeping heat—modified so that the denom-
inator’s terms are negated where required—and excess
heat, consistent with previous considerations of odd-parity
NESS systems [22, 23]. While we note that an analogue
to our Eq. (24) holds, we do not treat this further here.
Now, consider a Markov dynamic of order 1. That is,
conditioning on the previous time step fully characterizes
the probability distribution over futures. Then, the first
term reduces to the logarithm of a product of one-step
conditional probabilities. And, Qhk tracks the degree
of detailed-balance violation over the trajectory. This is
in agreement with existing definitions [11, 13, 24]. Con-
cretely, detailed-balanced dynamics imply Qhk = 0 for
every trajectory. If any trajectory yields Qhk ̸= 0, the
dynamic is necessarily nondetailed-balanced.
Finally, recall that by definition Qhk = 0 for an ESS sys-
tem. Taken together with assuming an even state space—
ensuring correct “reverse” probabilities—the Markov con-
dition says, succinctly:

nondetailed-balanced dynamics
⇕

nonequilibrium steady states.

Recall that the Markov condition is appropriate for many
microscopically-modeled thermal systems such as over-
damped Langevin dynamics, as well as for a host of bio-
logical systems like the ion channels we consider later.
Nonzero housekeeping heat actually necessitates including
an auxiliary reservoir for a complete picture. Recall Fig. 2.
This follows since a NESS system, even fully relaxed to

its stationary distribution, constantly dissipates house-
keeping heat to the thermal reservoir. (And does so at
an average rate of d ⟨Qhk⟩ /dt.) Yet, with the protocol
parameter fixed, no work (or excess work) is done: W = 0
by Eq. (2). The system’s average energy does not change,
though, since the parameter and individual state uniquely
set its energies: d ⟨E⟩ /dt = 0.
The conclusion is that energy flux through the system,
observed in the housekeeping dissipation to the ther-
mal reservoir, must come from somewhere not otherwise
described by the ideal constructs. In other words, in
the thermodynamically-interpretable setting, nondetailed-
balanced dynamics are signatures of unaccounted-for de-
grees of freedom. In this way, the constructions in Eqs. (8)
and (9) provide the tools to isolate this homeostatic part
of a system’s energetic fluxes, so called for its role main-
taining homeostatic (steady-state) conditions.
We close by calling out a feature on direct display in
Eq. (9). While placing minimal restrictions on the dynam-
ics, problems arise when any path is strictly irreversible,
in the sense that a nonzero-probability forward trajec-
tory is associated a zero-probability reverse. Then, Qhk
diverges. And this seemingly forbids dynamics in finite
state spaces with one-way-only transitions.
In the thermodynamic interpretation, such a transition
costs infinite dissipation. And, with this realization, usu-
ally a model’s mesoscopic nature comes to bear. Indeed,
Ref. [13] in its related sodium channel analysis remarks
that “more careful experimental effort should be done
to bound the actual housekeeping entropy production in
these ion channels”. The following section demonstrates
that a new trajectory class fluctuation theorem provides a
tool for analyzing such experiments and circumvents the
divergence while still placing strong bounds on fluctua-
tions.

III. FLUCTUATIONS AND FREE ENERGY

So far, we defined the generalized quantities Wex, Qex,
and Qhk and elucidated their meanings outside the ESS
regime. As with their ESS counterparts, though, they
depend on the specific path a system takes through its
state space under a particular protocol. A suite of sta-
tistical tools called fluctuation theorems (FTs) tie such
nonequilibrium behaviors to equilibrium (or steady-state,
more generally) quantities. They come in three primary
flavors: (i) integral FTs (IFTs) concern weighted averages
over all possible trajectories, (ii) detailed FTs (DFTs)
fix the relationship between a specific path and its as-
sociated reversal, and (iii) trajectory class FTs (TCFTs)
interpolate between the two [25].
The remainder of this section compares and contrasts
these, discusses their relation to free energy, and con-
cludes with a TCFT for NESS systems. This sets the
stage for analyzing the two ion channels’ thermodynamic
responses—expressed in terms of excess work, excess heat,
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and housekeeping heat—to complex environmental sig-
nals.

A. Fluctuation theorems

Integral and detailed FTs each exhibit complementary
tradeoffs—tradeoffs discussed below as we introduce the
theorems. TCFTs, meanwhile, combine the strengths
of both and so are adaptable to a variety of systems
and experimental conditions. Here we present a general
TCFT valid for NESS systems. It simultaneously extends
the previously known ESS FT and reveals experimental
difficulties unique to NESS systems, ultimately suggesting
a need for new experimental tools.
Jarzynski’s equality [7, 8], an IFT and the progenitor of
the FTs we consider, links equilibrium free energies to
the averaged exponential work distribution. It applies
specifically to ESS systems that begin in their equilibrium
distribution and are connected to a single heat bath.
Under these conditions:〈

e−βW
〉

= e−β∆F eq
, (10)

where the angle brackets again refer to a weighted average
over all possible trajectories. That is, Jarzynski’s equality
ties an arbitrarily nonequilibrium quantity—the averaged
exponential work

〈
e−βW

〉
—to the equilibrium free energy

difference ∆F eq—a state function. Practically, this en-
ables free energy estimation from nonequilibrium work
measurements [26].
It comes with disadvantages, however. In particular,
extremely rare paths often dominate the exponential work
distribution [27], leading to poor statistical accuracy when
estimating with finitely many experimental realizations.
Nonetheless, Jarzynski’s equality has been confirmed for a
wide variety of systems [28–30]. In addition, while Eq. (10)
only applies to ESS systems, a variety of generalizations
have been derived and tested for NESS systems [2, 11, 12,
31].
In contrast to Jarzynski’s IFT, the detailed FTs (DFTs),
express a symmetry relation between a particular
trajectory-protocol pair and its appropriate time reversal.
Perhaps the most well-known of these is due to Crooks
[9, 10], which is complementary to Jarzynski’s IFT in
several ways. For one, it makes the same assumptions: an
ESS system connected to a bath, beginning in equilibrium
and driven away from it. For another, Jarzynski’s IFT
results directly from trajectory-averaging both sides of
Crooks’ DFT. Before presenting the DFT, though, we
pause to precisely define and set notation for what we
mean by an “appropriate reversal”.
Consider a system that begins in state distribution µF, is
driven by the protocol α1:N , and realizes a trajectory in
the measurable subset C ⊆ X N+1. We call C a trajectory
class. Then, we define the forward process probability as:

