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The Trajectory Class Fluctuation Theorem (TCFT) substantially strengthens the Second Law of
Thermodynamics—that, in point of fact, can be a rather weak bound on resource fluxes. Practically,
it improves empirical estimates of free energies, a task known to be statistically challenging, and has
connected the microscopic dynamics with the mesoscopic information processing in experimentally-
implemented Josephson-junction information engines. The development here justifies that empirical
analysis, explicating its mathematical foundations.
The TCFT reveals the thermodynamics induced by macroscopic system transformations for each
measurable subset of system trajectories. In this, it directly combats the statistical challenge
of extremely rare events that dominate thermodynamic calculations. And, it reveals new forms
of free energy—forms that can be solved analytically and practically estimated. For engineered
systems, it provides a toolkit for diagnosing the thermodynamics responsible for system functionality.
Conceptually, the TCFT unifies a host of previously-established fluctuation theorems, interpolating
from Crooks’ Detailed Fluctuation Theorem (single trajectories) to Jarzynski’s Equality (full trajectory
ensembles).

Keywords: integral fluctuation theorem, detailed fluctuation theorem, free energy

I. INTRODUCTION

The century-old study of thermodynamic fluctuations was
rejuvenated with the discovery of fluctuation theorems in
the very late twentieth century [1–5]. Jarzynski’s Equality
[3] and Crooks’ Detailed Fluctuation Theorem [6], in par-
ticular, have been used to infer and relate thermodynamic
properties of small systems driven by transformations very
far from equilibrium. Fluctuation theorems revealed that
stochastic deviations from equilibrium in small-scale sys-
tems obey specific functional forms. That is, fluctuations
are lawful.
In fact, the equilibrium Second Law and its nonequi-
librium generalization can be derived from the stronger
equalities provided by fluctuation theorems [5]. In addi-
tion, equilibrium and nonequilibrium free energy changes
are readily obtained from those same stronger equalities
[3, 7]. And, this allows estimating free energies given
sufficient sampling of a thermodynamic process. This
has been carried out successfully for RNA and DNA con-
figurational free energies [8–10] and quantum harmonic
oscillators [11]. However, obtaining free energies is gener-
ally quite challenging statistically due to the existence of
rare events that dominate the exponential average work
[12, 13].
Many of these results rely on averaging thermodynamic
quantities over trajectory ensembles. We recently intro-
duced the trajectory class fluctuation theorem (TCFT)
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that focuses instead on subsets of trajectories—trajectory
classes [14]. While a restricted form of the TCFT had
been noted previously [13], we present a theorem that
applies to arbitrary measurable subsets of trajectories.
And, we derive a suite of results that lift prior limitations.
Namely, by considering information about one or more
trajectory classes, we markedly strengthen statements of
the Second Law [14]. Practically, too, by using trajectory
classes with high probability, we overcome limitations in
estimating free-energy differences due to finite sampling.
The TCFT introduces a new level of flexibility central to
extracting free energy differences in a wide variety of em-
pirical settings. The detailed fluctuation theorem (DFT)
[6], the basis from which these results are derived, re-
lies on comparing state trajectory probabilities evaluated
from a forward experiment and and a reverse experiment
to evaluate the entropy production in the forward experi-
ment. However, the DFT’s predictive capacity is severely
hampered by the fact that the state trajectories are typi-
cally so numerous that their individual probabilities are
extremely small, if not zero. It is then virtually impos-
sible to sample sufficient data to reliably estimate those
probabilities. Moreover, it is rare in an experiment to
have complete information about a system trajectory.
To meet these challenges, Ref. [14]’s TCFT provides a
practical computational advantage by estimating entropy
from a much smaller space of trajectory classes—classes
that can be tailored to specific experimental data and con-
straints. The following further expands on the TCFT’s
experimental relevance by generalizing to the case in
which the reverse experiment does not necessarily start in
a special distribution—i.e., the distribution conjugate to

http://arxiv.org/abs/2207.03612
mailto:gwwimsatt@ucdavis.edu
mailto:abboyd@ucdavis.edu
mailto:chaos@ucdavis.edu; Corresponding author


2

the ending distribution of the forward experiment. This
generalization requires introducing a new thermodynamic
quantity known as the entropy difference, which can be
interpreted as entropy production in special cases, but has
important thermodynamic consequences regardless. To
illustrate, we apply the TCFT to metastable processes—
processes where the system begins and ends in metastable
distributions—and show how to derive metastable free en-
ergies with an appropriately initialized set of experiments
[15].
Theoretically, the TCFT unites a wide variety of prior
fluctuation theorems. These include theorems that range
systematically from Crooks’ DFT [4] to Jarzynski’s inte-
gral fluctuation theorem (IFT) [3]. That noted, the TCFT
itself can be derived from broader theorems still [16, 17];
see App. A. The TCFT’s strength then is in its balance
of specificity and generality.
Developing the TCFT proceeds as follows. Section II
presents fluctuation theorem building blocks, culminating
in Crooks’ (DFT) and the basic IFTs. Section III uses the
DFT to introduce and prove the TCFT. Section IV shows
how it strengthens the Second Law in light of process data.
However, the Second Law and its strengthened forms
are much more useful when the free-energy difference is
known so that bounds on work can be established. And
so, Sec. V shows how to use the TCFT to solve for
free-energy differences beyond just the equilibrium free-
energy difference. Section VI demonstrates how the TCFT
overcomes the tyranny of rare events when estimating free
energies from data. Section VII highlights related results
and surveys how the TCFT encapsulates them. Finally,
we briefly discuss several subtle aspects of applying the
TCFT in Sec. VIII, considering the application to a
recent nanoscale flux qubit experiment [14]. Section IX
concludes.

II. BACKGROUND

A. Model, Probability Densities, and Time Reversal

Consider a system interacting with both a control device
and a thermal environment over a time interval [0, τ ] from
time 0 to time τ . The device enacts a control protocol −→

λ

over the time interval to influence the system. Specifically,
at any time t, −→

λ (t) specifies the function from system
state to system energy, called the energy landscape, at
time t. The protocol therefore both affects how the system
evolves and requires energy, which we call work, to be
exchanged between the system and the control device.
The thermal environment has inverse temperature β so
that energy, denoted heat, flows between the system and

environment. No other interactions exist. Altogether, this
induces a stochastic dynamic in the system as it evolves
from time 0 to time τ .
We model time as either continuous or discrete. In general,
the resultant set T of times is some subset of the interval
[0, τ ] that includes 0 and τ .
We model the system states as either its microstates
or as some coarse-graining of its microstates. Denote a
particular system state as z and a particular system state
trajectory as −→z , with −→z (t) the realized system state at
time t ∈ T . We let Z denote the set of all possible states
and −→

Z the set of all possible trajectories.
The energy of the system in state z at time t is denoted
Et(z). The energy change of the system over an entire
trajectory −→z is then:

∆E(−→z ) = Eτ (−→z (τ)) − E0(−→z (0)) .

We designate positive work or heat to mean that energy
flowed into the system from the control device or thermal
environment, respectively.
We require that the net work W (−→z ) is a function of
trajectory. This can be achieved if T and Z are sufficiently
refined. (For example, T = [0, τ ] and Z is the system’s
set of microstates.) Then, by conservation of energy, heat
Q(−→z ) must also be a function of trajectory and we have
the First Law for each trajectory:

∆E(−→z ) = W (−→z ) +Q(−→z ) .

We describe probabilities of states with state probability
densities, which we refer to as distributions. These are
functions of Z that when integrated over a region of state
space give the corresponding probability of occupying
that region. As an important example, the system’s
equilibrium distribution πt for energy landscape Et is the
corresponding Boltzmann distribution:

πt(z) = e−β(Et(z)−F eq
t ) ,

where F eq
t is the system’s equilibrium free energy at time

t and β is the inverse temperature as denoted in statis-
tical mechanics. Note that if Z is discrete, then a state
probability density evaluated at a state is in fact the cor-
responding probability of that state. That is, integration
over discrete spaces can simply be taken to be summation.
Similarly, we describe probabilities of trajectories with tra-
jectory probability densities. These densities are functions
of −→

Z that, when integrated over a region of trajectory
space, give the corresponding probability of a trajectory
occupying that region.
If the state space Z is a Euclidean space of dimension d,
as is typical for spaces of microstates, integration over Z
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can of course be done with a d-dimensional Riemannian
integral. However, the trajectory space −→

Z is much too
large to be Euclidean when the set of times T is continuous.
This then requires a more powerful notion of integration.
A solution can be found via measure theory but we treat
the subject only briefly here. (A sequel provides the
details [18].) A measure is a function on the regions
of a space that returns an amount of some “quantity”,
such as probability, in a region. We choose a particular
measure on trajectory space and refer to it as a base mea-
sure. A probability density is then a function that, when
Lebesgue-integrated via the base measure over a region of
space, yields the corresponding probability of that region.
Defining appropriate base measures on a continuous-time
trajectory space is rather technical, though, and so we
leave the discussion to the sequel.
We specify the dynamic induced by a protocol −→

λ via a
set of trajectory probability densities, one for each possi-
ble initial state z. This gives the probability density of
evolving the system trajectory −→z conditioned on starting
in a state z:

Pr−→
λ

(−→Z = −→z |Z0 = z) ,

where −→
Z and Z0 are random variables for the trajectory

and the initial state, respectively. Call such a set of tra-
jectory probability densities a state-conditioned process.
For system state z, the time-reverse state z†, or simply
reverse state, is the same state with all components odd
under time reversal flipped in sign. (Recall momentum
or spin.) For state trajectory −→z , −→z † is the reverse state
trajectory: (−→z †)(t) = (−→z (τ − t))† for 0 ≤ t ≤ τ . If
κ is a distribution over system states, then κ† is the
reverse distribution, defined by (κ†)(z) = κ(z†). Note
that time reversal of a state, trajectory, or distribution is
an involution, meaning that time reversal acted twice on
any such object returns the original object.
For a given protocol −→

λ , consider the corresponding time-
reverse protocol

−→
λ †. −→

λ dictates a set of forces and fields
that are applied to the system as a function of time.
Enacting −→

λ † then requires applying these same influences
but in the reverse order as well as flipping the sign of time-
odd influences, such as magnetic fields. Time reversing is
therefore also involutional on protocols.
For simplicity when working with time-reversal, we re-
quire:

• τ − t to be in T for each t in T and

• z† to be in Z for each z in Z.

