
arXiv:2001.02258

Thermodynamically-Efficient Local Computation and the
Inefficiency of Quantum Memory Compression

Samuel P. Loomis∗ and James P. Crutchfield†
Complexity Sciences Center and Physics Department,

University of California at Davis, One Shields Avenue, Davis, CA 95616
(Dated: February 1, 2020)

Modularity dissipation identifies how locally-implemented computation entails costs beyond those
required by Landauer’s bound on thermodynamic computing. We establish a general theorem for
efficient local computation, giving the necessary and sufficient conditions for a local operation to
have zero modularity cost. Applied to thermodynamically-generating stochastic processes it confirms
a conjecture that classical generators are efficient if and only if they satisfy retrodiction, which places
minimal memory requirements on the generator. This extends immediately to quantum computation:
Any quantum simulator that employs quantum memory compression cannot be thermodynamically
efficient.

Keywords: stochastic process, ε-machine, predictor, generator, causal states, modularity, Landauer principle.
DOI: XX.XXXX/....

I. INTRODUCTION

Recently, Google AI announced a breakthrough in quan-
tum supremacy, using a 54-qubit processor (“Sycamore”)
to complete a target computation in 200 seconds, claim-
ing the world’s fastest supercomputer would take more
than 10,000 years to perform a similar computation [1].
Shortly afterward, IBM announced that they had proven
the Sycamore circuit could be successfully simulated on
the Summit supercomputer, leveraging its 250 PB storage
and 200 petaFLOPS speed to complete the target compu-
tation in a matter of days [2]. This episode highlights two
important aspects of quantum computing: first, the im-
portance of memory and, second, the subtle relationship
between computation and simulation.
Feynman [3] broached the notion that quantum computers
would be singularly useful for the simulation of quantum
processes, without supposing that this would also make
them advantageous at simulating classical processes. Here,
we explore issues raised by the recent developments in
quantum computing, focusing on the problem of simu-
lating classical stochastic processes via stochastic and
quantum computers. We show that using quantum com-
puters to simulate classical processes typically requires
nonzero thermodynamic cost, while stochastic computers
can theoretically achieve zero cost in simulating classi-
cal processes. This supports the viewpoint originally
put forth by Feynman—that certain types of comput-
ers would each be advantageous at simulating certain
physical processes—which challenges the current claims
of quantum supremacy. Furthermore, we show that in
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both classical and quantum simulations, thermodynamic
efficiency places a lower bound on the required memory
of the simulator.
To demonstrate both, we must prove a new theorem on
the thermodynamic efficiency of local operations. Cor-
relation is a resource: it has been investigated as such,
in the formalism of resource theories [4] such as that of
local operations with classical communication [5], with
public communication [6], and many others, as well as
the theory of local operations alone, under the umbrella
term of common information [7–9]. Correlations have
long been recognized as a thermal resource [10–13], en-
abling efficient computation to be performed when taken
properly into account. Local operations that act only
on part of a larger system are known to never increase
the correlation between the part and the whole; most
often, they are destructive to correlations and therefore
resource-expensive.
Thermodynamic dissipation induced by a local operation—
say on system A of a bipartite system AB to make a
new joint system CB—is classically proportional to the
difference in mutual informations [14]:

∆Sloc = kBT (I(A : B)− I(C : B)) .

This can be asymptotically achieved for quantum systems
[15]. By the data processing inequality [16, 17], it is
always nonnegative: ∆Sloc ≥ 0. Optimal thermodynamic
efficiency is achieved when ∆Sloc = 0.
To identify the conditions, in both classical and quantum
computation, when this is so, we draw from prior results
on saturated information-theoretic inequalities [18–24].
Specifically, using a generalized notion of quantum suf-
ficient statistic [24–27], we show that a local operation
on part of a system is efficient if and only if it unitarily
preserves the minimal sufficient statistic of the part for
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the whole. Our geometric interpretation of this also draws
on recent progress on fixed points of quantum channels
[28–31].
Paralleling previous results on ∆Sloc [14], our particu-
lar interest in locality arises from applying it to thermal
transformations that generate and manipulate stochas-
tic processes. This is the study of information engines
[12, 13, 32–35]. Rooted in computational mechanics [36–
39], which investigates the inherent computational prop-
erties of natural processes and the resources they con-
sume, information engines embed stochastic processes
and Markovian generators in the physical world, where
Landauer’s bound for the cost of erasure holds sway [10].
A key result for information engines is the information-
processing Second Law (IPSL): the cost of transforming
one stochastic process into another by any computation
is at least the difference in their Kolmogorov-Sinai en-
tropy rates [33]. However, actual physical generators and
transducers of processes, with their own internal memory
dynamics, often exceed the cost required by the IPSL
[14]. This arises from the temporal locality of a physi-
cal generator—only operating from timestep-to-timestep,
rather than acting on the entire process at once. The
additional dissipation ∆Sloc induced by this temporal
locality gives the true thermodynamic cost of operating
an information engine.
Previous work explored optimal conditions for a classical
information engine to generate a process. Working from
the hidden Markov model (HMM) [40] that determines
an engine’s memory dynamics, it was conjectured that
the HMM must be retrodictive to be optimal. For this
to hold, the current memory state must be a sufficient
statistic of the future data for predicting the past data
[14].
Employing a general result on conditions for reversible
local computation, the following confirms this conjecture,
in the form of an equivalent condition on the HMM’s
structure. We then extend this, showing that it holds
for quantum generators of stochastic processes [15, 41–
49]. Notably, quantum generators are known to provide
potentially unbounded advantage in memory storage when
compared to classical generators of the same process [42,
43, 45–48]. Surprisingly, the advantage is contingent:
optimally-efficient generators—those with ∆Sloc = 0—
must not benefit from any memory compression. We
show this to be true not only for previously published
quantum generators, but for a new family of quantum
generators as well, derived from time reversal [47, 50–52].
While important on its own, this also provides a comple-
mentary view to our previous result on quantum genera-
tors which showed that a quantum-compressed generator
is never less thermodynamically-efficient than the clas-

sical generator it compresses [15]. Combined with our
current result, one concludes that a quantum-compressed
generator is efficient with respect to the generator it com-
presses but, to the extent that it is compressed, it cannot
be optimally efficient. In short, only classical retrodic-
tive generators achieve the lower bound dictated by the
IPSL. Practically, this highlights a pressing need to ex-
perimentally explore the thermodynamics of quantum
computing.

II. THERMODYNAMICS OF QUANTUM
INFORMATION RESERVOIRS

The physical setting of our work is in the realm of in-
formation reservoirs—systems all of whose states have
the same energy level. Landauer’s Principle for quantum
systems says that to change an information reservoir A
from state ρA to state ρ′A requires a work cost satisfying
the lower bound:

W ≥ kBT ln 2 (H[ρA]−H[ρ′A]) .

where H[ρA] is the von Neumann entropy [17]. Note
that the lower bound Wmin := kBT ln 2 (H[ρA]−H[ρ′A])
is simply the change in free energy for an information
reservoir. Further, due to an information reservoir’s trivial
Hamiltonian, all of the workW becomes heat Q. Then the
total entropy production—of system and environment—is:

∆S := Q+ kBT ln 2∆ H[A]
= W −Wmin .

Thus, not only does Landauer’s Principle provide the
lower bound, but reveals that any work exceeding Wmin
represents dissipation.
Reference [14] showed that Landauer’s bound may indeed
be attained in the quasistatic limit for any channel acting
on a classical information reservoir. This result gener-
ally does not extend to single-shot quantum channels
[53]. However, when we consider asymptotically-many
parallel applications of a quantum channel, we recover
the tightness of Landauer’s bound [15].
These statements are exceedingly general. To derive use-
ful results, we must place further constraints on the
system dynamics to see how Landauer’s bound is af-
fected. Reference [14] introduced the following perspec-
tive. Consider a bipartite information reservoir AB, on
which we wish to apply the local channel E ⊗ IB, where
E : B (HA) → B (HC) maps the states of system A into
those of system C, transforming the initial joint state ρAB
to the final state ρCB. The Landauer bound for AB →
CB is given by Wmin = kBT ln 2 (H[ρAB ]−H[ρCB ]).
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However, since we constrained ourselves to use local
manipulations, the lowest achievable bound is actually
Wloc := kBT ln 2 (H[ρA]−H[ρC ]). Thus, we must have
dissipation of at least:

∆S ≥Wloc −Wmin

= kBT ln 2 (H[ρA]−H[ρAB ]−H[ρC ] + H[ρCB ])
= kBT ln 2 (I[A : B]− I[C : B]) .

where I[A : B] = H[ρA] + H[ρB ]−H[ρAB ] is the quantum
mutual information. And so, we have a minimal locality
dissipation:

∆Sloc := kBT ln 2 (I[A : B]− I[C : B]) ,

which arises because we did not use the correlations to
facilitate our erasure. See Fig. 1 for a simple example of
this phenomenon.
This local form of Landauer’s Principle is still highly gen-
eral, but the following shows how to examine it for specific
classical and quantum computational architectures The
key question we ask is: For which architectures can ∆Sloc
be made to exactly vanish? We first we consider this
problem generally and then provide a solution.

III. REVERSIBLE LOCAL COMPUTATION

Suppose we are given a bipartite system AB with state
ρAB. We wish to determine the conditions for a local
channel EA ⊗ IB that maps A to C:

ρ′CB = EA ⊗ IB (ρAB)

to preserve the mutual information I(A : B) = I(C :
B). Proofs of the following results are provided in the
Supplementary Material.
Stating our result requires first defining the quantum
notion of a sufficient statistic. Previously, quantum suf-
ficient statistics of A for B were defined when AB is a
classical-quantum state [27]. That is, when ρAB com-
mutes with a local measurement on A. They were also
introduced in the setting of sufficient statistics for a fam-
ily of states [24, 25]. This corresponds to the case where
AB is quantum-classical—ρAB commutes with a local
measurement on B. Our definition generalizes these cases
to fully-quantal correlations between A and B.
We start, as an example, by giving the following definition
of a minimum sufficient statistic of a classical joint random
variableXY ∼ Pr(x, y) in terms of an equivalence relation.
We define the predictive equivalence relation ∼ for which
x ∼ x′ if and only if Pr(y|x) = Pr(y|x′) for all y. The
minimum sufficient statistic (MSS) [X]Y is given by the
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FIG. 1. Thermodynamics of locality: Suppose we have two bits
XY in a correlated state where 1/2 probability is in XY = 00
and 1/2 probability is in XY = 11. (a) A thermodynamically
irreversible operation can be performed to erase only X (that
is, set X = 0 without changing Y ) if we are not allowed
to use knowledge about the state of Y . (b) A reversible
operation can be performed to erase X if we are allowed to use
knowledge about Y . Both operations have the same outcome
given our initial condition, but the nonlocal operation (a)
is more thermodynamically costly because it is irreversible.
According to Thm. 1, operation (a) is costly since it erases
information in X that is correlated with Y .

equivalence classes [x]Y := {x′ : x ∼ x′}. Let us denote
Σ := [X]Y and let Pr(y|σ) := Pr(y|x) for any x ∈ σ.
This cannot be directly generalized to the quantum setting
since correlations between A and B cannot always be
described in the form of states conditioned on the outcome
of a local measurement on A. If the latter were the
case, the state would be classical-quantum, but general
quantum correlations can be much more complicated than
these. However, we can take the most informative local
measurement that does not disturb ρAB and then consider
the “atomic” quantum correlations it leaves behind.
Let ρAB be a bipartite quantum state. A maximal local
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commuting measurement (MLCM) of A for B is any local
measurement X with projectors {Π(x)} on system A such
that:

ρAB =
⊕
x

Pr(X = x)ρ(x)
AB ,

where:

Pr(X = x) = Tr
(

(Π(x)
X ⊗ IB)ρAB

)
and:

Pr(X = x)ρ(x)
AB = (Π(x)

X ⊗ IB)ρAB(Π(x)
X ⊗ IB) ,

and any further local measurement Y on ρ
(x)
AB disturbs

the state:

ρ
(x)
AB 6=

∑
y

(Π(y)
Y ⊗ IB)ρ(x)

AB(Π(y)
Y ⊗ IB) .

We call the states
{
ρ

(x)
AB

}
quantum correlation atoms.

Proposition 1 (MLCM uniqueness). Given a state ρAB,
there is a unique MLCM of A for B.