PµF (C) .= Pr (C | X0 ∼ µF; α1:N ) . (11)

(Here, ∼ means “is distributed as”.) Now, consider the
same system beginning in the distribution µR and driven
by the reverse protocol α̃N :1, where the tilde indicates
negation of time-odd variables (such as magnetic field).
In turn, we define the reverse process probability:

RµR (C) .= Pr (C | X0 ∼ µR; α̃N :1) . (12)

For finite state spaces, Eqs. (11) and (12) define distinct
probability measures on the trajectory space. In a con-
tinuous state space, we use the same notation to indicate
probability densities.
Let πF

.= πα0 and πR
.= π

α̃N
. In these terms, Crooks’

DFT reads:

PπF (x0:N )
RπR (x̃N :0) = eβ(W −∆F eq). (13)

As with Jarzynski’s IFT, the Crooks DFT has withstood
experimental test [32] and seen use in empirically es-
timating free energy differences [26]. Also, paralleling
Jarzynski’s IFT, Crooks’ DFT has been generalized to a
variety of NESS systems [13, 33, 34].
We highlight Ref. [13]’s generalization of these. We recall,
in particular, its Eq. (25), since it is the DFT upon which
we base our TCFT.
Here and in the remainder, we assume even state and
protocol spaces (keeping in mind Sec. II C’s notes on
relaxing this assumption), so there is never negation under
time reversal. However, in further contrast to Crooks’
DFT, we do not assume equilibrium steady states (or
detailed balance), any particular starting distribution
for the forward and reverse processes, nor a single heat
bath system (or any specific bath structure). Instead,
we require only the functionals Wex and Qhk as defined
in Eqs. (8) and (9), along with an additional one—the
(unitless) nonsteady-state free energy:

Fnss
α (µ, x) .= ln µ(x)

πα(x) . (14)

Its name derives from its indicating how far a given distri-
bution is from the associated steady-state distribution. In-
deed, on state averaging we have ⟨µ|Fnss

α ⟩ = DKL[µ ∥πα],
where DKL[p ∥ q] is the Kullback-Leibler divergence be-
tween distributions p and q [35]. As with the other func-
tionals generalized to the stochastic process picture, it
carries meaning—departure from steady-state conditions

—outside of energetic or thermal assumptions.
Given this, Ref. [13]’s DFT is:

RµR (xN :0)
PµF (x0:N ) = e−(Wex+Qhk−∆Fnss) , (15)

where ∆Fnss = Fnss
αN

(µR, xN ) − Fnss
α0

(µF, x0) is a correc-
tion due to starting the forward and reverse processes
out of steady state. If we began the forward and reverse
processes in their associated steady-state distributions,
by definition we would have ∆Fnss = 0.
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As a mathematical statement involving a stochastic pro-
cess’ trajectories, their probabilities, and the functionals
Wex, Qhk, and ∆Fnss we have so far defined, Eq. (15)
holds independent of any thermodynamic assumptions.
Yet, as before, reducing it to thermodynamically mean-
ingful cases is straightforward and illuminates several
important considerations when moving from ESS into
NESS regimes.

B. Multiple NESS IFTs and second laws

In the ESS case, Eq. (15) reduces neatly to Crooks’ DFT
of Eq. (13), which under integration directly yields Jarzyn-
ski’s equality. However, the NESS setting introduces more
freedom under this type of integration.
Consider rearranging Eq. (15) like so:

RµR (xN :0) = PµF (x0:N ) e−(Wex+Qhk−∆Fnss). (16)

Then integrate both sides over all trajectories x0:N . The
righthand side directly yields the forward trajectory av-
erage of the exponential, while the lefthand side yields
1 by probability conservation (and since the sets of all
measurable forward and reverse trajectories are the same
set). This gives a generalized IFT:

1 =
〈

e−(Wex+Qhk−∆Fnss)
〉

(17)

and—via Jensen’s inequality—a generalized second law:

⟨Wex⟩ + ⟨Qhk⟩ − ∆DKL[µ ∥π] ≥ 0, (18)

where ∆DKL[µ ∥π] = DKL[µR ∥πR] − DKL[µF ∥πF].
This latter term is a classical analogue to the “initial-
state dependence” of Ref. [36]; it quantifies additional
entropic dissipation when beginning and ending out of
the steady-state distribution.
Yet Eq. (17) is not unique. To take one example, by direct
calculation as in Ref. [11], we find for Markov dynamics:

1 =
〈

e−Fnss
α0 (µF, x0)−Wex

〉
(19)

=⇒ ⟨Wex⟩ + DKL[µF ∥πF] ≥ 0, (20)

a slight generalization of their result with the inclusion of
initial-state dependence (thereby relaxing the requirement
of steady-state initial conditions). In other words, a
second law holds for ⟨Wex⟩ itself, not just for its sum
with ⟨Qhk⟩. This is not only a meaningfully different
bound, but this IFT also does not result naturally from
the underlying DFT.
To take another example, directly substituting ⟨Qhk⟩ =
⟨Q⟩ − ⟨Qex⟩ into Eq. (17) generalizes to a different IFT:

1 =
〈

e−(Q+∆ϕ−∆Fnss)
〉

, (21)

first proven in Ref. [12].
Finally, taken on their own, Eqs. (18) and (20) do not
imply a third NESS IFT—and so Second Law—for house-
keeping heat alone; cf. again Ref. [12]. However, as we
now show, it is implied rather directly by the combination
of Eqs. (15) and (19).
First rearrange Eq. (15) as:

RµR (xN :0) eWex−Fnss
αN

(µR,xN )

= PµF (x0:N ) e−Qhk−Fnss
α0 (µF,x0) .