These basic symmetry requirements are satisfied in typ-
ical models in statistical mechanics and nonequilibrium
thermodynamics.

B. Forward and Reverse: Experiments and
Processes

The main objects of study are a system’s forward and
reverse processes, which result from forward and reverse
experiments. The forward experiment consists of an ini-
tial distribution ρ and the forward control protocol −→

λ ,
which evolves the distribution over the time interval (0, τ).
Similarly, for some state distribution σ, the reverse ex-
periment applies the reverse control protocol −→

λ † to the
initial distribution σ†. We refer to ρ and σ as privileged
distributions, emphasizing that different choices for these
distributions result in different predictions given by the
TCFTs and other fluctuation theorems.

Through the control protocol −→
λ , the forward experiment

produces the forward state-conditioned process p, where
we denote the probability density of a trajectory −→z con-
ditioned on the initial state z as:

p(−→z |z) ≡ Pr−→
λ

(−→Z = −→z |Z0 = z) ,

Similarly, the reverse state-conditioned process r′ is ob-
tained under the reverse protocol −→

λ †:

r′(−→z |z) ≡ Pr−→
λ †

(−→Z = −→z |Z0 = z) .

We suppose throughout that microscopic reversibility
holds for the system. This means that when the sys-
tem evolves along trajectory −→z , the environment’s net
entropy change is:

∆Senv(−→z ) = −βQ(−→z )

= ln p(−→z |−→z (0))
r′(−→z †|(−→z (τ))†)

. (1)

Recall that microscopic reversibility can be derived, for
example, under Markov [6], Hamiltonian [12, 19], or
Langevin [20] assumptions.

The forward process is a trajectory probability density P
specified by the initial distribution ρ and the forward state-
conditioned process. Under P , the probability density of
a trajectory −→z is:

P (−→z ) ≡ ρ(−→z (0))p(−→z |−→z (0)) .

For any time t, we marginalize P to find the evolved state
distribution ρt. For each region A in system state space,
let Pt(A) be the probability of the system’s state being
in A at time t, and let C be the set of trajectories that
occupy region A at time t. Then ρt is the state probability
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density that satisfies:

Pt(A) =
∫
A

dz ρt(z)

=
∫
C

d−→z P (−→z ) .

Analogously, the reverse process is a trajectory probability
density R′ determined by the initial distribution σ† and
the reverse state-conditioned process. Under R′, the
probability density of a trajectory −→z is:

R′(−→z ) ≡ (σ†)(−→z (0))r′(−→z |−→z (0)) . (2)

To simplify the following, we use an alternate represen-
tation for the reverse process—the formal reverse repre-
sentation R—another trajectory probability density. For
each trajectory −→z , we define:

R(−→z ) ≡ R′(−→z †) . (3)

To keep the two representations distinct, the original rep-
resentation R′ of the reverse process is called the physical
reverse representation.

C. Detailed Fluctuation Theorem

Applying the principle of microscopic reversibility to for-
ward and reverse processes leads directly to a detailed
fluctuation theorem (DFT). First, define the system state
entropy, or system state surprisal, of a given state z for a
given distribution κ [20] as:

ssys(z;κ) = − ln κ(z) .

Second, define the system entropy difference for a trajec-
tory −→z in terms of the two privileged distributions ρ and
σ:

∆ssys(−→z ) ≡ ssys(−→z (τ);σ) − ssys(−→z (0); ρ)

= ln ρ(−→z (0))
σ(−→z (τ)) . (4)

This is similar, but more general than the change in
system entropy [20] of the forward experiment. The latter
is the difference in surprisal of the system in the forward
experiment:

ln ρ(−→z (0))
ρτ (−→z (τ)) .

The system entropy difference is the change in system
entropy if the reverse experiment is initialized in the time

reversal of the final distribution of the forward experiment,
meaning σ = ρτ .
We designate the entropy difference as the difference in
system state entropy and the change in environmental
entropy:

Σ(−→z ) = ∆ssys(−→z ) + ∆Senv(−→z ) . (5)

Again, this is similar, but more general than another fa-
miliar quantity. When we choose σ = ρτ , then Σ(−→z ) gives
the entropy change of the system plus that of the envi-
ronment for −→z , which is known as the entropy production
of the forward experiment.
Together in Eq. (5), Eqs. (1) and (4) yield an expression
for the entropy difference:

Σ(−→z ) = ln ρ(−→z (0))p(−→z |−→z (0))
σ(−→z (τ))r′(−→z †|(−→z (τ))†)

. (6)

The numerator is P (−→z ). And, by Eqs. (2) and (3):

R(−→z ) = (σ†)((−→z †)(0))r′(−→z †|(−→z †)(0))

= (σ†)((−→z (τ))†)r′(−→z †|(−→z (τ))†)

= σ(−→z (τ))r′(−→z †|(−→z (τ))†) .

These two observations translate Eq. (6) into a DFT:

Σ(−→z ) = ln P (−→z )
R(−→z ) . (7)

This is a fluctuation theorem obtained previously in a
Langevin setting [20] and a generalization of the Crooks
fluctuation theorem [6] to the case of arbitrary privileged
distributions.
Continuing in this way, we introduce a constraint on the
forward and reverse processes:

R(−→z ) = 0 when P (−→z ) = 0 . (8)

The motivation is that the forward process needs to “cover”
all the trajectories that are significant to the reverse
process. The failure of Condition (8) generally introduces
subprobabilistic measures and densities for the reverse
process that complicate the development and, in any case,
may not be experimentally accessible. When considering
the TCFT applied to a trajectory class C, described
shortly in Sec. III, such complications are avoided so long
as Condition (8) holds for all −→z ∈ C. For simplicity of
discussion, we assume it holds for all −→z ∈

−→
Z .

Assuming that the heat Q(−→z ) is finite for all −→z ,
then microscopic reversibility Eq. (1) guarantees
r(−→z †|(−→z (τ))†) = 0 wherever p(−→z |−→z (0)) = 0. Then
Condition (8) is met so long as σ(−→z (τ)) = 0 for any −→z
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where ρ(−→z (0)) = 0. The most straightforward way to
ensure this is to let ρ have at least a small amount of
probability density on all system states. Note that if E0
is everywhere finite, then π0 has full support.

D. Work and Free Energy

The following shows that, for any given trajectory, the
entropy difference decomposes into the requisite work in
the forward experiment minus a difference in nonequi-
librium free energy. Note that the latter is more gen-
eral than the change in nonequilibrium free energy of
the forward experiment. This realization yields impor-
tant versions of the fluctuation theorems. In particular,
it allows extracting the change of free energy—an im-
portant privileged-distribution-dependent but protocol-
independent quantity—from the work.

To see this, first define the state free energy for a distri-
bution κ and system energy function E:

f(z;κ,E) = E(z) + β−1 ln κ(z) .

An important example occurs when κ is the equilibrium
distribution for E. In that case, the state free energy is
constant over all z and is the equilibrium free energy.

Second, define the trajectory free-energy difference for the
forward and reverse processes as:

∆f(−→z ) ≡ f(−→z (τ);σ,Eτ ) − f(−→z (0); ρ,E0)

= ∆E(−→z ) + β−1 ln σ(−→z (τ))
ρ(−→z (0)) .

Again, the latter echoes a familiar thermodynamic quan-
tity: the change in nonequilibrium free energy ∆F neq for
the forward experiment [15]. The free-energy difference
reduces to the nonequilibrium free energy change when
σ = ρτ .

Using the first law—∆E(−→z ) = W (−→z ) +Q(−→z )—rewrite
the entropy difference in terms of the work and free-energy
difference:

Σ(−→z ) = − ln σ(−→z (τ))
ρ(−→z (0)) − βQ(−→z )

= β
(
∆E(−→z ) − ∆f(−→z ) −Q(−→z )

)
= β

(
W (−→z ) − ∆f(−→z )

)
, (9)

And so, the entropy difference is the work in the forward
experiment minus the difference in nonequilibrium free
energy.

E. Ensemble Fluctuation Theorems and the Second
Law

From Eq. (7)’s DFT, it is easy to derive two general
fluctuation theorems. First, there is the nominal ensemble
fluctuation theorem:

⟨Σ⟩−→
Z = −

∫
d−→z P (−→z ) ln R(−→z )

P (−→z )
= DKL [P || R]−→Z . (10)

Here, ⟨·⟩−→
Z denotes an ensemble average over all trajec-

tories −→
Z . And, DKL [P || R]−→Z is the Kullback-Leibler

divergence between the forward and reverse process tak-
ing all trajectories −→

Z as argument.

The divergence tracks the mismatch between the distri-
butions. Generally, it is nonnegative and vanishes only
when the distributions are equal over all events. In the
present case, the ensemble average entropy difference is
zero only when P (−→z ) = R(−→z ) for all −→z ∈

−→
Z .

The divergence’s nonnegativity is tantamount to a gener-
alized Second Law of thermodynamics—one that bounds
average entropy differences:

⟨Σ⟩−→
Z ≥ 0 . (11)

This includes the familiar bound on entropy production,
but different choices of the privileged distributions lead
to new bounds on thermodynamic quantities.

Applying Eq. (9), the average free energy change bounds
the work done in the forward experiment:

⟨W ⟩−→
Z ≥ ⟨∆f⟩−→

Z

=
∫
d−→z P (−→z )∆f(−→z )

=
∫
d−→z P (−→z )f(−→z (τ);σ,Eτ )

−
∫
d−→z P (−→z )f(−→z (0); ρ,E0)

=
∫
dzρτ (z)f(z;σ,Eτ )−

∫
dzρ(z)f(z; ρ,E0). (12)

The average work is determined by the forward process
exclusively and therefore must not have any actual depen-
dence on the second privileged distribution σ, despite the
latter’s appearance in the first term on the RHS. And yet,
the bound must hold for whichever distribution is chosen
for σ.