Now, as in the classical setting, we define an equivalence
class over the values of the MLCM via the equivalence
between their quantum correlation atoms. Classically,
these atoms are simply the conditional probability dis-
tributions Pr(·|x); in the classical-quantum setting, they
are the conditional quantum states ρ(x)

B . Note that each
is defined as a distribution on the variable Y or system
B. In contrast, the general quantum correlation atoms
ρ

(x)
AB depend on both systems A and B.

The resulting challenge is resolved in the following way.
Let ρAB be a bipartite quantum state and let X be the
MLCM of A for B. We define the correlation equivalence
relation x ∼ x′ over values of X where x ∼ x′ if and only
if ρ(x)

AB = (U ⊗ IB)ρ(x′)
AB (U† ⊗ IB) for a local unitary U .

Finally, we define the Minimal Local Sufficient Statistic
(MLSS) [X]∼ as the equivalence class [x]∼ := {x′ : x′ ∼ x}
generated by the relation ∼ between correlation atoms.
Thus, our notion of sufficiency of A for B is to find the
most informative local measurement and then coarse-grain
its outcomes by unitary equivalence over their correlation
atoms. The correlation atoms and the MLSS [X]∼ to-
gether describe the correlation structure of the system
AB.
The machinery is now in place to state our result.
The proof depends on previous results regarding the
fixed points of stochastic channels [28–31] and saturated
information-theoretic inequalities [18–24]. This back-
ground and the proof are described in the SM.

Theorem 1 (Reversible local operations). Let ρAB be
a bipartite quantum state and let EA ⊗ IB be a local op-
eration with EA : B(HA) → B(HC). Suppose X is the
MLCM of ρAB and Y , that of ρCB = EA⊗ IB (ρAB). The
decomposition into correlation atoms is:

ρAB =
⊕
x

PrA (x) ρ(x)
AB and (1)

ρCB =
⊕
y

PrC (y) ρ(y)
CB . (2)

Then, I (A : B) = I (C : B) if and only if EA can be ex-
pressed by Kraus operators of the form:

K(α) =
⊕
x,y

eiφxyα
√

Pr(y, α|x)U (y|x) , (3)

where φxyα is any arbitrary phase and Pr (y, α|x) is a
stochastic channel that is nonzero only when ρ

(x)
AB and

ρ
(y)
CB are equivalent up to a local unitary operation U (y|x)

that maps H(x)
A to H(y)

C .

The theorem’s classical form follows as a corollary.

Corollary 1 (Reversible local operations, classical). Let
XY be a joint random variable and let Pr(Z = z|X = x)
be a channel from X to some set Z, resulting in the joint
random variable ZY . Then I(X : Y ) = I(Z : Y ) if and
only if Pr(Z = z|X = x) > 0 only when Pr(Y = y|Z =
z) = Pr(Y = y|X = x) for all y.

In light of the previous section, there is a simple ther-
modynamic interpretation of Thm. 1 and Cor. 1: local
channels that circumvent dissipation due to their locality
(i.e., those which have ∆Sloc = 0) are precisely those
channels that preserve the sufficiency structure of the
joint state. They may create and destroy any informa-
tion that is not stored in the sufficient statistic and the
correlation atoms. However, the sufficient statistic itself
must be conserved and the correlation atoms must be
only unitarily transformed.
We now turn to apply this perspective to classical and
quantum generators—systems that use thermodynamic
mechanisms to produce stochastic processes. We compute
the necessary and sufficient conditions for these generators
to have zero locality dissipation: ∆Sloc = 0. And so, in
this way we determine precise criteria for when they are
thermodynamically efficient.

IV. THERMODYNAMICS OF CLASSICAL
GENERATORS

A classical generator is the physical implementation of
a hidden Markov model (HMM) [40] G = (S,X , {T (x)

s′s }),
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FIG. 2. Information ratchet sequentially generating a
symbol string on an empty tape: At time step t, St is
the random variable for the ratchet state. The generated
symbols in the generated (output) process are denoted by
Xt−1, Xt−2, Xt−3, . . .. The most recently generated symbol
Xt (green) is determined by the internal dynamics of the
ratchet’s memory, using heat Q from the thermal reservoir
as well as work W from the work reservoir. (Inside ratchet):
Ratchet memory dynamics and symbol emission are governed
by the conditional probabilities Pr(st+1, xt|st), where st is the
current state at time t, xt is the generated symbol, and st+1
is the new state. Graphically, this is represented by a hidden
Markov model, depicted here as a state-transition diagram in
which nodes are states s and edges represent transitions s→ s′

labeled by the generated symbol and associated probability:
x : Pr(s′, x|s). (Reproduced with permission from Ref. [15].)

where (here) S is countable, X is finite, and for each
x ∈ X , T(x) is a matrix with values given by a stochastic
channel from S to S ×Y , T (x)

s′s := Pr G(s′, x|s). We define
generators to use recurrent HMMs, which means the
total transition matrix Ts′s :=

∑
x T

(x)
s′s is irreducible. In

this case, there is a unique stationary distribution πG(s)
over states S satisfying πG(s) > 0,

∑
s πG(s) = 1, and∑

s Ts′sπG(s) = πG(s′).
During its operation, a generator’s function is to produce
a stochastic process—for each `, a probability distribution
Pr G (x1 . . . x`) over words x1 . . . x` ∈ X `. The probabil-
ities for words of length ` generated by G are defined
by:

Pr G (x1 . . . x`) :=
∑

s0...s`∈S`+1

T (x`)
s`s`−1

. . . T (x1)
s1s0

π(s0) .

Typically, we view a generator as operating over discrete
time, writing out a sequence of symbols from x ∈ X on
a tape, while internally transforming its memory state;
see Fig. 2. Starting with an initial state S0 ∼ π(s) and
empty tape at time t = 0, the entire system at time t is
described by the joint random variable X1 . . . XtSt, with
distribution:

Pr G (x1 . . . xt, st) :=
∑

s0...st−1∈St
T (xt)
stst−1

. . . T (x1)
s1s0

πG(s0) .

Continuing this technique, one can compute the joint
random variable X1 . . . XtStXt+1St+1.

This picture of a generator as operating on a tape
while continually erasing and rewriting its internal mem-
ory allows us to define the possible thermodynamics,
also shown in Fig. 2. Erasure generally requires work,
drawn from the work reservoir, while the creation of
noise often allows the extraction of work, which is repre-
sented in our sign convention by drawing negative work
from the reservoir. Producing a process X1 . . . Xt ∼
Pr (x1 . . . xt) of length t has an associated work cost
W ≥ −kBT ln 2H (X1 . . . Xt). The negative sign, as
discussed, indicates work kBT ln 2 H (X1 . . . Xt) may be
transferred from the thermal reservoir to the work reser-
voir. For large t, this can be asymptotically expressed by
the work rate W/t ≥ −kBT ln 2 hµ, where:

hµ := lim
t→∞

1
t

H[X1 . . . Xt]

is the process’ Kolmogorov-Sinai entropy rate [33]. This
is a reasonable description of the average entropy rate
of a process that is stationary—that is, Pr(Xt . . . Xt+` =
x1 . . . x`−1) is independent of t—and ergodic. Said differ-
ently, for large t a typical realization x1 . . . xt contains
the word x̂1 . . . x̂` approximately t× Pr(x̂1 . . . x̂`) times.
Recurrent generators produce exactly these sorts of pro-
cesses.

Now, a given generator cannot necessarily be imple-
mented as efficiently as the minimal work rate Wmin :=
−kBT ln 2 hµ indicates. This is because a generator acts
temporally locally, only being able to use its current
memory state to generate the next memory state and
symbol. The true cost at time t must be bounded below
by Wloc := Wmin + ∆Sloc, where in this case the locality
dissipation is [14]:

∆Sloc =kBT ln 2 (I (St : X1 . . . Xt)
− I (St+1Xt+1 : X1 . . . Xt)) .

In this case, the dissipation does not represent work lost
to heat but rather the increase in tape entropy that did
not facilitate converting heat into work. To understand
this in some detail, this section identifies the necessary
and sufficient conditions for efficient generators—those
with ∆Sloc = 0.

To state our result for classical generators, we must intro-
duce two further notions regarding generators. As before,
proofs of results are given in the SM. Consider a partition
of S: P = {Pθ}, Pθ ∩Pθ′ ,

⋃
θ Pθ = S, labeled by index θ.
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Let:

Pr GP (θ′, x|θ) :=
∑
s′∈Pθ′
s∈Pθ

Pr G (s′, x|s)π(s|θ) ,

with πG(s|θ) = πG(s)/πGP (θ) and πGP (θ) =∑
s∈Pθ πG(s). We say a partition {Pθ} is mergeable

with respect to the generator G = (S,X , {T (x)
s′s }) if the

merged generator GP = (P,X , {T̃ (x)
θ′θ }), with transitions

T̃
(x)
θ′θ := Pr (θ′, x|θ), generates the same process as the

original.
Pertinent to our goals here is the notion of
retrodictive equivalence. Let Pr G (x1 . . . xt|st) :=
Pr G (x1 . . . xt, st) /πG(st). Given two states s, s′ ∈ S
of a generator (S,X , {T (x)

s′s }), we say that s ∼ s′

if Pr G (x1 . . . xt|s) = Pr G (x1 . . . xt|s′) for all words
x1 . . . xt. The equivalence class [St]∼ is the sufficient
statistic of St for predicting the past symbols X1 . . . Xt.
The set P∼ := {[s]∼ : s ∈ S} of equivalence classes is a
partition on S that we index by σ.

Proposition 2. Given a generator (S,X , {T (x)
s′s }), the

partition P := P∼ induced by retrodictive equivalence is
mergeable.

We now state our theorem for efficient classical generators:

Theorem 2. A generator G = (S,X , {T (x)
s′s }) satis-

fies I (St : X1 . . . Xt) = I (St+1Xt+1 : X1 . . . Xt) for all
t if and only if the retrodictively state-merged generator
GP = (P∼,X , {T̃ (x)

σ′σ}) satisfies T̃ (x)
σ′σ ∝ δσ,f(σ′,x) for some

function f : S × X → S.

We say that a generator G = (S,X , {T (x)
s′s }) satisfying

T
(x)
s′s ∝ δs,f(s′,x) for some f is co-unifilar. The dual prop-

erty T
(x)
s′s ∝ δs′,f(s,x) for some f is called unifilar [54].

For every process, there is a unique generator, called the
reverse ε-machine, constructed by retrodictively state-
merging any co-unifilar generator [48]. Similarly, using a
different partition, called predictive equivalence on states,
any unifilar generator for a process can be state-merged
into a unique generator called the forward ε-machine of
that process [48].
The reverse ε-machine has the following property. Let−→
X t := Xt+1Xt+1 . . . represent all future generated sym-
bols, the reverse ε-machine state Σt at time t is the min-
imum sufficient statistic of −→X t for predicting X1 . . . Xt.
Any generator whose state St is a sufficient statistic of −→X t

for X1 . . . Xt is called a retrodictor. The reverse ε-machine
can then be considered the minimal retrodictor.
Reference [14] conjectured that the necessary and suffi-
cient condition for ∆Sloc = 0 is that the generator in
question is a retrodictor. In the SM we confirm this by

establishing that the conditions of Thm. 8 imply the
generator is a retrodictor.
A similar result, for classical generators, was presented
in [34] where a lower bound on ∆Sloc was derived for
predictive generators (Eq. (A23) in [34]). A consequence
of this bound is that ∆Sloc = 0 only when the predictor is
also a retrodictor. However, this bound does not extend
to nonpredictive generators. In contrast, Thm. 8 applies
to all generators.
Our result is complemented by another recent result [35],
which demonstrated how from a predictive generator one
can construct a sequence of generators that asymptoti-
cally approach a retrodictor and whose dissipation ∆Sloc
asymptotically approaches zero. Helpfully, this result
points to possible perturbative extensions of Thm. 8.
These results bear on the trade-off between dissipation
and memory for classical generators. The reverse (for-
ward) ε-machine, being a state-merging of any co-unifilar
(unifilar) generator, is minimal with respect to the co-
unifilar (unifilar) generators via all quantifications of the
memory, such as the number of memory states |S| and
the entropy H[S] [48].
As a consequence, we now see that the above showed that
any thermodynamically efficient generator can be state-
merged into a co-unifilar generator. This means it can
be further state-merged into the reverse ε-machine of the
process it generates. In short, thermodynamic efficiency
comes with a memory constraint. And, when the memory
falls below this constraint, dissipation must be present.