Again, we wish to integrate both sides over all x0:N , but
at first glance the lefthand side (first line) poses an issue:
Wex refers to the excess work over a trajectory driven
by the forward protocol, while R is the probability of a
trajectory as driven by the reverse protocol.
Fortunately, Wex is odd under full time reversal: Wex =
−WR

ex, where WR
ex is the excess work generated by the

time-reversed trajectory driven by the time-reversed pro-
tocol. This matches up driving protocols and “initial”
conditions on the lefthand side. Since Eq. (19) holds
regardless of the chosen protocol or starting distribution,
under integration the lefthand side is unity. The righthand
side, meanwhile, becomes simply the forward trajectory
average of its argument. And, we obtain the generalized
IFT for housekeeping heat:

1 =
〈

e−Fnss
α0 (µF, x0)−Qhk

〉
(22)

=⇒ ⟨Qhk⟩ + DKL[µF ∥πF] ≥ 0, (23)

once again extended to include the effects of initial-state
dependence.
To adopt Ref. [12]’s language, these IFTs—for Wex + Qhk,
Wex-only, Q+∆ϕ, and Qhk-only—are “genuinely different”
but no longer require especially “different derivation[s]”
nor restrictive physical assumptions. To emphasize the
former point, though: just as with the equilibrium sec-
ond law ⟨∆S⟩ ≥ 0, these hold only under full trajectory
averaging. That is, individual rare trajectories (or sets
thereof) may well produce negative excess works, nega-
tive housekeeping heats, or both. Sec. V A explores these
consequences for our example ion channels.
Notably absent is the notion of steady-state free energy,
analogous to the equilibrium free energy from Jarzynski’s
equality. Defining one for general NESS systems remains
problematic, in part since the steady-state distributions
may no longer be Boltzmann. Instead, the excess work
subsumes what would have been a steady-state free energy
difference, and we work directly with it. The downside,
however, is the inability to extract such a free energy as a
“steady state” quantity separate from the path-dependent
nonequilibrium dynamical ones. Indeed, this was an ex-
tremely important consequence of Eq. (10).
The suite of IFTs given by our Eqs. (18), (20), and (23),
however, do include strong connections between path-
independent and path-dependent quantities in the form



8

of initial-state dependence and changes in steady-state
surprisal. Unlike for ESS systems, however, even in well-
controlled NESS thermal examples applying the IFTs
presents a rather serious experimental challenge: direct
measurement of heat (most notably housekeeping heat).
Even when testing FTs phrased in terms of heat, often
work (excess or not) is experimentally tracked [2]. And so,
we expect direct measurement to be a key, requisite step
in leveraging the resulting FTs to analyze experimental
NESS systems.

C. NESS trajectory class fluctuation theorem

With appropriate DFTs and IFTs for NESS systems now
in hand, we are confronted with yet another challenging
experimental tradeoff. Just as the IFTs suffer from ex-
tremely rare-but-large contributions, the DFTs require
precise control and measurement of individual realizations,
as well as accurate estimations of individual realization
probabilities (or their ratios). This is often intractable
even in principle. For example, as experimental systems,
the ion channels considered shortly do not permit measure-
ment of the conformational states themselves. Instead,
ionic current is the only observable. Moreover, the state
space topology varies with each individual rate model
[37]. This is all to say that thermodynamic analysis re-
quires a more flexible intermediary between the DFT’s
trajectory-level information and the IFT’s ensemble-level
information.
Ref. [25] recently provided just such an intermediary for
ESS systems—the trajectory class FT (TCFT). At root,
it relates the forward and reverse probabilities of an arbi-
trary subset of trajectories—the trajectory class C as in-
troduced earlier—to the average exponential work within
that trajectory class. In this way, the TCFT is maximally
adaptable to experimental conditions: It need neither
suffer rare-event errors nor require individual-trajectory-
level control. Instead, whatever the unique experimental
conditions at hand, it provides a framework for laying
out an associated FT. As a practical matter, the TCFT
has already provided a diagnostic tool for monitoring the
thermodynamics of successful and failed microscopic infor-
mation processing in superconducting flux logic [25, 38].
The following extends Ref. [25]’s ESS TCFT (Eq. (3)
there) in two ways. First, we allow for NESS systems.
Second, we allow starting the forward and reverse pro-
cesses in arbitrary distributions µF and µR, respectively.
This results in our exponential NESS TCFT, derived in
App. A:

RµR (CR)
PµF (C) =

〈
e−(Wex+Qhk−∆Fnss)

〉
C

, (24)

where ⟨·⟩C denotes the conditionally-weighted average
over only those trajectories in the class C and the reverse
trajectory class CR

.= { xN :0 | x0:N ∈ C }.

Eq. (24) imports to the NESS setting all the benefits of
the TCFT. Most notably, it adapts readily to a variety of
experimental conditions while maintaining robust statis-
tics. The associated DFT and IFT emerge simply by
setting the class C to be a single trajectory or the set of
all trajectories, respectively. Equation (24), as with its
ESS counterpart, allows selecting trajectory classes most
accessible in a particular experimental configuration and
then proposes the appropriate theory against which to
test.
Once again, in this form Eq. (24) makes only two assump-
tions about a stochastic process, as outlined previously:
a unique stationary distribution for each α and an even
state space. It reproduces Ref. [25]’s TCFT given ESS
assumptions. Similarly, it reproduces Ref. [13]’s Eq. (52)
when the class is chosen to start and end in a particular
desired subset of states. However, our main result holds
independently of any energetic, Markovian, or particular
class assumption.
Generalization to NESS systems is not without caveat,
however. Qhk plays a central role and we do not have
our state- and path-independent equilibrium free energy
to extract from the average and estimate. This suggests
experimentally tracking the housekeeping heat itself is
key to understanding nondetailed balanced, NESS sys-
tems. (Alternatively, one could monitor the total heat
per Eq. (18).) This is not surprising, considering Qhk is
the defining difference between an ESS and NESS system.