This begs the question, for which σ is Eq. (12) tightest?
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The answer is the final-time distribution ρτ :∫
dzρτ (z)f(z;σ,Eτ ) =

∫
dzρτ (z)[Eτ (z) + β−1 ln σ(z)]

=
∫
dzρτ (z)[Eτ (z) + β−1 ln ρτ (z)

− β−1 ln ρτ (z) + β−1 ln σ(z)]

=
∫
dzρτ (z)f(z; ρτ , Eτ )

− β−1 DKL [ρτ || σ]

≤
∫
dzρτ (z)f(z; ρτ , Eτ ) ,

where:

DKL [ρτ || σ] =
∫
dzρτ (z) ln ρτ (z)

σ(z)

is nonnegative. Therefore, the free-energy difference is
generally less than the change in nonequilibrium free en-
ergy, which gives the strongest bound on work production:

⟨W ⟩−→
Z ≥ ⟨∆F neq⟩−→

Z ≥ ⟨∆f⟩−→
Z . (13)

Even though the nonequilibrium free-energy change for
the forward process provides the tightest bound on work
when it is used in Eq. (12), there are other useful alter-
natives. This flexibility is helpful as it may be difficult
to determine the precise final-time distribution ρτ . Or,
we may be more interested in the system after it relaxes
to its equilibrium state πτ determined by the final-time
energy function Eτ :∫

dzρτ (z)f(z;πτ , Eτ ) =
∫
dzρτ (z)(Eτ (z)

+ β−1 ln[eβ(Eτ (z)−F eq
τ )])

= F eq
τ .

If we start the system in equilibrium ρ = π0, a similar
calculation shows that, from Eq. (12):

⟨W ⟩−→
Z ≥ ∆F eq ,

with:

∆F eq = F eq
τ − F eq

0 .

Thus, this gives the equilibrium Second Law which applies
to systems that start in equilibrium, but end in arbitrary
distributions close to or far from equilibrium. And so,
it also applies without using any information about the
final distribution of the forward experiment ρτ .
This all said, the assumption of equilibrium is rather re-
strictive. It is often possible to set more informed bounds

on work invested by using incomplete information about
the initial distribution ρ0 and final distribution ρτ . Such
distributions are metastable, but provide a convenient
method of improving work production estimates. Section
V B discusses this shortly.
Finally, from the DFT we can obtain the exponential
ensemble fluctuation theorem:〈

e−Σ〉−→
Z =

∫
d−→z P (−→z )R(−→z )

P (−→z )

=
∫
d−→z R(−→z )

= 1 . (14)

Again assuming equilibrium privileged distributions, the
equilibrium free-energy difference can be extracted from
the average: 〈

e−Σ〉−→
Z =

〈
e−β(W−∆F eq)

〉
−→
Z

=
〈
e−βW 〉−→

Z e
β∆F eq

,

giving Jarzynski’s Equality:〈
e−βW 〉−→

Z = e−β∆F eq
. (15)

Remarkably, this allows extracting equilibrium free-energy
differences from work statistics of highly nonequilibrium
processes. However, the exponential free-energy difference
∆f cannot generally be extracted from

〈
e−β(W−∆f)〉−→

Z
for any choice of ρ besides π0. Additionally, estimating
even the free-energy difference from experiment using Eq.
(15) can lead to sampling issues due to rare but resource-
dominant events. We use the TCFT in Secs. V and VI
to confront these two problems.

III. TRAJECTORY CLASS FLUCTUATION
THEOREM

The preceding results on nonequilibrium thermodynamic
processes are statements concerning either individual tra-
jectories or ensemble averages—that is, averages over all
trajectories. As we will see, though, a markedly broader
picture emerges when considering averages that lie be-
tween. Specifically, the following treats arbitrary subsets
of trajectories, called trajectory classes, as the main play-
ers in analyzing fluctuations. The resulting trajectory class
fluctuation theorem (TCFT) reveals relationships involv-
ing probabilities of trajectory classes, averages conditioned
on trajectory classes, and thermodynamic quantities of
interest. And, the results include strengthened versions
of the Second Law, solving for general free energies from
works, and statistically efficient methods for finding those
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free energies from data. Additionally, the TCFT provides
a general form that subsumes many fluctuation theorems.

The section begins by introducing trajectory classes and
relevant relationships and probabilities involving them.
Then it establishes the TCFT from these building blocks.
It ends with a discussion of the TCFT’s scope, suggesting
a way to treat zero-probability classes and providing an
example use.

A. Trajectory Classes

Every trajectory class is a subset of −→
Z for which the for-

ward and reverse processes assign probability. Formally,
the set of all trajectory classes C must constitute a σ-
algebra over the trajectories −→

Z . However, to stay with the
physics, the following does not focus on measure-theoretic
details. (The sequel focuses on the latter.) Instead, we
first discuss several example classes and thereafter inter-
pret any subset of −→

Z of practical interest to be part of
the assumed σ-algebra and, therefore, to be a trajectory
class.

Clearly, the nature of Z and T , such as whether these
sets are discrete or continuous, must determine the form
of the trajectories and therefore determine the form of
the trajectory classes. However, many intuitive types of
trajectory classes exist quite broadly, as illustrated by the
following list of Examples:

1. All trajectories that at a given time t ∈ T are in a
specified finite volume of state space,

2. All trajectories that at a given time t ∈ T are in a
particular state,

3. All trajectories that have an entropy difference in a
specified finite range of values,

4. All trajectories that have a particular value of the
entropy difference,

5. All trajectories: −→
Z , and

6. The singleton {−→z } for any trajectory −→z ∈
−→
Z .

The singleton trajectory classes of Example (6) provides
one instance where the model of the system determines
whether a trajectory class exists. For a finite number of
times T , we can assume the singleton trajectory classes
exist. However, for technical reasons, such trajectory
classes often fail to exist for continuous-time processes.
See Sec. VII for more examples as they apply to known
results.

B. Trajectory Class Quantities

For each trajectory class C, we denote the forward and re-
verse process probabilities as P (C) and R(C), respectively.
They are given by:

P (C) =
∫
C

d−→z P (−→z ) and R(C) =
∫
C

d−→z R(−→z ) .

To derive the TCFT for a trajectory class C, we require
that P (C) be nonzero. However, classes like Examples
(2), (4), and (6) above will often have zero probability.
Section III E discusses the use of the TCFT in such cases.
Until then, we will assume that P (C) ̸= 0.
The forward and reverse class-conditioned trajectory prob-
ability densities are, for −→z ∈ C:

P (−→z |C) ≡ P (−→z )
P (C) and R(−→z |C) ≡ R(−→z )

R(C) ,

respectively. The class-conditioned densities vanish for
−→z /∈ C. When R(C) = 0, we allow R(−→z |C) to be any
probability.
We also make frequent use of class-conditioned expecta-
tion values:

⟨f⟩C ≡
∫
d−→z P (−→z |C)f(−→z ) ,

for arbitrary functions f of −→
Z .

The reverse of a trajectory class C is defined as:

C† = {−→z †|−→z ∈ C} .

Then the physical reverse probability R′(C†) of obtaining
trajectory class C† during the reverse experiment is equal
to the formal reverse probability R(C):

R(C) = R′(C†) .

With the above equality, we can then obtain an empirical
estimate of R(C) from reverse experiment data.
We then define two important quantities for any class. The
class reverse surprisal measures how much more surprising
an occurrence of class C is in the reverse process than in
the forward process:

ΘC ≡ ln P (C)
R(C) .

While ΘC does not have explicit dependence on any spe-
cific trajectory −→z , the class irreversibility ψC does:

ψC(−→z ) ≡ ln P (−→z |C)
R(−→z |C) .
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C. Fluctuation Theorem

We now introduce two fluctuation theorems that arise
from the preceding setup. Given their close relation,
together they constitute the TCFT.
The class reverse surprisal and class irreversibility form
a key decomposition of the entropy difference for −→z ∈ C:

Σ(−→z ) = ln P (−→z )
R(−→z )

= ln P (C)P (−→z |C)
R(C)R(−→z |C)

= ΘC + ψC(−→z ) . (16)

Equation (16) can fail in some cases. For, example if
R(C) = 0 then it fails when the trajectory is outside
of the class, which allows nonzero trajectory probability
R(−→z ) ̸= 0. But a trajectory −→z ∈ C for which Eq. (16)
fails must occur with zero probability in the forward
process. So, any instance of Σ can be substituted with
ΘC + ψC in any class-conditioned average. To derive the
TCFT, we will only use Σ in class-conditioned averages
and so we will treat Eq. (16) as valid in all cases.
The class irreversibility ψC takes two important forms.
The first when averaged directly; the second when aver-
aging its exponential. When class averaging directly, we
obtain:

ΨC ≡ ⟨ψC⟩C
= DKL [P || R]C , (17)

where:

DKL [P || R]C ≡
∫
d−→z P (−→z |C) ln P (−→z |C)

R(−→z |C) , (18)

is the class-conditioned divergence between P and R.
It is a nonnegative quantity, being a Kullback-Leibler
divergence, that measures how closely the reverse process
emulates the forward process when conditioned on the
class C.
Directly class averaging the entropy difference of Eq. (16)
gives the following.

Theorem 1. Nominal Class Fluctuation Theorem
(NCFT): For any trajectory class C where P (C) ̸= 0:

⟨Σ⟩C = ΘC + ΨC (19)

= ln P (C)
R(C) + DKL [P || R]C .

When Sec. IV considers refinements of the Second Law,
this equality proves its worth in describing the average

entropy difference while conveniently isolating the pre-
cise trajectory information into the nonnegative class
irreversibility.

Turning now to exponential class averages, we have a
fruitful identity:

〈
e−ψC

〉
C

=
∫
d−→z P (−→z |C)R(−→z |C)

P (−→z |C)

=
∫
d−→z R(−→z |C)

= 1 .

And, Eq. (16) gives:〈
e−Σ〉

C
=
〈
e−ΘC −ψC

〉
C

= e−ΘC
〈
e−ψC

〉
C
.

Combining these yields the following.