V. THERMODYNAMICS OF QUANTUM
MACHINES

A process’ forward ε-machine, a key player in the previous
section, may be concretely defined as the unique generator
G = (S,X , {T (x)

s′s }) for a given process satisfying [38]:

1. Recurrence: Ts′s :=
∑
x T

(x)
s′s is an irreducible ma-

trix;
2. Unifilarity: T (x)

s′s > 0 only when s′ = f(s, x) for
some function f : S × X → S;

3. Predictively Distinct States: Pr(xtxt+1 . . . x`|st) =
Pr(xtxt+1 . . . x`|s′t) for all ` and xtxt+1 . . . x` im-
plies st = st′ .

ε-Machines are a process’ minimal unifilar generators,
in the sense that they are smallest with respect to the
number of memory states |S|, the entropy H[S], and
all other ways of measuring memory, such as the Rényi
entropies Hα[S] := 1

1−α log2 (
∑
s πG(s)α). In this, they

are unique.



7

However, one can implement ε-machines with even lower
memory costs, by encoding them in a quantum system
and generating symbols by means of a noisy measurement.
This encoding is called a q-machine. In terms of qubits,
as a unit of size, these implementations can generate
the same process at a much lower memory cost that the
ε-machine’s bit-based memory cost. It has also been
shown that these quantum implementations have a lower
locality cost Wloc than their corresponding ε-machine,
and so they are more thermodynamically efficient [15].
This section identifies the constraints for quantum genera-
tors to have zero dissipation; that is, ∆Sloc = 0. We show
that this results in a peculiar pair of constraints. First,
the forward ε-machine memory must not be smaller than
the memory of the reverse ε-machine. (This mirrors the
results of Thm. 8 in SM.) Second, the quantum generator
achieves no compression. That is, the memory of the
quantum generator in qubits is precisely the memory of
the forward ε-machine in bits. Thus, compression of mem-
ory and perfect thermodynamic efficiency are exclusive
outcomes.
To state this precisely, we review q-machines and introduce
several new definitions to capture their properties. (See
the SM for the proofs.)

Given a forward ε-machine G = (S,X , {T (x)
s′s }), for any

set of phases {φxs : x ∈ X , s ∈ S} there is an encoding
{|ψs〉 : s ∈ S} of the memory states S into a Hilbert space
HS and a set of Kraus operators {K(x) : x ∈ X} on said
Hilbert space such that:

K(x) |ψs〉 = eiφxs
√
T

(x)
f(s,x),s |ψf(s,x)〉 .

This expression implicitly defines the Kraus operators
given the encoding {|ψs〉}. The encoding, in turn, is de-
termined up to a unitary transformation by the following
constraint on their overlaps:

〈ψr|ψs〉 =
∑
x∈X

ei(φxs−φxr)
√
T

(x)
r′,rT

(x)
s′,s 〈ψr′ |ψs′〉 ,

where r′ = f(r, x) and s′ = f(s, x). This equation has a
unique solution for every choice of phases {φxs} [49].
We note that if πG(s) is the ε-machine’s stationary distri-
bution, then the stationary state of this quantum genera-
tor is given by the ensemble:

ρπ =
∑
s

πG(s) |ψs〉 〈ψs|

and satisfies:

ρπ =
∑
x

K(x)ρπK
(x)† .

When we say that a quantum generator uses less memory
than its classical counterpart, we mean that dimHS ≤ |S|,
H[ρπ] ≤ H[S], and further that Hα[ρπ] ≤ Hα[S], where
Hα[ρπ] := 1

1−α log2 Tr [ραπ ] are the Rényi-von Neumann
entropies [42, 47, 48].
To see this quantum generator as a physical system, as
in Fig. 2, requires us interpreting the tape being written
on as a series of copies of a single Hilbert space HA that
represents one cell on the tape. On HA we define the
computational basis {|x〉 : x ∈ X} in which outputs will
be written. The system at time t can be described using
the joint Hilbert space HA1 ⊗HAt ⊗HS , where each HAk
is unitarily equivalent to HA, and the state is:

ρG(t) :=
∑
x1...xt

|x1 . . . xt〉 〈x1 . . . xt| ⊗K(xt...x1)ρπK
(xt...x1)† ,

where K(xt...x1) = K(xt) . . .K(x1) and |x1 . . . xt〉 =
|x1〉A1

⊗ · · · ⊗ |xt〉At . From this we get the process gener-
ated by the ε-machine and quantum generator in terms
of the Kraus operators as:

Pr G (x1 . . . xt) := Tr
[
K(xt...x1)ρπK

(xt...x1)†
]
. (4)

Let us now briefly discuss the thermodynamic properties
of quantum generators, homing in on our main result
about conditions for their efficiency. The previous section
discussed how a process, to be generated, requires the
minimal work rate Wmin = −kBT ln 2 hµ. However, this
is not typically achievable for classical generators. The
same principle holds for quantum generators: Since they
act temporally locally, the true cost at time t is bounded
below byWloc = Wmin+∆Sloc and the locality dissipation
∆Sloc has the same form:

∆Sloc = kBT ln 2 (I (St : A1 . . . At)
− I (St+1At+1 : A1 . . . At)) .

(5)

There are two crucial differences, though. First, the
mutual information I above is the quantum mutual infor-
mation derived from the von Neumann entropy. Second,
even the work rate Wloc is not necessarily achievable in
the single-shot case [53]. However, it may be attained for
asymptotically parallel generation [15]. We will not con-
cern ourselves with this second problem here. Our intent
is to focus, as in the previous section, on the necessary
and sufficient conditions for ∆Sloc = 0.
The preceding material was, in fact, review. We now
introduce a simple partition that may be constructed on
the memory states of the ε-machine for a given quan-
tum implementation. Specifically, we define the maximal
commuting partition (MCP) on S to be the most refined
partition {Bθ} such that the overlap matrix 〈ψr|ψs〉 is
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Thermal Efficiency
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FIG. 3. Performance trade-offs for q-machines, whose variety
and dependence on phases {φxs} is depicted by a torus: Under
all ways of quantifying memory, the q-machines constructed
from a predictor achieve nonnegative memory compression [48],
and they also have a smaller dissipation ∆Sloc, rendering them
more thermodynamically efficient [15]. However, to achieve
positive compression, they must also have a nonzero ∆Sloc,
rendering them less efficient than a classical retrodictor.

block-diagonal. That is, {Bθ} is such that 〈ψr|ψs〉 = 0 if
r ∈ Bθ and s ∈ Bθ′ for θ 6= θ′.
Our result on thermodynamically-efficient quantum gen-
erators is as follows.

Theorem 3 (Maximally-efficient quantum generator).
Let G = (S,X , {T (x)

s′s }) be a given process’ ε-machine.
Suppose we build from it a quantum generator with encod-
ing {ψs} and Kraus operators {K(x)}. Let B := {Bθ} be
the MCP of S. Then the quantum generator has ∆Sloc = 0
if and only if the partition B is trivially maximal—in that
|Bθ| = 1 for each θ—and the retrodictively state-merged
generator GB of G is co-unifilar.

We previously found that, in the limit of asymptoti-
cally parallel generation, a quantum generator is always
more thermodynamically efficient than its corresponding
ε-machine, in that it has a lower dissipation [15]. Yet
this does not imply dissipation can be made to vanish
for quantum generators of a process. In fact, only for
processes whose forward ε-machine is also a retrodictor
can dissipation be made to vanish. In these cases, the
memory states will be orthogonally encoded, and so no
memory compression is achieved, which is seen by the
trivial maximality of B. The situation is heuristically
represented in Fig. 3.

VI. THERMODYNAMICS OF REVERSE
q-MACHINES

We showed that forward ε-machines compressed via the
q-machine cannot achieve the efficiency of a classical retro-
dictor. However, one may wonder what happens to a retro-
dictor’s optimal efficiency if it is directly compressed. We

now demonstrate a method for such compression, derived
from the time-reversal of the q-machine, and prove that
even here any nonzero compression of memory precludes
optimal efficiency.
A process’ reverse ε-machine may be defined similarly
to the forward ε-machine as the unique generator G =
(S,X , {T (x)

s′s }) for a given process satisfying:

1. Recurrence: Ts′s :=
∑
x T

(x)
s′s is an irreducible ma-

trix;
2. Co-unifilarity: T (x)

s′s > 0 only when s = f(s′, x) for
some function f : S × X → S;

3. Retrodictively Distinct States: Pr(x1 . . . xt|st) =
Pr(x1 . . . xt|s′t) for all t and x1 . . . xt implies st = st′ .

Reverse ε-machines are a process’ minimal co-unifilar
generators, in the sense that they are smallest with respect
to the number of memory states |S|, the entropy H[S],
and all other ways of measuring memory, such as the
Rényi entropies Hα[S] := 1

1−α log2 (
∑
s πG(s)α).

There is an intricate relationship between forward and
reverse ε-machines that can only be appreciated in the
language of time reversal. The time-reverse of a generator
G = (S,X , {T (x)

s′s }) is the generator G̃ = (S,X , {T̃ (x)
s′s})

where T̃
(x)
s′s = πsT

(x)
s′s /πs′ [52]. The generator G̃ is

associated with the reverse process, Pr
G̃

(x1 . . . xt) =
PrG (xt . . . x1). Note that time reversal preserves both
the state space S and the stationary distribution πs.
Given a process’ forward ε-machine F, its time reverse F̃ is
the reverse ε-machine of the reverse process. Conversely,
given a process’ reverse ε-machine G, its time reverse G̃

is the forward ε-machine of the reverse process. Since
the stationary distribution and state space are preserved
under time reversal, F and F̃ have the same memory costs,
as do G and G̃. However, somewhat surprisingly, this
does not mean that F and G have the same memory costs
[51].
Previous work compared the results of compressing the for-
ward ε-machine F of a process and the forward ε-machine
G̃ of the reverse process using the q-machine formalism.
The result, for compressing G̃, is a q-machine that gener-
ates the reverse process—remarkably, with identical cost
to the q-machine constructed from F [47].
The q-machine constructed from G̃ is a quantum process
and as such can itself undergo quantum time-reversal
[50], resulting in a new process that we call the reverse
q-machine. Just as the q-machine compresses G̃, the
reverse q-machine is a compression of G. Though the
reverse q-machine is derived from the q-machine via time-
reversal, there is genuinely new physics present, as the
dissipation ∆Sloc (Eq. (5)) is not invariant under time-
reversal. Thus, they must be approached as a separate
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case from the traditional q-machine when examining their
thermodynamic efficiency.
The details of the time-reversal are handled in the SM.
Here, we present the resulting technique for compressing
the reverse ε-machine. Given a reverse ε-machine G =
(S,X , {T (x)

s′s }), for any set of phases {φxs : x ∈ X , s ∈ S}
there is an encoding {|ψs〉 : s ∈ S} of orthogonal states
into a Hilbert space HS and a set of Kraus operators
{K(x) : x ∈ X} on said Hilbert space such that:

K(x) |ψs〉 =
∑
s′∈S

eiφxs′
√
T

(x)
s′s |ψs′〉 .

The orthogonality of {|ψs〉} allows us to turn this into an
explicit definition of the Kraus operators:

K(x) =
∑
s′∈S

eiφxs′
√
T

(x)
s′f(s′,x) |ψs′〉 〈ψf(s′,x)| .

The stationary state ρπ of this machine is, unlike the q-
machine, generically not expressible as an ensemble of the
encoding states {|ψs〉}. If this were so, the orthogonality
of {|ψs〉} would make them a diagonalizing basis for ρπ,
and we would achieve no memory compression. Rather,
compression is achieved for the reverse q-machine precisely
because the stationary state ρπ is generically not diagonal
in the encoding states—in contrast to the q-machine,
which derived compression from the nonorthogonality of
the encoding states.
The reverse q-machine stochastic dynamics Eq. (4) and
thermodynamics Eq. (5) are defined precisely as those for
q-machines in the previous section. As before, to prove our
result we must define a special partition of the generator
states. Here, it is important to note a relationship between
a process’ forward ε-machine F =

(
P,X ,

{
R

(x)
p′p

})
and

its reverse ε-machine G =
(
S,X ,

{
T

(x)
s′s

})
. Specifically,

the state St of G after seeing the word x1 . . . xt and the
state Pt of F after the same are related by:

Pr
G̃

(st|x1 . . . xt) =
∑
pt

Pr C (st|pt) Pr F (pt|x1 . . . xt)

for some channel Pr C (s|p). Let λp be the station-
ary distribution of F’s states and let Pr E (s′|s) =∑
p Pr C (s|p) Pr C (s′|p)λp/πs. Let B = {Bθ} be the er-

godic partition of Pr E (s′|s), such that Pr E (s′|s) > 0 only
when θ(s) = θ(s′). The SM shows that the ρπ is diagonal
in the blocks defined by B.
Our result for reverse q-machines, proven in the SM, can
now be stated:

Theorem 4 (Maximally-efficient reverse q-machine). Let
G = (S,X , {T (x)

s′s }) be a given process’ reverse ε-machine.