IV. NA+ AND K+ ION CHANNELS

Armed with this toolkit, we are now ready to probe the
thermodynamic functionality of two example biophysi-
cal systems: Ref. [15]’s delayed-rectifier potassium (K+)
and fast sodium (Na+) voltage-gated ion channels. (See
its Figs. 5.12 and 5.13, reproduced in our Figs. 3 and 4,
respectively.) These single-channel models are based on
relatively more macroscopic descriptions of channel en-
sembles due to Hodgkin and Huxley [39]. However, they
better represent the interdependencies between molecular-
conformational transformations and more accurately re-
produce experimentally-observed currents, especially for
the Na+ channel [15].
The models are both continuous-time Markov chains
(CTMCs), whose dynamics are described by the stochastic
master equation:

d
dt

⟨µ(t)| = ⟨µ(t)| Gα . (25)

The row vector ⟨µ(t)| specifies the state distribution
or mixed state at time t; its elements are µ(x, t) .=
Pr (X(t) = x). The transition rate matrix Gα is con-
trolled by the protocol and, thus, varies with time. The
would-be steady-state distributions for each α are given
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by:

⟨πα| Gα = ⟨0| , (26)

with ⟨0| the all-0 vector.
The transition-rate matrices corresponding to the two
channels are:

GK+

α =


−4an 4an 0 0 0

bn −(3an + bn) 3an 0 0
0 2bn −(2an + 2bn) 2an 0
0 0 3bn −(3bn + an) an

0 0 0 4bn −4bn

 and (27)

GNa+

α =


−3am 3am 0 0 0

bm −(2am + bm + k1) 2am 0 k1
0 2bm −(am + 2bm + k2) am k2
0 0 3bm −(3bm + k3) k3
0 0 ah 0 −ah

 . (28)

Letting α denote the transmembrane voltage, the associated transition rates are:

am(α) = (α + 40 mV)/10 mV
1 − exp (−(α + 40 mV)/10 mV), bm(α) = 4 exp (−(α + 65 mV)/18 mV), (29)

ah(α) = 7
100 exp (−(α + 65 mV)/20 mV), k1 = 6

25 ms−1, k2 = 2
5 ms−1, k3 = 3

2 ms−1, (30)

an(α) = (α + 55 mV)/100 mV
1 − exp (−(α + 55 mV)/10 mV), and bn(α) = 1

8 exp (−(α + 65 mV)/80 mV). (31)

A4 A3 A2 A1 O

4an 3an 2an an

4bn3bn2bnbn

FIG. 3. Continuous-time Markov chain model of the K+

channel adapted from Fig. 5.12 of Ref. [15]. Self-transitions
are implied. In the states labeled An, a number n ∈ {1, 2, 3, 4}
activation gates close the channel. O labels the open channel
state, the only one in which K+ current can flow through the
channel. The rate parameters an and bn are voltage-dependent;
their functional forms are given in Eqs. (31). This channel
model is fully detailed-balanced, in the sense that Eq. (33)
vanishes for every allowed transition pair.

We map these CTMC systems to discrete-time stochastic
processes by taking α(t) fixed for sufficiently small time
intervals ∆t, generating the transition matrices:

T∆t
α

.= e∆t Gα (32)

for each such time interval. Having discretized time in this
way, they are examples of the thermodynamic scheme in
Fig. 2, being surrounded by a single thermal environment
at body temperature.
A voltage-gated ion channel’s basic function is to selec-
tively allow ions to permeate a cell membrane. The selec-

tion is based on the transmembrane voltage—the voltage
difference between the membrane’s inside and outside. In
our models, this difference is specified by the parameter
α, and so a neuronal action potential spike is a specific
protocol. Ref. [15]’s K+ and Na+ models correspond to
channels that play crucial roles in generating and propa-
gating such spikes in mammalian neuronal axons. Both
Markov chain models are estimated from single-channel
experiments.
We selected these two channel models for several reasons.
First, in terms of their biological function, they are com-
parable: They accomplish similar tasks, are connected
to the same environmental parameters, and are suitably
mesoscopic. That is, despite being more detailed than the
Hodgkin-Huxley ensemble models, neither model accounts
for the many additional molecular degrees of freedom in-
volved in the channel dynamics, be it steady-state or
transient functions. The small effective state spaces in
the Markov chain models reflect this.
One consequence of this implied coarse graining is that
any total entropy production is a lower bound [3]. Still,
we are able to make headway analyzing their nonequi-
librium dynamics without knowledge of the underlying
coarse-graining methods—knowledge missing for the vast
majority of mesoscopic complex systems.
Second, the Na+ channel’s transition rates do not, in
general, satisfy detailed balance, while the K+ channel’s
do. Indeed, the Na+ channel model includes both finitely
nondetailed-balanced transition pairs and one-way-only
transition rates, which imply divergent infinitesimal-time
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housekeeping heat. These violations of ideality are typical
and widely encountered in molecular biophysical systems,
as well as in real-world thermodynamic processes.
To appreciate these nonidealities, note that under our time
discretization and the Markov property, the infinitesimal(-
time) housekeeping heat—a single “step” of Eq. (9)—for
a transition between states indexed by i to j:

[dQhk]ij = lim
∆t→0

ln
πα(xi)

[
T∆t

α

]
ij

πα(xj)[T∆t
α ]ji

= lim
∆t→0

ln
πα(xi)[Gα + O(∆t)]ij
πα(xj)[Gα + O(∆t)]ji

. (33)

For systems with one-way-only transition rates, such as
from the second to the fifth state of the Na+ channel
(indexing the states left to right, Fig. 4), infinitesimal
housekeeping heat diverges. This contrast between the
two channels—wherein one of them exhibits equilibrium
steady states and the other nonequilbrium steady states—
allows showcasing several features of the NESS TCFT
and of the NESS framework more broadly. These, in
turn, reveal the dynamical interplay of different modes of
thermodynamic transformation.