Theorem 2. Exponential Class Fluctuation Theorem
(ECFT):

⟨e−Σ⟩C = e−ΘC

= R(C)
P (C) . (20)

The equality’s significance lies in relating the entropy dif-
ference to the rather simple class reverse surprisal without
any possibly-detailed specification of trajectory probabili-
ties beyond the class probabilities. We use it, shortly, to
develop straightforward equalities about entropy differ-
ence, work, free energy changes, and forward and reverse
class probabilities.

D. Scope: Nonzero Probability Classes

The TCFT spans a large collection of fluctuation theorems.
By choosing C to be all possible trajectories −→

Z , we obtain
the ensemble fluctuation theorems. That is:

Θ−→
Z = ln P (−→Z )

R(−→Z )
= 0,

and:

Ψ−→
Z = DKL [P || R]−→Z .
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So that:

⟨Σ⟩−→
Z = DKL [P || R]−→Z and〈

e−Σ〉−→
Z = e−0

= 1 .

These recover the ensemble fluctuation theorems of Eqs.
(10) and (14).
Choosing any proper subset C of −→

Z identifies a new set
of FTs—the TCFT applied to the more refined class C.
We will consider several types of classes in Secs. V and
VI. Also see Sec. VII for examples from the literature.
So consider the opposite extreme, letting C = {−→z } consist
of a single trajectory −→z ∈

−→
Z . We require P ({−→z }) > 0

in order to apply the TCFT, but note that P ({−→z }), the
probability of obtaining the particular trajectory −→z in
the forward process, is typically zero for continuous-state
or continuous-time processes. Keep in mind that P ({−→z })
is distinct from the probability density P (−→z ). Then:

Θ{−→z } = ln P ({−→z })
R({−→z })

and:

Ψ{−→z } = DKL [P || R]{−→z }

= 0 .

And, so:

⟨Σ⟩{−→z } = ln P ({−→z })
R({−→z }) .

Integrating P (−→z ) over {−→z } yields P ({−→z }), so P ({−→z }) =
P (−→z )d−→z . Similarly, R({−→z }) = R(−→z )d−→z , meaning:

⟨Σ⟩{−→z } = ln P (−→z )
R(−→z ) .

And:

⟨Σ⟩{−→z } =
∫

{−→z }
d−→z ′

P (−→z ′|{−→z })Σ(−→z ′)

= Σ(−→z ) .

From the above equalities, we recover the DFT as ex-
pressed in Eq. (7).

E. Scope: Zero Probability Classes

For a sufficiently large trajectory space −→
Z , such as with

continuous-time processes, the vast majority of singleton

classes {−→z } must have zero probability. This is because
−→
Z is then uncountable and only countably many disjoint
events can have nonzero probability. In general, many
classes of interest, like those whose trajectories with a
specific work value, will have zero probability and so will
not be directly subject to the TCFT.
Fortunately, we can still apply the TCFT less directly
to a class C such that P (C) = 0. One method has
practical appeal. Consider a second trajectory class C ′ ⊃
C that is nearly identical to C except for extensions in
some dimensions of trajectory space such that P (C ′) > 0.
For example, if C is all trajectories that pass through a
specific state z at a particular time, one might let C ′ be
all trajectories that pass through a small but nonzero-
probability neighborhood of states surrounding z at that
time. Then, one considers the TCFT applied to the
broadened class C ′ in place of the original class C. Since
it is necessary that experimentally-sampled classes have
nonzero probability in any case, this approach is attractive.
The remaining art is to choose and use an appropriate
alternative class C ′ for the class of interest C.
Carrying this further, a second possibility suggests itself.
One that is more satisfying theoretically and yields re-
sults involving probability densities. Consider a limiting
procedure that applies the TCFT to smaller and smaller
classes containing a class of interest. To give one such
scheme, consider a trajectory class C and a sequence of
classes C1, C2, . . . such that:

• C1 ⊇ C2 ⊇ . . . ,
•
⋂
n∈N Cn = C , and

• P (Cn) > 0 for all n .

Then consider Eqs. (19) and (20) for each Cn and limiting
behavior as n → ∞ to evaluate entropy differences for
classes with zero probability.
As an example, consider the class C of trajectories with
work value W̃ generated by a process:

C = {−→z |W (−→z ) = W̃} .

If the work distribution’s values are continuous for the
process, then each particular work value has zero prob-
ability of occurring. However, consider a class C ′ that
allows a range of works:

C ′ = {−→z |W̃ − ϵ < W (−→z ) < W̃ + ϵ} ,

for some ϵ > 0. Such a class generically has nonzero
probability and can be used in place of C.
Considering Thm. 2’s ECFT with equilibrium privileged
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distributions, we have:〈
e−β(W−∆F eq)

〉
C′

= R(C ′)
P (C ′) .

As ϵ decreases, the work distribution for C ′ necessarily
narrows, so that e−β(W−∆F eq) approaches e−β(W̃−∆F eq).
And, if the work distributions for the forward and reverse
processes are continuous functions of work value, then
R(C ′) and P (C ′) will eventually shrink at the same, con-
stant rate. In this case, R(C ′)/P (C ′) converges to a ratio
of work densities at W̃ .
This procedure recovers Crooks’ work fluctuation theorem
[4]:

e−β(W−∆F eq) = R(W )
P (W ) , (21)

where P (W ) and R(W ) are the probability densities of
obtaining work W in the forward and reverse processes,
respectively. Note that for a trajectory −→z with work
W , the work under the reverse protocol −→

λ † and reverse
trajectory −→z † is −W . So R(W ) = R′(−W ).
In fact, the TCFT introduced here can be strengthened
to directly address classes of zero probability without
the need for approximations or limiting schemes. This
strengthening is done with the measure-theoretical no-
tion of conditional expectation. However, an exposition
requires a more thorough treatment of measure theory
and so we treat it in the sequel.

IV. STRENGTHENING THE SECOND LAW

Having established the TCFT and outlined how it sub-
sumes existing fluctuation theorems, the following turns
attention to bounds on the entropy difference that are sim-
ilar to but stronger than the Second Law. For these, we
need only to determine, experimentally or computation-
ally, the probabilities of trajectories in the forward and
reverse processes. First, we find a Second Law for indi-
vidual trajectory classes. Second, this yields a fluctuation
theorem involving multiple trajectory classes that together
partition all trajectories. This fluctuation theorem then
produces the Trajectory Partition Second Law that sets a
strictly stronger bound on the ensemble-average entropy
difference than the traditional Second Law.

A. Trajectory Class Second Law

Discarding the class-average class irreversibility ΨC in Eq.
(19)—a nonnegative quantity—gives the trajectory class

second law (TCSL):

⟨Σ⟩C ≥ ΘC

= ln P (C)
R(C) . (22)

Thus, the class reverse surprisal ΘC—a quantity that only
depends on P (C) and R(C)— bounds the class averaged
entropy difference ⟨Σ⟩C .

This is similar to Eq. (11)’s Second Law that bounds
the ensemble-averaged entropy difference to be nonneg-
ative. However, Eq. (22) is more precise since it uses
more information—the class probabilities in the forward
and reverse processes. Section IV C elaborates on this
advantage over the ensemble Second Law.

Equation (19) says that the average entropy difference
⟨Σ⟩C is close to the class reverse surprisal ΘC when the
class-average class irreversibility ΨC is small. Appendix
B shows that having such a small class irreversibility
is equivalent to the class C having a narrow entropy-
difference distribution.

B. Trajectory Partition Fluctuation Theorem

Now partition all trajectories −→
Z into trajectory classes

forming a collection Q. Then averaging Eq. (19) over all
classes in Q gives an equality obtained in Ref. [21] that
is generalized to arbitrary privileged distributions:

⟨Σ⟩−→
Z =

∑
C∈Q

P (C)⟨Σ⟩C

=
∑
C∈Q

P (C)(ΘC + ΨC)

= ⟨Θ⟩Q + ΨQ , (23)

where the partition averaged class reverse surprisal is:

⟨Θ⟩Q ≡
∑
C∈Q

P (C)ΘC

= DKL [P || R]Q .

This is a Kullback-Leibler divergence over classes in the
partition:

DKL [P || R]Q ≡
∑
C∈Q

P (C) ln P (C)
R(C) . (24)
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And, where the partition-class averaged class irreversibil-
ity is:

ΨQ ≡
∑
C∈Q

P (C)ΨC

=
∑
C∈Q

P (C) DKL [P || R]C ,

a weighted sum of divergences. So, the ensemble av-
erage entropy difference decomposes into the mismatch
between forward and reverse class probabilities plus the
mismatch between specific forward and reverse trajectory
probabilities in a class, averaged over all classes.

C. Trajectory Partition Second Law

Since divergences are nonnegative, Eq. (23) leads di-
rectly to the trajectory partition second law (TPSL) by
discarding the partition-class averaged class irreversibility
ΨQ:

⟨Σ⟩−→
Z ≥ ⟨Θ⟩Q

= DKL [P || R]Q , (25)

where, notably, the RHS leaves out detailed trajectory
information, relying only on class probabilities. One can
use this expression to bound the entropy difference of a
system from a wide array of limited observations of the
system. This includes coarse graining time [22, 23] and
system state space [15, 22, 23], as well as many other
possibilities [24–26].
The information that is left out in going from Eq. (23)
to Eq. (25) is the class irreversibility averaged over all
trajectories in a class and then averaged over all classes
in the partition. So, in accordance with Sec. IV A, if the
classes are chosen to have narrow entropy-difference dis-
tributions, the class reverse surprisals will tightly bound
the ensemble average entropy difference. Specifically, Eq.
(25) is a tight-bound.
Contrast this with Eq. (11)’s ensemble Second Law. Since
it only states that the average entropy difference ⟨Σ⟩−→

Z is
nonnegative, the trajectory partition second law always
provides a nonnegative improvement over the Second Law
in estimating ensemble-average entropy differences.
To emphasize, Eq. (25)’s TPSL can be made arbitrarily
tight by considering finer and finer partitions Q whose
classes have narrower and narrower entropy-difference
distributions, independent of the process and how poorly
Eq. (11) bounds the average entropy difference.
That said, partitioning trajectories into finer classes com-
plicates solving for and relating class probabilities. Ide-
ally, there is middle ground with a relatively simplified

partition composed of classes that carry sufficient informa-
tion about the trajectory probabilities to tightly-bound
the average entropy difference. Reference [14] provides
a compelling example of the experimental usefulness of
this result, as it uses naturally defined classes to obtain
strong work estimates for trajectories in experimentally
implemented bit erasure in a flux qubit.