Reverse εM

Reverse
q-machines

Quantum

Inefficiency

Memory

Compression

Thermal Efficiency

Memory

FIG. 4. Performance trade-offs for reverse q-machines, whose
variety and dependence on {φxs} is represented by a torus:
Under all quantifications of memory, the reverse q-machines
constructed from a retrodictor achieve nonnegative memory
compression. However, to achieve positive compression, they
must also have a nonzero dissipation ∆Sloc. The latter renders
them less thermodynamically efficient.

Suppose we build from it a reverse q-machine with encod-
ing {|ψs〉} and Kraus operators {K(x)}. Let B := {Bθ} be
the MCP of S. Then the reverse q-machine has ∆Sloc = 0
if and only if the partition B is trivially maximal—in that
|Bθ| = 1 for each θ—and the predictively state-merged
generator GB of G is unifilar.

Notice that this is a similar statement to that made in the
last section and is essentially its time reverse. It implies
that the only reverse ε-machines which can be quantally
compressed are those which are also predictive generators.
Also, again the trivial maximality of the ergodic partition
B implies an inability to achieve nonzero compression. A
heuristic diagram of the situation is shown in Fig. 4.
In conjunction with the previous section, this is a profound
result on the efficiency of quantum memory compression.
Distinct from the classical case, where Thm. 8 established
that every process has certain generators that do achieve
zero dissipation, Thms. 10 and 3 imply that only certain
processes have zero-dissipation quantum generators and,
moreover, those particular processes achieve no memory
compression. The memory states, being orthogonally
encoded, take no advantage of the quantum setting to
reduce their memory cost.

VII. CONCLUDING REMARKS

We identified the conditions under which local operations
circumvent the thermodynamic dissipation ∆Sloc that
arises from destroying correlation. We started by showing
how a useful theorem can be derived using recent results
on the fixed points of quantum channels. We applied it to
the setting of local operations to determine the necessary
and sufficient conditions for vanishing ∆Sloc in classical
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and quantum settings, with the aid of a generalized notion
of quantum sufficient statistic. We employed this funda-
mental result to review and extend previous results on
the thermodynamic efficiency of generators of stochastic
processes. We confirmed a recent conjecture regarding
the conditions for vanishing ∆Sloc in a classical generator.
And, then, we showed the exact same conditions hold
for quantum generators, even to the point of requiring
orthogonal encoding of memory states. This implies the
profound result that quantum memory compression and
perfect efficiency (∆Sloc = 0) are incompatible.
It is appropriate here to recall the lecture by Feynman
in the early days of thinking about quantum computing,
in which he observed that quantum systems can only be
simulated on classical (even probabilistic) computers with
great difficulty, but on a fundamentally-quantum com-
puter they could be more realistically simulated [3]. Here,
we considered the task of simulating a classical stochas-
tic process by two means: one by using fundamentally-
classical but probabilistic machines and the other by using
a fundamentally-quantum machine. Previous results gen-
erally indicated quantum machines are advantageous in
memory for this task, in comparison to their classical
counterparts. Historically, this led to a much stronger
notion of “quantum supremacy” than Feynman proposed:
quantum computers may be advantageous in all tasks
[55].
However, the quantum implementation we examined,
though advantageous in memory, requires nonzero dissipa-

tion in order to cash in on that advantage. Furthermore,
not every process necessarily has a quantum generator
that achieves zero dissipation. This is in sharp contrast to
the classical outcome. And so, this returns us to the spirit
of Feynman’s vision for simulating physics, in which it
may sometimes be the case that the best machine to sim-
ulate a classical stochastic process is a classical stochastic
computer—at least, thermodynamically speaking.
To further exercise these results, further extensions must
be made to quantum generators, beyond the q-machine
and its time reverse. We must determine if the exclusive
relationship between compression and zero dissipation
continues to hold in such extensions. We pursue this
question in forthcoming work.
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Supplementary Materials

Thermodynamically-Efficient Local Computation and the
Inefficiency of Quantum Memory Compression

Samuel P. Loomis and James P. Crutchfield

The Supplementary Materials give a quick notational overview, review (i) fixed points of quantum channels, reversible
computation, and sufficient statistics, (ii) quantum implementations of classical generators and q-machines and their
thermodynamic costs, and (iii) provide details on example calculations. The intention is that the main development be
accessible while, together with the Supplementary Materials, the full treatment becomes self-contained.

Appendix A: Notation and Basic Concepts

1. State, Measurement, and Channels

Quantum systems are denoted by letters A, B, and C and represented by Hilbert spaces HA, HB, HC , respectively.
A system (say A) has state ρA that is a positive bounded operator on HA. The set of bounded operators on HA is
denoted by B (HA) and the set of positive bounded operators by B+ (HA).
Measurements W , X, Y , and Z take values in the countable sets W, X , Y, and Z, respectively. A measurement X
on system A is defined by a set of Kraus operators

{
K(x) : x ∈ X

}
over HA that satisfy the completeness relation:∑

xK
(x)†K(x) = IA—the identity on HA. Given state ρA and measurement X, the probability of outcome x ∈ X is:

Pr (X = x; ρA) := Tr
(
K(x)ρAK

(x)†
)

and the state is transformed into:

ρA|X=x := K(x)ρAK
(x)†

Pr (x; ρA) .

If the Kraus operators
{
K(x) : x ∈ X

}
are orthogonal to one another and projective, then X is called a projective

measurement. Otherwise, X is called a positive-operator valued measure (POVM).
Given a set of projectors {Π(x)} on a Hilbert space HA, such that

∑
x Π(x) = IA is the identity, we may decompose

HA =
⊕

xH
(x)
A into a direct sum of subspaces H(x)

A , each one corresponding to the support of projector Π(x). We will
use the direct sum symbol

⊕
to indicate sums of orthogonal objects. For instance, if ρ(x)

A is a state on H(x)
A for each

x, then
⊕

x ρ
(x)
A represents a block-diagonal density matrix over HA. Similarly, if K(y|x)

A represents a linear operator
from H(x)

A to H(y)
A , then

⊕
x,yK

(y|x)
A represents a linear operator from HA to itself, defined by a block matrix with

diagonal (x = y) and off-diagonal elements.
If HA =

⊕
xH

(x)
A and all the H(x)

A are unitarily equivalent to one another, then we can equivalently write HA =
HA1 ⊗HA2 where HA1 is equivalent to each of the H(x)

A and HA2 is equivalent to C|X |.
Let ρA and σA be states in B+ (HA). If, for every measurement X and outcome x ∈ X , Pr (x;σA) > 0 implies that
Pr (x; ρA) > 0, then we write ρA � σA, indicating that ρA is absolutely continuous with respect to σA.
To discuss classical systems, we eschew states and instead focus directly on the measurements. In this setting,
measurements are called random variables. Here, a random variable X is defined over a countable set X , taking values
x ∈ X with a specified probability distribution Pr (X = x). When the variable can be inferred from context, we will
simply write the probabilities as Pr (x).
A random variable X can generate a quantum state ρA through an ensemble

{(
Pr(X = x), ρ(x)

A

)}
of potentially

nonorthogonal states such that:

ρA =
∑
x∈X

Pr (X = x) ρ(x)
A .
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A quantum channel is a linear map E : B (HA) → B (HC) that is trace-preserving and completely positive. These
conditions are equivalent to requiring that there is a random variable X and a set of Kraus operators {K(x) : x ∈ X}
such that:

E (ρA) =
∑
x

K(x)ρAK
(x)† ,

for all ρA.1 To every channel E there is an adjoint E†:

Tr (E(ρA)M) = Tr
(
ρAE†(M)

)
,

for every state ρA ∈ B+ (HA) and operator M ∈ B (HA). The adjoint has the form:

E† (M) =
∑
x

K(x)†MK(x) .

Given a subspace HB ⊆ HA, we denote the restriction of E to HB as E|HB : B (HB)→ B (HC). A map E : B (HA)→
B (HA) is ergodic on a space HA if there is no proper subspace HB ⊆ HA such that the range of E|HB is limited to
B (HB). E is ergodic if and only if it has a unique stationary state E (πA) = πA [29, and references therein].

The classical equivalent of a quantum channel is, of course, the classical channel that maps a set X to Y according
to the conditional probabilities Pr (Y = y|X = x). This may be alternately represented by the stochastic matrix
T := (Tyx) such that Tyx = Pr (Y = y|X = x). Stochastic matrices are also defined by the conditions that Tyx ≥ 0 for
all x ∈ X and y ∈ Y and

∑
y Tyx = 1 for all x ∈ X . A channel from X to itself is ergodic if there is no proper subset

Y ⊂ X such that, for x ∈ Y, Pr (X ′ = x′|X = x) > 0 only when x′ ∈ Y as well. This is equivalent to requiring that
Tx′x := Pr (X ′ = x′|X = x) is an irreducible matrix.

A classical channel Pr(Y = y|X = x) can be induced from a joint distribution Pr(x, y) by the Bayes’ rule Pr(y|x) :=
Pr(x, y)/

∑
y Pr(x, y), so that the joint distribution may be written as Pr(x, y) = Pr(x) Pr(y|x). Given three random

variablesXY Z, we writeX−Y −Z to denote thatX, Y , and Z form aMarkov chain: Pr(x, y, z) = Pr(x) Pr(y|x) Pr(z|y).
The definition is symmetric in that it also implies Pr(x, y, z) = Pr(z) Pr(y|z) Pr(x|y).

2. Entropy, Information, and Divergence

The uncertainty of a random variable or measurement is considered to be a proxy for its information content. Often,
uncertainty is measured by the Shannon entropy:

H (X) := −
∑
x∈X

Pr (x) log2 Pr (x) ,

when it does not diverge. Given a system A with state ρA, the quantum uncertainty is the von Neumann entropy:

H (A) := −Tr (ρA log2 ρA) .

When the same system may have many states in the given context, this is written directly as H (ρA). It is the smallest
entropy that can be achieved by taking a projective measurement of system A. The minimum is attained by the
measurement that diagonalizes ρA.

There are many ways of quantifying the information shared between two random variables X and Y . The most familiar

1 It is sufficient for our purposes to consider the case where Kraus operators form a countable set. This holds, for instance, as long as we
work with separable Hilbert spaces.
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is the mutual information:

I (X : Y ) := H (X) +H (Y )−H (XY )

=
∑
x,y

Pr (x, y) log2

(
Pr (x, y)

Pr (x) Pr (y)

)
.

Corresponding to the mutual information are the conditional entropies:

H (X|Y ) := H (X)− I (X : Y ) and
H (Y |X) := H (Y )− I (X : Y ) .

We will also have occasion to use the conditional mutual information for three variables:

I(X : Y |Z) :=
∑
x,y,z

Pr(x, y, z) log2

(
Pr(x, y|z)

Pr(x|z) Pr(y|z)

)
.

Note that an equivalent condition for X−Y −Z is the vanishing of the conditional mutual information: I(X : Z|Y ) = 0.

For a bipartite quantum state ρAB the mutual information is usually taken to be the analogous quantity I (A : B) =
H(A) +H(B)−H(AB) and the conditional entropies as H (A|B) = H(AB)−H(B) and so on.

We need a way to compare quantum systems and classical random variables. Consider an ensemble
{(

Pr(X = x), ρ(x)
A

)}
generating average state ρA and define its Holevo quantity:

I (A : X) := H (ρA)−
∑
x

Pr (x)H
(
ρ

(x)
A

)
.

