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We show why the amount of information communicated between the past and future—the excess
entropy—is not in general the amount of information stored in the present—the statistical complex-
ity. This is a puzzle, and a long-standing one, since the former describes observed behavior, while
optimal prediction requires the latter. We present a closed-form expression for the excess entropy
in terms of optimal causal predictors and retrodictors—both e-machines of computational mechan-
ics. This leads us to two new system invariants: causal irreversibility—the asymmetry between the
causal representations—and crypticity—the degree to which a process hides its state information.

PACS numbers:

Constructing a theory can be viewed as our attempt
to extract from measurements a system’s hidden orga-
nization. This suggests a parallel with decryption whose
goal is to reveal internal correlations within an encrypted
data stream [1]. The hidden message is revealed only to
a recipient with the correct codebook. This is essentially
the circumstance a scientist faces when building a model
from measurements: What are the hidden states and dy-
namic in the observed data?

In this view, the now-long history in nonlinear dynam-
ics of reconstructing models from time series [2, 3] is cast
as a self-decoding problem, where the information used
to build a model is only that available in the observed
process. That is, no “side-band” communication, prior
knowledge, or disciplinary assumptions are allowed. Na-
ture speaks for herself only through the data she willingly
gives up.

Here, we show that the parallel is more than metaphor:
building a model corresponds directly to decrypting the
hidden state information in measurements. The results
show why predicting and modeling are, at one and the
same time, distinct and intimately related. Along the
way, we clarify the role and types of information in pre-
diction and modeling. We show how to measure the de-
gree of hidden information and identify a new kind of
statistical irreversibility.

A process Pr(()_(7 )—5) is a communication channel with
a fixed input distribution Pr(y): It transmits informa-
tion from the past X = .. X_3X 92X 1 to the future
X = XoX1X5... by storing it in the present. Here, X,
is the discrete random variable for the measurement out-
come at time t, such as the observed z-component of a
spin or the symbolic dynamics of a chaotic system.

Our goal is also simply stated: We wish to predict
the future using information from the past. At root, a
prediction is probabilistic, specified by a distribution of
possible futures X given a particular past T : Pr()_(>|?)
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At a minimum, a good predictor needs to capture all of
the information I shared between past and future: E =
I [<)_(, )_()]—the process’s excess entropy [4, and references
therein].

Consider now the goal of modeling: build a represen-
tation that not only allows good prediction, but also ex-
presses the mechanisms that produce a system’s behav-
ior. To build a model of a process, computational me-
chanics [5] introduced an equivalence relation T ~ Z' to
group all histories that give rise to the same prediction—
resulting in a map_| from pasts to the causal states:
() = {7’ : Pr(X| ) Pr X|<_/)} A process’s s
causal states, & = Pr(X X)/ ~, partition the space X
of pasts into sets that are predictively equivalent. The
set of causal states can be discrete, fractal, or continu-
ous. State-to-state transitions are denoted by matrices
Té?/ whose elements give the probability of transitioning
from one state S to the next &’ on seeing measurement
value . The resulting model, consisting of the causal
states and transitions, is called the process’s e-machine.

Causal states have the Markovian property that they
render the past and future statistically independent; they
shield the future from the past [5]: Pr(()_(, )—(>|S) =

Pr(()_(|S)Pr()_(>|S). In this way, the causal states give a
structural decomposition of the process into conditionally
independent modules. Moreover, they are optimally pre-
dictive [5] in the sense that knowing which causal state
a process is in is just as good as having the entire past:
Pr()_(>|8) = Pr()_()|y) In other words, causal shielding is
equivalent to the fact [5] that the causal states capture
all of the information shared between past and future:
118; X] = E.

Naturally, there can be alternative models; denote
their states R. Consider the subset of these that are op-
timally predictive—those for which I[R; )—5] = E, where
we denoted their states as R. Out of all optimally
predictive models, the e-machine captures the minimal



amount of information that a process must store in or-
der to communicate all of the excess entropy from the
past to the future. This is the statistical complezity |5]:
C,=H[S]<H [R], where x reminds us of the depen-
dence on the dynamical system’s underlying invariant
measure. In short, E is the effective information trans-
mission capacity of the process, viewed as a channel, and
C\, is the sophistication of that channel.