V. FREE ENERGIES VIA
CONSTANT-DIFFERENCE CLASSES

Paralleling the bounds on work production derived from
the Second Law, Eq. (9) converts the bounds of Sec.
IV into statements involving works and trajectory free-
energy differences. Thus, determining a bound on the
average work required over an arbitrary trajectory class
requires obtaining the trajectory free-energy difference.
The following shows how to find these free-energy differ-
ences given access to the work statistics for the forward
experiment and trajectory class statistics for both the
forward and reverse experiment. Our only requirement
is that the trajectories in the class all have the same
free-energy difference. The resulting trajectory class free
energy differences provide average work bounds for a wide
variety of processes. We then consider an important type
of nonequilibrium process—a metastable process—for an
example application.

A. Constant Free-Energy Differences

For any pair of forward and reverse state-conditioned
processes defined by a forward protocol −→

λ , a choice of
equilibrium privileged distributions ρ = π0 and σ = πτ
ensures a constant free-energy difference ∆f(−→z ) over all
trajectories −→z : the equilibrium free energy change ∆F eq.
For nonequilibrium privileged distributions, ρ ̸= π0 or σ ̸=
πτ , the free-energy difference varies over trajectories. And,
this precludes extraction of the free-energy difference from
the exponential average entropy difference as was done to
obtain Eq. (15) for ∆f = ∆F eq. By focusing on trajectory
classes of constant free-energy difference, though, we can
actually extract these free-energy differences from class
averages.
Suppose every trajectory −→z in class C has the same free
energy difference ∆fC = ∆f(−→z ). Then, we can extract
∆fC from the class average of the exponential entropy
difference: 〈

e−Σ〉
C

=
〈
e−β(W−∆f)

〉
C

= eβ∆fC
〈
e−βW 〉

C
.
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Then, the ECFT Eq. (20) gives:

∆fC = −β−1 ln⟨e−βW ⟩C + β−1 ln R(C)
P (C) . (26)

This equality relates free-energy differences to statistics
on works and class probabilities. Jarzynski’s Equality Eq.
(15) is the special case where C = −→

Z , ρ = π0, and σ = πτ .

B. Metastable Process Work Bounds

Having established Eq. (26), we now demonstrate its
application to bounding the ensemble average work of
a particular type of process that we call a metastable
process.
As a motivating example, consider an information-storing
biomolecule whose configurational space is too complex
to fully model but which has a coarser description of
state that is robust to thermal noise, like the various
functional configurations of a protein or RNA molecule.
With the results here, one can obtain refined bounds for
the work production in altering the occupancy of these
coarsened states along with free energies associated with
these states, without knowing the exact details of the
underlying Hamiltonian. A similar analysis to ours was
done to obtain the change in free energy of RNA through
stretching [8, 10]. However, our procedure comes with the
added possibility of treating distributions over multiple
possible coarsened states.

1. Metastable Processes

Consider an energetic landscape Et at time t that is
partitioned into regions—metastable regions—each sep-
arated by high energy barriers. For a system contained
in any such region, the barriers severely limit the chance
of escape over long timescales. Each metastable region
therefore represents an information-storing mesostate, or
memory state, that robustly constrains the system. Also,
for any system state distribution that has support over
exactly one metastable region m, the system will relax
to a stable distribution lmt over the region much faster
than the timescale of escape if the energetic landscape
is left unperturbed. While not the true, global equilib-
rium distribution πt, which generally has support over
all metastable regions, we call lmt the local equilibrium
distribution for m.
Now, prepare the system in arbitrary distributions over
all of phase space and then allow the system to locally
equilibrate in Et. We call the system state distribution κ
obtained after local equilibration a metastable distribution.

Within each metastable region m, κ must match lmt up to
normalization and, therefore, the equilibrium distribution
in that region. Thus, we have:

κ(z) = κ(m(z)) πt(z)
πt(m(z)) ,

where m(z) is the metastable region for microstate z, the
probability of the system being in the metastable region m
is defined as κ(m) ≡

∫
m
dz κ(z), and πt(m) ≡

∫
m
dz πt(z)

is the equilibrium probability of being in the region m.
A metastable process is then a forward process where (i)
the initial and final energetic landscapes E0 and Eτ can
each be partitioned into metastable regions and (ii) the
initial distribution ρ is metastable over E0.

2. Metastable Free Energies

For a metastable distribution κ, all system states in a
metastable region m have the same free energy. That is,
for z ∈ m:

f(z;κ,Et) = Et(z) + β−1 ln κ(z)

= Et(z) + β−1 ln κ(m(z)) πt(z)
πt(m(z))

= Et(z) + β−1 ln κ(m(z))
πt(m(z))e

−β(Et(z)−F eq
t )

= β−1 ln κ(m(z))
πt(m(z)) + F eq

t .

Thus, the free energy for a locally equilibrated distribution
over a metastable region is the free energy of any state in
the region. We call such a free energy a metastable free
energy.
This further simplifies if we identify the memory-state
free energy:

Fmem
t (m) ≡ F eq

t − β−1 ln πt(m) , (27)

as the fixed contribution of a particular memory state to
the free energy, regardless of the metastable distribution
κ. The free energy is thus the free energy of the memory
state plus the surprisal of that memory state:

f(z;κ,Et) = Fmem
t (m(z)) + β−1 ln κ(m(z)) .

When averaged over all metastable regions with distribu-
tion κ, this returns a familiar expression [15] for average
nonequilibrium free energy:

⟨f⟩Z(κ,Et) =
∑
m

κ(m)Fmem
t (m) − β−1HM (κ) ,
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where HM (κ) ≡ −
∑
m κ(m) ln κ(m) is the Shannon en-

tropy of κ over memory states—the average amount of
information they store.

This decomposition offers an entrée to the problem of
evaluating work production of a process whose control
protocol λ⃗ must start in a particular initial configuration
λ(0) and end in a particular final configuration λ(τ). If
their respective energetic landscapes E0 and Eτ are not
well understood, we can still extract bounds on work
production using the TCFT.

We wish to derive an ensemble average free-energy differ-
ence for such a metastable process so that we can bound
the work invested in the forward experiment that exploits
the simplicity of metastable free energies. Of course, dif-
ferent choices of the second privileged distributions σ
result in different free-energy differences, but we will con-
sider the metastable distribution that corresponds to the
final-time distribution of the metastable process. That
is, we choose σ to be the distribution of the system if,
holding the energetic landscape fixed at Eτ at the end
of the protocol, the system locally-equilibrated after the
end of the forward process:

σ(z) = ρτ (m(z)) πτ (z)
πτ (m(z)) .

We say that σ is then the locally-equilibrated distribution
of ρτ . The resulting free-energy difference ∆f is then
called the metastable free energy change for the metastable
process:

∆f(−→z ) = Fmem
τ (m′(−→z (0))) − Fmem

0 (m(−→z (τ)))

+ β−1 ln σ(m′(−→z (τ)))
ρ(m(−→z (0))) ,

where m(z) and m′(z) are the memory states containing
z in E0 and Eτ , respectively. Using Eq. (12), we then
have:

⟨W ⟩−→
Z ≥ ⟨∆f⟩−→

Z (28)
= ⟨∆Fmem⟩−→

Z − β−1∆HM .

The first term captures the free energy contribution of
each state and is specific to the particular physical instan-
tiation of the memory. The second term is characteristic
of how the system’s distribution over metastable regions
transformed. If the memory states all had the same free en-
ergy then the first term would be zero, giving Landauer’s
bound. Generally, Eq. (28) falls short of the free-energy
change bound on the average work, Eq. (13), because
the actual final-time free energy, that of ρτ , is generally
higher than the free energy of the locally-equilibrated σ.

3. Obtaining Memory-State Free Energies

Consider a system and a pair of initial and final protocol
configurations λ(0) and λ(τ), respectively. If each of
these configurations contains metastable regions, capable
of storing useful information, it is worthwhile considering
the family of thermodynamic experiments that execute
computations, stochastically mapping between different
metastable regions of these end-points. As we will show,
any experiment that begins in a metastable distribution
with the boundary conditions above obeys strong bounds
on work production related to the metastable free energy.
This is useful since we can choose one or a small number
of such processes to study in detail to obtain the memory
state free energies and then, by Eq. (28), the average
work for any computation implemented between these
control points is simply determined by the initial and final
memory state distributions.
Consider an initial metastable region m and final
metastable region m′ and the associated trajectory class
that connects them:

Cm,m′ = {−→z |−→z (0) ∈ m,−→z (τ) ∈ m′} .

All trajectories within one class must all have the same
free energy difference if we choose the privileged distri-
butions ρ and σ of our forward and reverse experiment
to be metastable. Practically, this can be experimentally
implemented by allowing the system to relax to local
metastable equilibria before executing the control proto-
col. If the metastable regions are appropriately chosen,
this process can be much faster than relaxation to global
equilibrium.
As a result, we can express the free-energy difference for
this trajectory class in terms of the input and output
memory states by considering −→z ∈ Cm,m′ :

∆fCm,m′ = f(−→z (τ);σ,Eτ ) − f(−→z (0); ρ,E0)

= Fmem
τ (m′) − Fmem

0 (m) + β−1 ln σ(m′)
ρ(m) .

