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Power spectral densities are a common, convenient, and powerful way to analyze signals. So
much so that they are now broadly deployed across the sciences and engineering—from quantum
physics to cosmology, and from crystallography to neuroscience to speech recognition. The fea-
tures they reveal not only identify prominent signal-frequencies but also hint at mechanisms that
generate correlation and lead to resonance. Despite their near-centuries-long run of successes in
signal analysis, here we show that flat power spectra can be generated by highly complex processes,
effectively hiding all inherent structure in complex signals. Historically, this circumstance has been
widely misinterpreted, being taken as the renowned signature of “structureless” white noise—the
benchmark of randomness. We argue, in contrast, to the extent that most real-world complex sys-
tems exhibit correlations beyond pairwise statistics their structures evade power spectra and other
pairwise statistical measures. As concrete physical examples, we demonstrate that fraudulent white
noise hides the predictable structure of both entangled quantum systems and chaotic crystals. To
make these words of warning operational, we present constructive results that explore how this
situation comes about and the high toll it takes in understanding complex mechanisms. First, we
give the closed-form solution for the power spectrum of a very broad class of structurally-complex
signal generators. Second, we demonstrate the close relationship between eigen-spectra of evolution
operators and power spectra. Third, we characterize the minimal generative structure implied by
any power spectrum. Fourth, we show how to construct arbitrarily complex processes with flat
power spectra. Finally, leveraging this diagnosis of the problem, we point the way to developing
more incisive tools for discovering structure in complex signals.
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I. INTRODUCTION

Innovative science probes the unknown. Success in

discovering the mechanisms that underlie the systems

we seek to understand, though, requires distinguishing

structure from noise. Often, this distinction falls to dis-

cretion: structure is that part of a signal we can predict,

while noise stands in as a catch-all for everything else.

This conundrum holds especially in the analysis of sig-

nals from truly complex systems, as when analyzing data

from multi-electrode arrays in brain tissue [1] or social ex-

periments [2]. These systems are often said to be ‘noisy’

even though the so-called noise may be entirely function-

ally relevant, but in an unknown way [3]. Such descrip-
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tions fall far short of a principled approach that explains

all trends and correlational structure, which would claim

success only when all that remains unexplained in the

signal is structureless white noise. Even this principled

approach ultimately begs the central question, though:

how do we test if an apparently random signal is truly

white noise?

The challenge of discovering structure in noisy sig-

nals is compounded manifold, as we demonstrate in the

following, when our chosen observables hide arbitrary

amounts of in-principle-predictable structure behind a

familiar signature of white noise—the flat power spec-

trum. Said simply, observables can be completely devoid

of pairwise correlation, while still embodying structure in

higher-order correlations. More precisely, we will show

that structure can be hidden beyond any arbitrarily-

large order-N correlation—that not appearing in pair-

mailto:pmriechers@gmail.com
mailto:chaos@ucdavis.edu


2

wise, three-way, nor any n-way statistics, up to some

arbitrarily large N . Moreover, the hidden structure can

be arbitrarily sophisticated. It can be used, for exam-

ple, to embed messages while shifting (and so hiding)

the messages’ content beyond N -way correlation. Here,

we explore the structures conveyed and hidden by power

spectra, revealing a novel perspective on the interplay

between structure and noise in Fourier analysis.

Section II discusses temporal structure and provides

closed-form expressions for the power spectra from au-

tonomous signal generators. It highlights the intimate

connection between power spectra and eigen-spectra of

a system’s time-evolution generator. Section III then in-

troduces a suite of results on structure that is hidden

by power spectra. Notably, it introduces a general con-

dition for fraudulent white noise processes—structured

processes with a flat power spectrum—which applies very

broadly, including to input-dependent processes with

nonstationary high-order statistics. Section IV demon-

strates that fraudulent white noise is observed in impor-

tant physical systems. We show that fraudulent white

noise arises in measurements of entangled quantum sys-

tems. We also show that flat diffraction patterns belie

the predictable structure of chaotic crystals. Taken alto-

gether the results emphasize the power spectrum’s short-

comings for the task of structure detection. In response,

Sec. V considers more sophisticated measures of struc-

ture. We give closed-form expressions for polyspectra—

which are often advocated as the natural next step for de-

tecting higher-order structure—but show that these too

have severe blind spots. This motivates us to introduce

the dependence function which identifies the presence of

novel finite-range dependencies that contribute to total

correlation. Section VI concludes the development. Ap-

pendices present detailed derivations, as well as several

generalizations, of the main results.

II. STRUCTURE IN SPACE AND TIME?

Pairwise correlations are encountered throughout the

sciences and engineering, especially in statistical physics.

They are assumed, estimated, relied on, designed with,

and used for interpretation widely. The following ex-

plores several specific examples of pairwise correlation

that arise in different fields. These will set the context

for our development, particularly for experts in the as-

sociated fields. However, our general results should be

accessible and relevant across disciplines, as they rely pri-

marily on basic probability theory and linear algebra.

A well-studied lesson from statistical physics is that

diverging correlation length heralds the emergence of

new types of order. Remarkably, mechanistically-distinct

physical systems share many universal behaviors near a

critical point of emergent order, including the scaling

of spatial pairwise correlation length [4]. More broadly,

pairwise correlations are indicators of fundamental phys-

ical processes. For example, the fluctuation–dissipation

theorem says that pairwise temporal correlations in equi-

librium determine the friction encountered in transport

processes. The Green–Kubo relations [5] make this ex-

plicit. Far from equilibrium, say in computing devices

and biological systems composed of excitable media, tem-

poral correlations are signatures of richly coordinated

state-trajectories.

Pairwise correlations are directly viewed in the fre-

quency domain via power spectral densities. Indeed,

power spectra are employed as a basic data analy-

sis tool in many scientific domains and have been key

to major scientific discoveries. For example, compar-

ing alternative theoretical predictions for power spec-

tra of incident electromagnetic radiation from locally-

thermalized bodies, an unexpected discrepancy—the ul-

traviolet catastrophe—led to the acceptance of Planck’s

theory of quantized energies and the subsequent birth

of quantum theory [6–8]. A contemporary example

of the prominent role of power spectra is seen in the

exquisitely detailed map of the cosmic microwave back-

ground (CMB)—a snapshot of the early universe’s spatial

correlations. In fact, models of the early universe are now

benchmarked against their ability to replicate the CMB

power spectrum [9].

In applied mathematics, power spectra played a key

role in highlighting the defining features of the strange

attractors of dynamical systems theory [10, 11]. This

led to the discovery of Ruelle–Pollicott resonances, where

mixing and the decay of correlations in chaotic systems

were related to the point spectrum of the Ruelle–Perron–

Frobenius operator [12–14]. Indeed, the power spectra

of chaotic systems are still actively used to analyze the

behavior of everything from open quantum systems [15,

16] to climate models [17].

The famous 1/f decay of power spectra found in

many complex systems has received considerable atten-

tion throughout many decades [18–20]—sometimes be-

ing attributed to self-organized criticality [21]; almost al-

ways being taken as a signature of truly complex systems.

More recently, the value of α in 1/fα noise—and devi-

ations from this mean behavior—are used to interpret

particle tracking experiments [22, 23]. Related advances

have enabled extraction of physical properties from power

spectral analyses of nonstationary processes [24–26].

Power spectra are regularly used to discover struc-

ture in materials science and biology, too. X-ray diffrac-

tion patterns—used to identify crystalline and molecular

organization and central to discovering DNA’s double-
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helix [27–30]—are power spectra of scatterer densities,

as we explain in App. A. Power spectra have been used

to identify temporal correlations in single-neuron spike

trains, refuting the common Poissonian white-noise as-

sumption common in theoretical and computational neu-

roscience [31–34]. This allows the possibility that tem-

poral correlations in the spike train—rather than just

the firing rate—can play an important role in the neural

code [35, 36]. On a much larger (mean-field) scale, brain

wave activity in different frequency bands gives signa-

tures of normal brain functioning, as well as pathologi-

cal conditions. Rhythmic brain-wave activity is clinically

assessed through real-time power spectra of electroen-

cephalography (EEG) signals [37–39].

From the smallest to the largest scales in the universe,

when probing both the inanimate and the animate, power

spectra are a central diagnostic tool for structure and val-

idating scientific models. Their use is so important that

special-purpose spectrum analyzers are standard labora-

tory test equipment; they can be readily purchased from

dozens of major manufacturers.

Power spectra report pairwise correlations in a signal.

But how much of a system’s structure is faithfully rep-

resented by pairwise correlation? Are there important

types of order that evade power spectra completely? To

answer these questions, we first consider the problem of

hidden structure through the lens of autocorrelation and

power spectra. Only then, once the strengths and weak-

ness of power spectra are clear, do we move on to more

sophisticated measures of structure. Along the way we

trace a path that begins to reveal what one can mean by

“statistical dependency”, “correlation”, and “structure”.

A. Correlation and Power Spectra

To provide a common ground, consider discrete-

time processes described by an interdependent sequence

. . . X0X1X2 . . . of random variables Xt that take on val-

ues x ∈ A within an alphabet assumed (for now) to be a

subset of the complex numbers: A ⊂ C. (For concrete-

ness here, we interpret t as indexing time t = tτ0, where

τ0 is the duration of each time-step. For other kinds

of stochastic process, t may represent spatial or angular

coordinates.) An observed process may have a discrete

domain, as with a classical discrete-time communication

channel or a series of quantum measurements or, oth-

erwise, may be a regularly-sampled process evolving in

continuous time.

A signal’s power spectrum or, more properly, its power

spectral density quantifies how its power is distributed

across frequency [40, 41]. For a discrete-domain process

it is:

P (ω) = lim
N→∞

1
f0N

〈∣∣∣ N∑
t=1

Xte
−iωt

∣∣∣2〉 , (1)

where the angle brackets denote the expected value over

the random variable chain X1X2X3 . . . XN , ω = 2πf/f0

is the angular frequency, f is the frequency, and f0 = 1/τ0
is the fundamental frequency. We set f0 to unity in the

discrete-time case. In the continuous-time limit where

τ0 = dt → 0, the power spectrum becomes

P (f) = lim
L→∞

1

L

〈∣∣∣∫ L

0

Xte
−i2πf t dt

∣∣∣2〉 ,

where we use the fact that ωt = 2πf t . In either dis-

crete or continuous time, integrating over any band of

frequencies gives the power in that band.

For wide-sense stationary stochastic processes the au-

tocorrelation function,

γ(τ) =
〈
XtXt+τ

〉
, (2)

is independent of the global time shift t and depends

only on the relative time-separation τ between observ-

ables [42]. The bar above Xt denotes its complex conju-

gate. Equation (2) makes plain the connection between

pairwise statistics and the pairwise correlation function.

For wide-sense stationary stochastic processes, the power

spectrum is also determined by the signal’s autocorrela-

tion function γ(τ):

P (ω) = lim
N→∞

1
f0N

N∑
τ=−N

(
N − |τ |

)
γ(τ)e−iωτ . (3)

The windowing function N − |τ | appearing in Eq. (3) is

a direct consequence of Eq. (1); it is not imposed ex-

ternally, as is common practice in signal analysis. (This

factor is important for controlling convergence in our sub-

sequent derivations.)

Equation (3) suggests that the power spectrum is very

nearly the Fourier transform of the autocorrelation func-

tion, except for the N − |τ | term. In fact, the Wiener–

Khinchin theorem proves that the power spectrum is in-

deed equal to the Fourier transform of the autocorrela-

tion function for wide-sense stationary processes [43, 44].

Note, too, that the pairwise correlation function γ(τ)

can be obtained via the inverse Fourier transform of the

power spectrum P (ω).
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B. Temporal Structurelessness

Our goal is to understand temporal structure and to

identify it in stochastic processes. To detect structure,

even when hidden, we first must establish a baseline ref-

erence process that has no temporal structure: genuine

white noise.

White noise processes, if we remove their mean value,

have zero autocorrelation for all τ > 0. Colloquially,

white noise is often taken as a synonym for any com-

pletely random process with no statistical dependencies

whatsoever. To be precise, we define genuine white noise

as those processes for which each random variable Xt is

statistically independent of all others Xt′ 6=t, and each is

identically distributed according to the same probability

density function (PDF) over the alphabet. That is, the

random variables in the sequence are independent and

identically distributed (IID).

Familiar examples include a sequence of coin flips or

the sequence of sums when rolling a pair of dice. As an

example from contemporary physics, consider the (clas-

sical) process that results from observing a sequence of

Bell-pair quantum states [45]. For each Bell pair, one

of the entangled particles is sent to Alice and the other

sent to Bob. Alice makes a sequence of measurements

(along any measurement axis). The measurement output

sequence she observes is pure white noise, with each mea-

surement outcome having equal and independent proba-

bility of being up or down along the measurement axis. In

fact, more sophisticated deployments of Bell pairs are be-

ing developed to provide certifiable random number gen-

eration [46]. Experiments now concentrate on increasing

the rate of generating white noise [47, 48].

The most recognizable feature of all white noise pro-

cesses is their flat power spectrum. For any IID pro-

cess, it follows directly from Eq. (2) that γ(0) = 〈|Xt|2〉,
whereas γ(τ) = | 〈Xt〉 |2 for τ 6= 0. From Eq. (3), this im-

mediately yields the familiar flat power spectrum of white

noise, together with a δ-function at zero frequency, corre-

sponding to the signal’s constant offset. For real-valued

IID processes with zero mean (and f0 = 1), this simpli-

fies further to γ(τ) = σ2 δ0,τ and so P (ω) = σ2. In fact,

the flat power spectrum has height equal to the variance

σ2 = 〈X2
t 〉 − 〈Xt〉2 of the white noise for any real-valued

IID process. The flat power spectrum for IID processes

indicates that any temporal structure in the generating

source has such short memory that it vanishes within the

short sampling time τ0 between each observation.

Gaussian white noises tend to be the most com-

monly employed white noise processes and, usually, for

good reason. By the central limit theorem, Gaus-

sian white noise arises generically in systems whenever

many events—with amplitude of finite variance and with

rapidly decaying correlation (compared to the timescale

between observations)—contribute additively to each in-

dividual observation. Suppose, for example, that the ex-

pected number of these contributions to each new obser-

vation is simply proportional to the time since the last

observation. When sampled at interval dt = τ0, the cen-

tral limit theorem then tells us that each observation of

the accumulated noise is IID and Gaussian distributed

with variance σ2
η ∝ dt . This immediately leads to the fa-

miliar standard deviation ση ∝
√
dt of the additive noise

η(t) that appears when numerically integrating stochas-

tic differential equations (e.g., Langevin equations); this,

in turn, produces the trajectories of slower random vari-

ables [49].

The memoryless nature of repetitive sampling from a

distribution is apparent in the state machine shown in

Fig. 1(a). The same Gaussian distribution is repeat-

edly sampled with probability 1 (as depicted by the self-

transition probability there) for each observation, regard-

less of what happened previously [50].

Other “structureless” white noises are also possible.

In fact, any of an uncountably infinite set of differ-

ent IID processes—Gaussian, Poisson, Bernoulli, or any

process that resamples a particular distribution at each

timestep—all yield the flat power spectrum or white

noise. Non-Gaussian noise can emerge from repetitive

sampling of a system’s (non-Gaussian) stationary dis-

tribution when the relaxation timescales are far shorter

than the time elapsed between samples. Alternatively,

non-Gaussian white noise can arise when only a few phys-

ical events contribute to each observation, in which case

the non-Gaussianity may reveal features of the physical

generative mechanism. Nevertheless, these processes pos-

sess no temporal structure on the timescale of observation

and, in particular, generate absolutely no correlations in

the sequence of observations.

The hallmark of this structural paucity is the single

state for the hidden Markov model (HMM) that describes

all of these IID processes, as depicted in Fig. 1(b) [51].

The single state means that no influences from the past

can affect the next or future samples. These are the

genuine white noises.

In sharp contrast, we explore stochastic processes

with arbitrarily sophisticated temporal structure on the

timescale of observation. The much more general class

we next consider allows for a thorough investigation of

temporally structured stochastic processes. One surpris-

ing feature is that these very structured processes, de-

scribed by arbitrarily complicated transition dynamics

within memoryful collections of internal states, can have

the flat power spectrum of white noise. These are the

fraudulent white noise processes: white noise processes

with a flat power spectrum that are nevertheless not gen-
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�2 = hX2
t i � hXti2 of the white noise. The flat power

spectrum for IID processes indicates that any temporal

structure in the generating source has such short mem-

ory that it vanishes within the short sampling time �t

between each observation.

Gaussian white noises tend to be the most com-

monly employed white noise processes and, usually, for
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many events—with amplitude of finite variance and with
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dividual observation. Suppose, for example, that the ex-

pected number of these contributions to each new obser-

vation is simply proportional to the time since the last

observation. When sampled at interval �t, the central

limit theorem then tells us that each observation of the

accumulated noise is IID and Gaussian distributed with

variance �2
⌘ / �t. This immediately leads to the famil-

iar standard deviation of �⌘ /
p
�t of the additive noise

⌘(t) that appears when numerically integrating stochas-

tic di↵erential equations (e.g., Langevin equations); this,

in turn, produces the trajectories of slower random vari-

ables [25].

The technical level of results here is bounc-

ing around, from elementary almost pedagogical

to sophisticated. What audience are we target-

ing here? The reader is assumed knowledgeable

enough to derive the stated claims? If not, we’d

better provide cites to the textbooks where they

can find the results explained.

The memoryless nature of repetitive sampling from

a distribution is apparent in the state machines shown

in Fig. 1(a). The same Gaussian distribution is repeat-

edly sampled with probability 1 (as depicted by the self-

transition probability there) for each observation, regard-

less of what happened previously.

Other “structureless” white noises are also possible.