In addition to E and C),, another key (and histori-
cally prior) invariant for dynamical systems and stochas-
tic processes is the entropy rate h,—a process’s degree of
intrinsic randomness [6]. Importantly, the e-machine im-
mediately gives two of these three important invariants:
a process’s rate (h,) of producing information and the
amount (C,) of historical information stored in doing so.

To date, E cannot be as directly calculated as the en-
tropy rate and the statistical complexity. One practical
consequence is that it is difficult to know when one has
obtained a good estimate of E. These are truly unfor-
tunate, since excess entropy, and related mutual infor-
mation quantities, are widely used diagnostics for pro-
cesses, having been applied to detect the presence of or-
ganization in dynamical systems (2,3, 7, 8], in spin sys-
tems [9, 10], in neurobiological systems [11,/12], and even
in language, to mention only a few applications. For ex-
ample, in natural language the excess entropy appears to
diverge with string length L as E oc L'/2, reflecting the
long-range and strongly nonergodic organization neces-
sary for human communication [13, 14].

This state of affairs has been a major impediment to
understanding the relationships between modeling and
predicting and, more concretely, the relationships be-
tween (and even the interpretation of) a process’s basic
invariants—h,, C,, and E [17]. Here, we clarify these
issues by deriving explicit expressions for E in terms of
the e-machine and C),, providing a unified information-
theoretic analysis of stationary processes.

The above development of e-machines concerns using
the past to predict the future. But what about the op-
posite, using the future to retrodict the past? Usually,
one thinks of successive measurements occurring as time
increases. Now, consider scanning the measurement vari-
ables not in the forward time direction, but in the reverse
time direction. The computational mechanics formalism
is essentially unchanged, though its meaning and nota-
tion need to be augmented.

With this in mind, the previous mapping from pasts
to causal states is denoted €™ and it gave, what we
will call, the predictive causal states ST. When scan-
ning in the reverse direction, we have a new relation,
T ~~ T, which groups futures that are equivalent for
the purpose of retrodicting the past: ¢ (7') = {7 :

«— «—
Pr(X|7) = Pr(X|Z"')}. It gives the retrodictive causal
states 8~ = Pr(Y, ?)/ ~~. And, not surprisingly, we
must also distinguish a process’s forward-scan e-machine

M from its reverse-scan e-machine M~. They assign
corresponding entropy rates, h;‘ and h,, and statistical
complexities, C)F = H[S*] and C,; = H[S™], respec-
tively, to the process.

Now we are in a position to ask some questions. Per-
haps the most obvious is, In which time direction is a
process most predictable? The answer is that a station-
ary process is equally predictable in either [5]: h, = hl‘r.
Somewhat surprisingly, though, the effort involved in do-
ing so need not be the same [15]: C # C:[. Naturally,
E is mute on this score, since the mutual information I
is symmetric in its variables [4].

The relationship between predicting and retrodicting
a process, and ultimately E’s role, requires teasing out
how the states of the forward and reverse e-machines cap-
ture information from the past and the future. To do
this we must analyze a four-variable mutual information:
I[()—(; )—(>;8+;S_]. A large number of expansions of this
quantity are possible. A systematic development follows
from Ref. [16] which showed that Shannon entropy H[']
and mutual information I[-; -] form a signed measure over
the space of events.
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FIG. 1: e-Machine information diagram for stationary
stochastic processes. A schematic, the diagram only shows
the set-theoretic relationships.

Using an information measure expansion, it turns
out there are 15 possible relationships to consider for
I [y;)_(z;S"’;S_]. Fortunately, this greatly simplifies in
the case of using an e-machine to represent a process:
There are only five relationships. (See Fig.[1l) Simpli-
fied in this way, we are left with our main results which,
due to the preceding effort, are particularly transparent.