Consider the ensemble-induced state ρAB defined by:

ρAB =
∑
x∈X

Pr (X = x) ρ(x)
A ⊗ |x〉 〈x| ,

where {|x〉} is an orthogonal basis on HB . Such a state is called quantum-classical, or classical-quantum if the role of
A and B are swapped. In the first case, I(A : B) = I (A : X), where I(A : B) is the mutual information of ρAB and
I(A : X) is the Holevo quantity of the ensemble.

Consider random variables X1 and X2 over the same set X with two possible distributions Pr(X1 = x) and Pr(X2 = x),
respectively, and suppose that whenever Pr(X2 = x) > 0 we have Pr(X1 = x) > 0 as well. Then, we can quantify the
difference between the two distributions with the relative entropy:

D (Pr(X1)‖Pr(X2)) :=
∑
x∈X

Pr(X1 = x) log2
Pr(X1 = x)
Pr(X2 = x) .

Similarly, two states ρA and σA with ρA � σA may be compared via the quantum relative entropy:

D (ρA‖σA) := Tr (ρA log2 ρA − ρA log2 σA) .

The relative entropy leads to allied information-theoretic quantities. For instance:

I(X : Y ) = D (Pr (X,Y )‖Pr (X) Pr (Y )) ,

and:

I(A : B) = D (ρAB‖ρA ⊗ ρB) .

One of the most fundamental information-theoretic inequalities is the monotonicity of the relative entropy under
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AEADf ⊗ A′
E A′

Df⊗

A(x=1)

A(x=0)

⊕

FIG. S1. Quantum channel decompositions: Conserved measurement X divides the Hilbert space “vertically” via an
orthogonal decomposition, H(x=0)

A ⊕H(x=1)
A , represented above by labels A(x=0) and A(x=1). For each value of x, there is a

“horizontal” decomposition into the tensor product of an ergodic subspace and a decoherence-free subspace: H(x)
A = H(x)

AE
⊗H(x)

ADf
,

represented respectively by the labels AE and ADf . According to Theorem 6, information-theoretic reversibility requires storing
data in the conserved measurement and the decoherence-free subspace. Any information stored coherently with respect to the
conserved measurement (stored in the ergodic subspace) will be irreversibly modified under the channel’s action.

transformations. This is the data processing inequality [16]. For a quantum channel E it says:

D (E (ρA)‖E (ρA)) ≤ D (ρA‖σA) (S1)

The condition for equality requires constructing the Petz recovery channel:

Rσ(·) = σ1/2E†
(
E(σA)−1/2 · E(σA)−1/2

)
σ1/2 . (S2)

It is easy to check that Rσ ◦ E (σA) = σA. A markedly useful result is that D (E (ρA)‖E (ρA)) = D (ρA‖σA) if and only
if Rσ ◦ E (ρA) = ρA as well [18, 19].

Two other forms of the data processing inequality are useful to note here. The first uses another quantity for measuring
distance between states called the fidelity:

F (ρ, σ) :=
(

Tr
[√√

ρσ
√
ρ

])2
. (S3)

It takes value F = 0 when the states ρ and σ are completely orthogonal and value F = 1 if and only if ρ = σ. The
data processing inequality for fidelity states that for any quantum channel E :

F (E(ρ), E(σ)) ≥ F (ρ, σ) . (S4)

This is yet another way of saying that states map closer together under a quantum channel E .

The second form arises from applying Eq. (S1) to the mutual information. Let EA : B (HA)→ B (HC) be a quantum
channel. The local operation EA ⊗ IB maps a bipartite system AB to CB. The data processing inequality Eq. (S1)
implies that we have I(C : B) ≤ I(A : B).

In these terms, our thermodynamic efficiency goal—∆Sloc = 0—translates into determining conditions for equality—
I(C : B) = I(A : B)—using the Petz recovery channel and channel fixed points.
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Appendix B: Fixed Points and Reversible Computation

To understand our result on local channels, an illustrative starting point is a key result on fixed points of quantum
channels [28, 29] that leads to a natural decomposition, as illustrated in Fig. S1.

Theorem 5 (Channel and Stationary State Decomposition). Suppose E : B (HA)→ B (HA) is a quantum channel,
Hilbert space HA has a transient subspace HT, and there is a projective measurement X =

{
Π(x)} on H⊥T with countable

outcomes X , such that HA = HT ⊕
(⊕

xH
(x)
A

)
, where H(x)

A is the support of Π(x). Then:

1. Subspace H(x)
A is preserved by E, in that for all ρ ∈ B

(
H(x)
A

)
, we have E (ρ) ∈ B

(
H(x)
A

)
.

2. Subspace H(x)
A further decomposes into an ergodic subspace H(x)

AE
and decoherence-free subspace H(x)

ADf
:

H(x)
A = H(x)

AE
⊗H(x)

ADf
,

such that the Kraus operators of E|H⊥T decompose as [30]:

K(α) =
⊕
x∈X

K
(α,x)
AE

⊗ U (x)
ADf

(S1)

and the map E(x)
AE

(·) :=
∑
αK

(α,x)
AE

·K(α,x)†
AE

has a unique invariant state π(x)
AE

.
3. Any subspace of H satisfying the above two properties is, in fact, H(x)

A for some x ∈ X .

Furthermore, if ρA is any invariant state—that is, ρA = EA (ρA)—then it decomposes as:

ρA =
⊕
x∈X

Pr (x)π(x)
AE
⊗ ρ(x)

ADf
, (S2)

for any distribution Pr (x) and state ρ(x)
ADf

satisfying U (x)
ADf

ρ
(x)
ADf

U
(x)†
ADf

= ρ
(x)
ADf

.

Figure S1 gives the geometric structure implied by the theorem. The ergodic subspace of quantum channel E has two
complementary decompositions. First, there is an orthogonal decomposition H⊥T =

⊕
xH

(x)
A induced by a projective

measurement X whose values are conserved by E ’s action. This conservation is decoherent: only states compatible
with X are stationary under the action of E . X is called the conserved measurement of E [31]. Then, each H(x)

A has a
tensor decomposition H(x)

A = H(x)
AE
⊗H(x)

ADf
into an ergodic (E) and a decoherence-free (Df) part. The decoherence-free

subspace H(x)
ADf

undergoes only a unitary transformation [30]. The ergodic part H(x)
AE

is irreducibly mixed such that
there is a single stationary state.
This result’s contribution here is to aid in identifying when the data-processing inequality saturates. That is, using
Thm. 5 and the Petz recovery channel, we derive necessary and sufficient constraints on the structures of ρA, σA, and
EA for determining when D (E (ρA)‖E (σA)) = D (ρA‖σA).
To achieve this, we recall a previously known result [22, 23], showing that it can be derived using only the Petz recovery
map and Thm. 5. The immediate consequence is a novel proof.

Theorem 6 (Reversible Information Processing). Suppose for two states ρA and σA on a Hilbert space HA and a
quantum channel E : B (HA)→ B (HA), we have:

D (ρA‖σA) = D (ρC‖σC) ,

where ρC = EA (ρA) and σC = EA (σA). Then there is a measurement X on A with countable outcomes X and
orthogonal decompositions HE =

⊕
xH

(x)
A and H(x)

C such that:

1. For all ρ ∈ B
(
H(x)
A

)
and E (ρ) ∈ B

(
H(x)
C

)
, the mapping E|H(x)

A

onto B
(
H(x)
C

)
is surjective.
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2. Subspaces H(x)
A further decompose into:

H(x)
A = H(x)

AE
⊗H(x)

ADf
and

H(x)
C = H(x)

CE
⊗H(x)

CDf
,

so that H(x)
CE

and H(x)
ADf

are unitarily equivalent and the Kraus operators decompose as:

L(α) =
⊕
x∈X

L
(α,x)
AE

⊗ U (x)
ADf

. (S3)

Furthermore, states ρA and σA satisfy:

ρA =
∑
x∈X

Pr (x; ρ)π(x)
AE
⊗ ρ(x)

ADf
(S4a)

σA =
∑
x∈X

Pr (x;σ)π(x)
AE
⊗ σ(x)

ADf
(S4b)

for some π(x)
AE

. And, their images are:

ρC =
∑
x∈X

Pr (x; ρ)π(x)
CE
⊗ ρ(x)

CDf
(S5a)

σC =
∑
x∈X

Pr (x;σ)π(x)
CE
⊗ σ(x)

CDf
, (S5b)

where π(x)
CE

= E(x)
AE

(
π

(x)
AE

)
, ρ(x)

CDf
= U

(x)
ADf

ρ
(x)
ADf

U
(x)†
ADf

, and σ(x)
CDf

= U
(x)
ADf

σ
(x)
ADf

U
(x)†
ADf

.

We know that Nσ := Rσ ◦ E must have both ρA and σA as stationary distributions. Let X be the conserved
measurement of Nσ. It induces the decompositions HA = HT ⊕

(⊕
xH

(x)
A

)
and H(x)

A = H(x)
AE
⊗H(x)

ADf
, as well as the

state decompositions Eq. (S4).
Now, we leverage the fact that Nσ|H⊥T has Kraus decomposition of the form Eq. (S1). The net effect is summed up by
two constraints:

1. For each α, K(α) maps each H(x)
A to itself.

2. Let K(α,x) be the block of K(α) restricted to H(x)
A . Let M be a complete projective measurement on H(x)

ADf
with

basis {|m〉} and define the transformed basis {|m̃〉 = U (x) |m〉}. Now, let H(x,m)
A =

{
|ψ〉 ⊗ |m〉 : |ψ〉 ∈ H(x)

AE

}
and

similarly for H(x,m̃)
A . Then, K(z,x) maps H(x,m)

A to H(x,m̃)
A . This holds for any measurement M .

Proving Eq. (S3) requires these two constraints. Each is a form of distinguishability criterion for the total channel
Nσ|H⊥T . Since Nσ can tell certain orthogonal outcomes apart, so too must E . Or else, Rσ would “pull apart”
nonorthogonal states. However, this is impossible for a quantum channel. By formally applying this notion to
constraints 1 and 2 above, we recover Eq. (S3).
Let L(α) be the Kraus operators of E|H⊥T . Then K

(α) = σ1/2L(α)†E(σ)1/2L(z). Now, if L(α) did not map each H(x)
A to

some orthogonal subspace H(x)
C , then for some distinct x and x′ there would be |ψ〉 ∈ H(x)

A and |φ〉 ∈ H(x′)
C such that

F (E(|ψ〉 〈ψ|), E(|φ〉 〈φ|)) > 0; recall Eq. (S3) defines fidelity. However, we must also have F (Nσ(|ψ〉 〈ψ|),Nσ(|φ〉 〈φ|)) =
0, which is impossible by Eq. (S4) since as applying Rσ cannot reduce fidelity. So, it must be the case that L(α) maps
each H(x)

A to some orthogonal subspace H(x)
C . This proves Claim 1 in Thm. 6.

Let L(α,x) be the block of L(z) restricted to H(x)
A . Further, let M be a complete measurement on H(x)

ADf
. Then E|H(x)

A

must map each H(x,m)
A onto orthogonal subspaces H(x,m)

C of H(x)
C , lest Nσ|H(x)

A

could not map each H(x,m)
A to orthogonal

spaces H(x,m̃)
A . This follows from fidelity, as in the previous paragraph.
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Now, let L(α,x,m) : H(x)
AE
→ H(x,m)

C , so that:

L(α,x) =
⊕
m

L(α,x,m) ⊗ 〈m| .

Let N be another complete measurement on H(x)
ADf

such that |n〉 =
∑
m wm,n |m〉, with wm,n a unitary matrix. And,

let n, n′ ∈ N be distinct. We have for any |ψ〉 that:

E(x) (|ψ〉 〈ψ| ⊗ |n〉 〈n|) =
∑
α

⊕
m,m′

wm′,nw
∗
m,nL

(α,x,m) |ψ〉 〈ψ|L(α,x,m′)† and

E(x) (|ψ〉 〈ψ| ⊗ |n′〉 〈n′|) =
∑
α

⊕
m,m′

wm′,n′w
∗
m,n′L

(α,x,m) |ψ〉 〈ψ|L(α,x,m′)† .

Now, it must be that E(x) (|ψ〉 〈ψ| ⊗ |n〉 〈n|) and E(x) (|ψ〉 〈ψ| ⊗ |n′〉 〈n′|) are orthogonal. However:

Tr
[
E(x) (|ψ〉 〈ψ| ⊗ |n〉 〈n|) E(x) (|ψ〉 〈ψ| ⊗ |n′〉 〈n′|)

]
=
∑
α,α′

∑
m

wm,nw
∗
m,n′ 〈ψ|L(α,x,m)†L(α,x,m)|ψ〉 .