In fact, any of an uncountably infinite set of di↵er-

ent IID processes—Gaussian, Poisson, Bernoulli, or any

process that resamples a particular distribution at each

timestep—all yield the flat power spectrum or white

noise. Non-Gaussian noise can emerge from repetitive

sampling of a system’s (non-Gaussian) stationary dis-

tribution when the relaxation timescales are far shorter

than the time elapsed between samples. Alternatively,

non-Gaussian white noise can arise when only a few phys-

ical events contribute to each observation, in which case

the non-Gaussianity may reveal features of the physical

generative mechanism. Nevertheless, these processes pos-

sess no temporal structure on the timescale of observation

and, in particular, generate absolutely no correlations in

the sequence of observations.
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(a) Gaussian white noise
process and its flat power

spectrum.
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(b) Non-Gaussian white noise
process and its flat power

spectrum.

FIG. 1. Genuine white noise processes have no memory: This
is represented graphically by a machine with a single state
that is repeatedly visited with each observation. The same
probability density function, inscribed in the state, is sam-
pled at each timestep. (a) Gaussian white noise memoryless
stochastic process. (b) Another white noise process, although
non-Gaussian. The class of all possible (not-necessarily Gaus-
sian) memoryless white noises is identical with the class of
processes generated by single-state machines. This class, in
turn, is identical to that of all IID processes (spanning all pos-
sible probability density functions). These temporally struc-
tureless processes constitute all possible varieties of genuine
white noise. Give the (flat) power spectrum for each.
The reader needs this.

The hallmark of this structural paucity is the single

state for the hidden Markov model (HMM) that describes

all of these IID processes, as depicted in Fig. 1(b) [26].

The single states means that no influences from the past

can a↵ect the next or future samples. These are the

genuine white noises.

In sharp contrast, we will consider stochastic processes

with arbitrarily sophisticated temporal structure on the

timescale of observation. The much more general class we

next consider allows for a thorough investigation of tem-

porally structured stochastic processes. One surprising

feature is that these very structured processes, described

by arbitrarily complicated and memoryful collections of

internal states can have the flat power spectrum of white

noise.

C. Models of temporal structure

Need cites to HMM literature: [27–33].

Structure arises over time from the interdependence

between observables. To explicitly address structure in

a broad class of temporally structured processes, we use

hidden Markov models (HMMs) as our preferred repre-

sentation for autonomous signal generators. Later sec-

tions will introduce yet more sophisticated models with

input dependence.

Despite Markovian state-to-state transitions, HMMs

can generate temporally-structured non-Markovian

ω

P
(ω

)
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FIG. 1. Genuine white noise processes have no memory: This
is represented graphically by a machine with a single state
that is repeatedly visited with each observation. The same
probability density function, inscribed in the state, is sam-
pled at each timestep. (a) Gaussian white noise memoryless
stochastic process. (b) Another white noise process, although
non-Gaussian. The class of all possible (not-necessarily Gaus-
sian) memoryless white noises is identical with the class of
processes generated by single-state machines. This class, in
turn, is identical to that of all IID processes (spanning all pos-
sible probability density functions). These temporally struc-
tureless processes constitute all possible varieties of genuine
white noise. Give the (flat) power spectrum for each.
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internal states can have the flat power spectrum of white

noise.

C. Models of temporal structure

Need cites to HMM literature: [27–33].

Structure arises over time from the interdependence

between observables. To explicitly address structure in

a broad class of temporally structured processes, we use

hidden Markov models (HMMs) as our preferred repre-

sentation for autonomous signal generators. Later sec-

tions will introduce yet more sophisticated models with

input dependence.

Despite Markovian state-to-state transitions, HMMs

can generate temporally-structured non-Markovian

ω

P
(ω

)

(b)

FIG. 1. Genuine white noise processes have no memory: Rep-
resented structurally by a state machine with a single state
that is repeatedly visited with each observation. The same
probability density function, inscribed in the state, is sam-
pled at each timestep. (a) Gaussian white noise process (in-
set) and its flat power spectrum. (b) Non-Gaussian white
noise process (inset) and its flat power spectrum. For each
(a) and (b), the flat power spectrum is given theoretically
(thick gray), with height equal to the variance of the prob-
ability density function. We also display the numerically-
obtained power spectrum (thin blue) for each. The class of all
possible (not-necessarily Gaussian) memoryless white noises
is identical with the class of processes generated by single-
state machines. This class, in turn, is identical to that of all
IID processes (spanning all possible probability density func-
tions). These temporally structureless processes constitute all
possible varieties of genuine white noise.

uine white noise. Fraudulent white noise contains sta-

tistical dependencies—predictable structure completely

veiled by common measures of correlation.

C. Models of Temporal Structure

Structure arises over time from the interdependence

among observables. To explicitly address structure in a

broad class of temporally structured processes, we use

hidden Markov models (HMMs) as our preferred rep-

resentation for autonomous signal generators [52–58].

Later sections introduce yet more sophisticated models

with input dependence.

Despite Markovian state-to-state transitions, HMMs

can generate temporally-structured non-Markovian

stochastic processes—those with infinite history depen-

dence (infinite Markov order). Processes generated by

even finite-state HMMs, in fact, typically have infinite-

range statistical dependencies between observables since

simple state-transition motifs guarantee this feature

[59]. In addition to this richness and their ability to

compactly generate the exact temporal statistics of

nonlinear dynamical systems, HMMs are attractive since

they are amenable to linear operator techniques [60–66].

Section IV employs HMMs to represent (i) sequential

measurements of entangled quantum systems, (ii) scat-

tering factors of disordered materials, and (iii) ion trans-

port through biomolecular channels. But, to get there,

we must first introduce the general properties of HMMs.

Let the 4-tuple M =
(
S,A,P, T

)
be a discrete-time

HMM that generates the stationary stochastic process

. . . X−2X−1X0X1X2 . . . according to the following. S
is the (finite) set of states of the internal Markov chain

and A ⊆ C is the observable alphabet. St is the random

variable for the hidden state at time t that takes on values

s ∈ S. Xt is the random variable for the observation at

time t that takes on values x ∈ A.

Given the hidden state at time t, the possible ob-

servations are distributed according to the conditional

probability density functions: P =
{

p(Xt|St = s)
}
s∈S .

For each s ∈ S, p(Xt|St = s) may be abbreviated as

p(X|s) since the probability density function in each

state is assumed to not change over t. Similarly, we will

write p(x|s) for p(Xt = x|St = s). Finally, the hidden-

state-to-state stochastic transition matrix T has elements

Ts,s′ = Pr(St+1 = s′|St = s), which give the probability

of transitioning from hidden state s to s′ given that the

system is in state s, where s, s′ ∈ S. It is important for

subsequent developments that Pr(·) denotes a probability

in contrast to p(·) which denotes a probability density.

Epitomizing the processes in the class considered,

Fig. 2 presents a rather simple HMM with continuous

observable alphabet A = R, whose samples are dis-

tributed according to the probability density function

shown within each hidden state. As seen in the HMM’s

top-right state, both continuous probability density func-

tions and discrete output probabilities can be accommo-
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FIG. 2. Simple 3-state HMM that generates a stochastic pro-
cess according to the state-to-state transition dynamic T and
the probability density functions (PDFs) {p(X|s)}s∈S associ-
ated with each state. Theorem 1 asserts that its power spec-
trum is the same (modulo constant offset) as the power spec-
trum generated from an alternative process where each state’s
PDF is solely concentrated at the average value 〈X〉p(X|s) of
the original PDF associated with the state.

dated in this framework: Finite probability of a par-

ticular observable is accomplished by an appropriately

weighted Dirac δ-function in the probability density func-

tion. The memoryful structure in Fig. 2 should be con-

trasted with the completely memoryless processes of gen-

uine white noise shown in Fig. 1.

Figure 3’s Bayes network depicts the structure of

conditional independence among the random variables

for these memoryful signal generators. For exam-

ple, for a generic HMM, p(Xt|Xt−N . . . Xt−2Xt−1 =

xt−N . . . xt−2xt−1) cannot be simplified since the con-

dition on even arbitrarily distant past observables can

influence the probability of the current observable. How-

ever, when conditioning on hidden states, the situation

can simplify markedly. For example:

p(Xt|Xt−N . . . Xt−2Xt−1 = xt−N . . . xt−2xt−1,

St−N . . .St−2St−1 = st−N . . . st−2st−1)

= p(Xt|St−1 = st−1)

=
∑
s∈S

Tst−1,s p(X|s) .

The general properties of HMMs allow one to calcu-

late any statistic about the generated process from the

hidden-state-to-state transition matrix T and set P of

conditional probability density functions. For simplic-

ity in the following, assume a finite set of hidden states

and a single attracting component. Then every transi-

tion matrix T admits a unique stationary distribution π.

St�1 St St+1

Xt�1 Xt Xt+1

.

St�1 St St+1

Xt�1 Xt Xt+1

.

Gaussian
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1 � q

q

1

1 � p

p

.

.

8

FIG. 3. Bayesian network for a state-emitting hidden Markov
model graphically depicts the structure of conditional in-
dependence among random variables for the hidden state
{Sn}n∈Z at each time n and the random variables {Xn}n∈Z
for the observation at each time n.

This is determined as T ’s left eigenvector associated with

the eigenvalue of unity: 〈π|T = 〈π|. The eigenvector is

normalized in probability: 〈π|1〉 = 1, where |1〉 is the

column vector of all ones. Note also that |1〉 is the right

eigenvector of T associated with the eigenvalue of unity,

T |1〉 = |1〉. This property conserves state probability in

hidden Markov chain evolution.

We can now provide the correlation functions and

power spectral density in general and in closed form for

the entire class of stochastic process generated by finite-

state HMMs. Helpfully, for particular HMMs, the ex-

pressions become analytic in the model parameters.

Appendix B shows that the autocorrelation function is

given by:

γ(τ) =


〈π|ΩT |τ | Ω |1〉 if τ ≤ 1〈
|x|2
〉

if τ = 0

〈π|ΩT |τ | Ω |1〉 if τ ≥ 1

, (4)

where Ω is the |S|-by-|S| average-observation matrix de-

fined by:

Ω =
∑
s∈S
〈X〉p(X|s) |s〉 〈s| . (5)

We use the hidden-state basis in which |s〉 is the col-

umn vector of all 0s except for a 1 at the index corre-

sponding to state s. 〈s| is simply its transpose. This

yields a natural decomposition of the identity operator:

I =
∑
s∈S |s〉 〈s|. In the hidden-state basis, then, the Ω

matrix simply places state-conditioned average outputs

along its diagonal.

The power spectrum is calculated starting from Eq. (3)

together with Eq. (4), using the spectral decomposi-

tion techniques developed for nonnormal and nondiag-

onalizable operators in Ref. [66]. In the derivation it is

important to treat individual eigenspaces separately, as

our generalized framework naturally accommodates. Ap-

pendix C gives the derivation’s full details. Qualitatively,
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the power spectrum decomposes naturally into a discrete

part Pd(ω) (a weighted sum of Dirac δ-functions) and a

continuous part Pc(ω) (a collection of diffuse peaks):

P (ω) = Pc(ω) + Pd(ω) .

For the power spectrum’s continuous part the end result

is:

Pc(ω) =
〈
|x|2
〉

+ 2 Re 〈π|ΩT
(
eiωI − T

)−1
Ω |1〉 , (6)

where Re(·) denotes the real part of its argument.

Remarkably, all of the ω-dependence is in the appar-

ently simple term
(
eiωI − T

)−1
. This is the resolvent of

T along the unit circle in the complex plane. However,

and central to our main results, this frequency depen-

dence is filtered through 〈π|Ω and Ω |1〉. Notably, if

the average-observation matrix was proportional to the

identity, then all frequency dependence would be lost

since Re 〈π|
(
eiωI − T

)−1 |1〉 = −1/2 is independent of

ω [67]. Frequency dependence of the power spectrum

thus requires that there are different averages associated

with different states. Surprisingly though, none of the

structure of the conditional probability density functions

{p(X|s)}s matters for the power spectrum, except for the

average value observed in each state. Structure beyond

averages is simply not captured.

D. Apparent Structure

To fully appreciate the structure that is captured by

the power spectrum requires a spectral decomposition of

the transition matrix. The set ΛT of T ’s eigenvalues is

calculated as usual. However, since transition matrices

are generically nonnormal and often nondiagonalizable,

the spectral projection operators associated with T de-

serve a brief review.

In particular, the spectral projection operator Tλ as-

sociated with eigenvalue λ can be defined as the residue

of (zI − T )−1 as z → λ:

Tλ = 1
2πi

∮
Cλ

(
zI − T

)−1
dz , (7)

where z ∈ C and Cλ is a small counterclockwise con-

tour around the eigenvalue λ. Alternatively, the spec-

tral projection operators can be constructed from all left

eigenvectors, generalized left eigenvectors, right eigenvec-

tors, and generalized right eigenvectors associated with

λ. The construction is given explicitly in Ref. [66]. In

the simple case where the eigenvalue is nondegenerate,

the eigenprojector takes on the simple form:

Tλ =
|λ〉 〈λ|
〈λ|λ〉 .

However, the left 〈λ| and right |λ〉 eigenvectors are

not simply complex-conjugate transposes of each other,

as they would be in the normal-operator case familiar

from closed quantum systems and undirected networks.

For example, the spectral projection operator associated

with stationarity—T1 = |1〉 〈π|—can be interpreted as

the classical version of a density matrix but, typically,

the stationary distribution is not uniform and so 〈π| is

not proportional to the transpose of |1〉.
We will also use the broader class of spectral compan-

ion operators:

Tλ,m = Tλ(T − λI)m . (8)

They have the useful property that Tλ,mTζ,n =

δλ,ζTλ,m+n. Clearly, the spectral projection operator is

contained in this set, as Tλ = Tλ,0. It should be noted

that Tλ,m = 0 for m ≥ νλ, where νλ is the index of the

eigenvalue λ—i.e., the size of the largest Jordan block

associated with λ. One should keep in mind that the

transition matrix can be represented as:

T =
∑
λ

(
λTλ,0 + Tλ,1

)
.

While the resolvent has the general spectral decomposi-

tion:

(zI − T )−1 =
∑
λ∈ΛT

νλ−1∑
m=0

1

(z − λ)m+1
Tλ,m . (9)

The spectral expansion of the resolvent given by

Eq. (9) allows us to better interpret the qualitative shape

of the power spectrum Eq. (6):

Pc(ω) =
〈
|x|2
〉

+
∑
λ∈ΛT

νλ−1∑
m=0

2 Re
〈π|ΩT Tλ,mΩ |1〉

(eiω − λ)m+1
. (10)

Note that 〈π|ΩT Tλ,mΩ |1〉 is a complex-valued scalar

and all of the frequency dependence now handily resides

in the denominator. When T is diagonalizable, Eq. (10)

reduces to:

Pc(ω) =
〈
|x|2
〉

+
∑
λ∈ΛT

2 Re

(
λ 〈π|ΩTλΩ |1〉

eiω − λ

)
.

The discrete (δ-function) portion of the power spec-
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FIG. 4. Parametrized HMM of a stochastic process, its eigenvalue evolution, and two coronal spectrograms showing power
spectra emanating from eigen-spectra. (a) A b-parametrized HMM with mean values of each state’s pdf 〈x〉p(X|s) indicated as

the number inside each state. (b) Eigenvalue evolution for all λ ∈ ΛT sweeping transition parameter b from 1 (thick blue) to 0
(thin red). (c) Power spectrum and eigenvalues at b = 3/4. (d) Power spectrum and eigenvalues at b = 1/4.

trum is:

Pd(ω)=

∞∑
k=−∞

∑
λ∈ΛT
|λ|=1

2π δ(ω−ωλ+2πk) Re〈π|ΩTλΩ |1〉,

(11)

where ωλ is related to λ by λ = eiωλ . Equation (11) is

valid even when T is nondiagonalizable: An extension of

the Perron-Frobenius theorem guarantees that T ’s eigen-

values on the unit circle have index νλ = 1. With T1 =

|1〉 〈π|, it is useful to note that 〈π|ΩT1Ω |1〉 =
∣∣〈x〉∣∣2, so

that the δ-function at zero frequency appears whenever

the average observation is nonzero.

When plotted as a function of the angular frequency ω

around the unit circle, the power spectrum suggestively

appears to emanate from the eigenvalues λ ∈ ΛT of the

hidden linear dynamic. This is illustrated by the coronal

spectrograms in Figs. 4(c) and (d); these are discussed

once the general phenomenon is explained.

T ’s eigenvalues on the unit circle yield Dirac δ-

functions in the power spectrum. T ’s eigenvalues within

the unit circle yield more diffuse line profiles, increas-

ingly diffuse as the magnitude of the eigenvalues retreats

toward the origin. Moreover, the integrated magnitude

of each contribution is determined from the amplitude

〈π|ΩTλΩ |1〉. Finally, we note that nondiagonalizable

eigenmodes yield qualitatively different line profiles.

The spectral decomposition of the power spectrum of-

fers several insights into the minimal temporal structure

required to generate the observed power spectrum. In

particular, since (i) each local maxima in the power spec-

trum emanates from an eigenvalue of the hidden state-

to-state transition matrix and (ii) since the number of

unique eigenvalues is upper bounded by the number of

hidden states (i.e., |ΛT | ≤ |S|), we have the following

result: Counting both diffuse peaks and δ-functions, the

number of observed peaks in the power spectrum (from

ω ∈ (−π, π] in the discrete-time setting) puts a lower

bound on the number of hidden states of any model ca-

pable of generating the observed stochastic process. Note

further that all transition matrices must have an eigen-

value of unity and that this eigenvalue can only produce

a δ-function at ω = 0 with no other way to shape the

power spectrum over other frequencies. This gives the

immediate consequence that all single-state HMMs (i.e.,

all IID processes) have a flat power spectrum, as sug-

gested earlier. In such cases, ΛT = {1}, and there are no

other eigenvalues to shape the power spectrum.