Theorem 1. Ezcess entropy is the mutual information
between the predictive and retrodictive causal states:

E=1IS8"87]. (1)

This is obtained via a simultaneous <1r_edg>ctiom of the four-
variable mutual information into I[X; X] and I[ST;S™].
Notably, the process’s channel utilization E = T [?,)_f]
between the past and future is the same as the utiliza-
tion between the forward and reverse e-machine states.
Moreover, the predictive statistical complexity is given by
C = E+ H[ST|S™] and the retrodictive statistical com-
plexity by C;; = E+ H[S™|S*].



Theorem [1/and the companion results give an explicit
connection between a process’s excess entropy and its
causal structure—its e-machines. More generally, the re-
lationships directly tie mutual information measures of
observed sequences to a process’s structure. They will
allow us to probe the properties that control how closely
observed statistics reflect a process’s hidden structure;
that is, the degree to which observed behavior directly
reflects internal state information.

At this point we have two separate e-machines, one
for predicting and one for retrodicting. We will now
show that one can do better, by combining causal in-
formation from the past and future. Consider scanning
a realization, = = 7,7, of the process in the forward
direction—seeing histories 7, and noting the series of
causal states S;” = ¢ (7). Now change direction. What
reverse causal state is one in? Thisis S, = e (7';). We
describe the action of changing scan direction with the
bidirectional machine M=, which is given by the equiva-

lence relation ~*:

{2, 7): T et (T)and T € e (7))}

— —
and has causal states ST = Pr(X, X)/~* c ST x S§~.
That is, the bidirectional causal state the process is in at
time ¢ is S = (¢ (T),e (7). The amount of stored
information needed to optimally predict and retrodict a
process is M™*’s statistical complexity: Cf = H[S*] =
H[ST,87].

From the immediately preceding results we obtain the
following simple, useful relationship: E = C’l‘f +C —Cﬁz.
This suggests a wholly new interpretation of the excess
entropy—in addition to the original three reviewed in
Ref. [4]: E is exactly the difference between these sta-
tistical complexities. Moreover, only when E = 0 does
C’]—L = C’j‘ + €. The bidirectional machine is also ef-
ficient: C < CF + C,. And we have the bounds:
Cj < C’f and C < Cf. These inequalities express
the compactness of the bidirectional machine in contrast
to the pair of directional e-machines. This efficiency of
representation is due to the redundancy in the predictive
and retrodictive causal states.

We noted above that predicting and retrodicting may
require different amounts of information storage (CI #*
C, ). It is helpful to use causal irreversibility to measure
this asymmetry [15]: = = C;f — C,;. With the above
results, however, we see that = = H[ST|S™]—-H[S™|S™].
Note that irreversibility is also not controlled by E, as the
latter is scan-symmetric.

The relationship between excess entropy and statisti-
cal complexity established by Thm. T indicates that there
are fundamental limitations on the amount of a process’s
stored information (C’,:f) directly present in observations
(E). We now introduce a measure of this: A process’s
crypticity is x = H[ST|S™|+ H[S™|ST]. This is the dis-
tance between a process’s forward and reverse e-machines

and expresses, most explicitly, the difference between pre-
diction and modeling. To see this, we need the following
connection.

Corollary 1. M=*’s statistical complexity is:

CEf=E+x. (2)
Referring to x as crypticity derives from this result: It
is the amount of internal state information (Cf) not di-
rectly present in the observed sequence (E). That is, a
process hides x bits of information.

If crypticity is low (x &~ 0), then much of the stored
information is present in observed behavior: E = C’ljf.
However, when a process’s crypticity is high, x ~ C’j[,
then little of it’s structural information is directly present
in observations. Moreover, there are truly cryptic pro-
cesses (E = 0) that are highly structured (C’,f > 0). Lit-
tle or nothing can be learned from measurements about
such processes’s hidden organization.
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FIG. 2: Forward and reverse e-machines for the RIP: (a) M "
and (b) M~. Edge labels t|z give the transition probabilities

t= Té?,. (¢) The bidirectional machine M* for p = ¢ = 1/2.
Edge labels are prefixed with the scan direction {—, +}.