A3 A2 A1 O I

3am 2am am
k3

k1

k2

ah

3bm2bmbm

FIG. 4. Continuous-time Markov chain model of the Na+

channel adapted from Fig. 5.13 of Ref. [15]. Self-transitions
are implied. In the states labeled An, a number n ∈ {1, 2, 3}
activation gates close the channel. O labels the open channel
state, in which Na+ current flows through the channel. Finally,
I labels the channel’s inactivation by its inactivation gate—its
so-called ball and chain. The rate parameters am, bm, and ah

are all voltage-dependent; their functional forms are given in
Eqs. (29)–(30). The rate constants k1, k2, and k3 are given
by Eqs. (30). Unlike the K+ channel, this model of the Na+

channel features one-way transitions in the rate dynamic—
states O to I and A2 to I. These transitions are maximally
irreversible. These imply divergent infinitesimal housekeeping
heat in the sense of Eq. (33). In addition to these, many of the
other transition pairs do not satisfy detailed balance—Eq. (33)
evaluates finite but nonzero.

As a test case, the K+ channel should satisfy the ESS
TCFT (where Qhk = 0) while the Na+ channel should
violate it. Both, however, should satisfy our NESS TCFT
of Eq. (24).

One benefit of the TCFT’s averaging over arbitrary trajec-
tory classes comes from avoiding the divergences implied
by one-way transition rates: We select only those tra-
jectories that do not include one-way transitions in the
Na+ channel, but still satisfy the appropriate DFT (and
therefore TCFT) with those trajectories.
In this way, the NESS TCFT allows monitoring nonequi-
librium fluctuations in systems with drastically different
steady-state characteristics: detailed balance on the one
hand and spurious divergences on the other.
Yet separating heat into excess and housekeeping com-
ponents also enables direct comparison of the channels’
adaptive energetics. Given the same environmental drive,
which components of their dissipations are due solely to
their internal adaptation to that drive? The excess heat,
Qex. This remains true without regard for the divergence
implied by one model’s steady states. In essence, we cleave
the housekeeping infinity to directly compare adaptive
energetics.
Finally, both models are simple and illustrative. There
are many more-detailed candidate state-space models for
the Na+ channel: take those found in Refs. [37] and [40],
for instance, whose variations have important implica-
tions for understanding responses to drug treatments [41].
While we do not analyze them directly, our techniques
generalize to any such candidate models straightforwardly
and provide an alternative formulation to that of Ref. [40].
Indeed, our ability to carry out these thermodynamic anal-
yses provides new grounds for model selection, contingent
on measurement techniques to experimentally extract the
appropriate quantities.

V. METHODS AND RESULTS

Our goal, ultimately, is to describe the nonequilibrium
thermodynamics of driven mesoscopic NESS systems—
how they respond thermodynamically to environmental
stimuli and attempt to maintain stability. We take up
the challenges here in two ways.
First, Sec. V A samples individual trajectories from both
channels under the neurobiologically-plausible action po-
tential spike protocol. Trajectories in hand, it compares
Qhk versus Wex for each, showcasing the need for corrected
NESS D/TCFTs, revealing various modes of second-law-
type violations allowed of each channel, and discussing
the surprising biophysical functionality these violations
imply.
We derived the spike protocol by solving the reduced
ODEs (8.5) and (8.6) of Izhikevich [42] (also presented
earlier [43]), integrating via the explicit forward Euler
method. We adopt the “regular spiking” parameters
of their Fig. 8.12, except that we set the membrane
capacitance to 1 pF and input DC pulse to 80 pA to
change the time scale of a single pulse to 2 ms, more
accurately reflecting measurements in Ref. [15]. The
protocol begins with the transmembrane voltage at its
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resting potential (of −60 mV in this parameter set) and
the recovery variable u at 0. We took 200 001 equidistant
time steps, resulting in 10 ns increments.
Second, Sec. V B calculates the full trajectory-averaged
excess heat and work—⟨Qex⟩ and ⟨Wex⟩, respectively—of
the two channel models under both our spike protocol
and the 12 ms pulse protocol matching Ref. [13]’s and
providing for direct comparison with their results. We
took the same number of equidistant time steps, resulting
in 60 ns increments. In the spike case, we directly compare
for the first time the detailed adaptive energetics of the
two channel types under a neurobiologically-plausible
protocol. Our analysis both reveals functionality not
visible under a pulse drive and highlights the preceding
theoretical framework’s ability to directly compare the
channels’ adaptive energetic response to the same drive,
despite their dramatically different steady-state behaviors.
The ion channels are examples of Fig. 2’s scheme with a
single heat bath, so we have that Qhk → βQhk, Wex →
βWex, and Qex → βQex. For convenience, then, we label
all thermodynamic axes in units of [kBT ]. In more general
settings, however, these functionals are purely dynamical
quantities, to be understood and interpreted as indicated
in Secs. II B and II C.
Admittedly, the selected ion channel models are not real-
istic in the sense that they do not incorporate feedback
between the transmembrane potential and the ion chan-
nel states themselves. (Or, put another way, they ignore
correlation between channels.) This feedback is crucial
to in vivo generation of the spike patterns. In one sense,
this simplification is actually an advantage of our ap-
proach, since we ask: Given a particular transmembrane
protocol—regardless of how it got there—how do these
individual channels respond? How do they absorb and
dissipate energy in response to this environment?