In the special case where ρ(m) = σ(m′), the change
in memory state free energy is equal to the free-energy
difference.
Regardless of the metastable privileged distributions used,
we recover memory state free-energy differences via Eq.
(26), using the work production probabilities and memory
state probabilities:

Fmem
τ (m′) − Fmem

0 (m)

= −β−1 ln
〈
e−βW 〉

Cm,m′
+ β−1 ln R(Cm,m′)ρ(m)

P (Cm,m′)σ(m′) .
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If the protocol is cyclical, such that Eτ = E0, then we
can fully obtain all memory state free-energy differences
with |M| − 1 trajectory classes, where M is the set of
metastable regions of the initial-final energetic landscape.
Otherwise, the memory state free-energies can be deter-
mined by considering |M1| + |M2| − 1 trajectory classes,
where M1 and M2 are the sets of metastable regions of
the initial and final landscapes.
With the free energy landscapes determined, it becomes
straightforward to set strong bounds not only on the pro-
cess that resulted from the original experiment with λ⃗ and
ρ, but on any experiment that has the same initial and
final protocol configurations and begins in a metastable
distribution. Suppose the initial memory state distribu-
tion of the process is q. Let the resultant final memory
state distribution of the process be q′:

q′(m′) =
∑
m

q(m)pm→m′ ,

where pm→m′ is the probability of the system ending in
m′ given that it started in m. Then, by Eq. (28):

⟨W ⟩−→
Z ≥

∑
m′

q′(m′)Fmem
τ (m′) −

∑
m

q(m)Fmem
0 (m)

− β−1(HM (q′) −HM (q)) .

With this section’s results, it is possible to obtain strong
work bounds on computations even when the memory-
state free energies are unequal or unknown at the outset.
This significantly strengthens the Second Law as applied
to the thermodynamics of computation.

VI. STATISTICAL FREEDOM FROM THE
TYRANNY OF THE RARE

When estimating statistical quantities from data, rare
events can dominate sample averages [12, 13]. This can
be particularly problematic when the events are associated
with large resources. Consider the following case in point.
By empirically estimating the exponential average work〈
e−βW 〉−→

Z for a thermodynamic transformation, one can
estimate the equilibrium free energy difference ∆F eq via
Eq. (15)’s Jarzynski’s Equality. However, this can require
thorough sampling of very rare events [12]. The ECFT
of Eq. (20) can aid in solving this statistical challenge by
removing consideration of these rare but work-dominant
trajectories.
Specifically, if the privileged starting distributions of both
the forward and reverse experiments are in equilibrium,
then the free energy difference ∆fC of a class C (shown
in Eq. (26)) is the change in free energy ∆F eq, regardless

of the chosen class. However, given a set of N forward
and reverse experiments and associated work data for the
forward experiment W⃗ = {W1,W2, · · ·WN}, statistical
fluctuations in the data lead to fluctuations in trajectory
class probability estimates P̃ (C) and R̃(C), where the
tilde indicates an estimate. This results in statistical fluc-
tuations in free-energy difference estimates that depend
on the trajectory class:

∆f̃C ≡ −β−1 ln
(∑N

i=1 δWi∈Ce
−βWi∑N

i=1 δWi∈C

)
+ β−1 ln R̃(C)

P̃ (C)
,

(29)

where δWi∈C returns 1 if the ith work value is realized
within the trajectory class C and 0 otherwise. If we had
perfect statistics, these estimates would all be the actual
change in free energy ∆F eq. However, as the next section
shows (and as App. C further explains), we can find
better estimators of the free energy change by choosing
more probable trajectory classes.

A. Tyranny of the Rare

Consider the following example 1D system. It is in contact
with a thermal environment at inverse temperature β but
otherwise obeys classical mechanics under a time-evolving
potential energy landscape. There exist two regions in
state space, A and B, each with potential energy that
is constant over their regions. Arbitrarily high barriers
separate and surround the regions so that all particles
in a given region stay there. These two potential-energy
wells start at energies:

E0(A) = −β−1 ln(1 − ϵ)

and:

E0(B) = −β−1 ln(ϵ) ,

respectively, where 0 < ϵ ≪ 1 and the energy everywhere
else is arbitrarily large.
Start the system in equilibrium over the two wells so that
the probabilities of starting in the wells are:

P (A) = 1 − ϵ

and:

P (B) = ϵ .

Now, raise well A and lower well B to end at Eτ (A) =
Eτ (B) = β−1 ln 2 energy. Consider a trajectory class
for trajectories that are wholly in the A well during the
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process and similarly a class for the B well. We refer to
the classes synonymously with their associated wells.
The work invested for either class is simply the change in
energy of the corresponding well since the energy barrier
is high enough that system states do not cross between
wells during the control protocol:

WA = β−1 ln(2(1 − ϵ))
WB = β−1 ln(2ϵ) .

The resulting integral fluctuation theorem yields:〈
e−βW 〉−→

Z = P (A)
〈
e−βW 〉

A
+ P (B)

〈
e−βW 〉

B
,

where:

P (A)
〈
e−βW 〉

A
= (1 − ϵ) 1

2(1 − ϵ)

= 1
2 ,

and:

P (B)
〈
e−βW 〉

B
= ϵ

1
2ϵ

= 1
2 .

So, the total exponential average work is:〈
e−βW 〉−→

Z = 1 ,

and, thus, by Eq. (15) the equilibrium free energy change
vanishes.
In this situation, the probabilities of the two classes are
highly uneven with class B having only probability ϵ.
However, B accounts for 1/2 of the total exponential
average work. This means that an accurate statistical
estimate of the change in equilibrium free energy via
sampling such a process and using Eq. (15) is highly
dependent on rare events. Specifically, even though the
true free energy change is 0, it would likely be estimated
as ∆F̃ eq = β−1 ln 2 with small enough ϵ, as can be seen
by the green histogram in Fig. 1. It converges to the
true value only with very large samples of the rare class
B. Thus, the variance of estimated values for the change
in equilibrium free energy is large for finitely sampled
experiments. Typically, estimates will be misleading.

B. Circumventing Tyranny

The TCFT solves this problem using appropriate trajec-
tory classes. In principle, we may consider a process with
arbitrary privileged distributions for both the forward

and reverse processes. Thus, we can estimate arbitrary
free-energy differences for a process, as long as we re-
strict consideration to a trajectory class C of constant
free-energy difference, as described in Sec. V A. However,
constant free-energy differences are automatically guaran-
teed for any class when we choose equilibrium privileged
distributions for both the forward and reverse processes.
The privileged distribution for the forward process de-
scribed above was indeed equilibrium and we choose an
equilibrium distribution for the corresponding reverse
process as well.
Now, focus on Eq. (26), moving away from Jarzynski’s
Equality in Eq. (15). This expands the required estima-
tors from simply the exponential average work to also
include the forward and reverse process probabilities of
class C. Moreover, the exponential average work is now
conditioned on C. Thus, the estimator is a function of
sampled data that comes from class C in both the forward
and reverse experiments. However, we need C to be such
that the class average of the exponential work, the for-
ward probability of the class, and the reverse probability
of the class are statistically easy to estimate.
This is the case when sampling trajectories from class
A in the example above. First, note that A has very
high probability 1 − ϵ, so estimating its log-probability
from data is statistically easy. Second, its class average
exponential work is also easily estimated since the class
itself is highly likely and its work distribution is narrow.
This leaves estimating the reverse class probability. In
this, we choose our second privileged distribution to be
the equilibrium distribution for the final-time energy land-
scape and so solve for the equilibrium free-energy change,
as desired. This, then, fully specifies the reverse process.
Since the true equilibrium free-energy change vanishes,
Eq. (26) says that the reverse-process probability of class
A is R(A) = 1/2. In this way, since A is likely in the
reverse process, it too is easily estimated.
To verify that this reasoning is sound, consider estimates
obtained from various numbers N of forward and reverse
process trajectories for the three trajectory classes −→

Z ,
A, and B. (See App. C for an explanation of the base
calculations.) Figure 1 shows that the distribution of free
energy estimates when using all trajectories C = −→

Z is
heavily weighted towards ∆f̃−→

Z = β−1 ln 2 for ϵ = 0.01 and
a small data set of work values. However, if we restrict to
the trajectory class that starts and ends in the most likely
state A, then we see that free energy estimates are more
closely centered around the correct value of ∆F eq = 0.
This suggests that restricting to high probability regions
of the work distribution improves free energy estimates.
Figure 2 further quantifies this advantage by plotting the
average difference with the correct free energy ⟨∆f̃C −
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FIG. 1. Tyranny of the rare: Distribution of free energy estimates ∆f̃C arising from N forward and N reverse experiments with
ϵ = 0.01 depends sensitively on the trajectory class C. Above, plots of free energy estimates for the trajectory class that includes
all paths (green: C = all), the trajectory class that starts and ends in A (red: C = A), and the trajectory class that starts
and ends in B (blue: C = B). Note that we do not plot divergent free energy estimates, for which we estimate P̃ (C) = 0 or
R̃(C) = 0. Both trajectory classes A and B can yield divergent estimates, but A often provides better estimates than C = All.

∆F eq⟩ and mean square deviation ⟨(∆f̃C − ∆F eq)2⟩. We
see a marked advantage to our restricted trajectory class
C = A over the full set of trajectories in both cases.
By contrast, restricting to the rare event C = B, Fig. 1
shows that the majority of the free energy estimates are
divergent for a small data set of work values. However,
even when considering only the nondivergent estimates,
Fig. 2 shows that the rare trajectory class C = B leads
to the worst free energy estimates.
The resulting estimate of the free-energy change via the
TCFT is indeed much more statistically robust and parsi-
monious. Reference [13] gives another analysis focusing
on improvements in reducing the bias. The approach
detailed above shows how we can reduce the bias as well
reduce the variance.

VII. RELATED RESULTS

We now turn to the burgeoning collection of previously
established fluctuation theorems. As noted, many existing
fluctuation theorems are special cases of the TCFT.
For most of the results and setups considered in the
following, the trajectory classes constructed can have
zero probability. Of course, the TCFT is then not to be
used directly. Instead, the methods of Sec. III E can be

used to find either approximate trajectory classes or a
limiting procedure that will then yield the exact result
in question. To avoid redundancy, we simply assume
a limiting procedure when the trajectory class has zero
probability.