The e-machine information diagram of Fig. [T encap-
sulates all of these results concisely by showing the key
relationships between information production (H [)_(>|S+]
and H[Y\S_]), stored information (C}f and C,;), and ex-

cess entropy (E =1 [y, )_(2]) Analyzing the 4-variable in-
formation diagram revealed a parsimonious relationship
among the four variables, depicted as differently shaded
ellipses. H [()_(] and H [)_5] (two largest ellipses) are the
entropies of the past and future, respectively, which are
the process’s total information production. The infor-
mation stored in the predictive e-machine M is its sta-
tistical complexity: CF = H[S™] (small ellipse on left);



likewise for M~, C;7 = H(S™) (small ellipse on right).
The excess entropy E is the intersection of these sets;
while the statistical complexity C’;—L of the bidirectional
machine M¥ is their union; the crypticity vy, their sym-
metric difference; and their signed difference, the causal
irreversibility =.

Consider an example that illustrates the typical
process—cryptic and causally irreversible. This is the
Random Insertion Process (RIP) which generates a ran-
dom bit with bias p. If that bit is a 1, then it outputs
another 1. If the random bit is a 0, however, it inserts
another random bit with bias ¢, followed by a 1.

Its forward e-machine, see Fig. 2(a), has three recur-
rent causal states ST = {A, B,C} and the transition
matrices given there. Figure 2(b) gives M~ which has
four recurrent causal states S~ = {D,E,F,G}. We
see that the e-machines are not the same and so the
RIP is causally irreversible. A direct calculation gives
Pr(St) =Pr(4,B,C) = (1,p,1)/(p + 2) and Pr(S™) =
Pr(D,E,F,G) = (1,1-pq,pq,p)/(p+2). f p=q=1/2,
for example, these give us C’: ~ 1.5219 bits, C); ~ 1.8464
bits, and h,, = 3/5 bits per measurement. The causal ir-
reversibility is 2 ~ 0.3245 bits.

Let’s analyze its bidirectional machine; shown in
Fig.[2(c) for p = ¢ = 1/2. The interdependence between

the forward and reverse states is given by:
D E F G

A0 1—p 0 »p
Pr(8§*,87) = P +2) XxBl 0O p(l1—gq) pg O
Cc\1 0 0 O

By way of demonstrating the exact analysis now possible,
E’s closed-form expression for the RIP family is

_pb&p_lmH(lp)
p+2 p+2 1-pq) "’

E =log,(p+2)

where H(-) is the binary entropy function. The first two
terms on the RHS are Cf and the last is H[ST|S™].

Setting p = ¢ = 1/2, one calculates that Pr(S*) =
Pr(AE, AG,BE,BF,CD) = (1/5,1/5,1/10,1/10,2/5).
This and the joint distribution give Cif = H[S*] ~
2.1219 bits, but an E = I[S*; 8] &~ 1.2464 bits. That
is, the excess entropy (the apparent information) is sub-
stantially less than the statistical complexities (stored
information)—a rather cryptic process: x ~ 0.8755 bits.

To close, the main results establish that when y > 0
one cannot simply use sequence information directly to
represent a process as storing E bits of information. We
must instead store C), bits of information, building a
causal model of the hidden state information. Why? Be-
cause typical processes encrypt their state information
within their observed behavior. More particularly, ob-
served information can be arbitrarily small (E ~ 0) com-
pared to the stored information (C},).

In deriving an explicit relationship between excess en-
tropy and the e-machine, the framework puts prediction

on an equal footing with modeling, allowing for a direct
comparison between them [18]. Also, as we demonstrated
with the RIP example, it gives a way to develop closed-
form expressions for E. Finally and most generally, it
reveals an intimate connection between unpredictability,
irreversibility, crypticity, and information storage.

Practically, these results elucidate the difference be-
tween observed (mutual) information (E) and a process’s
stored information (C),). Analyzing a process only in
terms of mutual information misses an arbitrarily large
amount of a process’s structure. When this happens, one
concludes that a process is more random than it is and
that it has little structure, when neither is true.
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