A. NESS TCFT reveals thermal response

This section compares the detailed-balanced dynamics of
the K+ channel with the nondetailed-balanced dynamics
of the Na+ channel. It demonstrates agreement between
ESS and NESS FTs in the former, but violation in the
latter. This exposes the channels’ different dynamical
responses—how thermodynamic fluxes of energy and en-
tropy support their distinct biophysical functioning. The
TCFT’s flexibility allows us to select only trajectories-
of-interest and take partial sums on either side of the
underlying DFT. This helps not only to gather experi-
mental statistics—improving statistical efficiency—but
also to generate statistics from models, as the following
does.
While Eq. (33)’s first-order approximation is valid in the
infinitesimal time limit, any finite time step—no matter
how small—maps every zero in the transition-rate ma-
trices to nonzero values in the discrete-time transition
matrices. As long as any state can transition to any other

eventually in the rate dynamic, we observe a direct transi-
tion from any state to any other state after any finite time.
Mathematically, this results from higher-order terms in
the matrix exponentials.
Since we wish to explicitly highlight the differences be-
tween the channels—the ESS in the K+ case and the
divergent transitions in the Na+—we take the first-order
approximation of Eq. (33). Formally, it defines a distinct
discrete-time dynamic compared to taking the full matrix
exponentials, but the fluctuation theorems apply just as
well to this approximated dynamic. In sampling trajec-
tories, we avoid the divergent Na+ transitions altogether
by selecting only paths that do not include them, yet
another advantage the TCFT affords. This does not alter
the TCFT’s validity as long as we accurately collect the
probabilities of the selected trajectories.
We can collect those probabilities, having the full transi-
tion dynamic in hand. However, simulating 200 001-step
trajectories, the resulting probabilities are extraordinar-
ily small. To ameliorate numerical precision issues, we
instead directly collect the natural logarithms of trajec-
tory probabilities. Finally, since we wish to isolate the
differences between the channels due to NESSs (or, equiv-
alently in our case, to nondetailed-balanced dynamics),
we make one last simplifying assumption before numerical
simulation: We begin all forward and reverse processes in
their local stationary distributions, setting ∆Fnss = 0.
This simplifies Eq. (24)’s DFT kernel to:

ln PπF (x0:N )
RπR (xN :0) = Wex[x0:N ] + Qhk[x0:N ] . (34)

Comparing this to Crooks’ DFT as in Eq. (13) reveals
the presence of Qhk as the only difference. For an ESS
system, this should vanish for all inputs; otherwise, it
represents a violation of Crooks’ DFT by a factor of eQhk .
To probe the violation, Fig. 5 directly plots Qhk—via
Eq. (9)—on the vertical axis, where each point represents
an individual trajectory. We plot these values against
Wex—with the discrete form of Eq. (8)—on the horizontal
axis to aid interpretation: Via Eqs. (20) and (23), there
are individual second laws for both the generalized house-
keeping heat and the generalized excess work. As with
the familiar equilibrium second law, however, these are
strictly true only on full trajectory averaging.
To arrive at Fig. 5, we sampled trajectories according to
their distributions as given by each channel’s first-order
dynamics under spike driving. For the Na+ channel, as
previously mentioned, this excludes the one-way-only tran-
sitions. For the K+ channel, we obtained 9 626 individual
trajectories; for the Na+ channel, we obtained 23 834.
Plotting housekeeping heat against excess work in Fig. 5
directly visualizes the independent kinds of negative en-
tropy trajectories: where Wex < 0, we have single-shot
violations of the familiar second law. In the isothermal
environment of the ion channel models, trajectories for
which this is the case imply channels that, under the
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FIG. 5. The two channel models compared via their nonequilibrium excess work and housekeeping heat distributions, respectively,
in response to the spike protocol drive. Nonzero values of Qhk indicate violations of the Crooks DFT Eq. (13), where the
corrected NESS DFT Eq. (15) is needed. In addition, the axes here are of quantities with associated independent second
laws; see Eqs. (20) and (23). And so, the labeled quadrants carry thermodynamic (and, in this case, biophysical) meaning as
single-shot violations of each statistical second law.

spike protocol’s drive, funnel energy to the work reservoir.
Where Qhk < 0, however, we have a new kind of second
law violation unique to the NESS setting: in context,
these are channels which have taken energy from the heat
bath to maintain NESS conditions, rather than dissipated
to it. For this reason, in Fig. 5, we label these quadrants
“housekeeping (HK) engines.” Where total heat is also
negative, the channel as a whole functions as a “total
heat engine,” but—notably—these possibilities are inde-
pendent of one and other. To take but one example: the
negative total heat trajectories of the first quadrant act
as heat engines, yet the housekeeping part of their total
heat remains dissipative.

As Fig. 5 shows, the additional dimension of thermody-
namic behavior afforded by nonzero housekeeping heat
and its associated second law gives rise to a number of
otherwise inaccessible combinations. Driving the channels
according to the biologically-plausible spike protocol also
reveals a greater range of possible Crooks DFT violations
than did the more artificial pulse-driven result of Ref. [13],
with only several violations. Taken together, Fig. 5 reveals
a rich taxonomy of thermodynamic behaviors for the Na+

channel—behaviors that are not reflected (indeed, flat-
tened) in the K+ channel or, indeed, in any ESS system,
where Crooks’ DFT is satisfied and Qhk = 0. In particu-
lar, there are four functionally-distinct thermodynamic
quadrants, corresponding to the positive and negative
values of Qhk and Wex, and labeled by their excess and
housekeeping functionality on the K+ channel plot for
clarity.