A. Measurement and Feedback for Free Energy
Estimation

Reference [13] focuses on the problem of estimating free
energy differences in the face of rare yet resource-dominant
events. This was the subject of Sec. VI. By taking
measurements of the system state at some number of
times and rejecting or accepting data samples based on
those measurement results, statistical estimation of free
energies can be improved with the use of their Eq. (9).
Specifically, suppose that A = {A1, . . . , AN} is a set of
regions of system state space. For times T ′ = {t1, . . . , tN}
during the protocol, we measure whether the system
occupies region Ai at time ti for each i. Let the class
C be trajectories that occupy Ai at time ti for each i.
Applying Eq. (20)’s ECFT to C, we derive their Eq. (9).
They show that an estimator of the free-energy difference
over a process can have a smaller bias when using their
Eq. (9) and an appropriate set of measurement choices
compared to using the Jarzynski Equality.
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FIG. 2. Degree to which energy estimates ∆f̃C diverge from the actual change in free energy ∆F eq depends on the trajectory
class: For ϵ = 0.01, the probability of an infinitely divergent free energy estimate Pr(∆f̃C → ±∞) is significant for the trajectory
class B, nonzero and swiftly decreasing for A with larger data, and zero for the set of all trajectories. Despite this advantage
in using all trajectories to estimate free energy, both the average difference ⟨∆f̃C − ∆F eq⟩ and the mean squared deviation
⟨(∆f̃C − ∆F eq)2⟩ are minimized by the class C = A by excluding the rare event B. These plots come from excluding infinitely
divergent estimates, which represent an exponentially small likelihood for A as N increases. Looking at a reduced trajectory
subspace A gives consistently improved estimates for small amounts of data.

Since C incorporates an arbitrary number of arbitrary
system state measurements, their Eq. (9) is a rather
broad fluctuation theorem. The key difference between
Eq. (20) and their Eq. (9) is that Eq. (20) allow (i)
an infinite number of specifications on the trajectories
and (ii) more general types of trajectory specifications
(e.g., work values) than instantaneous descriptions of the
system state.

B. Phase Space Perspective on Dissipated Work

Reference [27] achieves several important results that can
be understood as special cases of the TCFT. They consider
a system that only interacts with a control device during
the forward and reverse experiments. Note that this is
a special case of our assumptions where the system has
negligible or no interaction with the thermal environment.
Also note that, as their examples illustrate, this still
allows a system to be composed of two subsystems with
one acting as a thermal environment for the other. In
these cases, the TCFT can be applied to either the entire
system or the latter subsystem. We apply it to the entire
system to follow their core development.
Set the state space Z to be the microstates of the system
and the modeled times T to be [0, τ ]. This ensures a
deterministic, Hamiltonian evolution of the system, as
they describe. Set ρ and σ to the initial and final Boltz-
mann distributions at the same inverse temperature β.
So, the resulting free-energy differences of all trajectories
are equal to the equilibrium free-energy difference ∆F eq.
The dissipated work ⟨W ⟩−→

Z − ∆F eq is then the average
heat that would be dissipated from the system to a ther-
mal environment at inverse temperature β if the system
was equilibrated with the environment after the forward

protocol while held at energetic landscape Eτ .
Then consider a partition {χ1, . . . χK} of Z and a time
t. For each j in {1, . . . ,K}, let Cj be the set of system
state trajectories that occupy χj at time t. Then let ρj
be the probability the system is in χj at time t in the
forward experiment. Then:

ρj = P (Cj) .

Set χ̃j = χ†
j = {z† | z ∈ χj} and let ρ̃j be the probability

the system is in χ̃j at time τ − t in the reverse experiment.
(They denote this time t, keeping all references of time to
be relative to the forward experiment.) Then:

ρ̃j = R′(C†
j )

= R(Cj) .

Applying Eq. (20)’s ECFT to Cj yields Ref. [27]’s Eq. (6).
Eq. (22)’s TCSL applied to Cj yields their Eq. (7). And,
Eq. (25)’s TPSL applied to the partition of trajectories
Q = {C1, . . . , CK} yields their Eq. (8).
These results, especially their Eq. (8), were used to pro-
vide concise expressions involving work and free energies
for simple but instructive processes, as well as to derive
Landauer’s bound.

C. Work Dissipation as the Distance from
Equilibrium

Reference [28] obtains an inequality between the dissi-
pated work up to any time t during a protocol and how
far the system’s state density at time t must be from
equilibrium. They assume that the system dynamics are
Markovian and that the system equilibrates, at any time
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t, towards the Boltzmann distribution for Et and β, if the
protocol is suddenly interrupted at time t and the system
is held under energetic landscape Et. These assumptions
are met in our model if the thermal environment has such
a high relaxation rate that it is effectively memoryless as
far as the influence on the system is concerned. They also
assume that ρ and σ are the initial and final Boltzmann
distributions. Let −→

λ be the forward protocol, which runs
from time 0 to τ . Let Z be the system microstates and
T = [0, τ ].
We derive their results from the TCFT by considering
a separate protocol −→

λ t for any time t in [0, τ ]. −→
λ t runs

from time 0 to time 2t. For t′ ≤ t, −→
λ t(t′) = −→

λ (t′). For
t′ > t, −→

λ t(t′) = −→
λ (t). Thus −→

λ t follows −→
λ until time t,

at which point −→
λ t holds fixed until it ends at 2t. The

forward process privileged distribution ρt for the protocol−→
λ t is simply set to the Boltzmann distribution ρ. At
time t, denote the probability of being in state z as ρ(z, t),
which must be shared between both protocols −→

λ and −→
λ t

since the two protocols do not differ until time t.
The reverse process privileged distribution for −→

λ t is set
to be Boltzmann with respect to E2t. Since the proto-
col −→

λ t is fixed between times t and 2t, this is also the
physical-reverse state distribution at all times between 0
and t during the physical-reverse process. In particular,
the state distribution for the physical-reverse process of
protocol −→

λ t at time t is:

ρeq(z,−→λ (t)) = e−β(Et(z)−F eq
t ) .

Let Ctz be the set of trajectories that occupy microstate
z at time t. Then:

ρ(z, t) = P (Ctz) ,

where P refers to the forward process of protocol −→
λ t.

And:

ρeq(z,−→λ (t)) = R′(Ctz)
= R(Ctz) ,

where R′ and R refer to the reverse process (physical and
formal representations, respectively) of protocol −→

λ t.
Let W (t) denote the work conducted up to time t. The
exponential average work up to time t conditioned on
the system occupying state z at time t is

〈
e−βW (t)〉

z,t
,

during either protocol −→
λ or −→

λ t. Since no additional work
is conducted under the protocol −→

λ t after time t, this
quantity is then:〈

e−βW (t)
〉
z,t

=
〈
e−βW 〉

Ct
z
,

where the second average is taken over the forward process
for protocol −→

λ t.
Then, applied to the protocol −→

λ t and using trajectory
class Ctz and the above equalities, Eq. (20)’s ECFT yields
Ref. [28]’s Eq. (6). Equation (22)’s TCSL yields their Eq.
(8) and Eq. (25)’s TPSL yields their Eqs. (2) and (9).

D. Work and State Fluctuation Theorem

Consider a process where ρ and σ are the initial and final
Boltzmann distributions. Reference [9] establishes a fluc-
tuation theorem that relates a work value, the equilibrium
free-energy difference, and forward and reverse process
probabilities for obtaining the work value and particular
values for two functions of state. The two functions of
state are evaluated at opposite ends of the trajectory. In
their notation, this is written as:

PF(W̃ , a → b)e−βW̃ = PR(−W̃ , b∗ → a∗)e−β∆F eq
,

which is their Eq. (1). (Except that we use W̃ for a
specific work value.) Here, a and b are some output
values of the two respective functions of state and a∗ and
b∗ are the output values of the time reverse of system
states that output a and b. PF and PR are the forward
and reverse processes.
Let C be all trajectories (i) that obtain a work value W ,
(ii) whose state evaluates the first state function to a, and
(iii) whose end state evaluates the second state function
to b. Then applying the ECFT Eq. (20) to C gives their
Eq. (1).
The equality was used to efficiently estimate the con-
formational free energy change of a simulated alanine
dipeptide.

E. Landauer’s Bound on Erasure Dissipation

Finally, Ref. [29] considers the process of erasing informa-
tion implemented using a Brownian silica bead trapped in
an optical tweezer. The laser initially induces an effective
double-well potential that is symmetric across the center.
They call the two wells 0 and 1. Manipulating the laser
and moving the platform containing the bead, a protocol
is realized that, while ending with the effective potential
in the initial form, shifts the bead to the 0 well with high
probability. This was obtained with a variety of specific
initial conditions and protocol variations. Since the bead
always starts in either well with 50% probability, this
then demonstrates erasing one bit of information via a
variety of protocols.
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They also demonstrate that the average work required to
conduct these protocols was always near β−1 ln 2, verifying
Landauer’s Bound. To explain why Landauer’s bound
should hold, they utilize Ref. [28]’s Eq. (6) to produce
the following:

〈
e−βW 〉

→0 = 1/2
PS

, (30)

and: 〈
e−βW 〉

→1 = 1/2
PS

, (31)

where PS is the probability of a trajectory successfully
ending in the 0 state, and → 0 (→ 1) denotes an average
conditioned on ending in the 0 (1) state. In particular,
applying Jensen’s inequality to Eq. (30) yields:

⟨W ⟩→0 ≥ β−1(ln 2 + lnPS) ,

which is a generalization of Landauer’s Bound for imper-
fect erasure.
We deduced Ref. [28]’s Eq. (6) from the TCFT already,
but Eqs. (30) and (31) can be obtained from the TCFT
directly and quickly. Since the bead starts off equilibrated
over each well and has equal probability to start in either,
the initial distribution ρ is equilibrium. Choose σ to also
be equilibrium. Then the free energy difference is ∆F eq,
which must be zero since the effective potential ends as
it begins. Then let C0 be all trajectories that end in 0
and C1 be all that end in 1. Applying the ECFT Eq.
(20) first to C0 and then to C1 yields Eqs. (30) and (31),
respectively.