Figure 4 shows the power spectrum of a particular

parametrized family of stochastic processes. Figure 4(a)

displays the HMM’s skeleton with state-to-state transi-

tion probabilities parametrized by b. The mean values

〈x〉p(X|s) observed from each state are indicated as the

blue number inside each state. The process generated

depends on the actual PDFs and the transition parame-

ter b. Although, and this is one of our main points, the

power spectrum is ignorant to the PDFs’ details.

The evolution of the eigenvalues ΛT of the hidden-state

transition dynamic is shown from thick blue to thin red

markers in Fig. 4(b), as we sweep the transition param-

eter b from 1 to 0. A subset of the eigenvalues pass

continuously but very quickly through the origin of the

complex plane as b passes through 1/2. The continuity of

this is not immediately apparent numerically, but can be

revealed with a finer increment of b near b ≈ 1/2. Notice

the persistent eigenvalue of λT = 1, which is guaranteed

by the Perron–Frobenius theorem.

Using coronal spectrograms, introduced in Refs. [68]

and [65], Figs. 4(c) and 4(d) illustrate how the observed

power spectrum P (ω) emanates from the eigen-spectrum
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ΛT of the hidden linear state-dynamic. Specifically,

in Fig. 4(c) and again, at another parameter setting,

in Fig. 4(d), we show the power spectrum P (ω) (plot-

ted around the unit circle in solid blue) and the eigen-

spectrum ΛT (plotted as red dots on and within the unit

circle) of the state-to-state transition matrix for the 11-

state hidden Markov chain (Fig. 4(a)) that generates it.

As anticipated from Eq. (10), the power spectrum has

sharper peaks when the eigenvalues are closer to the unit

circle. The integrated magnitude of each peak depends

on 〈π|Ω |λ〉 〈λ|Ω |1〉.
It is easy to verify for this example that the stationary

distribution 〈π| is uniform for any b ∈ (0, 1] and that

there is no δ-function at zero frequency since the av-

erage observation is zero. Nevertheless, as b → 1, ten

δ-functions (with five different integrated magnitudes)

emerge (per 2π band of angular frequency) as the non-

unity eigenvalues of the transition matrix approach the

points {ei2nπ/11}10
n=1 on the unit circle. At b = 1, the

power spectrum is (up to a constant offset) the same as

its discrete part: P (ω) = Pd(ω) + const. Whereas for

b ∈ (0, 1), the power spectrum is diffuse and is the same

as its continuous part: P (ω) = Pc(ω).

Interestingly, our continuous power spectrum is the

shadow of the discrete eigen-spectrum of nonunitary dy-

namics. (The former is closely related to the continuous

eigen-spectrum of unitary models of chaotic dynamics.)

This suggests that resonances in various physics domains

concerned with a continuous spectrum can be modeled

as consequences of simpler nonunitary dynamics. Indeed,

hints of this already appear in Refs. [69–71].

While we frame our main results in terms of HMMs,

in fact, they apply broadly to regularly-observed phys-

ical systems. Many physical systems have exact rep-

resentations as finite latent-state models, as in the ex-

amples of Sec. IV. However, even when the mapping is

not exact, most if not all dynamical systems encoun-

tered in physics can be approximated to an arbitrary ac-

curacy by either an autonomous or an input-dependent

HMM [64, 72]. The eigen-decomposition then serves to

re-express the physical system and its power spectrum in

its natural state space.

The interpretation for discrete-state physical systems

is obvious. While there are additional mathematical nu-

ances with a continuous state space, the overall picture

remains intact [73]. Specifically, Eq. (10) (and our sub-

sequent analysis) applies to most dynamical systems en-

countered in physics—including quantum systems repre-

sented in Liouville space [74]—since these dynamical sys-

tems have a countable number of discrete eigenmodes.

E. Continuous-time processes

For both simplicity and generality, we focused on

discrete-time dynamics [75]. However, correlation and

power spectra are often applied to continuous-time pro-

cesses. This section makes a more explicit connection

to continuous-time processes and points out important

features.

First, continuous-time processes are typically observed

not continuously, but periodically at some sampling fre-

quency f0. The duration τ0 = 1/f0 between obser-

vations thus induces a discrete-time transition opera-

tor Tτ0 between states in that time interval. In such

cases, the discrete-time transition matrix is related to

the continuous-time generator G of time evolution by

Tτ0 = eτ0G. Accordingly, the continuous-time genera-

tor can be obtained from the discrete-time dynamic via

G = f0 lnTτ0 [76]. And, the eigenvalues of Tτ0 and G are

simply related by ΛTτ0 =
⋃
ζ∈ΛG

{eτ0ζ} [77].

1. Autocorrelation and power spectra

Continuous-time representations can be analyzed di-

rectly, though. Consider the generic case of a continuous-

time dynamic over a hidden state-space, with two types

of example in mind:

1. The system evolves through a continuous state-

space. This describes both typical linear and non-

linear systems, including chaotic dynamical sys-

tems and Fokker–Planck dynamics. Then G is

the generator that induces the finite-time Ruelle–

Perron–Frobenius operator. Or,
2. Observations are functions of a finite-state space

with continuous-time transition rates. An example

is current flowing or not, depending on the confor-

mation of a biomolecular ion channel. Then G is

the rate matrix of the master equation.

These different settings have the same expression for the

autocorrelation and power spectrum. We now give these

in closed-form.

For real-valued τ > 0, the autocorrelation is:

γ(τ) =
〈
X tXt+τ

〉
= 〈π|Ω eτG Ω |1〉 . (12)

From this, we derive the continuous part of the power

spectrum Pc(f) with respect to frequency f ∈ R, with

the result that:

Pc(f) = 2 Re 〈π|Ω
(
2πifI −G

)−1
Ω |1〉 . (13)

Appealing to the resolvent’s spectral expansion again al-

lows us to better understand the possible shapes of the



10

power spectrum:

Pc(f) =
∑
λ∈ΛG

νλ−1∑
m=0

2 Re
〈π|ΩGλ,mΩ |1〉
(2πif − λ)m+1

. (14)

Since all of the frequency-dependence is isolated in the

denominator and since 〈π|ΩGλ,mΩ |1〉 is a frequency-

independent complex-valued constant, peaks in Pc(f)

arise only via contributions of the form Re c
(2πif−λ)n for

c ∈ C, f ∈ R, λ ∈ ΛG, and n ∈ Z+.

2. Applications

Equation (14) helps explain the shapes of power spec-

tra of chaotic dynamical systems, as appeared some time

ago, e.g., in Ref. [11]. In that case, the eigenvalues of the

time-evolution operator—whether the Ruelle–Perron–

Frobenious transfer operator or the Koopman opera-

tor [78]—are known as Ruelle–Pollicott resonances [12–

14], and 〈π| is the stationary distribution on the attrac-

tor. Stochastic differential equations leading to Fokker–

Planck dynamics, ubiquitous in statistical physics, also

obey Eq. (14). In these cases, the spectral projection op-

erators describe the decay modes of probability densities

on the continuous state space.

Even when the exact operator for time evolution is

unknown, Eq. (14) can be used for the inverse problem of

inferring the hidden linear dynamic from data—since the

empirical power spectrum constrains the system’s eigen-

spectrum.

It should be noted however that power spectra ob-

tained either experimentally or numerically at finite sam-

pling rate can deviate significantly from Eq. (14) as

f → f0/2. Equation (14) only describes the empirical

power spectrum of continuous-time processes for frequen-

cies much less than the sampling frequency such that

f/f0 � 1. Whereas Eq. (10) describes the empirical

power spectrum exactly over all frequencies. The empiri-

cal power spectrum will approach Eq. (14) over any finite

frequency band as the sampling frequency is increased,

coinciding in the limit that f0/f →∞.

3. Lorentzians and 1/f noise

When cλ ≡ 〈π|ΩGλ,0Ω |1〉 is real-valued, then the

eigenmode’s contribution to the power spectrum is cλ
times a Cauchy–Lorentz distribution over frequencies,

centered at f = Im(λ)/2π with full width at half maxi-

mum (FWHM) of Re(λ)/π. This becomes a delta func-

tion in the limit Re(λ) → 0. It is notable that nondi-

agonalizable eigenmodes contribute qualitatively distinct

line profiles to the power spectrum.

Still one may wonder—since Eq. (14) is fully general

for continuous-time dynamics—where the commonly en-

countered feature of 1/f -noise could possibly originate.

Inspired by Bernamont’s 1937 insight that superposed

Lorentzians can lead to 1/f noise [79], we can identify a

source of 1/f noise in our more general setting.

Definition 1. An observable continuous-time process

has doubly harmonic diminution if its:

1. Time-evolution generator G is diagonalizable and

has N + 1 evenly spaced eigenvalues along the real

line ΛG = {−na}Nn=0 for some a > 0, and
2. Spectral intensity fades with increasing frequency

according to c−na = c/n for n ≥ 1 and some c ∈ R.

Appendix D shows that any process with doubly har-

monic diminution produces 1/f noise over a frequency

bandwidth proportional to N , such that:

P (f) ∼


constant if f < 3a/2π2

1/f if 3a/2π2 < f . aN/4π2

1/f2 if f & aN/4π2

.

Note that the power spectrum’s 1/f portion can start at

very low frequencies, if a is small.

The surprising prevalence of 1/f noise in nature can

now be reframed, in light of our spectral results: Why

would doubly harmonic diminution be so common in na-

ture? We suggest that doubly harmonic diminution is

a consequence of common motifs of causal dependence

in processes. These dependencies impose structural con-

straints on transition rate matrices that could character-

istically shape their spectral properties. Hopefully, this

spectral reframing of 1/f noise will stimulate further at-

tempts to explain its ubiquity.

F. Transducing structured noise

For certain dynamics, it is profitable to split the gener-

ator into deterministic and random components. This is

especially useful when a linear time-invariant (LTI) sys-

tem takes the structured noise as input. Random thermal

motion in a harmonic trap is a simple example.

When a LTI system transduces structured noise—

taking process X to process Y—the output is generically

a simple transformation of the noise, modulated by the

square magnitude of the LTI system’s transfer function,

HX→Y (ω) or HX→Y (f) [80]. In discrete-time the power

spectrum is:

PY Y (ω) = |HX→Y (ω)|2PXX(ω) . (15)
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This requires modification, however, when the eigenval-

ues of the noise coincide with the poles and zeros of the

LTI system’s transfer function.

Consider a LTI system described by polynomials P(D)

and Q(D) of either the discrete-time delay operator (i.e.,

DYt = Yt−1) or the continuous-time differential operator

(i.e., DYt = d
dtYt) such that:

P(D)Yt = Q(D)Xt .

Then the square-magnitude of the transfer function is

given by:

|HX→Y (ω)|2 =
|Q(eiω)|2
|P(eiω)|2

or:

|HX→Y (f)|2 =
|Q(i2πf)|2
|P(i2πf)|2

for discrete-time or continuous-time models, respectively.

In particular, Xt can be generated from a noise model

that can be any HMM type discussed here.

For example, each spatial dimension of a Brownian tra-

jectory simply integrates a white noise Xt according to

the finite-difference equation: Yt−Yt−1 = Xt. Appendix

E shows this leads to the well-known power spectrum

of Brownian noise ∼ 1/f2 in the limit of f0/f →∞ and

gives the correction for finite sampling rates. More gener-

ally, Eq. (15) can be used to evaluate the power spectrum

from Langevin-type differential equations that transduce

arbitrarily sophisticated noise processes.

Notably, any noise structure not revealed by Xt’s

power spectrum PXX(ω) remains veiled by PY Y (ω) after

passing through any LTI system. This begs the question

of what has been hidden.

III. HIDDEN STRUCTURE

In fact, quite a lot is hidden. Remarkably, the power

spectrum generated by any hidden-Markov process with

continuous random variables for the state-observables is

the same as that generated by a potentially much simpler

process—one that is a function of the same underlying

Markov chain that instead emits the expectation value of

the state observable.

Theorem 1. Let P =
{

p(X|s)
}
s∈S specify any state-

paired collection of probability density functions over

the domain A ⊆ C. Let B =
{
〈X〉p(X|s)

}
s∈S and

let Q =
{
δ(X − 〈X ′〉p(X′|s))

}
s∈S . Then, the power

spectrum generated by any hidden Markov model M =(
S,A,P, T

)
differs at most by a constant offset from the

ω

ω

P
(ω

)
−

∆
〈|
x
|2
〉

P
(ω

)

FIG. 5. Demonstrating Thm. 1 for the processes generated
by the HMM skeleton of Fig. 4(a), using transition param-
eter b = 3/4 as in Fig. 4(c). Besides an overall constant
offset of 〈|x|2〉, the power spectrum is insensitive to all details
of the state-conditioned PDFs except for their averages. On
top of the theoretical curve (thick gray) given by Eq. (6) we
overlay horizontal offsets of the power spectra calculated nu-
merically for stochastically generated time series. The state-
conditioned PDFs used to define the different stochastic pro-
cesses are: (i) single δ-functions, (ii) single Gaussians, (iii)
two symmetrically spaced δ-functions (with no support at the
mean), and (iv) weighted δ-functions with asymmetric spac-
ing. For each, a time series of length 218 was generated. The
Welch method was used to calculate the average power spec-
trum for each process using FFTs of segments of length 29.
The inset shows the raw power spectrum for each process
without the offset.

power spectrum generated by the hidden Markov model

M′ =
(
S,B,Q, T

)
that has the same hidden Markov

chain but in any state s ∈ S emits, with probability one,

the state-conditioned expected value 〈X〉p(X|s).

Proof. From Eqs. (6) and (11), we see that Pc(ω) +

Pd(ω) −
〈
|x|2
〉

depends only on T and
{
〈X〉p(X|s)}s∈S .

Thus, all HMMs sharing the same T and
{
〈X〉p(X|s)}s∈S

have the same power spectrum P (ω) = Pc(ω) + Pd(ω),

modulo a constant offset determined by differences in〈
|x|2
〉
.

Figure 5 demonstrates Thm. 1 for the power spectrum

in Fig. 4(c).

One immediate consequence is the following.

Corollary 1. Any hidden Markov chain with any ar-

bitrary state-paired collection of zero-mean distributions,

i.e.:

P ∈
{
{p(X|s)}s∈S : 〈X〉p(X|s) = 0 for all s ∈ S

}
,

generates a flat power spectrum indistinguishable from
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FIG. 5: A demonstration of Thm. 1, using the HMM
skeleton of Fig. 4a, using transition parameter b = 3/4
as in Fig. 4c. Here we demonstrate that, besides an

overall constant o↵set of h|x|2i, the power spectrum is
insensitive to all details of the state-conditioned pdfs
except for their averages. On top of the theoretical

curve (thick gray) given by Eq. (5), we overlay
horizontal o↵sets of the power spectra calculated

numerically for stochastically-generated time series,
where the state-conditioned pdfs are (i) single delta

functions, (ii) single Gaussians, (iii) two symmetrically
spaced delta functions (with no support at the mean),

and (iv) weighted delta functions with asymmetric
spacing. For each of the numerical examples, a time
series of length 218 was generated; the Welch method

was used to calculate the average power spectrum using
FFTs of segments of length 29. The inset shows the raw

power spectra without the o↵set.

the corollary to include cases where the state-conditioned

pdfs are all equal to some potentially-nonzero constant,

although a delta function at zero frequency (of integrated

magnitude equal to the square magnitude of the con-

stant) will then also be observed in addition to the flat

power spectrum.

The implications of this corollary can be jolting. It is

quite surprising, for example, that a power spectrum can

be completely flat even when a ring of sequential states

are visited which emit observables according to a set of

probability density functions with no overlapping sup-

port. An example of this is given in Fig. 6. In such a

case, any awake observer should immediately detect obvi-

ous structure and forbidden sequences in the process; yet

the power spectrum remains silent about the structure,

reporting only the flat signature of white noise. Structure

is not always so obvious though without some reliable aid.

Indeed, the structure becomes much more di�cult to de-

tect (by any means) when the state-conditioned prob-

ability density functions have overlapping support (the

generic case of non-Markovian processes) so that the la-

tent state is not obvious from casual observation.

1
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FIG. 6: A demonstration of Cor. 1. The
obviously-structured stochastic process described by
this HMM has a flat power spectrum for all values of

the transition parameter p 2 [0, 1].

In the following sections, we will address further ways

to achieve the appearance of white noise without needing

to meet the requirements of Cor. 1. But first, let us reflect

on the results so far.

On the one hand, Thm. 1 and Cor. 1 should strongly

suggest to data analysts to look beyond power spectra

when attempting to extract a process’s full architecture.

On the other, whenever a process’ power spectrum is

structured, it is a direct fingerprint of the resolvent of

the hidden linear dynamic. In short, the power spectrum

is a filtered image of the resolvent along the unit circle.

The power spectrum of a particular stochastic process

is shown in Fig. 4 and using coronal spectrograms, intro-

duced in Ref. [4], it illustrates how the observed spec-

trum can be thought of as emanating from the spectrum

of the hidden linear dynamic, as all power spectra must.

Figure 4a shows the state-emitting HMM with state-to-

state transition probabilities parametrized by b; the mean

values hxip(x|s) of each state’s pdf p(x|s) are indicated as

the blue number inside each state. The process generated

depends on the actual pdfs and the transition parameter

b although, and this is our point, the power spectrum is

ignorant to the details of the pdfs.

The evolution of the eigenvalues ⇤T of the transition

ω

P
(ω

)

FIG. 6. Demonstrating Cor. 1 on the Noisy Phase-Slip Pro-
cess: The overtly-structured stochastic process generated by
the HMM (inset) has a flat power spectrum for all values of
the phase-slip transition parameter p ∈ [0, 1]. The flat power
spectrum is shown analytically (thick gray) and numerically
(thin blue) for p = 1/10. The numerical power spectrum was
calculated from a simulated time series of length 220 using the
Welch method, performing FFTs on segments of length 29.

white noise.