This vanishes for arbitrary N and |ψ〉 only if L(α|x,m)†L(α′|x,m) is independent of m for each α and α′. This implies
that L(α|x,m) = W (m)L

(α|x)
E for some unitary W (m).

All of which leads one to conclude that the H(x,m)
C for each m must be unitarily equivalent. And so, the decomposition

H(x)
C =

⊕
mH

(x,m)
C instead becomes a tensor product decomposition H(x)

C = H(x)
CE
⊗H(x)

CDf
and further that L(α,x) =

L
(α,x)
AE

⊗ V (x)
ADf

.

Finally, the constraints Eq. (S5) follow from the form of E and Eq. (S4). �

Theorem 6’s main implication is that, when a channel E acts, information stored in the conserved measurement
and in the decoherence-free subspaces is recoverable. Two states that differ in terms of the conserved measurement
and the decoherence-free subspaces remain different and do not grow more similar under E ’s action. Conversely,
information stored in measurements not compatible with the conserved measurement or stored in the ergodic subspaces
is irreversibly garbled by E .

The next section uses this decomposition to study how locally acting channels impact correlations between subsystems.
This directly drives the thermodynamic efficiency of local operations. Namely, for thermodynamic efficiency correlations
must be stored specifically in the conserved measurement and decoherence-free subspaces of the local channel.

Appendix C: Quantum Sufficient Statistics and Reversible Local Operations

Let’s review the definition of sufficient statistic in the main body. Let ρAB be a bipartite quantum state. A maximal
local commuting measurement (MLCM) of A for B is any local measurement X on system A such that:

ρAB =
⊕
x

Pr(X = x)ρ(x)
AB ,

where:

Pr(X = x) = Tr
(

(Π(x)
X ⊗ IB)ρAB

)
and:

Pr(X = x)ρ(x)
AB = (Π(x)

X ⊗ IB)ρAB(Π(x)
X ⊗ IB) ,
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and any further local measurement Y on ρ(x)
AB disturbs the state:

ρ
(x)
AB 6=

∑
y

(Π(y)
Y ⊗ IB)ρ(x)

AB(Π(y)
Y ⊗ IB) .

We call the states
{
ρ

(x)
AB

}
quantum correlation atoms.

Proposition 3 (MLCM uniqueness). Given a state ρAB, there is a unique MLCM of A for B.

Suppose there were two distinct MLCMs, X and Y . Then:

ρAB =
∑
y

Pr(X = x)(Π(y)
Y ⊗ IB)ρAB(Π(y)

Y ⊗ IB) .

This can be written as:

ρAB =
⊕
x

∑
y

Pr(X = x)(Π(y)
Y ⊗ IB)ρ(x)

AB(Π(y)
Y ⊗ IB) .

However, this means for each x:

(Π(y)
Y ⊗ IB)ρ(x)

AB(Π(y)
Y ⊗ IB) = ρ

(x)
AB .

So, X is not a MLCM, giving a contradiction. �
It will be helpful in our study of quantum generators to have the following fact as well:
Proposition 4 (MLCM for a classical-quantum state). Given a classical-quantum state:

ρAB :=
∑
x

Pr (x) |x〉 〈x| ⊗ ρ(x)
B ,

the MLCM is the most refined measurement Θ such that:

ρ
(x)
B =

∑
θ

Π(θ)ρ
(x)
B Π(θ)

for all x.

Given that Θ is a commuting local measurement, the question is whether it is maximal. If it is not maximal, though,
there is a refinement Y that is also a commuting local measurement. By Θ’s definition, there is an x such that
ρ

(x)
B 6=

∑
y Π(y)ρ

(x)
B Π(y). This implies ρAB 6=

∑
y(I ⊗ Π(y))ρAB(I ⊗ Π(y)), contradicting the assumption that Y is

commuting local. �
Now, let ρAB be a bipartite quantum state and let X be the MLCM of A for B. We define the correlation equivalence
relation x ∼ x′ over values of X where x ∼ x′ if and only if ρ(x)

AB = (U ⊗ IB)ρ(x′)
AB (U† ⊗ IB) for a local unitary U .

Finally, we define the Minimal Local Sufficient Statistic (MLSS) [X]∼ as the equivalence class [x]∼ := {x′ : x′ ∼ x}
generated by the relation ∼ between correlation atoms. Thus, our notion of sufficiency of A for B is to find the most
informative local measurement and then coarse-grain its outcomes by unitary equivalence over their correlation atoms.
The correlation atoms and the MLSS [X]∼ together describe the correlation structure of the system AB.
Using this definition and Theorem 6 we can prove our result on reversible local operations.
Theorem 7 (Reversible local operations). Let ρAB be a bipartite quantum state and let EA ⊗ IB be a local operation
with EA : B(HA)→ B(HC). Suppose X is the MLCM of ρAB and Y , that of ρCB = EA⊗ IB (ρAB). The decomposition
into correlation atoms is:

ρAB =
⊕
x

PrA (x) ρ(x)
AB and (S1)

ρCB =
⊕
y

PrC (y) ρ(y)
CB . (S2)
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Then, I (A : B) = I (C : B) if and only if EA can be expressed by Kraus operators of the form:

K(α) =
⊕
x,y

eiφxyα
√

Pr(y, α|x)U (y|x) , (S3)

where φxyα is any arbitrary phase and Pr (y, α|x) is a stochastic channel that is nonzero only when ρ(x)
AB and ρ(y)

CB are
equivalent up to a local unitary operation U (y|x) that maps H(x)

A to H(y)
C .

We can apply the Reversible Information Processing Theorem (Thm. 6) from the previous section here. This demands
that there be a measurement X and a decomposition of the Hilbert space HA = HAE ⊗HADf such that:

ρAB =
∑
x

PrA (x) ρ(x)
(AB)E

⊗ ρ(x)
(AB)Df

ρA ⊗ ρB =
∑
x

PrA (x) ρ(x)
(AB)E

⊗
(
ρ

(x)
ADf
⊗ ρ(x)

BDf

)
,

such that EA ⊗ IB conserves measurement X and acts decoherently on (AB)E and coherently on (AB)Df . However,
the local nature of EA ⊗ IB makes it clear we can simplify this decomposition to:

ρAB =
∑
x

PrA (x) ρ(x)
AE
⊗
(
ρ

(x)
ADfB

)
ρA ⊗ ρB =

∑
x

PrA (x) ρ(x)
AE
⊗
(
ρ

(x)
ADf
⊗ ρB

)
,

where EA conserves the local measurement X on A and acts decoherently on AE and acts as a local unitary UADf ⊗ IB
on ADfB.
Suppose now, however, that given X the variable Yx is the diagonalizing measurement of ρ(x)

AE
and Zx is the MLCM

of ρ(x)
ADfB

. The joint measurement XYXZX—where X is measured first and then the other two measurements are
determined with knowledge of its outcome—is the MLCM of ρAB . Note that for any x and z, the outcomes (x, y, z)
and (x, y′, z) are correlation equivalent: measurement YX is completely decoupled from system B. Then, the MLSS
Σ := [XYXZX ]B is simply a function of X and ZX .
Since XZX is conserved by the action of EA ⊗ I—where X is the conserved measurement, while ZX is preserved
through the unitary evolution—the MLSS Σ must be preserved and each correlation atom is transformed only by a
local unitary. This results in the form Eq. (S3).
This proves that I (A : B) = I (C : B) implies Eq. (S3). The converse is straightforward to check. Let Σ = [X]B and
let I (A : B|Σ = σ) be the mutual information of ρ(x)

AB for any x ∈ σ. (This is the same for all such x by local unitary
equivalence.) Then:

I(A : B) =
∑
σ

Pr (Σ = σ) I (A : B|Σ = σ) .

Similarly, let Σ′ = [Y ]B and let I (C : B|Σ′ = σ′) be the mutual information of ρ(y)
CB for any y ∈ σ′; then:

I(C : B) =
∑
σ′

Pr (Σ′ = σ′) I (C : B|Σ′ = σ′) .

Since E isomorphically maps each σ to a unique σ′, such that I (A : B|Σ = σ) = I (C : B|Σ′ = σ′) by unitary equivalence,
we must have I(A : B) = I(C : B). �

Appendix D: Classical Generators

Recall the definitions from the main body. A classical generator is the physical implementation of a hidden Markov
model (HMM) [40] G = (S,X , {T (x)

s′s }), where (here) S is countable, X is finite, and for each x ∈ X , T(x) is a matrix
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with values given by a stochastic channel from S to S ×Y , T (x)
s′s := Pr G(s′, x|s). We define generators to use recurrent

HMMs, which means the total transition matrix Ts′s :=
∑
x T

(x)
s′s is irreducible. In this case, there is a unique stationary

distribution πG(s) over states S satisfying πG(s) > 0,
∑
s πG(s) = 1, and

∑
s Ts′sπG(s) = πG(s′).

The following probability distributions are particularly relevant:

Pr G (x1 . . . x`) :=
∑

s0...s`∈S`+1

T (x`)
s`s`−1

. . . T (x1)
s1s0

π(s0) .

Pr G (x1 . . . xt, st) :=
∑

s0...st−1∈St
T (xt)
stst−1

. . . T (x1)
s1s0

πG(s0) .

Also, recall the definition of a mergeable partition and retrodictive equivalence. Each partition P = {Pθ} of S has a
corresponding merged generator GP = (P,X , {T̃ (x)

θ′θ }) with transition dynamics given by:

T̃
(x)
θ′θ :=

∑
s′∈Pθ′
s∈Pθ

Pr G (s′, x|s)π(s|θ) ,

where πG(s|θ) = πG(s)/πGP (θ) and πGP (θ) =
∑
s∈Pθ πG(s). A partition {Pθ} is mergeable if the merged generator

generates the same process as the original.

One example of a partition is the retrodictive equivalence class. Two states s, s′ ∈ S are considered equivalent s ∼ s′ if
Pr G (x1 . . . xt|s) = Pr G (x1 . . . xt|s′) for all words x1 . . . xt. The equivalence class [St]∼ is the sufficient statistic of St
for predicting the past symbols X1 . . . Xt. The set P∼ := {[s]∼ : s ∈ S} of equivalence classes is a partition on S that
we index by σ.

Proposition 5. Given a generator (S,X , {T (x)
s′s }), the partition P := P∼ induced by retrodictive equivalence is

mergeable.

To see this, we follow a proof by induction. We first suppose that the distribution PrGP (x1 . . . xt, σt) is equal to the
distribution:

Pr G (x1 . . . xt, σt) :=
∑

st∈Pσt

Pr G (x1 . . . xt, st) ,

for some t. Then, noting that:

Pr G (x1 . . . xt+1, st+1) =
∑
st

Pr G (x1 . . . xt|st)πG(st)T (xt+1)
st+1st

=
∑
σt

st∈Pσt

Pr G (x1 . . . xt|σt)πG(σt)πG(st|σt)T (xt+1)
st+1st ,

we have:

Pr G (x1 . . . xt+1, σt+1) =
∑
σt

st∈Pσt
st+1∈Pσt+1

Pr GP (x1 . . . xt−1, σt−1) T̃ (xt+1)
σt+1σt

= Pr GP (x1 . . . xt+1, σt+1) .
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Now, for t = 1, we have:

Pr GP (x1, σ1) =
∑
σ0

πGP (σ0)T̃ (x1)
σ1σ0

=
∑
σ0

∑
s0∈Pσ0
s1∈Pσ1

πGP (σ0)πG(s0|σ0)T (x1)
s1s0

=
∑
s1

Pr G (x1, s1) .

Then, by induction, PrGP (x1 . . . xt, σt) = PrG (x1 . . . xt, σt) for all t. By summing over σt, we have PrGP (x1 . . . xt) =
PrG (x1 . . . xt) for all t as well. �
Using this result and the Reversible Local Operations Theorem, we can establish the following.

Theorem 8. A generator G = (S,X , {T (x)
s′s }) satisfies I (St : X1 . . . Xt) = I (St+1Xt+1 : X1 . . . Xt) for all t if and

only if the retrodictively state-merged generator GP = (P∼,X , {T̃ (x)
σ′σ}) satisfies T̃ (x)

σ′σ ∝ δσ,f(σ′,x) for some function
f : S × X → S.