VIII. DISCUSSION

The preceding provided guidance when selecting appro-
priate trajectory classes for a given process of interest.
To achieve a much stronger bound on entropy difference
than the traditional ensemble-average Second Law, Sec.
IV C proposed choosing a partition of all trajectories
into classes that resulted in narrow entropy difference
distributions for each class. And, to avoid dominating
rare events when calculating free-energy differences (Sec.
VI), we recommended classes that are common in both
the forward and reverse processes and that have narrow
entropy-difference distributions. That said, the most ef-
fective classes for these tasks appear to be specific to the
particular processes of interest. Developing procedures to
identify these classes for arbitrary processes remain an
open problem.
What does this look like in practice? Reference [14] exper-

imentally investigated efficient bit erasure in a nanoscale
flux qubit device. We found a natural partition of tra-
jectories into classes that served well both to strengthen
the Second Law and to dissect the entire process work
distribution. The latter identified simple components char-
acterizing the full work distribution’s features—features
functionally critical to efficient bit erasure.
Helpfully, the TCFT can be derived under less severe
restrictions on the system than Sec. II A assumed. For
example, the nature of the external influence that we
called the control device can be allowed to instantiate
nonconservative forces on the system. Moreover, the
thermal environment does not need to be fixed at inverse
temperature β for the duration of the protocol. That is,
we need not require that the steady state of the system
is in equilibrium nor that all forces acting on the system
are conservative. Relaxing other assumptions is possible
too. The essential equality needed for a version of the
TCFT to also hold is one like the DFT:

P (−→z )
R(−→z ) = g(−→z ) ,

where g is some function of trajectory. Then a version of
the TCFT holds where the exponential entropy difference
e−Σ is replaced with the function g. This follows by the
same logic as presented in Sec. III. However, how such a
generalization of our presentation can be used remains to
be explored.

IX. CONCLUSIONS

We presented the TCFT’s core theory. With it, we de-
tailed a path to solving for free-energy differences more
efficiently than before. We also showed how to strengthen
the Second Law in the presence of impoverished knowl-
edge of any nonequilibrium and dissipative process. This
led to a suite of new results that further advanced our un-
derstanding of how fluctuations underpin nonequilibrium
thermodynamics.
We also showed how the TCFT fits more broadly within
the ranks of fluctuation theorems. It unifies many pre-
viously known, but distinct results, spans the detailed
and integral fluctuation theorems, and is rooted in the
same conceptual foundation of time symmetries on small
dynamical systems.
Follow-on efforts will expand on the way that the TCFT
breaks free energy estimation from the tyranny of rare
events. This will also clarify the role of metastable free
energies in describing experimentally inaccessible free
energies of interest and related thermodynamic costs. Via
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explicit examples, this will also showcase how the TCFT
solves for these metastable free energies.
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Appendix A: Alternative TCFT Derivations

Equation (20)’s Exponential Class Fluctuation Theorem
(ECFT ) can be derived from at least two prior results—
from path ensemble averaging and from a master fluctua-
tion theorem.

1. Path Ensemble Average

We first give a derivation from a generalization of Crooks’
Path Ensemble Average to arbitrary privileged distribu-
tions. The Path Ensemble Average result is expressed in
Eq. (15) of Ref. [30]:

⟨Fe−Σ(−→z )⟩F = ⟨F̂⟩R′ .

Here, F is an arbitrary trajectory functional, F̂ is its time
reverse, defined by F̂(−→z ) = F(−→z †), and ⟨·⟩y denotes a
trajectory ensemble average over the forward (y = F ) or
physical reverse representation of the reverse (y = R′)
processes.

We first convert to the formal reverse representation for

convenience: 〈
F̂
〉
R′

=
∫
d−→z R′(−→z )F(−→z †)

=
∫
d−→z R(−→z †)F(−→z †)

=
∫
d−→z R(−→z )F(−→z )

= ⟨F⟩R ,

where R denotes that the average is taken over the formal
reverse representation of the reverse process. This gives:

⟨Fe−Σ(−→z )⟩F = ⟨F⟩R . (A1)

Consider an arbitrary trajectory class C ∈ C. Then let
F(−→z ) = [−→z ∈ C]—C’s characteristic function—for all
−→z ∈

−→
Z . Then the LHS of Eq. (A1) becomes:∫

d−→z P (−→z )[−→z ∈ C]e−Σ(−→z )

=
∫
C

d−→z P (−→z |C)P (C)e−Σ(−→z )

= P (C)
∫
C

d−→z P (−→z |C)e−Σ(−→z )

= P (C)
〈
e−Σ〉

C
.

Equation (A1)’s RHS is simply R(C). Combining yields
Eq. (20), showing that the exponential class fluctuation
theorem is the path or trajectory ensemble average of a
characteristic function [−→z ∈ C].

2. Master Fluctuation Theorem

For Langevin dynamics, invoke Ref. [17]’s Master Fluctu-
ation Theorem:〈

g({Sα})e−Σ〉
F

=
〈
g({ϵαS†

α)}
〉
R′ .

This is Eq. (78) there. {Sα} is a set of functions of
the system microstate trajectories for the forward process.
{S†

α} is a corresponding set of functions of the trajectories
for the reverse process with the following relationship:
S†
α(−→z †) = ϵαSα(−→z ), where ϵα = ±1. And, g is any

function of the set {Sα}.
To derive the ECFT, we consider the singleton {Sα(−→z )} =
{[−→z ∈ C]}. We then define S†

α(−→z ) = [−→z † ∈ C], giving
S†
α(−→z †) = [−→z ∈ C] = Sα(−→z ) and ϵα = 1. Then, set g to

be the identity, obtaining:〈
[−→z ∈ C]e−Σ〉

F
=
〈

[−→z † ∈ C]
〉
R′
.



21

This is now in the form of Crooks’ Path Ensemble Average
for F(−→z ) = [−→z ∈ C].

Appendix B: Irreversibility as Entropy-Difference
Variability

The following shows that the average class irreversibil-
ity ΨC tracks the variability of entropy difference when
small. Moreover, ΨC and variability both necessarily go
to zero together. And so, the TCFT shows that finding
a class with a narrow entropy-difference distribution is
tantamount to minimizing the class irreversibility and
class-average entropy difference.
First, translate Σ into x = Σ − ⟨Σ⟩C , its difference from
its average:

⟨e−Σ⟩C = ⟨e−x⟩C e−⟨Σ⟩C .

Then, Taylor expand:

⟨e−x⟩C =
∞∑
n=0

(−1)n
n! ⟨xn⟩C

= 1 + a ,

with:

a ≡
∞∑
n=2

(−1)n
n! ⟨xn⟩C

≥ 0 .

When Σ’s variability is small, the x are typically small
and the second order term

〈
x2〉

C
dominates in a. a is,

then, the variance of Σ over C.
Then, using Eqs. (20) and (16), we have:

e−ΘC = (1 + a)e−ΘC−ΨC .

This gives:

ΨC = ln(1 + a) .

Since a goes as the variance, ΨC is also a measure of Σ’s
variability in C in the small variability limit.

Appendix C: Free Energy Estimate Distribution

If we wish to estimate the change in free energy from the
work distributions of a collection of forward and reverse
experiments that start in equilibrium, the TCFT provides
a relation for the free-energy differences of each trajectory
class C:

e−∆fC = ⟨e−β−1W ⟩C
P (C)
R(C) ,

which each equal the change in free energy ∆F eq = ∆fC .
Let us consider a particular experiment with two energy
levels that start at:

E0(A) = −β−1 ln(1 − ϵ)
E0(B) = −β−1 ln ϵ,

with the corresponding equilibrium distribution:

π0(A) = 1 − ϵ

π0(B) = ϵ.

Note that, because Et(s) ≡ F eq
t − β−1 ln πt(s), the free

energy in this case is zero initially: F eq
0 = 0. We then

change the energy level instantaneously to the final energy
landscape:

Eτ (A) = Eτ (B) = −β−1 ln πτ (A)
= −β−1 ln πτ (B)
= β−1 ln 2,

which also has zero free energy F eq
τ = 0. If the initial

state is s, then it remains s and the work investment is:

W (A) = Eτ (A) − E0(A)
= β−1 ln(2(1 − ϵ))

W (B) = Eτ (B) − E0(B)
= β−1 ln(2ϵ) .

To evaluate the free-energy difference estimate, we note
∆f̃C is itself a function of the estimated probability of
realizations of the experiment that starts in A:

∆f̃C(P̃ (A), R̃(A)) = −β−1 ln
(
δA∈C P̃ (A)e−W (A) + δB∈C(1 − P̃ (A))e−W (B)

δA∈C P̃ (A) + δB∈C(1 − P̃ (A))
δA∈C P̃ (A) + δB∈C(1 − P̃ (A))
δA∈CR̃(A) + δB∈C(1 − R̃(A))

)
= −β−1 ln

(
δA∈C P̃ (A)e−W (A) + δB∈C(1 − P̃ (A))e−W (B)

δA∈CR̃(A) + δB∈C(1 − R̃(A))

)
.
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We use frequentist statistics to estimate the probabilities of our initial states and resultant works. Given N forward
experiments and N reverse experiments, the probability of realizing free energy ∆F is determined by evaluating the
number nA of times the forward experiment starts in A and the number nRA of times the reverse experiment starts in A:

Pr(∆f̃C = ∆F ) =
∑
nA,nR

A

Pr(∆f̃C = ∆F, P̃ (A) = nA/N, R̃(A) = nRA/N)

=
∑
nA,nR

A

δ∆F,∆f̃C(nA/N,nR
A
/N) Pr(P̃ (A) = nA/N, R̃(A) = nRA/N) .

For N experiments, we can combinatorially evaluate the
probability of realizing nA and nRA as a function of N :

Pr(P̃ (A) = nA/N) = (1 − ϵ)nAϵN−nA

(
N

nA

)
and:

Pr(R̃(A) = nRA/N) = 2−N
(
N

nRA

)
.

Assuming that the forward and reverse experiments are
performed independently, the joint probability of realizing

nA and nRA is:

Pr(P̃ (A) = nA/N, R̃(A) = nRA/N)
= Pr(R̃(A) = nRA/N) Pr(P̃ (A) = nA/N)

= (1 − ϵ)nAϵnA−N
(
N

nA

)
2−N

(
N

nRA

)
.

We then compute the probability of our free energy esti-
mate Pr(∆f̃C = ∆F ) for N experiments with π0(A) = ϵ:

Pr(∆f̃C = ∆F )

=
∑
nA,nR

A

δ∆F,∆f̃C (nA/N,nR
A
/N)

× (1 − ϵ)nAϵnA−N
(
N

nA

)
2−N

(
N

nRA

)
.
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