Proof. This follows immediately from Thm. 1 and the

fact that the all-zero sequence has a power spectrum that

is zero everywhere. Thus, the corresponding power spec-

trum of the actual process is a flat (nonzero) power spec-

trum of uniform height 〈|x|2〉.
We can relax the corollary to include cases where the

state-conditioned PDFs are all equal to a potentially-

nonzero constant. Although, a δ-function at zero fre-

quency (of integrated magnitude equal to the square

magnitude of the constant) will then be observed in ad-

dition to the flat power spectrum.

The corollary’s implications are striking. It is quite

surprising, to consider one broad class of examples, that

a power spectrum can be completely flat even when a

ring of sequential states are visited that emit observables

with probability density functions having no overlapping

support. Figure 6 gives an example. In such a case, any

cogent observer immediately detects the obvious struc-

ture in the mismatched supports—observed values are

distinct—and forbidden realizations. Yet the power spec-

trum remains silent about this structure, reporting only

the featureless signature of white noise.

In other more challenging settings, structure is not al-

ways so obvious without a reliable aid. Indeed, structure

becomes increasingly difficult to detect (by any means)

when the state-conditioned probability density functions

have overlapping support. This is the generic case of

non-Markovian processes. The hidden states cannot be

detected via casual inspection.

While they give a concrete sense of missing structure,

these cases fall far short of telling the full story of how

power spectra mask structure. The following sections,

culminating in Thm. 2, address additional ways white

noise appears without needing to meet the requirements

of Cor. 1.

A. Nonlinear Pairwise Correlation

In a sense, the structure of the stochastic process in

Fig. 6 was hidden as shallowly as possible to evade ap-

pearing in the power spectrum. As mentioned, the struc-

ture should be trivial to detect by other means. Indeed,

while the linear pairwise correlation γ(τ) vanished for

all τ > 0, there is still pairwise dependence between the

generated random variables, which is nonlinear. This

pairwise dependence can be teased out using the pair-

wise mutual information I(X0;Xτ ) between observables

at different times [81]. For the process of Fig. 6, if we take

the limit of the narrow Gaussians in the state-conditioned

PDFs to be pairs of δ-functions, then the pairwise mu-

tual information can be calculated exactly as shown in

App. L. In fact, I(X0;Xτ ) will be unchanged for any set

of four PDFs we could have chosen for the states of the

example HMM, as long as the PDFs all have mutually

exclusive support for the observable output. (This then

makes the hidden state a function of the instantaneous

observable.)

A concise summary of the pairwise mutual information

is provided via Ref. [65]’s power-of-pairwise-information

(POPI) spectrum:

I(ω) = −H(X0) + lim
N→∞

N∑
τ=−N

e−iωτ I(X0;Xτ ) ,

where H(·) is the Shannon entropy of its argument [81].

Examining the pairwise mutual informations and the

POPI spectrum for this example (see Figs. 14 and 15

in App. L), we find the decay of pairwise information to

scale intuitively with the phase-slip-parameter p. While

Fig. 6’s example has no linear correlation, nevertheless it

does have pairwise structure. Thus, the structure of the

example process was hidden from power spectra, but not

hidden from the POPI spectrum.

The following sections continue investigating

temporally-structured processes, but focus on those

with no linear pairwise correlation (and so a flat power

spectrum) and no pairwise mutual information (and so

a flat POPI spectrum). These will lead us to introduce
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a general condition for flat power spectra. And, since

power spectra fail so often to detect structure, we turn

from criticizing them to being constructive: introducing

ways to detect hidden structure.

B. Sophisticated Fraudulent White Noise

Theorem 1 established that the power spectrum from

processes with continuous observable random variables

is the same as the power spectrum from much simpler

corresponding processes with discrete observable random

variables. Accordingly, Thm. 1 motivates studying the

power spectra of processes with discrete observable ran-

dom variables to determine if there are further ways to

achieve a flat power spectrum, beyond Cor. 1’s possibili-

ties. For observables that are discrete random variables,

it is sufficient to consider their probability distributions

rather than their probability density functions.

We begin this next step of the development by estab-

lishing the following simple lemma:

Lemma 1. Any stochastic process (not necessarily sta-

tionary) with the Single-Condition-Independent Prop-

erty (SCIP):

Pr(Xt|Xt′ = x) = Pr(Xt)

= Pr(Xt′) ,

for all x ∈ A and all t 6= t′, generates a flat power spec-

trum, mimicking white noise.

Proof. See App. F

SCIP processes not only have a flat power spectrum

but also a flat POPI spectrum. SCIP implies I(X0;Xτ ) =

0 for all τ 6= 0 which, in turn, implies I(ω) = 0.

These processes completely lack any pairwise correlation,

whether linear or nonlinear.

Notably, Lem. 1 is not covered by Cor. 1; nor is Cor. 1

subsumed by Lem. 1. Accordingly, the following develops

a single simple condition (culminating in Thm. 2) that

covers all of these cases of fraudulent white noise.

Crucially, the class of potentially-fraudulent-white-

noise processes suggested by Lem. 1 is nontrivial. In ad-

dition to IID processes, this class includes non-Markovian

processes that hide all of their structure beyond pairwise

correlations.

The Random–Random–XOR process (RRXOR), dis-

cussed at length in Ref. [65], is an example. Over blocks

of length 3, the first two bits are generated randomly

from a uniform distribution and the third bit is then the

logical XOR operation of the last two. Explicitly:

X3n+φ = XOR(X3n−2+φ, X3n−1+φ) , whereas

X3n−2+φ ∼
(

1
2 ,

1
2

)
and

X3n−1+φ ∼
(

1
2 ,

1
2

)
,

for all n ∈ {1, 2, . . . }. As a SCIP process, the RRXOR

process has a flat power spectrum although it does

not fall under the purview of Cor. 1. Indeed, the

RRXOR process has no pairwise correlation at all since

I(X0;Xτ ) = 0 for all τ > 0. Accordingly, the POPI spec-

trum is zero over all frequencies. The structure in this

process is strictly three-way correlation. In Ref. [65], the

phase φ itself is a random variable, and synchronizing to

the phase is a surprisingly difficult task [82]. No matter,

whether or not the phase φ is given, the process has no

pairwise correlation—resulting in a flat power spectrum

and flat POPI spectrum—and only reveals correlation in

its three-way structure.

It is interesting to note that the related RRXNOR pro-

cess, where X3n = XNOR(X3n−2, X3n−1), also has a flat

power spectrum. In fact, this suggests a new method

to hide structure: embed a correlated message into a

sequence of RRXOR and RRXNOR 3-bit sequences that

lifts all correlation beyond pairwise. Specifically, the orig-

inal message is transformed into a sequence of choices

about whether to use XOR or XNOR on the previous

two random bits. As long as the read frame and the em-

bedding mechanism is known, the message can be eas-

ily extracted. But, if it is not known that a message is

embedded, it cannot be detected simply by looking for

pairwise correlations.

Through similar construction, structure can be shifted

up to arbitrarily high orders of correlation. Stochastic

processes can be constructed with N -way correlation but

no n-way correlation for all n < N . Moreover, an arbi-

trarily correlated message can be embedded within such

a process, such that its structure is lifted beyond any

desired order of correlation.

C. Content-preserving Whitening

Corollary 1 gave a method to construct an arbitrarily

complex process with a truly flat power spectrum, so long

as all hidden states have the same average output. Here,

we introduce an alternate method to construct arbitrarily

complex processes with truly flat power spectra. These

processes, in addition, are devoid of n-way correlation for

all n < N .

1. Choose an embedding block length N ≥ 3.
2. Choose any stochastic process (“Process A”) with

a binary output alphabet.
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3. Construct “Process B” as follows:

• Whenever Process A would produce a 0, Pro-

cess B will sample a word uniformly from the

set of all words of length N with an even num-

ber of 1s.
• Whenever Process A would produce a 1, Pro-

cess B will sample a word uniformly from the

set of all words of length N with an odd num-

ber of 1s.

Any Process B constructed in this manner has a truly

flat power spectrum. Process B will also be devoid of

n-way correlation for all n < N . Moreover, if A is a sta-

tionary process such that its statistical complexity Cµ(A)

is well defined [83, 84], then Process B is also a stationary

process with Cµ(B) ≥ Cµ(A).

This also works for “infinitely structured” processes,

those with divergent statistical complexity. Choose any

binary Process-A family with Cµ → ∞. This can be,

for example, Ref. [85]’s Heavy-Tailed Periodic Mixture

Process that has infinite past–future mutual informa-

tion: E → ∞. Then add some structure, via content-

preserving whitening, to obtain a binary Process-B fam-

ily with Cµ →∞ and a truly flat power spectrum.

Similar constructions can also be developed for pro-

cesses with larger alphabets.

Through the lens of pairwise correlation, such struc-

ture is simply missed. However, before moving on to

consider more advanced methods to detect such struc-

ture, we finish our investigation of flat power spectra from

structured processes. The next section addresses a broad

class of possibly-input-dependent process generators and

we give a very general condition for when a flat power

spectrum results.

D. Input-dependent Generators and Fraudulent

White Noise

Probing fraudulent white noise more broadly, con-

sider an arbitrarily correlated message ~m and an input-

dependent generatorM(~m) of an observable output pro-

cess {Xt}t∈T . The lengths of the inputs and outputs need

not be commensurate, and the input and output alpha-

bets may also be distinct. The generator is fully speci-

fied by the tupleM(~m) =
(
S,A,P, {Tt(~m)}t,µ1

)
. That

is, the internal states S, output alphabet A, and state-

dependent PDFs P are static. However, the hidden-

state-to-state transition matrix Tt(~m) at time t is poten-

tially a function of the full input ~m. Since stationarity is

no longer assumed, the initial distribution µ1 over hidden

states must be specified for the statistics of the output

process to be well defined.

.
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X1 X2 X3

Hidden message and embedding protocol . . .

.

S1 S2 S3

X1 X2 X3

Hidden message and embedding protocol . . .

.
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FIG. 7. Bayesian network for memoryful input-dependent
generators.

Figure 7 shows the relevant Bayes network for this gen-

eral type of input-dependent generator. Contrast this

with Fig. 3, which showed the Bayes network of au-

tonomous HMM generators. Autonomous HMMs can be

seen as a special case of these possibly-input-dependent

generators when the process M(~m) = M is input-

independent and the initial distribution µ1 = π is taken

to be the stationary distribution 〈π| = 〈π|T of the time-

independent transition matrix Tt(~m) = T .

The memoryful input-dependent generators we now

consider also generalize the memoryful transducers in-

troduced in Ref. [86] to use continuous-variable outputs

and allow the lengths of input and output to be incom-

mensurate. Via any of the above models, very general

message-embedding schemes can be developed that pro-

duce sophisticated fraudulent white noise.

Even with all the generalizations, we can determine

autocorrelation and power spectra. Similar to the deriva-

tion for HMMs, we find that if the process is wide-sense

stationary then (for τ ≥ 1):

γ(τ) = 〈µt|ΩTt:t+τ (~m) Ω|1〉 , (16)

which must overall be t-independent (so long as t ≥ 1).

Here, 〈µt| = 〈µ1|T1:t(~m) and Ta:b(~m) =
∏b−1
t=a Tt(~m),

and Ω is again given by Eq. (5). (Notice that

Ta:a+τ (~m) = T τ for the special case of autonomous

HMMs.)

Thus, autocorrelation for τ ≥ 1 can be calculated as

〈µ1|ΩT1:1+τ (~m) Ω|1〉, assuming that the pairwise statis-

tics are stationary. This can also be written as:

γ(τ) =
〈
〈x〉p(X|St) 〈x〉p(X|St+τ )

〉
Pr(St,St+τ )

, (17)

where we treat 〈x〉p(X|St) as a random variable that

depends on St and the whole expression becomes t-

independent assuming stationary pairwise statistics. Ac-

cordingly, the autocorrelation function is constant and
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the power spectrum is flat whenever:

Pr
(
〈x〉p(X|St+τ ) |St = s

)
= Pr

(
〈x〉p(X|St+τ )

)
= Pr

(
〈x〉p(X|St)

)
,

for all τ , for all t ∈ T , and for all s ∈ S.

However, this requirement is too strict to cover all cases

of interest. For example, it does not yet imply the flat

power spectrum of the RRXOR process. More generally,

constant autocorrelation and flat power spectra can be

guaranteed by an even weaker condition.

To appreciate this, define the set Ξ of average out-

puts emitted by the states: Ξ ≡ ⋃s∈S{〈x〉p(X|s)
}

. Fur-

thermore, we define Sξ ⊂ S as the set of states that

all emit the same average output ξ ∈ Ξ. Explicitly,

Sξ ≡ {s ∈ S : 〈x〉p(X|s) = ξ}. Using these entities,

we can state our result more precisely as the following

theorem.

Theorem 2. Let {Xt}t be a stochastic process generated

by any of the hidden-state modelsM(~m) discussed above,

including autonomous HMMs and input-dependent gen-

erators, Xt the random variable for the observable at time

t, and St the random variables for the hidden state at

time t. Such processes have constant autocorrelation and

a flat power spectrum if:

Pr(St+τ ∈ Sξ′ |St ∈ Sξ) = Pr(St+τ ∈ Sξ′)
= Pr(St ∈ Sξ′) ,

for all separations τ > 0, for all t ∈ T , and for all ξ, ξ′ ∈
Ξ.

Proof. See App. G

Theorem 2 says that a flat power spectrum results

whenever the average output of the future hidden state is

independent of the average output of the current latent

state.

This generalized condition for flat power spectra cov-

ers the special case for HMMs as well as fraudulent white

noise from message-embedding schemes with stationary

pairwise statistics, but nonstationary high-order statis-

tics. Appendix M shows that a modified version of

Thm. 2 also applies to another class of generators that

can be more natural for measured quantum systems and

systems with computational dependencies. Theorem 2

subsumes Cor. 1 as well as Lem. 1. And, it offers the

most general guarantee yet for constant autocorrelation

and flat power spectrum.

By way of contrast consider the following. While zero

pairwise mutual information is always a sufficient condi-

tion for flat power spectrum, it is not a necessary con-

dition. Here, in Thm. 2, we find a very general con-

dition for a flat power spectrum. Appendix N estab-

lished a related theorem (Thm. 5) that further generalizes

the condition for flat power spectra, allowing for time-

dependent PDFs associated with each state. Moreover,

Thm. 2 and Thm. 5 constructively suggest how to design

such processes. Notably, these generalized conditions do

not require a stationary dynamic over the hidden states

of the observation-generating mechanism, which further-

more allows messages to hitchhike undetected aboard

fraudulent white noise.

More broadly, we may ask when two processes generate

the same power spectrum, whether or not it is flat.

Theorem 3. Let {Xt}t and {Yt}t be two stochastic pro-

cesses generated by any of the hidden-state modelsM(~m)

discussed above, including autonomous HMMs and input-

dependent generators, Xt and Yt the random variables for

the observables at time t, and St ∈ S and Rt ∈ R the

random variables for the respective hidden states at time

t. These processes have identical power spectra, up to a

constant offset, if:

Pr(St ∈ Sξ,St+τ ∈ Sξ′) = Pr(Rt ∈Rξ,Rt+τ ∈Rξ′) ,

for all separations τ > 0, for all t ∈ T , and for all ξ, ξ′ ∈
Ξ.

Proof. See App. H

Section IV B below leverages Thm. 3 to determine the

degeneracy of diffraction patterns from distinct physical

structures.

This suite of results emphasizes our main argument’s

generality: Power spectra are mute when detecting a

broad range of observable structure. Whether observ-

ing physical, biological, or social systems, we seek struc-

ture that reveals mechanism and begets predictability.

Through the lens of power spectra, or pairwise corre-

lation more generally, much structure is simply missed.

The challenge then is to look for structure beyond pair-

wise. Section V addresses this challenge shortly. First,

though, to motivate the extra effort, we show that fraud-

ulent white noise is indeed a feature of real physical sys-

tems.

IV. HIDDEN PHYSICAL STRUCTURE

To ground the theoretical consequences in natural,

even familiar phenomena, this section takes on three,

rather disparate physical systems. It draws out im-

portant physical implications of fraudulent white noise

and power spectral degeneracy in quantum entanglement,

chaotic crystallography, and neural-membrane ion chan-

nels.
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A. Fraudulent White Noise From Quantum

Entanglement

Correlated measurements of entangled quantum sys-

tems indelibly confirmed the reality of nonlocal physical

states. In particular, Bell tests conclusively showed that

no local hidden variable theory is consistent with certain

strongly-correlated observations [87–89]. Detecting cor-

relation in more general quantum states should similarly

yield a deeper appreciation of quantum correlation’s im-

portant role in everything from thermodynamics [90] to

gravity [91, 92]. But what if our tools mask correlations?

Entangled many-body systems, as it turns out, easily

generate fraudulent white noise when they are measured.

The following demonstrates that repeated measurements

of even quite simple entangled states leads to fraudulent

white noise. As a consequence, one is at risk of inad-

vertently inferring randomness where there is essential

correlation. Recognizing these high-order correlations in

fraudulent white noise, in contrast, could reveal the ubiq-

uity of entanglement naturally induced in the time evo-

lution of physical systems.

As a particular example, consider the entangled three-

body quantum state:

|Ξ〉 ≡ 1

2

(
|000〉+ |011〉+ |101〉+ |110〉

)
,

where, for example, |011〉 = |0〉A ⊗ |1〉B ⊗ |1〉C. The

quantum circuit diagram:

|0〉 H •

|0〉 H •
}
|Ξ〉

|0〉

shows that |Ξ〉 is directly generated by a sequence of

two Hadamard gates and two controlled-NOT (CNOT)

gates applied to the unentangled state |000〉. Recall that

the Hadamard gate HA maps |0〉A to |+〉A ≡
(
|0〉A +

|1〉A
)
/
√

2. (Ref. [45] may be consulted for further ex-

planation of these standard elements of quantum circuit

diagrams.)