To be clear, each point on these plots corresponds to a
single trajectory-reverse pair that itself is a valid trajectory
class. Yet, (i) the samples themselves may be taken from
a special class—for the Na+ channel we explicitly exclude
resource-divergent trajectories—and (ii) any subsample
on the plot corresponds to its own valid trajectory class
as well.
The clustering of realized Qhk in Fig. 5 reveals additional
structure in Crooks DFT violations not previously ob-
served. Apparently, there are distinct thermodynamic
mechanisms that generate the violations. These result
directly from the relative frequencies of transitions as
functions of the driving protocol.
To lend additional insight into this structure, Fig. 6 plots
the one-step rates of Qhk production for each allowed
transition in our modified Na+ channel. The A3 ↔ A2
transition pair is the only one of this dynamic that is
fully detailed-balanced for all inputs; the A2 ↔ A1 pair
is nearly detailed-balanced, with very small housekeeping
heat production. By comparison, both of the remain-
ing transitions strongly violate detailed balance, and so
contribute the bulk of the nonzero Qhk.
Physically, the latter two correspond to transitions di-
rectly to/from the open and inactivated channel states.
Interestingly, their violations run in opposite directions.
On the one hand, the A1 → O transition dissipates house-
keeping heat to the thermal environment—indeed, more
as the membrane voltage rises. On the other hand, the A1
→ I transition describes the “ball and chain” that plugs
the channel without opening, leaving no opportunity for
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FIG. 6. Na+ channel transition rates of housekeeping heat
Qhk as functions of transmembrane potential. The total house-
keeping heat along any stochastic trajectory, driven by any
protocol, is the sum of these values with the associated state
transition-protocol parameter pairs here.

Na+ current to flow. Thermodynamically, this transition
actually absorbs housekeeping heat from the thermal envi-
ronment. Since the housekeeping heat production rate is
odd under transition reversal, these roles are reversed for
the reverse transitions. Thus, the results shown in Fig. 5
arise directly from integrating those in Fig. 6 according
to each trajectory-protocol pair.
As a final consideration, we note that the ESS TCFT (and
so the Crooks DFT) do not claim to be valid for NESS
systems. That said, our results visually verify the facts
that the NESS generalization both extends the range of
validity of the TCFT and reduces in the correct way for
ESS systems.
That we have a trajectory class form for the NESS TCFT,
captured in our Eq. (24), imports its ESS progenitor’s
flexibility. That is, we need capture neither individual
trajectory-level information to verify the DFT nor accu-
rately sample the full trajectory space for an IFT.
That said, experimental verification remains a significant
challenge. Generalizing to NESS systems requires not
only the excess work distribution but housekeeping heats
as well. Indeed, these results suggest that carefully consid-
ering how to measure housekeeping dissipation is crucial
to characterizing fluctuations in NESS systems. As Fig. 5
demonstrates, improper accounting leads in general to
TCFT violations and, if the ESS FTs are used to esti-
mate free energy differences, to potentially drastically
mischaracterizing the system of interest.

B. Average excess energetics

Despite the channels’ distinct thermodynamic functioning
as revealed by the TCFT, we can compare the channels’
adaptive energetics via the excess works and heats. We

begin by directly calculating the full trajectory averages,
obtaining for discrete time:

− ⟨Qex⟩ =
N−1∑
n=0

⟨µ(tn+1) − µ(tn)|ϕαn⟩ and (35)

⟨Wex⟩ =
N−1∑
n=0

〈
µ(tn)

∣∣ϕαn+1 − ϕαn

〉
, (36)

in agreement with Ref. [13]. As above, we set the ini-
tial distributions to the local stationary distribution for
convenience. Armed with the discrete protocols, time
steps, and starting distributions, we directly evaluate
the mixed states [Eq. (25)] and steady-state distributions
[Eq. (26)] for each time step. These are all that is needed
to calculate ⟨Qex⟩ and ⟨Wex⟩ via Eqs. (35) and (36).
Figs. 7 and 8 give the simulation results for excess heat.
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FIG. 7. Excess heats (solid lines) for both channels under the
pulse protocol (dashed line). The K+ channel is less dissipative.
Both expend energy as they relax to environmentally-induced
steady states.

First, driven by the pulse, the K+ channel dissipates less
excess heat over the course of this protocol. Its rate of
relaxation to steady state—corresponding to constant
epochs in the protocol—appears slower than the Na+

channel’s on the jump from −100 to 10 mV, but faster on
the subsequent drop back down to −100 mV.
The spike protocol paints a very different picture. Here,
while the Na+ channel still dissipates (in this case, sig-
nificantly) more over the course of the protocol, it also
appears to respond much more quickly to changes in the
protocol than does the K+ channel. A tradeoff appears:
the cost of the Na+ channel adapting more quickly to its
environment is that it dissipates more in the process. This
did not arise when driven by the pulse protocol. (Likely,
this is due to that protocol operating outside of the “nor-
mal” voltage range for these channels—by dropping as
low as −100 mV.)
Besides showcasing a detailed energetic comparison be-
tween different channels, the discrepancy between the
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FIG. 8. Excess heats (solid lines) for both channels driven by
the spike protocol (dashed line). Under this more biologically
realistic protocol, the Na+ dissipates significantly more than
the K+ channel and does so responding much more rapidly to
changes in membrane voltage. This suggests a tradeoff between
the speed of the channel’s response and its dissipation, one
not necessarily present in the more artificial pulse protocol.

pulse- and spike-driven behaviors demonstrate that in
vivo thermodynamic response can qualitatively differ from
that elicited by voltage-clamp experiments.
The corresponding results for excess work are given in
Figs. 9 and 10. Unlike excess heat, the excess work is not
sensitive to the timescales of each channel’s relaxation
to steady state. Instead, it tracks environmental entropy
produced by the external drive. Yet it is still sensitive
to the dynamics of the individual channel [per Eq. (8)],
and this sensitivity is reflected in the thermodynamic
responses.
As in the excess heat calculations, there is a difference in
behavior between the pulse and spike protocols. In the
former, the K+ channel and Na+ channels trade off under
the rise and fall of the pulse. Driven by the spike protocol,
however, the Na+ channel induces more environmental
entropy production across the board, though they track
extremely closely until the peak and reset phases of the
action potential spike. This reflects not only the larger
potential for dissipation in the Na+ channel under the
spike protocol, but highlights where during the protocol
most of the difference arises.
To reiterate, while excess heat is an energetic signature
of relaxation to steady state, these calculations do not as-
sume the system ever reaches such a steady state. While
the pulse protocol allows each of the channels to do so,
over the course of the spike we see a dynamic dissipation
in the two channels—this is energy expended while at-
tempting to reach an ever-evolving steady-state target.
We close by highlighting that our theoretical develop-
ments enabled quantitatively comparing the channels’
adaptive energetics under realistic environmental stimuli—
captured in our Fig. 8—despite the departures in their
underlying steady-state dissipation.
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FIG. 9. Excess works (solid lines) for both channels under the
pulse protocol (dashed line). Unlike excess heat, excess work
is only done upon change in the driving parameter. Thus, we
see changes only at the pulse’s rise and fall. Much more excess
work is done on the Na+ channel than on the K+ during the
rise of the pulse, but these roles are reversed on its fall. Over
the entire protocol, the Na+ channel produces (slightly) more
excess environmental entropy.
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FIG. 10. Excess works (solid lines) for both channels under
the spike protocol (dashed line). We see that more excess
work is done on the Na+ channel across the board. This
corresponds to larger environmental entropy production and
indicates a greater potential for dissipated work in the Na+