To see this, recall from Cor. 1 that I (St : X1 . . . Xt) = I (St+1Xt+1 : X1 . . . Xt) only if Pr G (st+1, xt+1|st) > 0 implies:

Pr G (x1 . . . xt|st+1, xt+1) = Pr G (x1 . . . xt|st) .

Now, note that:

Pr G (x1 . . . xt+1|st+1) = Pr G (x1 . . . xt|st+1, xt+1) Pr (xt+1|st+1)
= Pr G (x1 . . . xt|st) Pr (xt+1|st+1) .

Rearranging and using the retrodictive equivalence partitions σt := [st]∼ and σt+1 := [st+1]∼, we have:

Pr GP (x1 . . . xt|σt) = Pr GP (x1 . . . xt+1|σt+1)
Pr GP (xt+1|σt+1) . (S1)

Define a function f : S × X → S as follows. For a given σ′ and x, let f(σ′, x) be the equivalence class such that:

Pr GP (·|f(σ′, x)) = Pr GP (·, x|σ′)
Pr GP (x|σ′) .

Such an equivalence class f(σ′, x) must exist by Eq. (S1). It is unique since, by definition, equivalence classes σ have
unique distributions Pr (·|σ). Then σt = f(σt+1, xt+1) is a requirement for Pr GP (σt+1, xt+1|σt) > 0. If we then take
the merged generator GP , we must have T̃ (x)

σ′σ > 0 only when σ = f(σ′, x).
Conversely, suppose that the retrodictively state-merged generator GP = (P∼,X , {T̃ (x)

σ′σ}) satisfies T̃ (x)
σ′σ ∝ δσ,f(σ′,x) for

some function f : S ×X → S. Then, for a given st, its equivalence class [st]∼ is always a function of the next state and
symbol: [st]∼ = f ([st+1]∼, xt+1). This implies the Markov chain [St]∼ −Xt+1St+1 −X0 . . . Xt. However, we also have
the chain Xt+1St+1 − [St]∼ −X0 . . . Xt from the basic Markov property of the generator. Therefore, we must have:

I (St+1Xt+1 : X1 . . . Xt) = I ([St]∼ : X1 . . . Xt)
= I (St : X1 . . . Xt) .

�

Last, we connect this result to previous literature on the efficiency of retrodictors by showing that our conditions for
efficiency imply that the generator is retrodictive. Recall that any generator whose state St is a sufficient statistic of−→
X t for X1 . . . Xt is called a retrodictor.

Proposition 6. A generator G = (S,X , {T (x)
s′s }) whose retrodictively state-merged generator GP = (P∼,X , {T̃ (x)

σ′σ})
satisfies T̃ (x)

σ′σ ∝ δσ,f(σ′,x) for some function f : S × X → S is a retrodictor.
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This follows since GP , being co-unifilar and already retrodictively state-merged, must be the reverse ε-machine with
states Σt. It is clear from the proof of Prop. 5 that for all t, we have the Markov chain (X1 . . . Xt)−Σt − St. Since Σt
is also the minimum sufficient statistic of −→X t for X1 . . . Xt, we must have the Markov chain (X1 . . . Xt) −

−→
X t − St.

Combined with the Markov chain (X1 . . . Xt)−St−
−→
X t, we conclude that St is a sufficient statistic of −→X t for X1 . . . Xt.

�

Appendix E: Forward and Reverse q-Machines

1. q-Machines and Their Time Reversals

A q-machine is constructed from a forward ε-machine G = (S,X , {T (x)
s′s }) by choosing any set of phases {φxs : x ∈

X , s ∈ S} and constructing an encoding {|ψs〉 : s ∈ S} of the memory states S into a Hilbert space HS , and a set of
Kraus operators {K(x) : x ∈ X} on said Hilbert space. The phases, encoding states and the Kraus operators satisfy
the formula:

K(x) |ψs〉 = eiφxs
√
T

(x)
f(s,x),s |ψf(s,x)〉 . (S1)

This expression implicitly defines the Kraus operators given the encoding {|ψs〉}. The encoding, in turn, is determined
up to a unitary transformation by the following constraint on their overlaps:

〈ψr|ψs〉 =
∑
x∈X

ei(φxs−φxr)
√
T

(x)
r′,rT

(x)
s′,s 〈ψr′ |ψs′〉 , (S2)

where r′ = f(r, x) and s′ = f(s, x) [49].
Now, let Ωrs := 〈ψr|ψs〉 be the unique solution to Eq. (S2), which is effectively an eigenvalue equation for a superoperator.
Notice that this is entirely determined by the phases {φxs} and the dynamics {T (x)

s′s } of the original ε-machine. It
can be computed without any reference to encoding states or Kraus operators. Indeed, once Ωrs is determined, the
encoding states and Kraus operators can be explicitly constructed.
Let √πrπsΩrs =

∑
α UrαU

∗
sαλα be the singular value decomposition of √πrπsΩrs into a unitary Uiα and singular

values λα > 0. Suppose α = 1, . . . , d. Then given any computational basis {|α〉 : α = 1, . . . , d}, we can construct:

|ψs〉 =
∑
α

√
λα
πs
U∗sα |α〉 and (S3)

K(x) =
∑
α,β,s

eiφxsU∗s′βUsα

√
λβπs
λαπs′

T
(x)
s′s |β〉 〈α| . (S4)

It is easy to check that 〈ψr|ψs〉 = Ωrs and that Eq. (S1) is satisfied by this construction. Notice that:

ρπ =
∑
s

πs |ψs〉 〈ψs| =
∑
α

λα |α〉 〈α| .

So the computational basis α is the diagonal basis of the stationary state ρπ.
This explicit construction is useful for time-reversing the q-machine. Let G be a reverse ε-machine. The time-reverse of
a generator G is the generator G̃ = (S,X , {T̃ (x)

s′s}) where T̃ (x)
s′s = πsT

(x)
s′s /πs′ . G̃ is the forward ε-machine of the reverse

process. From it, we can construct a q-machine, with Kraus operators expressed by
{
K̃(x)

}
. Recall that the generated

process of the q-machine is given by

Pr
G̃

(x1 . . . xt) := Tr
[
K̃(xt...x1)ρπK̃

(xt...x1)†
]
.

This is the time-reverse of the process generated by G, expressed in the equation Pr
G̃

(x1 . . . xt) = Pr G (xt . . . x1). In
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terms of the q-machine, we can write:

Pr G (x1 . . . xt) := Tr
[
K̃(xt) . . . K̃(x1)ρπK̃

(x1)†K̃(xt)†
]

= Tr
[
K(xt) . . .K(x1)ρπK

(x1)† . . .K(xt)†
]
,

where K(x) = ρ
1/2
π K̃(x)†ρ

−1/2
π . This is, essentially, the Petz reversal of the POVM {K̃(x)}, and it constitutes a formal

time-reversal of the quantum process [50].
Computing K(x) is straightforward using Eq. (S3), as this gives the Kraus operators in the diagonal basis of ρπ, where
it is easiest to compute ρ1/2

π and its inverse. We have:

K(x) =
∑
α,β,s

e−iφxsUs′βU
∗
sα

√
πs
πs′

T̃
(x)
s′s |α〉 〈β| .

Now, take the basis |ψs〉 =
∑
α U
∗
sα |α〉. In this basis:

K(x) =
∑
s′

e−iφxs′
√
T

(x)
s′s |ψs′〉 〈ψs| .

Thus, we see that the basis {|ψs〉} and Kraus operators {K(x)} form a reverse q-machine as described in the main
body—one that compresses the reverse ε-machine G.
Note that the stationary state of a time-reversed q-machine is just the stationary state of the original q-machine—this
is not altered under time reversal. However, we find a new expression for the stationary state, in terms of the basis
{|ψs〉}:

ρπ =
∑
r,s,α

λαU
∗
rαUsα |ψs〉 〈ψr|

=
∑
r,s

√
πrπsΩsr |ψs〉 〈ψr| .

So, ρπ is generally not diagonal in the basis {|ψs〉}. The extent to which ρ commutes with {|ψs〉} is the extent to
which Ωrs is block-diagonal.

2. Efficiency of q-Machines

To establish our first theorem relating memory to efficiency we turn to forward q-machines. First, we must prove a
result regarding the synchronization of q-machine states.

Proposition 7 (Synchronization of q-machines). Let ρx1...xt := Pr G (x1 . . . xt)−1
K(xt...x1)ρπK

(xt...x1)† be the state of
the q-machine’s memory system after seeing the word x1 . . . xt. Further, let ŝ(x1 . . . xt) := argmaxst Pr(st|x1 . . . xt) be
the most likely memory state after seeing the word x1 . . . xt and let F (x1 . . . xt) := F (ρx1...xt , |ψŝ〉 〈ψŝ|) be the fidelity
between the quantum state of the memory system and the most likely encoded state. Then, there exist 0 < α < 1 and
K > 0 such that, for all t:

Pr
(
F (x1 . . . xt) < 1− αt

)
≤ Kαt .

This shows that the quantum state of the memory system converges to a single encoded state with high probability.

This follows straightforwardly from a similar statement about ε-machines [38, 56, 57]. Let Q(x1 . . . xt) := 1 −
Pr(ŝ|x1 . . . xt) be the probability of not being in the most likely state after word x1 . . . xt. Then there exist 0 < α < 1
and K > 0 such that, for all t:

Pr
(
Q(x1 . . . xt) > αt

)
≤ Kαt .
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Note that, from the Kraus operator definition, the quantum state of the memory system after word x1 . . . xt is:

ρx1...xt =
∑
st

Pr (st|x1 . . . xt) |ψst〉 〈ψst | .

Now, the fidelity can be computed as:

F (x1 . . . xt) = Tr
[√
|ψŝ〉 〈ψŝ| ρx1...xt |ψŝ〉 〈ψŝ|

]2

= 〈ψŝ|ρx1...xt |ψŝ〉

= Pr (ŝ|x1 . . . xt) +
∑
st 6=ŝ

Pr (st|x1 . . . xt) |〈ψst |ψŝ〉|
2

≥ 1−Q (x1 . . . xt) .

And so, from the synchronization theorem for ε-machines, we have:

Pr
(
F (x1 . . . xt) < 1− αt

)
≤ Kαt .

for all t. �
The second notion we must introduce is a simple partition that may be constructed on the memory states of the
ε-machine for a given quantum implementation. Specifically, we define the maximal commuting partition on S to
be the most refined partition {Bθ} such that the overlap matrix 〈ψr|ψs〉 is block-diagonal. That is, {Bθ} is such
that 〈ψr|ψs〉 = 0 if r ∈ Bθ and s ∈ Bθ′ for θ 6= θ′. From this partition we construct the maximally commuting local
measurement required to define sufficient statistics.
Proposition 8. Let ρG(t) be the state of the system A1 . . . AtSt at time t. Let Θ be the projective measurement on HS
corresponding to the MCP of the quantum generator. Then, for sufficiently large t, Θ is the MLCM of St. Similarly,
XtΘ is the MLCM of AtSt.

By Prop. 4, the MLCM must leave each ρx1...xt unchanged, for all t. This is true for Θ. The question is if any
nontrivial refinement, say Y , of Θ can do so. Now, realize that for any ε > 0, there is sufficiently large t, so that for
each state s there must be at least one word x1 . . . xt satisfying F (ρx1...xt , |ψs〉 〈ψs|) > 1 − ε. Then, for sufficiently
large t, it must be the case that there exists a word x1 . . . xt such that Y modifies ρx1...xt , because Y (by virtue of
being a refinement of the maximal commuting partition) cannot commute with all the |ψs〉 〈ψs|. Therefore, Θ is the
maximal commuting local measurement. That XtΘ is the MLCM of AtSt follows from similar considerations. �
We can now prove the following.
Theorem 9 (Maximally-efficient quantum generator). Let G = (S,X , {T (x)

s′s }) be a given process’ ε-machine. Suppose
we build from it a quantum generator with encoding {ψs} and Kraus operators {K(x)}. Let B := {Bθ} be the MCP of
S. Then the quantum generator has ∆Sloc = 0 if and only if the partition B is trivially maximal—in that |Bθ| = 1 for
each θ—and the retrodictively state-merged generator GB of G is co-unifilar.