When measured in the computational basis of 0s and

1s, repeated preparation and measurement of |Ξ〉 states

leads exactly to the RRXOR process discussed above,

as the reader can directly verify [93]. This quantum

preparation and measurement setup is shown explicitly

in Fig. 8(d). Certainly, observations contain predictable

correlations. A pairwise analysis of the observation se-

quence, however, gives the statistics of white noise. This

holds whether the analysis used either power spectra or

POPI spectra or, indeed, any analysis that can be per-

formed in one-on-one meetings among Alice, Bob, and

Charlie who each hold one of the component qubits.

|0〉 H X1

|0〉 H X2

(a)

...
...

0: 12
1: 12

|0〉 H • X1

|0〉

|0〉 H • X2

|0〉
...

...

(b)

0: 12
1: 12

|0〉 H • X1

|0〉 Rx̂(θ) X2

|0〉 H • X3

|0〉 Rx̂(θ) X4
...

...

(c)

0:sin2(θ/2)

1:cos2(θ/2)

0 : 1
2 1 : 1

2

0:cos2(θ/2)
1:sin2(θ/2)

|0〉 H • X1

|0〉 H • X2

|0〉 X3

|0〉 H • X4

|0〉 H • X5

|0〉 X6

(d)

...
...

0 : 1

1 : 1

1 : 1
2

0 : 1
2

0 : 1
2 0 : 1

2

1 : 1
2

1 : 1
2

FIG. 8. Stochastic processes generated by fixed measurements
of unitarily-transformed blank quantum inputs. These in-
clude: (a) measurement-basis-dependent genuine white noise;
(b) measurement-basis-independent uniform white noise; (c) a
correlated Bell process; and (d) entanglement-enabled fraud-
ulent white noise. Dashed boxes are drawn around the entan-
gling unitary modules in each case; except (a), where there is
no entanglement. The induced Mealy-type HMMs shown on
the right are the minimal descriptors of the output process.
The edge label “x : q” on the transition from state s to s′ in-
dicates the joint probability Pr(Xt = x,St+1 = s′|St = s) = q
of observing x ∈ A and transitioning to s′, given the current
state s. Mealy-type HMMs are a simple case of the more
general Measurement Feedback Models discussed in App. M.

Figure 8 compares additional examples of stochastic

processes generated by fixed measurement of unitarily-

transformed blank quantum inputs [94]. Panel 8(a) re-

minds us that almost any measurement of a quantum sys-

tem yields some randomness. The amount of uncertainty,

though, depends on how well the measurement basis

aligns with the system’s quantum state. However, Panel

8(b) reminds us that local properties of a maximally-

entangled state are maximally unpredictable, regardless

of the local measurement basis. The entire structure of a

maximally-entangled state exists only nonlocally among
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constituents, yielding correlations when measurements

on different parts of the system are compared—as in the

Bell process of Panel 8(c).

When the number of entangled parties is larger than

two, correlation becomes much harder to detect. Never-

theless, in each case the physical input, unitary transfor-

mation, and measurement protocol together determine

the HMM that exactly describes the correlated output

process. Figure 8(d) shows how fraudulent white noise

in the form of the RRXOR process can arise from mea-

surements of entangled three-bodied quantum systems.

Moreover, adding two swap gates:

|0〉 H • X1

|0〉 H • × X2

|0〉 × × X3

|0〉 H • X4

|0〉 H • × X5

|0〉 X6

transforms the output into the even more cryptic Inter-

laced RRXOR process, discussed shortly in Sec. V B.

These constructions demonstrate that simple se-

quences of two-body interactions can generate high-

order correlations while revealing no low-order correla-

tion whatsoever.

B. Silent Crystals

Many icons of natural structure ensue from the atomic

placements encoded in crystals. Semiconductor crystal

structures tell electrons and light how to move within

them, while the aperiodic crystals of our genetic script

instruct our cells how to behave. The typical way to

probe crystal structure is X-ray diffraction—the power

spectrum of a crystal’s electron density. Thus, the pre-

ceding results on the degeneracy of power spectra high-

light which features of crystal structure can be inferred

from diffraction patterns.

Close-packed structures, which mimic the dense pack-

ing of hard spheres, offer an interesting case study due

to their multiplicity and natural abundance [95, 96]. All

close-packed structures are composed of modular layers

{A,B,C}, with a material-dependent basis attached to

a 2-dimensional hexagonal crystal lattice. Assembling

these modular layers, there are two choices for how to

nestle the next layer to fill the holes as tightly as possible.

For a particular material, differences in diffraction pat-

terns arise from this sequence of stacking choices [68, 97–

99].

Besides the ABABAB. . . period-two stacking of close-

packed two-dimensional monolayers that leads to hexag-

onal close packing (hcp) and the ABCABC. . . period-

three stacking of these monolayers that leads to cubic

close packing (ccp), there is an infinite number of ways

to stack the monolayers as tightly as possible. The only

constraint is the stacking rule that no layer (whether A,

B, or C) can appear twice in succession. Nature, it turns

out, is fully aware of all the possibilities.

For close-packed materials, the net energy from

nearest-neighbor interactions is indifferent to which of

the infinitely many close-packed structures is realized.

This facilitates great diversity, in both natural and fab-

ricated materials, via polytypism and random stack-

ing [100]. Prominent examples of polytypic layered struc-

tures include SiC, ZnS, stacked graphene, and ice [101].

Different polytypes of the same material can have very

different electronic, optical, and mechanical proper-

ties [102].

1. Diffraction theory of layered structures

Appendix A reviews the basics of diffraction theory

and shows that the diffracted intensity (as a function of

the scattering vector ~q) can be written as a power spec-

trum of layer form factors Xn = F (n)(~q) ∈ C. Each

layer form factor is the Fourier transform of the spatially-

extended scatterer density (e.g., the electron density)

associated with the layer. In particular, the expected

diffracted intensity can be written as:

〈Idiff(~q)〉 = cNP (ω)

= c

〈∣∣∣∣∣
N∑
n=1

F (n)(~q)e−iωn

∣∣∣∣∣
2〉

, (18)

where ω = τ0~q · ˆ̀ quantifies the change in wavenumber

along the stacking direction ˆ̀ of N sequential layers of

thickness τ0.

For typical layered structures, there is only a small

number of layer types. For close-packed structures, to

take one example, each layer realizes one of only three

allowed relative offsets in its plane. Yet, in detail, we

know that each layer type is subject to both thermal fluc-

tuations and quantum uncertainty of atomic positions.

What are the consequences for the diffraction pattern?

Suppose there is a hidden-state model M(~m) =(
S,A,P, {Tt(~m)}t,µ1

)
that generates the correct statis-

tics of the layer form factors in the material—taking the

stochastic stacking process, thermal motion, and quan-

tum uncertainty into account. Theorems 1 and 3 im-
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ply that—up to a constant offset—the diffraction pattern

will be the same if we instead consider the much simpler

hidden-state model M′(~m) =
(
S,B,Q, {Tt(~m)}t,µ1

)
that outputs only the expected layer form factor from

each hidden state.

Appendix A 1 shows that this allows us to easily and

rigorously produce the surprising results of Debye–Waller

theory for exactly periodic lattices in the general setting

of randomly stacked structures. Specifically, the state-

conditioned expectation value of the form factor directly

leads to the Debye–Waller factor that exponentially sup-

presses the intensity of the diffraction pattern at large

magnitude of the scattering vector. Surprisingly, how-

ever, thermal and quantum fluctuations do not lead to

broadening of the diffraction pattern.

For close-packed structures, there are only three types

of layers, differing only via relative displacements of 1/3

of a lattice-translation vector in the plane of the layer.

As a result, if type-A layers have an expected layer form

factor of A = ψ, then the other layer types are simply

related by the third roots of unity:

A = ψ, B = ψei2π/3, and C = ψe−i2π/3 .

(See App. A 2). The three possible state-conditioned ex-

pectation values for the layer form factors serve as the

alphabet B = {A,B,C} for the stacking process {Xn}n,

where n indexes the layer and adjacent layers are sepa-

rated by a distance of τ0. The diffracted intensity from

any close-packed structure is then given by the power

spectrum of the stacking process.

Information about the stacking process is most di-

rectly revealed via P (ω)/|ψ|2 wherever |ψ|2 is nonzero,

which discounts the expected diffraction pattern of a sin-

gle layer [103].

Traditional crystals are described by periodic patterns.

Much more generally, crystal structure can be defined

by the stochastic process that generates it. (Traditional

crystals, then, are the special case in which the stochas-

tic stacking process is deterministic and periodic.) For

close-packed structures layered according to a stochas-

tic process that can be expressed by a hidden Markov

model, our results imply that the diffraction spectrum is

intimately related to the HMM’s eigenspectrum.

2. Random stacking example

Both hcp and ccp crystals are described by very sim-

ple deterministic Markov models. More generally, crystal

structure can integrate both features of randomness and

features of determinism. Moreover, the randomness need

not be simply statistically-independent errors (possibly,

faults) in an otherwise periodic parent crystal. Rather,

the randomness itself can have a rich causal architecture.

As a first example, consider the p-parametrized family

of stochastic stacking processes depicted in Fig. 9. For

p = 1, we recover the deterministic period-two hcp struc-

ture. The period-two nature is reflected in the Bragg

reflection at ω = π. For p = 0, we recover the determin-

istic period-three ccp structure. The period-three nature

is reflected in the Bragg reflection at ω = 2π/3. For

other values of p, the structure is described by a stochas-

tic stacking process.
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FIG. 9. Parametrized HMM that generates a family of
stochastic stacking processes (top left) and the diffracted in-
tensity P (ω)/|ψ|2 at different values of the faulting parameter
p. Plotted as coronal spectrograms, it is clear that the diffrac-
tion spectrum emanates from the eigenspectrum of the HMM
that generates the crystal.

For any p, the transition matrix and average-

observation matrix are:

T =

0 1 0

p 0 1− p
1 0 0

 and Ω =

A 0 0

0 B 0

0 0 C

 ,

respectively. The transition-matrix eigenvalues are ΛT ={
1, − 1

2 ±
√
p− 3

4

}
. The transition matrix is diagonaliz-

able unless p = 3/4, where it becomes nondiagonalizable.

For p 6= 3/4, each spectral projection operator is given

by Tλ = |λ〉 〈λ|, with 〈λ| = 1
3λ2−p

[
λ 1 λ2 − p

]
and

|λ〉 =
[
λ λ2 1

]>
, where > denotes transposition. Re-

call that the stationary distribution is the left eigenvector

〈π| = 〈1| = 1
3−p

[
1 1 1− p

]
. From these elements, we

can calculate 〈π|ΩTλΩ |1〉 and the diffracted intensity

analytically as a function of the transition parameter p.

Appendix I gives the calculation details.

Bragg reflections without periodicity For p ∈ (0, 1),

the transition matrix T only has a single eigenvalue on

the unit circle, so the discrete (Bragg) spectrum has a
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single contribution from the eigenvalue of unity:

Pd(ω) =
2πp2|ψ|2
(3− p)2

∞∑
`=−∞

δ(ω+2π`) .

It is interesting that this Bragg reflection persists de-

spite the lack of any long-range deterministic periodici-

ties for p ∈ (0, 1). This rather reflects a different type of

long-range order: the persistent imbalance of layer types

within each realization of the stochastic stacking process.

More generally, Bragg reflections can be attributed to

statistical symmetry breaking. Deterministic periodici-

ties are but one special case.

Diffuse spectrum There is a diffuse contribution to

the power spectrum for all p ∈ (0, 1). For p ∈ (0, 3/4) ∪
(3/4, 1), this contribution is:

Pc(ω) = |ψ|2
(

1− p2

(3−p)2

)
+

∑
λ∈ΛT \{1}

2 Re
〈π|ΩTλΩ |1〉
eiω/λ− 1

.

However, the expanded expressions are significantly dif-

ferent for p > 3/4, where all eigenvalues are real valued

and distinct, and for p < 3/4, where two of the eigenval-

ues are complex conjugate pairs.

Nondiagonalizable diffraction profiles At p = 3/4, the

transition matrix of the stochastic stacking process be-

comes nondiagonalizable. Curiously, this nondiagonal-

izability is a generic feature of parametrized transition

matrices at the point where real eigenvalues collide and

interact to gain complementary imaginary components.

That is, nondiagonalizability marks the onset of new be-

havior. In this case, nondiagonalizability marks the tran-

sition from primarily period-2 to primarily period-3 be-

havior. This critical point of nondiagonalizability is ac-

companied by a qualitatively distinct diffraction profile—

no longer exhibiting the typical Lorentzian line profile.

Observing such a line profile experimentally indicates a

material at the crossroads of structural transformation.

3. Degenerate diffraction patterns

Our general results on the degeneracy of power spec-

tra directly bear on the degeneracy of diffraction pat-

terns from different crystals. The enhanced understand-

ing of this degeneracy, in turn, sheds new light on the

well-known difficulty of the inverse problem of discover-

ing crystal structure from diffraction patterns [104].

Consider a chaotic crystal with a stochastic stacking

process described by the simple HMM shown in Fig. 10a.

The transition-matrix eigenvalues are ΛT =
{

0,±1
}

.

Appendix I 2 shows that 〈π|ΩT1Ω |1〉 = 1
16 |ψ|2 and

〈π|ΩT−1Ω |1〉 = 9
16 |ψ|2. The resulting diffraction pat-

tern consists of a flat “white noise” background:

Pc(ω) = 3
8 |ψ|2

together with two Bragg reflections per 2π of angular-

frequency bandwidth:

Pd(ω) =
π|ψ|2

8

∞∑
`=−∞

[
δ(ω+2π`) + 9δ(ω−π+2π`)

]
.
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(c)

(d)

“Fraudulent white noise

contains

statistical dependencies. . . ”

7→

01000110 01110010 01100001 01110101
01100100 01110101 01101100 01100101
01101110 01110100 00100000 01110111
01101000 01101001 01110100 01100101
00100000 01101110 01101111 01101001
01110011 01100101 00100000 01100011
01101111 01101110 01110100 01100001
01101001 01101110 01110011 00100000
01110011 01110100 01100001 01110100
01101001 01110011 01110100 01101001
01100011 01100001 01101100 00100000
01100100 01100101 01110000 01100101
01101110 01100100 01100101 01101110
01100011 01101001 01100101 01110011 . . .

7→

ABABABACABABACABACACABACABABABACABABACABABACACABACAB
ACABACABABABACACACACABACACABACACABACABACACABABACACAC
ABABACACACABABABACACABABACACACABACACACACACACABACACAC
ABACABABACABACACABACACACACABACACACACACACABABACABABAC
ABABACACABACACACACACACACABACACABABACACABACABACABABAB
ABACACABACABABACACABACACACACACACABACABABACACACACACAB
ACACACACACACABACACACACABABACACACABABABABACACACABACAB
ACACACACACACABABABACACACABABACABACACACACABACACABABAC
ACACACACACACABACACACABACACACABABACACABABACABACABACAB
ACACABACABACACACABABACACABACABACABACACABACACABACACAC
ABABABABACABACACABABACABABABABACABACACACABABABACABABA
BACABABABACABABABACABACACABACACACABABABACACABACACABAB
ACACABABACABABACABABABABABACACABACABABABACABABABABABA
CACACABABACABACABACACABACACACACABACABACACACABACABACA
BACABABABABABACABACABABACABACACACABABACACABABABABABAC
ABACABACABACACACACABABABABABACACACABACABACABABABACABA
CACABACABACACACABABACACACABACACABABACABACABABABABABAC
ACACACABABABACABACABABABACACABABACABACABABABABACACACA
CACABABACACACABABACABACABABACABACABABACABACABACACABAC
ABABACACABABACACABABABACACABABACABACACACABACABABACABA
CABACABACACABABACACABACABABACACABACACABABABABABABACAB
ACACABACABABACABABACABABABABACACABABABABABACACABABACA
CABACABABABABACABACACABACABACABABABACABABABACABABABAC
ABABACACACABACACACABABABACABABABACACABACABABABABABACA
BABACACABABABABABABABACABACACACACABACACABABABACACACAC
ACABACABACACACACABACABACACABABACABACABABACABABACABABA
BABACABACABACABABABABABACACABACACACACABABACABABABABAB
ACACACACABABACACABACACACABACABABABACABABACABABABABABA
CACABABACACACACACABACABABABACACACABABABABABABACABACAC
ACABABABABACACABABACABACABABABACABABABABACACABACABABA
BABACACACABABACABACACACACACACABABABACABABACACABACABAC
ACABACACABABACABABACACABABABABACABACACABACACACACABACA
CABABACABABACABACABABABABACABABABABABACACABABACACABAB
ACABACABABACACABACABACACABABABABABABACABACACACABABABA
CABABABACABACACACABACACACACABABACACABACABABACABACABAC
ACACABABABACACACABABABABABABACACABABACABABACABABABABA
CACACACABACACABACACABABACACABABABACACABABABACACABACA
CABABABABABACACACACACACABABACABABABACABABABACACABABA
CACABACACABACABABABABABACABACACACACACABABACABABABACA
CACABABABABACACABACACABABACABACACABACABACACACABACACA
BACACABABABABACABABABACABABABABACACABABABACABABABABAB
ABABACACACABABABABACACABACABACACABACABABABABABACABACA
CABABACABABABACACABABACABACACACABACABACABABABACABACAC
ABABACACACABABABACACABACABABACACABACABABACACABACACACA
BABACACACABABABACACABABACACACABACACACABACABACABACACAC
ACABACACABACACACACACACABABACACACACABACACACABABACABACA
CACACABACACACABABABACACACACABACABACABACACACACACABACAC
ACACACACACACACACABACACACABABACABABABACACACABACACABACA
BACABABACABACABABABABACACACACABABACACABACACACACABACAC
ACABACACACABACACACACACACABABACACABACACABACACACABABABA
BACABABABABACABABABABACABABACACABACABACACACACACACABAB . . .