channel. However, we also see that up until the peak and reset
phases of the action potential spike, they track very closely
before diverging.

VI. CONCLUSION

We reviewed and extended the techniques of stochas-
tic thermodynamics, culminating in a TCFT for NESSs,
and even, for nonthermal stochastic processes. Using
these, we analyzed the adaptive and homeostatic ener-
getic signatures of two neurobiological systems—systems
key to propagating action potentials in mammalian neu-
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rons. Along the way, we developed a toolkit for probing
the nonequilbrium thermodynamics in a broad range of
mesoscopic complex systems that requires little in the
way of restrictive assumptions.
Our results exposed a new quantitative structure in how
systems appear to violate equilibrium steady-state as-
sumptions, both warning against and elucidating the con-
sequences of inappropriately assuming detailed-balanced
dynamics. In this, they suggest a need for both our
corrected and generalized TCFT and new experimental
tools.
Specifically, for nonequilibrium steady-state systems,
tracking housekeeping entropy production is crucial to
extracting functionally relevant thermodynamics and ob-
serving an additional kind of second law dynamics. While
experimental tests have verified Eq. (20), they do not
allow for observing the housekeeping thermodynamics,
which play an important and independent part in assess-
ing a system’s functionality.
Our simulations of the averaged excess energetics, in con-
trast, show how to compare specific aspects of a system’s
functionality—the adaptive energetics—despite what are
in this case infinite differences in the steady state behav-
ior. In essence, these tools allow us to “cleave off” the
divergence in the Na+ model’s housekeeping heat and
still compare the channels’ adaptation to environmen-
tal drive on equal footing. Finally, the spike protocol
simulations also identified what would not be observed
in traditional patch-clamp experiments on ion channels,
namely detailed differences in response to each segment
of an action potential.
Taken together, our development and associated numerical
experiments revealed a rich—and, indeed, necessary—set
of tools with which to probe the nonequilibrium dynamics
of mesoscopic complex systems.
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Appendix A: NESS TCFT Derivation

In addition to requiring a unique stationary distribution
for each protocol value, we assume that for any x0:N ∈

X N+1:

1. xN :0 ∈ X N+1,
2. PµF(x0:N ) ̸= 0 =⇒ PµF(xN :0) ̸= 0, and
3. RµR(xN :0) ̸= 0 =⇒ RµR(x0:N ) ̸= 0.

The second and third requirements, in particular, forbid
one-way-only transitions in the discrete-time dynamic.
Once we derive the TCFT, we will discuss the edge cases
of completely irreversible trajectories.
Given the preceding constraints, a slightly rearranged
form of Ref. [13]’s NESS DFT reads:

RµR(xN :0) = PµF(x0:N ) e−(Wex+Qhk−∆Fnss) .

We wish to integrate both sides over a trajectory
class—the measurable subset C ⊆ X N+1 of trajecto-
ries. We also define the reverse trajectory class CR

.=
{ xN :0 | x0:N ∈ C }. The following derivation mimics that
of Ref. [25] after their Eq. (F3).
Integrating the lefthand side gives:∫

[x0:N ∈ C] RµR(xN :0) dx0:N

=
∫

[x0:N ∈ C] RµR(xN :0) dxN :0

=
∫

[xN :0 ∈ CR] RµR(xN :0) dxN :0

= RµR(CR) ,

where [·] is the Iverson bracket.
Integrating the righthand side gives:∫

[x0:N ∈ C] PµF(x0:N ) e−(Wex+Qhk−∆Fnss) dx0:N

=
∫

PµF(x0:N ∩ C) e−(Wex+Qhk−∆Fnss) dx0:N

= PµF(C)×∫
PµF (x0:N | C) e−(Wex+Qhk−∆Fnss) dx0:N

= PµF(C)
〈

e−(Wex+Qhk−∆Fnss)
〉

C
,

where ⟨ · ⟩C is the average over the trajectory class C.
Thus, we have Eq. (24)—a TCFT for NESS systems,
whose forward and reverse processes may start in arbitrary
distributions:

RµR(CR)
PµF(C) =

〈
e−(Wex+Qhk−∆Fnss)

〉
C

. (A1)

Now, it remains to investigate the edge cases. Suppose
that either (i) PµF(C) = 0 or (ii) RµR(CR) = 0, but not
both. (The latter would amount to analyzing fluctuations
for a pair of trajectories that never occur.) Since our prob-
abilities are strictly nonnegative, the possible behaviors of
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the lefthand side are either +∞ or 0, respectively, by con-
sidering the limit of a vanishing probability. In case (i), by
definition either e−Qhk → +∞ or e∆Fnss → +∞ (or both)
for each forward trajectory, yielding agreement with the
lefthand side. In case (ii), similarly either e−Qhk → 0 or

e∆Fnss → 0 (or both) for each forward trajectory. Since
the preceding derivation established the TCFT for all
nondiverging cases, this establishes its validity even in
the divergent limiting cases.
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