We define ρ(θ)
G (t) := Π(θ)ρG(t)Π(θ), so that ρG(t) =

⊕
θ ρ

(θ)
G (t). For the equivalence relation we say that θ ∼ θ′ if ρ(θ)

G (t)
and ρ(θ′)

G (t) are unitarily equivalent on the subsystem S. This defines a partition P = {[θ]∼} over the set {Bθ}.
The quantum channel:

E (ρ) :=
∑
x

K(x)ρK(x)† ⊗ |x〉 〈x|

has Kraus operators L(x) := K(x)⊗ |x〉. The MLCM of AtSt is XtΘt. Now, Thm. 1 demands that the Kraus operators
L(x) have the form:

L(x) =
⊕
θ,θ′

√
Pr(θ′, x|θ)U (x,θ′|θ)

=
⊕
θ,θ′

√
Pr(θ′, x|θ) |x〉 ⊗ U (x)

θ 7→θ′ .
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This implies that the quantum-generator Kraus operators have the form:

K(x) =
⊕
θ,θ′

√
Pr(θ′, x|θ)U (x)

θ 7→θ′ . (S5)

The values Pr(θ′, x|θ) must be positive only when θ′x ∼ θ.

Now, we note that this means there is a machine (B,X , {T̂ (x)
θ′θ }) with transition probabilities T̂ (x)

θ′θ := Pr(θ′, x|θ) that
generates the process. By the previous paragraph’s conclusion, a merged machine must have the property that merging
its retrodictively equivalent states results in a co-unifilar machine.

However, there is more to consider here. We assumed starting with a process’ ε-machine. This means each state st
must have a unique prediction of the future Pr (xt+1 . . . x`|st). In fact, we can relate these predictions to the partition:

Pr (xt+1 . . . x`|st) = Tr
[
K(x`...xt+1) |ψs〉 〈ψs|K(x`...xt+1)†

]
=

∑
θt+1...θ`

Pr(θt+1, xt+1|θ(st)) . . .Pr(θ`, x`|θ`−1) .

Which, we see, only depends on the partition index θ. Then any two st, s′t ∈ Bθ with st 6= s′t have the same future
prediction, which is not possible for an ε-machine. Then, it must be the case that each partition has only one element:
|Bθ| = 1 for all θ. The remainder of the theorem follows directly. �

3. Efficiency of Reverse q-Machines

To establish a similar theorem for the reverse q-machine, we must build similar prerequisite notions. It will be necessary,
first, to be very precise about all the time-reversals at play here.

The reverse q-machine is built from the reverse ε-machine G of a process PrG. This generates strings of random
variables X1 . . . XL. The time-reversed generator G̃ is the forward ε-machine of the process Pr

G̃
and generates strings

of random variables X̃1 . . . X̃t, where X̃j = Xt−j+1. It is from G that we build the reverse q-machine.

However, further consider that the process PrG with random variables X1 . . . Xt can itself be generated by some
forward ε-machine, say F =

(
P,X , {R(x)

p′p}
)
. There is a useful result [52] that we can always write:

Pr
G̃

(st|x1 . . . xt) =
∑
qt

Pr
C

(st|qt) Pr F (qt|x1 . . . xt) (S6)

for some channel PrC(st|qt). Combined with the synchronization result for ε-machines, the following result for reverse
ε-machines arises straightforwardly.

Proposition 9 (Mixed-state synchronization of retrodictors). Let G be a reverse ε-machine and let F be the forward
ε-machine of the same process. For a length-L word x1 . . . xt, let p̂(x1 . . . xt) := argmaxpt Pr F(q=t|x1 . . . xt). Let
D(x1 . . . xt) = 1

2‖PrG(·|x1 . . . xt)− PrC(·|p̂)‖1. Then there exist 0 < α < 1 and K > 0 such that, for all t:

Pr
(
D(x1 . . . xt) > αt

)
≤ Kαt .

This shows that for a sufficiently long word x1 . . . xt, the distribution over states of the reverse ε-machine converges to
one of a finite number of options (namely, the PrC(s|q) for different q).

Note that:

Pr G (st|x1 . . . xt) = Pr C (st|p̂) Pr F (p̂|x1 . . . xt) +
∑
pt 6=p̂

Pr
C

(st|pt) Pr F (pt|x1 . . . xt) .
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So:

Pr C (st|p̂)− Pr (st|p̂)Q(x1 . . . xt) ≤ Pr G (st|x1 . . . xt)
≤ Pr C (st|p̂) + (1− Pr (st|p̂))Q(x1 . . . xt) ,

where Q(x1 . . . xt) = 1−Pr F(pt|x1 . . . xt). Then the result follows from the forward ε-machine synchronization theorem.
�

Now, we prove a synchronization theorem for the reverse q-machine.

Proposition 10 (Pure-state synchronization of retrodictors). Let G be a reverse ε-machine and let F be the forward
ε-machine of the same process. For a length-L word w = x1 . . . xt, let p̂(x1 . . . xt) := argmaxpt Pr F(pL|x1 . . . xt).
Define the state:

|Ψx1...xt〉 :=
∑
st

√
Pr C (st|p̂)eiφstw |ψst〉 ,

where φstw =
∑t
j=1 φsjxj (recall each sj is determined by sj+1 and xj+1). Last, let ρx1...xt :=

Pr(x1 . . . xt)K(x1...xt)ρπK
(x1...xt)† and let F (x1 . . . xt) = F (ρx1...xt , |Ψx1...xt〉 〈Ψx1...xt |). Then there exist 0 < α < 1

and K > 0 such that, for all t:

Pr
(
F (x1 . . . xt) < 1− αt

)
≤ Kαt .

This shows that for a sufficiently long word x1 . . . xt, the reverse q-machine state converges on a pure state whose
amplitudes are determined by the mapping PrC(s|p) from F states to G states.

First, recall that x1 . . . xt corresponds to the reverse of the sequence x̃1 . . . x̃t, generated by the forward ε-machine G̃ of
the reverse process. We have the relation Pr

G̃
(s̃t|x̃1 . . . x̃t) = Pr G (s0|x1 . . . xt) where s̃0 = st; representing the initial

state of G and the final state of G̃ under time reversal. By the forward ε-machine synchronization theorem, then the
distribution Pr G (s0|x1 . . . xt) is concentrated on a particular state ŝ with high probability.
Now:

ρx1...xt =
∑
s0
st,rt

√
Pr (st, s0|x1 . . . xt) Pr (rt, s0|x1 . . . xt)e(iφstw−iφrtw) |ψst〉 〈ψrt |

= (1−Q)
∑
st,rt

√
Pr (st|x1 . . . xt, ŝ) Pr (rt|x1 . . . xt, ŝ)e(iφstw−iφrtw) |ψst〉 〈ψrt |

+Q
∑
s0 6=ŝ
st,rt

√
Pr (st|x1 . . . xt, s0) Pr (rt|x1 . . . xt, s0)e(iφstw−iφrtw) |ψst〉 〈ψrt | ,

where Q := 1− Pr (ŝ|x1 . . . xt).
To handle the term Pr (st|x1 . . . xt, ŝ), we use the co-unifilarity properties of the reverse ε-machine. Note that:

Pr (st|x1 . . . xt, ŝ) = Pr (ŝ|x1 . . . xt, st) Pr (st|x1 . . . xt)
1−Q .

By co-unifilarity, Pr (ŝ|x1 . . . xt, st) is either 0 or 1 depending on the value of st. The synchronization theorem then
demands that Pr (st|x1 . . . xt) < Q for those st which assign Pr (ŝ|x1 . . . xt, st) a zero value. Due to this, along with
the above equation:

ρx1...xt =
∑
st,rt

√
Pr (st|x1 . . . xt) Pr (rt|x1 . . . xt)e(iφstw−iφrtw) |ψst〉 〈ψrt |+O(Q) ,

where O(Q) contains all the terms so far which scale with Q. Then ρx1...xt = |Ψw〉 〈Ψw|+O(Q). The rest follows as in
Prop. 7. �
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With this, we have sufficient information to determine the MCLM of the system StAt . . . A1 for sufficiently long t.
Let πs be the stationary distribution for G̃’s memory state, and let λq be the same for F. Consider the channel
Pr(s′|s) =

∑
q Pr(s′|q) Pr(s|q)λq/πs. From it we can construct the ergodic partition {Bθ} which is defined as the most

refined partition such that Pr(s′|s) > 0 only if θ(s) = θ(s′). This partition represents information about the state of G̃
which is recoverably encoded in the state of F. If, on the one hand, the partition is trivially coarse-grained (|{Bθ}| = 1),
then no information about G̃ is recoverably encoded. If, on the other, the partition is trivially maximal (|Bθ| = 1 for
all θ), then the state of G̃ is actually a function of the state of F. Consequently, in this extreme case, G̃ is unifilar in
addition to being unifilar.

Proposition 11. Let ρ
G̃

(t) be the state of the system A1 . . . AtSt at time t. Let Θ be the projective measurement
on HS corresponding to the ergodic partition described above. Then, for sufficiently large t, Θ is the MLCM of St.
Similarly, XtΘ is the MLCM of AtSt.

By Prop. 4, the MLCM must leave each ρx1...xt unchanged, for all t. This is true for Θ. The question is if any
nontrivial refinement, say Y , of Θ can do so. Realize that for any ε > 0, there is sufficiently large t, so that for each
state s there must be at least one word x1 . . . xt satisfying F (ρx1...xt , |Ψx1...xt〉 〈Ψx1...xt |) > 1− ε. Then, for sufficiently
large t, it must be the case that there exists a word x1 . . . xt such that Y modifies ρx1...xt , because Y (by virtue of being
a refinement of Θ) cannot commute with all the |ψs〉 〈ψs|. Therefore, Θ is the maximal commuting local measurement.
That XtΘ is the MLCM of AtSt follows from similar considerations. �

Theorem 10 (Maximally-efficient reverse q-machine). Let G = (S,X , {T (x)
s′s }) be a given process’ reverse ε-machine.

Suppose we build from it a reverse q-machine with encoding {|ψ〉s} and Kraus operators {K(x)}. Let B := {Bθ} be the
MCP of S. Then the quantum generator has ∆Sloc = 0 if and only if the partition B is trivially maximal—in that
|Bθ| = 1 for each θ—and the predictively state-merged generator GB of G is unifilar.

We define ρ(θ)
G (t) := Π(θ)ρG(t)Π(θ), so that ρG(t) =

⊕
θ ρ

(θ)
G (t). For the equivalence relation we say that θ ∼ θ′ if ρ(θ)

G (t)
and ρ(θ′)

G (t) are unitarily equivalent on the subsystem S. This defines a partition P = {[θ]∼}, labeled by σ, over the
set {Bθ}.
The quantum channel:

E (ρ) :=
∑
x

K(x)ρK(x)† ⊗ |x〉 〈x|

has Kraus operators L(x) := K(x) ⊗ |x〉. The MLCM of AtSt is XtΘt. Theorem 1 demands that the Kraus operators
L(x) have the form:

L(x) =
⊕
θ,θ′

√
Pr(θ′, x|θ)U (x,θ′|θ)

=
⊕
θ,θ′

√
Pr(θ′, x|θ) |x〉 ⊗ U (x)

θ 7→θ′ .

This implies that the quantum generator’s Kraus operators have the form:

K(x) =
⊕
θ,θ′

√
Pr(θ′, x|θ)U (x)

θ 7→θ′ . (S7)

The values Pr(θ′, x|θ) must be positive only when θ′x ∼ θ. This would imply that the resulting merged machine is
retrodictive. However, since the states S are those of the reverse ε-machine, they cannot be further merged into a
retrodictive machine. It must then be the case that the partition Θ is trivially maximal. Consequently, it must be the
case that G̃ is predictive. �
The consequences of this theorem are augmented by the following statement about partition {Bθ} and the stationary
distribution ρπ.

Proposition 12 (Block-diagonality of stationary distribution.). Let Θ be the projective measurement on HS corre-
sponding to the ergodic partition described above, with projectors {Πθ}. Then ρπ =

∑
θ ΠθρπΠθ.
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For, we can express the stationary distribution as:

ρπ =
∑
x1...xt

ρx1...xt

at arbitrarily long t. Taking t sufficiently large, each ρx1...xt is arbitrarily close to |Ψx1...xt〉 〈Ψx1...xt |. Since all these
pure states commute with Θ, so does ρπ. �
The primary implication of this theorem, then, is that trivial maximality of Θ implies ρπ is diagonal in the basis
{|ψs〉}, which itself implies that the reverse q-machine does not achieve any nonzero memory compression.
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