FIG. 10. Diffraction pattern (overall figure) consisting of a
white noise background with two Bragg reflections per 2π
change of angular frequency along the stacking direction.
This pattern will be observed from infinitely-many distinct
stochastic processes that generate close-packed structures.
The flat diffraction pattern is given analytically (thick gray)
by Eq. (19). We verify numerically that this diffraction pat-
tern is observed from a crystal stacked according to the simple
stochastic process of panel (a) (thin blue). The same diffrac-
tion pattern results from the stochastic processes of panels
(b) (thin cyan) and (c) (thin green) that have distinct non-
trivial higher-order correlations. And, the same diffraction
pattern results also from a crystal that contains the informa-
tion needed to faithfully reconstruct the entire contents of the
present manuscript. (d) To demonstrate this, we extracted an
extended excerpt from the manuscript, converted the text to
binary ASCII, and then converted each binary character to
six layers of the crystal—sampled from process-(b) if 0 and
sampled from process-(c) if 1, starting in the central A state
each time. The corresponding diffracted intensity is shown in
thin red, coinciding with the others.

The exact same diffraction pattern, however, results

from an infinite number of distinct and arbitrarily-

complex stochastic stacking processes. In these cases, the

flat diffraction background—a fraudulent white noise—

belies the material’s sophisticated correlated structure.

For example, the HMMs shown in Figs. 10b and 10c

each contain nontrivial high-order correlation between
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layer types. However, each produces the same diffracted

intensity as before:

P (ω) =
3

8
|ψ|2

+
π|ψ|2

8

∞∑
`=−∞

[
δ(ω+2π`)+9δ(ω−π+2π`)

]
. (19)

As another example that helps to drive home the

point, a binary encoding of the entire contents of this

manuscript can be stored in the stacking sequence of

a close-packed crystal with exactly the same diffraction

pattern as Eq. (19). In fact, any sufficiently long binary

sequence can be encoded in a crystal with this diffraction

pattern.

To construct this crystal, each 0 is mapped to one of

the layer sequences in

L0 = {ABABAB,ABACAC,ACABAC,ACACAB}

with equal probability, while each 1 is mapped to one of

the layer sequences in

L1 = {ABABAC,ABACAB,ACABAB,ACACAC}

with equal probability. This is equivalent to applying six

iterations of the transition dynamic of Fig. 10b for each

0 and then applying six iterations of the transition dy-

namic of Fig. 10c for each 1, starting in the central A

state each time. Theorem 3 guarantees that the diffrac-

tion pattern of the resulting crystal is always given by

Eq. (19). This is demonstrated in Fig. 10. Diffracted

intensity is completely blind to these correlated binary

messages, but the original binary message can neverthe-

less be recovered by other means (e.g., via scanning tun-

neling microscopy (STM)).

A similar story can be told for our human genome—

our DNA is the prototypical “aperiodic crystal” [105]. Its

diffraction pattern allowed scientists to uncover its gen-

eral double-helix structure [27–30]. However, the particu-

lar content encoded by the DNA can only be extracted by

more refined structure-detection methods—carried out

by a team of cooperative enzymes in vivo.

To summarize our view of diffraction spectra for

chaotic crystals, we showed that: (i) State-conditioned

expectations of layer form factors simplify diffraction

analyses. (ii) Bragg reflections persist in close-packed

structures without periodic order. (iii) Nondiagonaliz-

ability heralds structural transformation and yields qual-

itatively distinct line profiles. And, (iv) an infinite num-

ber of arbitrarily complex crystal structures all produce

the same flat diffraction pattern (plus two Bragg re-

flections). These lessons supplement a growing aware-

ness of the diversity of “order” in solid-state physi-

cal systems—order beyond what can be described by

Patterson autocorrelation functions and diffraction pat-

terns [101, 106, 107].

C. Which ion-channel features do power spectra

capture?

Voltage-gated ion channels embedded in cellular mem-

branes are the engines that propagate signals among

cells—coordinating electrical communication in our

brains, hearts, and throughout our bodies. Better under-

standing the dynamics among the macromolecular con-

formations of these ion channels allows a better under-

standing of biological function, malfunction, and possi-

ble intervention. However, the ion channel conformations

cannot be observed directly. Rather, it is only possible to

observe a function of the hidden conformational state—

whether the instantaneous conformation allows current

to flow or not. This non-Markovian observable makes

the inverse problem (of inferring the dynamic over hid-

den conformational states) a difficult task [108, 109].

Fortunately, a large body of investigation over many

decades elucidated the biology of ion channels [110–113].

Nevertheless, questions remain about how the measured

power spectral features, like 1/f noise, arise in electrical

measurements of ion channels. Does it derive from the

conformational switching dynamics? Is it from current

fluctuations in a particular conformation? If only power

spectra are available, what can be inferred?

Our results offer insight into which features of the

power spectrum can be attributed to the channel’s con-

formational switching dynamics. Most notably, our

Thm. 1 says that the conditionally-IID distributions as-

sociated with each conformational state cannot possibly

change the observed power spectrum, so long as the av-

erage output from each state is left unchanged. So, for

example, state-dependent (conditionally-IID) noise can-

not be the source of 1/f noise since it cannot modulate

the power spectrum. Previously, this and related ques-

tions could only be explored experimentally and numer-

ically [114, Fig. 3].

To contribute to these issues concretely, let’s consider

current fluctuations in voltage-gated potassium ion chan-

nels. Figure 11 illustrates an important biophysical ap-

plication of Thm. 1: The power spectrum of current

through a voltage-gated K+ channel is invariant to mean-

preserving changes in the ion-current PDFs for each

channel conformation. We demonstrate this for a partic-

ular physiologically-motivated model of gating kinetics;

see App. J for details. However, it must also hold for any

model of potassium ion current, which may include many



21

αn

4βn

2αn

3βn

3αn

2βn

4αn

βn

0 I0
0

0 I0
0

0 I0
0

0 I0
0

0 I0
0

0 250    
0

I0

0 I0
0

0 I0
0

0 I0
0

0 I0
0

0 I0
0

0 250    
0

I0

0 250 500 750 1000
0

1/2

1

0 1 2 3

−3

−4

−5

−6

log10(f/Hz)

f Hz

P
(f
)

×10−3I20/Hz

lo
g
1
0

( P(f
)

I
2 0
/
H
z

)

(a)

(b)

(c)

(d)

ms

ms

t

t

FIG. 11. Biophysical application of Thm. 1: Power spectrum
of current through a potassium ion channel does not depend
on the details of the probabilistic current in each channel
conformation. (a) The continuous-time model of transition
rates between conformations of the channel. Each state has
a different number of activation gates that block the chan-
nel (from zero to four). Panels (b) and (c) show HMMs and
representative time series of ion current generated from this
continuous-time model, at a membrane potential of v = −40
mV and sampling rate of f0 = 4 kHz. (b) Binary output. (c)
Continuous-valued output, representing both measurement
noise and current fluctuations. (d) The power spectrum is
shown analytically (thick gray) and numerically (thin blue
for binary model (b); thin red for continuous-valued model
(c)). The numerical power spectra were each calculated from
a simulated time series of length 220 using the Welch method,
performing FFTs on segments of length 210. The inset log-
log plot shows ∼constant behavior at low frequency, ∼ 1/f2

behavior at high frequencies, and the effect of finite sampling
rate at very high frequencies.

hidden open conformations and electronic states, so long

as the output is conditionally-IID in each hidden state.

Figure 11(a) shows the continuous-time model of tran-

sition rates between conformations. Each of these confor-

mations has a different number of activation gates block-

ing the channel: from zero in the open state (leftmost,

green) through four. Current only flows in the open state,

so the K+ current dynamics is non-Markovian, as is well

known. The average current in each state is either I0 or

0, depending on whether the channel is in an open or

closed conformation, respectively. The Hodgkin–Huxley

parameters αn and βn are voltage-dependent rates of an

individual gate opening or closing. Experiments on ion

channels are typically performed at a fixed membrane

voltage [110, 114, 115]. With fixed voltage and sam-

pling rate, the continuous-time model generates a sim-

ple discrete-time HMM. (Time-varying voltages produce

more complicated HMMs.)

Figures 11(b) and (c) correspond to a fixed membrane

potential of v = −40 mV, with potassium current sam-

pled every τ0 = 250 microseconds. Panels (b) and (c)

each show a HMM and a randomly sampled time series.

For visualization of the HMMs, the opacity of the di-

rected edges is a simple concave function of the transition

probability. (See App. J for the exact form of the rate

matrix and transition matrix.)

Previous analyses considered the power spectrum from

a binary output model similar to (b) [116, 117]. Yet

with both measurement noise and current fluctuations,

a continuous-valued model like (c) better represents

the stochastic process observed in experiments. Nev-

ertheless, our Thm. 1 asserts that both of these mod-

els produce exactly the same power spectrum, up to a

frequency-independent offset. Moreover, for continuous-

time processes, this offset vanishes as the sampling rate

increases.

We can state this more precisely as a general corollary

of Thm. 1.

Corollary 2. For any two HMMs whose transition ma-

trix comes from the same continuous-time generator (via

eτ0G): if the two models have the same average output

in each state, then their power spectra differ only by a

frequency-independent offset:

P (M′)(ω)− P (M)(ω) =
(
〈|x|2〉M′ − 〈|x|2〉M

)
/f0 .

For a family of such processes with bounded variance of

the instantaneous observable, this offset must approach

zero as the sampling rate increases.

Proof. This follows immediately from Thm. 1 when we

treat f0 explicitly. (Recall that f0 was set to unity in the

discrete-time case.)

Nevertheless, small constant offsets can be observed
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between the empirical power spectra whenever a finite

sampling frequency is used.

Figure 11(d) shows that the power spectra from model

(b) (blue) and model (c) (red) are indeed the same,

up to a very small constant offset of
(
πopenσ

2
open +

(1 − πopen)σ2
closed

)
/f0 ≈ 3.6 × 10−7I2

0/Hz. This small

frequency-independent offset predicted between the two

models becomes visible at the highest frequencies of the

inset log–log plot where power is lowest.

The power spectrum in the continuous-time limit of

f0 →∞ is derived in App. J. The analytic curve (dashed

thick gray) is shown in the log–log inset of Fig. 11(d).

It is flat at low frequencies and falls off as 1/f2 at high

frequencies. However, these processes are sampled at a

finite rate of f0 = 4 kHz. The analytic curves for the

expected empirical power spectra (from models (b) and

(c)) are shown in thick gray in the log-log inset. They

deviate from the continuous-time model’s 1/f2 behavior

but match the numerical power spectra extremely well

up to arbitrarily high frequencies. This whitening of em-

pirical power spectra at high frequencies is predicted by

Eq. (6).

Our results suggest that observed 1/f noise is likely

due to non-IID current fluctuations in the channel’s open

conformation. This conclusion is at odds with the con-

clusion of Ref. [114], but is consistent with theoreti-

cal [116, 117] and experimental [115] observations in

much earlier work, where the Lorentzian-like power spec-

trum of the channel’s conductance fluctuations appears

to be additive to the 1/f flicker noise background.

Despite 70 or more years of ongoing investigation and

great advances, potassium ion-channel conduction is still

not fully understood [112, 118]. Fortunately, the ana-

lytic results here can help—they can be applied to evalu-

ate the power spectrum from any proposed model and so

aid in bridging theory to experiment. To make genuine

progress, these models will necessarily be more compli-

cated, including transitions between distinct electronic

conduction states in the channel’s open conformation.

On the one hand, the results emphasized that power spec-

tra are indifferent to several stochastic features of alter-

native models. Yet, on the other, the relationship be-

tween power spectra and eigenvalues of the rate matrix

immediately tells us much about which models can be

ruled out based on nontrivial features of observed power

spectra.

V. STRUCTURE IN NOISE?

Surely leveraging predictions to exclude alternative

mechanisms is a central strategy in physical science, but

is there a direct way to discover structure in apparent

noise? One approach immediately suggests itself. We

first reflect on, and further develop, the theory of higher-

order spectra—which maintain much of the familiarity

and convenience of power spectra. However, enumerat-

ing and interpreting higher-order spectra in general is

difficult. Not the least reason for this is that the number

of possible spectral descriptions multiplies combinatori-

ally. Or, sometimes the motivating questions are more

pointed. In these cases, it is often more incisive to de-

velop an information-theoretic probe of statistical inter-

dependencies.

The ultimate goal, though, in using any of these tools

is constructing a testable model that generates the ob-

served features of interest. In the deterministic case fa-

miliar in classical physics, this is synonymous with learn-

ing the equations of motion. In open complex systems

with noise and many layers of feedback, this may instead

take the form of a hidden-state model—whose input-

dependent time-evolution operator generalizes the de-

terministic equations of motion. By directly expressing

mechanisms, developing such models allows thoughtful

reflection on assumptions, generalizations, and interven-

tions.

A. Polyspectra

Higher-order spectra—often simply polyspectra—are a

natural next step to detecting structure beyond the pair-

wise correlations conveyed by power spectra [119, 120].

As we will show, polyspectra are not the ultimate answer

to structure detection, however they certainly are a tool

that practitioners should be aware of. The following de-

rives new analytical expressions for polyspectra useful for

both experimentalists and theoreticians. In emphasizing

properties already implicit in the foregoing, the analy-

sis reveals that polyspectra too are blind to predictable

structure in processes.

Following Ref. [119], we introduce a general formula-

tion for polyspectra that implicates expectation values—

such as, 〈g0(Xt0)g1(Xt1)g2(Xt2)〉—of time-displaced

functions of the observables. As part of the generaliza-

tion, let gk : A → C be any function taking observables to

complex numbers. If A is an abstract set—representing,

say, observing colors yellow or red A = {y, r}—the gk
functions allow a polyspectral analysis that is not possi-

ble otherwise.

Consider the (g0, . . . , gK)-polyspectrum:

Sg0,...,gK (ω1, . . . , ωK) = lim
N→∞

1

N

〈
K∏
k=0

g̃k
(N)(ωk)

〉
, (20)
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where ω0 ≡ −
∑K
k=1 ωk and

g̃(N)(ω) ≡
N∑
t=1

g(Xt)e
−iωt . (21)

Although challenging to interpret in full generality, in

principle polyspectra provide a window into a process’

high-order nonlinear dependencies. Equation (20) says

that polyspectra are the expected products of Fourier

components—components that, in practice, can be ob-

tained from the FFT. Given the FFT’s well-known com-

putational efficiency, polyspectra are an especially ap-

pealing probe of higher-order structure.

Many special cases of the (g0, . . . , gK)-polyspectrum

have been well studied. For example, SX,X(ω) = P (ω)

is the power spectrum; SX,Y (ω) is the cross-spectrum

discussed in App. K; SX,X,X(ω1, ω2) is the moment bis-

pectrum; SX,X,X,X(ω1, ω2, ω3) is the moment trispec-

trum; S
X−〈X〉,X−〈X〉,X−〈X〉(ω1, ω2) is the cumulant bis-

pectrum; and so on. The following, in contrast, addresses

(g0, . . . , gK)-polyspectra generally.

Combining Eqs. (20) and (21) yields:

Sg0,...,gK (ω1, . . . , ωK)

= lim
N→∞

1

N

N∑
t0=1

· · ·
N∑

tK=1

〈 K∏
k=0

gk(Xtk)
〉 K∏
k=0

e−iωktk . (22)

Thus, the (g0, . . . , gK)-polyspectrum is closely related to

the expectations
〈∏K

k=0 gk(Xtk)
〉

, as suggested. And,

crucially, the expectation values can be calculated exactly

from any hidden-state model. Unraveling this exact re-

lationship gives new insight into what the polyspectrum

conveys about a process.

The time variables (tk)Kk=0 in Eq. (22) are not nec-

essarily time-ordered by the index k. Moreover, time

variables may coincide; i.e., it is possible to have tj =

tk for j 6= k. To remove these complications, one

can work with a reduced and time-ordered collection

of time variables (t′k)κk=0 such that t′k > t′k−1, where

κ + 1 =
∣∣{tk}Kk=0

∣∣ ≤ K + 1 is the number of distinct

values of the time variables. These time-ordered vari-

ables are defined recursively via t′0 = min
(
{tk}Kk=0

)
and

t′` = min
(
{tk}Kk=0 \ {t′k}`−1

k=0

)
.

The original time variables (tk)Kk=0 induce a function

α : {0, 1, . . .K} → {0, 1, . . . κ} that compresses and time-

orders the indices, such that tk = t′α(k). Although α does

not generally have a unique inverse, we define α−1(`) ={
k ∈ {0, 1, . . .K} : α(k) = `

}
to be the set of indices

that map to `.

For HMMs, we can then express the expectations in
Eq. (22) as:

〈 K∏
k=0

gk(Xtk)
〉

=
〈 κ∏
`=0

gα−1(`)(Xt′`
)
〉

= tr
(
|1〉 〈π|Ωgα−1(0)

κ∏
`=1

T t
′
`−t
′
`−1Ωgα−1(`)

)
, (23)

where tr(·) denotes the trace, the product of operators

maintains time ordering, we have introduced the new

functions gα−1(`)(x) ≡ ∏k∈α−1(`) gk(x), and we used the

generalized average-observation matrices:

Ωg ≡
∑
s∈S
〈g(X)〉p(X|s) |s〉 〈s| . (24)

Note that the summations over all time variables in

Eq. (22) induce all possible functions α that permute

and compress the indices. And, within each compressed

time-ordering, all possible values of the indices consis-

tent with that ordering are summed over. To enumerate

all possible compressed time-orderings, it is useful to ex-

plicitly introduce the set F(κ)
K of all surjective functions

mapping {0, 1, . . .K} onto {0, 1, . . . κ}. For HMMs, we

can then express the expectations [121] in Eq. (22) as:

Sg0,...,gK (ω1, . . . , ωK) = lim
N→∞

1

N

K∑
κ=0

∑
α∈F(κ)

K

N−κ∑
t′0=1

N−κ+1∑
t′1=t′0+1

. . .

N∑
t′κ=t′κ−1+1

〈 κ∏
`=0

gα−1(`)(Xt′`
)
〉 κ∏
`=0

e−iωα−1(`)t
′
` , (25)

where ωα−1(`) ≡
∑
k∈α−1(`) ωk.

Leveraging Eq. (23), App. O shows that Eq. (25) yields the closed-form expression for the continuous part of the

(g0, . . . , gK)-polyspectrum:

Sg0,...,gK (ω1, . . . , ωK) =

K∑
κ=0

∑
α∈F(κ)

K

〈π|Ωgα−1(0)

( κ∏
`=1

T
(
I/z

(α)
`:κ − T

)−1
Ωgα−1(`)

)
|1〉 , (26)
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where z
(α)
`:κ ≡

∏κ
k=` z

(α)
k = e−i

∑κ
k=` ωα−1(k) .

We see that the (g0, . . . , gK)-polyspectrum sandwiches

up-to K resolvents of the time evolution operator T , with

each resolvent separated by average-observation matri-

ces. The resolvents couple the chain of observation matri-

ces, and the polyspectrum reports the average interaction

among these observables over arbitrary displacements.

Using Eq. (9) to express the resolvent
(
I/z

(α)
`:κ − T

)−1

in terms of T ’s eigenvalues and spectral projection oper-

ators, we again see that the eigenspectrum of the time

evolution operator directly controls the polyspectrum of

the stochastic process. Appendix O 1 discusses this fur-

ther.

Note too that, in addition to the continuous part of

the polyspectrum, there are possible discontinuities in

the (g0, . . . , gK)-polyspectrum wherever 1/z
(α)
`:κ ∈ ΛT .

This ‘discrete’ part of the polyspectrum consists of

(K − 1)-dimensional hyperplanes in the K-dimensional

(ωk)K`=1 frequency space where the magnitude of the

polyspectrum diverges. Our analytic formulae imply

that polyspectra may diverge only where subsets of the

frequencies sum to an eigenfrequency ωλ of an eigen-

value λ = eiωλ on the unit circle. For example, in a

generic bispectrum—which has a two-dimensional fre-

quency space—this leads to coexisting diagonal (ω1 +

ω2 = ωλ), vertical (ω1 = ωλ), and horizontal (ω2 = ωλ)

streaks of high intensity.

It is useful to probe several special cases of the

(g0, . . . , gK)-polyspectrum. Consider, first, the (X,X)-

polyspectrum, SX,X(ω1), which is simply the power spec-

trum P (ω1). In this case, K = 1. So, we must consider

the functions contained in F(0)
1 =

{
0

1

0

}
and F(1)

1 ={
0

1

0

1
, 0

1

0

1
}

. For the compressive function α = 0

1

0 ,

we obtain α−1(0) = {0, 1}, yielding:

Ωgα−1(0)
= Ωg{0,1}

= Ω|X|2

=
∑
s∈S
〈|X|2〉p(X|s) |s〉 〈s| .

The (κ = 0)-contribution to the power spectrum is thus:

〈π|Ω|X|2 |1〉 =
∑
s∈S
〈|X|2〉p(X|s) 〈π|s〉 = 〈|x|2〉 ,

which is indeed the first term in Eq. (6). The (κ = 1)-

contribution to the power spectrum is:∑
α∈F(1)

1

〈π|Ωgα−1(0)
T
(
eiωα−1(1)I − T

)−1
Ωgα−1(1)

|1〉 ,

where it should be recalled that ω0 = −ω1. Plugging in

the identity and swap functions of F(1)
1 , this becomes:

2Re 〈π|ΩXT
(
eiω1I − T

)−1
ΩX |1〉 ,

which is indeed the last term of Eq. (6).

Appendix O 2 gives a similar analysis of the cumulant

bispectrum. Analogous to Cor. 1, we find in Thm. 6 of

App. O 2 that:

The cumulant bispectrum is completely flat

for any process generated by a HMM with the

same average output 〈X〉p(X|s) = 〈x〉 from

each hidden state.

This serves as a stark warning against over-reliance on

any particular polyspectrum: Structure and interdepen-

dence will be missed and it is challenging to predict for

which polyspectra this will happen.

Can polyspectra overcome the shortcomings of power

spectra and avoid the inherent pitfalls? Only indirectly.

For example, the cumulant bispectrum—often champi-

oned as the next-step tool for detecting nonlinearities in

a process [120, 122–124]—is completely flat for the exam-

ple process from Fig. 6 for all values of the transition pa-

rameter p ∈ [0, 1]. That is, the cumulant bispectrum tells

us no more than the power spectrum. Yet the moment

bispectrum should be useful in this case, if one only knew

how to interpret it. Alternatively, and more simply, if one

is sharp enough to use (in fact, guess) g(X) = X2, then

the change in observable reveals the process’ structure

through the single-frequency SX2,X2(ω1) polyspectrum.

Such guesswork is inescapable and, more to the point,

reveals a fundamental problem: If a process’ structure is

unknown a priori, there is no guarantee that the structure

will be revealed, even after an infinite number of higher-

order polyspectra have been inspected. Generically, it

is not clear which set of polyspectra to use to detect

structure. Fortunately, information theory and model

reconstruction both provide more principled approaches

to extracting a process’ statistical dependencies [64, 84].

B. Becoming Informed

A more systematic and direct method for explor-

ing beyond-pairwise correlations in stationary stochas-

tic processes is through the sequence of myopic entropy

rates [61, 64, 65, 125–127]:

hL = H(XL|X1X2 . . . XL−1) ,
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with h1 = H(X1). For example, the RRXOR process has

h1 = h2 = log |A| = 1 bit/symbol—it appears as random

as possible when considering symbols individually or in

pairs. Structure is unveiled, though, for L ≥ 3 when

hL < 1. That is, progressively longer Markov-order-L

approximations of the infinite-Markov-order process re-

veal progressively more of its hidden structure.

In fact, hL’s convergence reflects how structure is hid-

den in the stochastic process [127]. As L → ∞, hL ap-

proaches the process’ Shannon entropy rate h—the irre-

ducible randomness per symbol after all orders of correla-

tion have been taken into account. Notably, the accumu-

lation of the excess myopic entropy
∑∞
L=1(hL−h) = E—

the excess entropy—quantifies the total mutual informa-

tion between the past and future of a process: E =

I(. . . , X−1, X0 ; X1, X2, . . . ). So, while I(X0;Xτ ) = 0 for

all τ > 0 for the RRXOR process, the past and future

are nevertheless correlated since E > 0. And, the con-

vergence to predictability can be viewed in the frequency

domain through the excess-entropy spectrum introduced

in Ref. [65]. Taken together, this suggests that myopic

entropy rates serve well to identify hidden structure be-

yond pairwise correlation. They show how predictabil-

ity improves as progressively longer historical context is

used.

However, correlations are not always restricted to con-

tiguous blocks. Therefore, there can be pairwise correla-

tions among distant observables while h2 = 0. Moreover,

the myopic entropy rates as defined above are restricted

to stationary processes. Consequently, despite their util-

ity, myopic entropies are not ideal for direct indication of

L-way correlation in the most general setting.

A more direct indicator of L-way correlation is found in

the dependence function DL, which quantifies the maxi-

mal uniquely-L-way correlation that exists in a process.

We say a set χ of random variables is fully correlated if

all constituent random variables inform all of the others;

that is, if:

H(X|χ \ {X,X ′})−H(X|χ \ {X})
= I
(
X ; X ′ |χ \ {X,X ′}

)
> 0 ,

for all X,X ′ ∈ χ. A process is then L-way correlated if it

has a set of L random variables that are fully correlated.

One way to quantify this L-way correlation is through

the following dependence function:

DL ≡ sup{
χ⊂{Xt}t: |χ|=L

} min
X,X′∈χ

I
(
X ; X ′ |χ \ {X,X ′}

)
.

defined here only for L ≥ 2. L-way dependence is nonzero

if and only if there are novel L-way contributions to a

process’ total correlation. Note that dependence can be

applied to nonstationary processes, processes of finite du-

ration, and indeed to any collections of random variables.

Consider, as a simple example of noncontiguous de-

pendencies, the process consisting of two interlaced

RRXOR processes with unambiguous phase, which arose

from measurement of an entangled quantum system in

Sec. IV A. Explicitly:

X6n = XOR(X6n−4, X6n−2) and

X6n−1 = XOR(X6n−5, X6n−3) ,

whereas X6n−5, X6n−4, X6n−3, and X6n−2 are all gen-

erated from a uniform distribution for all n ∈ {1, 2, . . . }.
Joint probabilities over contiguous variables are com-

pletely uncorrelated and as random as possible, up until a

block-length of five. Let’s treat the example as a station-

ary process: Calculating probabilities from word frequen-

cies in a single realization, with the implicit assumption

of stationarity, effectively inducing random phase. Then,

we find full randomness in the myopic entropy rates up

to block length five: hL = log |A| = 1 bit for 1 ≤ L < 5.

Then, finally, a reduction in apparent entropy occurs at

h5, after which hL < hL−1 for L ≥ 5. Notably, h3 re-

flects maximal randomness within its purview. Whereas,

the process actually has three-way, but no lower-order

dependencies. This yields D1 = D2 = 0 and D3 > 0.

With known phase, we would have D3 = 1 bit.

However, when the process is unknown and only a sin-

gle realization is available for analysis, probabilities can

be inferred only from motifs of random-variable clus-

ters. For example, estimating Pr(Xt−2, Xt, Xt+2) as if

the process were stationary, leads to finding 0 < D̃3 < 1,

where D̃L denotes approximating the dependence func-

tion assuming stationarity and testing a limited set of

motifs. Usefully, D̃L sets a lower bound on DL. So,

nonzero D̃L implies L-way dependence. Curiously, the

assumption of stationarity induces D̃L > 0 for all L ≥ 3;

reminiscent of how hL − hL−1 > 0 for all L ≥ 3 for

the RRXOR process with ambiguous phase. In each

case, these higher-order correlations correspond to the

observer’s ability to resolve phase ambiguity.

The dependence function seems to fulfill its desired role

of identifying high-order correlations that cannot be ex-

plained by lower-order phenomena. Taking a step back,

though, we might question the whole endeavor. Can a

single model-free signal-analysis method ever reliably de-

tect information processing and thus complex structure

in the world around us? We clearly ousted power spectra

for this task. Nevertheless, our arguments here lend sup-

port to an affirmative answer, but at the cost of more nu-

anced and computationally-intensive techniques. What

is the range of validity of the informational measures dis-
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cussed above? Can they be entrusted with finding struc-

ture in the noise?

First, it should be noted that Shannon entropy is only

fully justifiable for alphabets A of countable cardinal-

ity. So, apparently continuous observables must be par-

titioned into measurable sets to apply the informational

measures like the myopic entropy rates and the depen-

dencies DL. Nevertheless, quantum physics suggests that

even very large and apparently continuous systems are, in

principle, always represented in a countable basis. Prac-

tically too, measurement devices only have a finite preci-

sion, so observations are discretized in practice anyway.

Therefore, Shannon entropies (like the myopic entropy

rates and the dependencies) can be applied in principle.

Second, a likely more-severe challenge arises from lim-

itations built into information theory itself. Specifically,

there are more nuanced interpretations of multiway sta-

tistical dependencies that are missed by all joint and con-

ditional entropies and all mutual and conditional mutual

informations [128, 129].

Finally, a third and practical challenge arises from lim-

ited data: reliable estimates of probabilities are not al-

ways available. Model building offers the strongest re-

sponse to this challenge. Generative models inferred from

low-order statistics sometimes encapsulate predictions of

rare events [130]. And, at least, they give a prediction for

high-order statistics. Testing these predictions against

observation allows refining one’s model and discovering

new structure.

VI. CONCLUSION

Our investigation began with the modest task of show-

ing how to calculate the correlation function and power

spectrum given a signal’s generator. To this end, we

briefly introduced hidden Markov models as signal gen-

erators and then used the linear-operator techniques of

Ref. [66] to calculate their autocorrelation and power

spectra in closed-form.

This led to several lessons. First, we saw that the

power spectrum is a direct fingerprint of the resolvent

of the model’s time-evolution operator, analyzed along

the unit circle. Second, spectrally decomposing the not-

necessarily-diagonalizable time evolution operator, we

discovered the range of qualitative behaviors that can be

exhibited by autocorrelation functions and power spec-

tra. Third, contributions from eigenvalues on the unit

circle had to be extracted and dealt with separately.

Contributions from eigenvalues on the unit circle corre-

spond to Dirac δ-functions—the analog of Bragg reflec-

tions in diffraction. Whereas, eigen-contributions from

inside the unit circle correspond to diffuse peaks, that be-

come sharper for eigenvalues closer to the unit circle. Fi-

nally, we found that nondiagonalizable eigenmodes yield

qualitatively different line profiles than their diagonaliz-

able counterparts.

These first results incisively answer the challenges

raised by Ruelle–Pollicott resonance theory about the

possible relationship between complex eigenvalues of

time-evolution operators and the correlation and power

spectra of observables [12–14]. In short, we provided the

exact relationship between the time-evolution operator

and the correlation functions and power spectra, as well

as the possible behavior modes of each. The result is a

deeper theoretical understanding and constructive calcu-

lational methods. These complement early investigations

that experimentally delivered meromorphic power spec-

tra from chaotic dynamical systems [10, 11].

Accordingly, our findings bear on modern applications

of Ruelle–Pollicott resonance theory. These applications

are leading, for example, to better understanding of sensi-

tivities in climate models [17] and the dynamics of open

quantum systems via their correspondence to classical

chaotic dynamical systems [15, 16]. Our results provide

full analytical correspondence between observed correla-

tion and the spectral properties of nonunitary models.

Our approach also bears on Koopman operator theory

and its applications, which has received a new wave of

attention due to the success of recent data-driven al-

gorithms [131]. However, our results also clarify that

resonances discovered via pairwise correlation are generi-

cally an insufficient representation of the spectral features

of such nonnormal dynamics. This emphasizes that the

full spectral representation of the effective nonnormal dy-

namics [66], generically inaccessible via pairwise correla-

tion, is worth pursuing. Success in this will immediately

yield predictions about many complex systems of inter-

est.

The most surprising and more immediate finding,

though, is that temporal structure can fully evade de-

tection by power spectra. Arbitrarily sophisticated pro-

cesses can have exactly flat power spectra and so mas-

querade as white noise. Accordingly, we called such pro-

cesses fraudulent white noise processes. Theorem 1 and

Cor. 1 characterized the many ways that structure can be

hidden from power spectra. And, ultimately, Thm. 2 ad-

dressed the more general condition for fraudulent white

noise, in which the generated time-series could be input-

dependent and nonstationary.

We showed that fraudulent white noise and the degen-

eracy of power spectra have important physical implica-

tions. We found that fraudulent white noise arises from

sequential measurements of entangled quantum systems.

Moreover, the generation of high-order structure and the

complete absence of pairwise structure occurred despite
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the fact that these quantum states resulted from a sim-

ple sequence of pairwise interactions. Beyond quantum

physics, our results on the degeneracy of power spectra

have consequences throughout the sciences. We derived

new results on the degeneracy of diffraction patterns and

showed how the entire contents of the present work can

be encoded in a crystal with a flat diffraction pattern. We

then leveraged our results to comment on a longstanding

debate about 1/f noise in biomolecular ion channels.

We started out noting that, on the one hand, diver-

gent correlation length often heralds the emergence of

new types of order. And, on the other, that pairwise

correlation is generically identified as the structure in

random systems. However, we showed that there is of-

ten rich structure even in the absence of pairwise corre-

lations. What types of order are we failing to predict

due to an historical emphasis on pairwise correlations?

Complex systems surely exhibit emergent structure be-

yond the reach of pairwise statistics. There is almost

surely more functionally-relevant brain activity available

in EEGs beyond what is reported in their power spectra.

Perhaps, however, we should consider beyond-pairwise

structure for even simple generators of structure. For

example, cosmological models could be more thoroughly

tested against structure in the CMB beyond what is con-

tained in the two-point angular correlation functions.

Having diagnosed the structures inaccessible via power

spectra, we discussed how to detect beyond-pairwise

structure. We obtained a closed-form expression for all

polyspectra, but showed that higher-order spectra are

also completely flat in some cases where structure should

have been apparent. In response, we introduced the de-

pendence function to detect any L-way correlations for

any L. We also stressed the importance of model build-

ing whenever possible. In particular, it can help an-

ticipate and perhaps avoid not-yet encountered catas-

trophes, which are often a byproduct of the high in-

terconnectivity of complex socio-economic systems [132].

Model building, beyond pure signal analysis, is key in

this—it allows us to discover new mechanisms in nature.

This all said, nature still keeps us in the dark. We

showed that the correlations in a message can be shifted

to arbitrarily high orders of correlation. The result is

that, for finite length messages, statistical inference can

be made effectively impossible regardless of one’s sophis-

tication. Nature herself employs this technique when-

ever we observe an increase in entropy—giving the im-

pression of randomness generated, when it is only ever

structure hidden in inaccessibly-obscure high-order cor-

relations. Waking up to the true hues of reality—prying

open the black box, dispelling apparent white noise—

continues to require new theory and new experimenta-

tion.

... it is clearly wise to learn what a procedure

really seems to be telling us about.

John Tukey, The Future of Data Analysis, 1962

[133, p. 60]
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Appendix A: Diffraction patterns as power spectra

Diffraction patterns are used extensively to infer mate-

rial structure from the scattering of, for example, an in-

cident X-ray beam [134–138]. Generally, consider ~r ∈ Rd

to be a vector in d-dimensional real space. The spatial

arrangement of elastic scatterers is given by the scat-

terers’ density f(~r). Ideally, we wish to recover f(~r)

from our diffraction experiments, which provide mea-

sured intensities. However, far-field patterns of diffracted

intensity yield only Idiff(~q) = c|F (~q)|2, where F (~q) =∫
Rd f(~r)e−i~q·~r dd~r is the d-dimensional Fourier transform

of f(~r), c is some constant, and ~q = 2π(~kout − ~kin) is

the scattering vector that quantifies the change in the

incident wave vector. In other words, F (~q)’s phase infor-

mation is lost when only intensity is measured. This is

known as the ‘phase problem’ [104]. The X-ray beam’s

expected diffracted intensity is proportional to
〈
|F (~q)|2

〉
,

which is the d-dimensional generalization of a power spec-

trum. However, it is also interesting to relate the d-

dimensional diffraction pattern, along a curve in recip-

rocal space, to the more familiar one-dimensional power

spectrum.

For a given scattering vector ~q, decompose ~r = ~r‖+~r⊥,

where ~r‖ ≡ (~r · q̂)q̂ and q̂ = ~q/|~q|. Then, let µ⊥(~r‖) be

the accumulated density within the entire cross-sectional

plane perpendicular to and uniquely identified by ~r‖; i.e.,

µ⊥(~r‖) ≡
∫
Rd−1 f(~r‖ + ~r⊥) dd−1~r⊥. We then find that in

general:

Idiff(~q) = c

∣∣∣∣∫
R
µ⊥(~r‖)e

−iqr‖ dr‖

∣∣∣∣2 . (A1)
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In particular, we see that the diffraction pattern along

any line ~q = qq̂ (with varying q but fixed q̂) is the power

spectrum of the net magnitude of scatterers within se-

quential cross sections of real space perpendicular to q̂.

For molecular or crystalline structures, the net scat-

terer density may often be well-approximated by a super-

position of more elementary densities f(~r) =
∑
j fj(~r −

~rj). If we partition the real space occupied by the mate-

rial into N layers of thickness τ0, stacked along a particu-

lar direction ˆ̀, then we obtain the alternative expression:

Idiff(~q) = c

∣∣∣∣∣
N∑
n=1

F (n)(~q)e−iωn

∣∣∣∣∣
2

, (A2)

where ω = τ0~q · ˆ̀ is (2π times) the change in wavenumber

per layer in the stacking direction. In such cases, the

layer form factors are:

F (n)(~q) ≡
∑

j∈nth layer

Fj(~q)e
−i(~q·~rj−nω) ,

where the “nth layer” is the set of indices {j : nτ0 ≤ 〈~rj〉 ·
ˆ̀< (n + 1)τ0} for the elementary constituents typically

contained in the layer. And the atomic form factor

Fj(~q) =

∫
Rd

fj(~r)e
−i~q·~r dd~r

is the d-dimensional Fourier transform of fj(~r). As a

result, we see that the expected diffraction pattern can

always be written as the power spectrum of layer form

factors:

〈Idiff(~q)〉 = cNP (ω) = c

〈∣∣∣∣∣
N∑
n=1

Xne
−iωn

∣∣∣∣∣
2〉

, (A3)

with Xn = F (n)(~q) ∈ C as the layer form factor of the

nth layer of the material.

The frequency-dependence of F (n)(~q) is often factored

out to ‘correct’ the diffraction pattern, so that only

the structure of interest—features due to the stacking

sequence—remains [139, 140].

1. From fraudulent white noise to Debye–Waller

theory

It is important to recognize that the elementary posi-

tions {~rj}j are random variables, since thermal motion—

and even quantum uncertainty at zero temperature—can

significantly displace them from their average value. In-

deed, the observed diffraction pattern is not consistent

with evaluating {~rj}j at their average values. This is

because the expected value of a structure factor is not

the same as the structure factor evaluated at the ex-

pected value of elementary positions. Nevertheless, the

observed diffraction pattern is consistent with 〈|F (~q)|2〉,
where the averaging over realizations induces the proper

thermal (and quantum-uncertainty) averaging. However,

the thermal averaging appears unwieldy in the general

case. Fortunately, we can leverage our Theorems 1 and 3

to rigorously recover the simplifications of Debye–Waller

theory in our setting of randomly stacked structures.

Suppose there is a hidden-state model M(~m) =(
S,A,P, {Tt(~m)}t,µ1

)
that generates the correct statis-

tics of the layer form factors in the material—taking the

stochastic stacking process, thermal motion, and quan-

tum uncertainty into account. Theorems 1 and 3 imply

that the diffraction pattern will be the same (up to a

constant offset) if we instead consider the much simpler

hidden-state model M′(~m) =
(
S,B,Q, {Tt(~m)}t,µ1

)
that outputs only the expected layer form factor from

each latent state.

Each of the expected layer form factors b ∈ B can be

expressed as:

b = 〈X〉p(X|s∈Sb) =
∑

j∈type-b layer

Fj(~q) 〈e−i~q·~rj 〉

=
∑

j∈type-b layer

Fj(~q)e
−i~q·〈~rj〉Dj(~q).

Notably,

Dj(~q) ≡
〈
e−i~q·(~rj−〈~rj〉)

〉
≈ e−

1
6σ

2
~rj
q2

is exactly the Debye–Waller factor for an elementary scat-

tering site of type j [98]. The variance σ2
~rj

scales as kBT

at high temperatures (via the equipartition theorem), al-

though it is still nonzero as T → 0 due to zero-point

energy.

In the case that the Debye–Waller factors from all scat-

tering sites are the same (i.e., Dj(~q) = D(~q)), the thermal

averaging over positions does not broaden the diffraction

pattern at all. Rather, the Debye–Waller factor only sup-

presses the diffracted intensity at large scattering magni-

tudes by an approximately Gaussian envelope (centered

at ~q = 0).

In contrast, thermal broadening—expected of spectral

lines throughout the domains of physics—is due to a

Doppler effect from the velocity of the elementary scat-

terers (rather than their random positions). This induces

a Gaussian convolution on the otherwise Lorentzian line

profile. Whereas the Debye–Waller factor is important,

thermal broadening is not a significant source of line

broadening for X-ray diffraction [141].
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2. Close-packed structures

Recall that each layer of a close-packed structure has

a two-dimensional hexagonal close-packed lattice. The

diffracted intensity will thus only be nonzero at scatter-

ing vectors that satisfy the Laue condition for allowed

reflections from the two-dimensional crystal:

~q − (~q · ˆ̀)ˆ̀= ~G , (A4)

where ~G is in the set of reciprocal lattice vectors of the

2-D hexagonal lattice.

For close-packed structures, there are only three types

of layers, differing only via relative displacements of

1/3 of a lattice translation vector ~t in the plane of the

layer [97]. As a result, if type-A layers have an expected

layer form factor of

A =
∑

j∈type-A layer

Dj(~q)Fj(~q)e
−i~q·〈~rj〉 ,

then type-B layers will have an expected form factor of

B =
∑

j∈type-A layer

Dj(~q)Fj(~q)e
−i~q·(〈~rj〉−~t/3) = ei~q·

~t/3A ,

and type-C layers will have an expected form factor of

C =
∑

j∈type-A layer

Dj(~q)Fj(~q)e
−i~q·(〈~rj〉+~t/3) = e−i~q·

~t/3A .

However, due to the periodic crystallinity in two dimen-

sions, A is only nonzero when Eq. (A4) is satisfied. By

definition of the reciprocal lattice, ~G · ~t = 2πm with

m ∈ Z. Hence, for all values of the scattering vector ~q

where the expected layer form factors are nonzero, the ex-

pected layer form factors are simply related by the third

roots of unity. In particular, when we look along a row in

reciprocal space satisfying ~q ·~t = 2πm with m mod 3 = 1,

the expected layer form factors are related by:

B = ei2π/3A and C = e−i2π/3A .

Appendix B: Autocorrelation for processes

generated by autonomous HMMs

Let’s derive the autocorrelation function in general and

in closed form for the class of autonomous HMMs intro-

duced in the main body. Helpfully, for particular models,

the expressions become analytic in terms of the model

parameters.

Directly calculating, we find that the autocorrelation

function, for τ > 0, for any such HMM is:

γ(τ) =
〈
XtXt+τ

〉
=

∫
x∈A

∫
x′∈A

xx′p(X0 = x,Xτ = x′) dx dx′

=
∑
s∈S

∑
s′∈S

∫
x∈A

∫
x′∈A

xx′p(X0 = x,Xτ = x′,S0 = s,Sτ = s′) dx dx′

=
∑
s∈S

∑
s′∈S

∫
x∈A

∫
x′∈A

xx′ Pr(S0 = s,Sτ = s′) p(X0 = x|S0 = s) p(Xτ = x′|Sτ = s′) dx dx′

=
∑
s∈S

∑
s′∈S
〈π|s〉 〈s|T τ |s′〉 〈s′|1〉

(∫
x∈A

x p(x|s) dx
)(∫

x′∈A
x′ p(x′|s′) dx′

)
= 〈π|

(∑
s∈S
〈X〉p(X|s) |s〉 〈s|

)
T τ
(∑
s′∈S
〈X〉p(X|s′) |s′〉 〈s′|

)
|1〉 ,

where the integrals are written in a form meant to be easily accessible but should generally be interpreted as Lebesgue

integrals. In the above derivation, note that

p(X0 = x,Xτ = x′,S0 = s,Sτ = s′) = Pr(S0 = s,Sτ = s′)p(X0 = x,Xτ = x′|S0 = s,Sτ = s′)
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holds by definition of conditional probability. The decomposition of

p(X0 = x,Xτ = x′|S0 = s,Sτ = s′) = p(X0 = x|S0 = s)p(Xτ = x′|Sτ = s′)

for τ 6= 0 follows from the conditional independence in

the relevant Bayesian network shown in Fig. 3. Moreover,

the equality

Pr(S0 = s,Sτ = s′) = 〈π|s〉 〈s|T τ |s′〉 〈s′|1〉

can be derived by marginalizing over all possible interven-

ing state sequences. We can use the hidden-state basis,

where |s〉 is the column vector of all 0s except for a 1

at the index corresponding to state s, while 〈s| is simply

its transpose. This yields a natural decomposition of the

identity operator: I =
∑
s∈S |s〉 〈s|.

Since the autocorrelation is a Hermitian function—i.e.,

γ(−τ) = γ(τ)—and

γ(0) =
〈
|X|2

〉
π(X)

= 〈π|
∑
s∈S

〈
|X|2

〉
p(X|s) |s〉 ,

we find the full autocorrelation function is given by:

γ(τ) =


〈π|ΩT |τ | Ω |1〉 if τ ≤ 1〈
|x|2
〉

if τ = 0

〈π|ΩT |τ | Ω |1〉 if τ ≥ 1

, (B1)

where Ω is the |S|-by-|S| matrix defined by:

Ω =
∑
s∈S
〈X〉p(X|s) |s〉 〈s| .

The Ω matrix simply places state-conditioned average

outputs along its diagonal.

To better understand the range of possible behaviors

of autocorrelation, we can go a step further. In particu-

lar, we employ the general spectral decomposition of T τ

derived in Ref. [66] for nonnormal and potentially non-

diagonalizable operators:

T τ =
[ν0−1∑
m=0

δτ,mT0,m

]
+
∑

λ∈ΛT \{0}

νλ−1∑
m=0

(
τ

m

)
λτ−mTλ,m,

(B2)

where
(
τ
m

)
is the generalized binomial coefficient:(

τ

m

)
=

1

m!

m∏
n=1

(τ − n+ 1) ,

with
(
τ
0

)
= 1. As briefly summarized in Sec. II D, ΛT is

the set of T ’s eigenvalues while Tλ is the spectral pro-

jection operator associated with the eigenvalue λ. Re-

call that νλ is the index of the eigenvalue λ, i.e., the

size of the largest Jordan block associated with λ, and

Tλ,m = Tλ(T−λI)m. Substituting Eq. (B2) into Eq. (B1)

yields:

γ(τ) =
[ν0−1∑
m=1

δτ,m 〈π|ΩT0,m Ω |1〉
]

+
∑

λ∈ΛT \{0}

νλ−1∑
m=0

(
τ

m

)
λτ−m 〈π|ΩTλ,m Ω |1〉 ,

for τ > 0.

It is significant that the zero eigenvalue contributes a

qualitatively distinct ephemeral behavior to the autocor-

relation while |τ | < ν0. All other eigenmodes contribute

products of polynomials times decaying exponentials in

τ . When T is diagonalizable, the autocorrelation is sim-

ply a sum of decaying exponentials.

Appendix C: Analytical power spectra

The following derives both the continuous and dis-

crete part of the power spectrum for HMM-generated

processes. The development parallels that in Ref. [68], al-

though that derivation was restricted to the special case

of diffraction patterns from Mealy (i.e., edge-emitting)

HMMs with countable alphabets. In contrast, the follow-

ing derives analytical expressions for the power spectrum

of any stochastic process generated by an HMM. No-

tably, it also allows uncountably infinite alphabets. Also,

it is developed for Moore (i.e., state-emitting) HMMs—

although Mealy and Moore HMMs are class-equivalent

and can be easily transformed from one to the other.

1. Diffuse Spectra

Recall Eq. (3):

P (ω) = lim
N→∞

1
N

N∑
τ=−N

(
N − |τ |

)
γ(τ)e−iωτ ,



31

and Eq. (4)’s explicit expression for the correlation func-

tion:

γ(τ) =


〈π|ΩT |τ | Ω |1〉 if τ ≤ 1〈
|x|2
〉

if τ = 0

〈π|ΩT |τ | Ω |1〉 if τ ≥ 1

.

From these we can rewrite the power spectrum directly

in terms of the generating HMM’s transition matrix:

P (ω) =
〈
|x|2
〉
+

lim
N→∞

2

N
Re

N∑
τ=1

(
N − τ

)
〈π|ΩT τ Ω |1〉 e−iωτ

=
〈
|x|2
〉
+

lim
N→∞

2

N
Re 〈π|Ω

( N∑
τ=1

(
N − τ

)
T τe−iωτ

)
Ω |1〉 .

(C1)

We used the fact that z + z = 2Re(z) for any z ∈ C.

For convenience, we introduce the variable z ≡ e−iω. We

then note that the summation splits:

N∑
τ=1

(
N − τ

)
T τe−iωτ = N

N∑
τ=1

(zT )τ −
N∑
τ=1

τ(zT )τ .

For positive integer N , it is always true that:

(I − zT )

N∑
τ=1

(zT )τ = zT − zN+1TN+1 ,

and:

(I − zT )

N∑
τ=1

τ(zT )τ = −NzN+1TN+1 +

N∑
τ=1

(zT )τ .

Hence, whenever I−zT is invertible (i.e., whenever eiω /∈
ΛT ), we have:

N∑
τ=1

(zT )τ = (I − zT )−1
(
zT − zN+1TN+1

)
,

and:

N∑
τ=1

τ(zT )τ = (I − zT )−1
(
−NzN+1TN+1 + (I − zT )−1

(
zT − zN+1TN+1

))
.

Together, this yields:

N∑
τ=1

(
N − τ

)
T τe−iωτ = N

N∑
τ=1

(zT )τ −
N∑
τ=1

τ(zT )τ

= N(I − zT )−1
(
zT − zN+1TN+1 + zN+1TN+1

)
− (I − zT )−2

(
zT − zN+1TN+1

)
= NT (z−1I − T )−1 − (I − zT )−2

(
zT − zN+1TN+1

)
.

Noting that (z−1I − T )−1 = (eiωI − T )−1, this implies that the continuous (i.e., diffuse) part of the power spectrum

becomes:

Pc(ω) =
〈
|x|2
〉

+ lim
N→∞

2

N
Re 〈π|Ω

( N∑
τ=1

(
N − τ

)
T τe−iωτ

)
Ω |1〉

=
〈
|x|2
〉

+ lim
N→∞

2

N
Re 〈π|Ω

(
NT (z−1I − T )−1 − (I − zT )−2

(
zT − zN+1TN+1

))
Ω |1〉

=
〈
|x|2
〉

+ 2 Re 〈π|ΩT (z−1I − T )−1 Ω |1〉 − lim
N→∞

2

N
Re 〈π|Ω (I − zT )−2

(
zT − zN+1TN+1

)
Ω |1〉 (C2)

=
〈
|x|2
〉

+ 2 Re 〈π|ΩT (eiωI − T )−1 Ω |1〉 . (C3)
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Equation (C3) is the principle result, yielding the contin-

uous part of the power spectrum in closed form. However,

it is also worth noting that Eq. (C2) (without theN →∞
limit yet being taken) provides the exact result for the

expected periodogram from finite length-N samples.

2. Discrete Spectra

The transition dynamic’s eigenvalues Λρ(T ) =
{
λ ∈

ΛT : |λ| = 1
}

on the unit circle are responsible for a

power spectrum’s Dirac δ-functions. In the physical con-

text of diffraction patterns, these δ-functions are the fa-

miliar Bragg reflections. For finite length-N samples,

eigenvalues on the unit circle give rise to Dirichlet ker-

nels. As N →∞, the analysis simplifies since the Dirich-

let kernels converge to δ-functions.

The following derives the exact form of the δ-function

contributions, showing how their presence and integrated

magnitude can be calculated directly from the stochastic

transition dynamic. Recall that the spectral projection

operator Tλ,0 associated with the eigenvalue λ can be

defined as the residue of (zI − T )−1 as z → λ:

Tλ,0 = 1
2πi

∮
Cλ

(
zI − T

)−1
dz .

The spectral companion operators are:

Tλ,m = Tλ,0(T − λI)m ,

with the useful property that Tλ,mTζ,n = δλ,ζTλ,m+n and

Tλ,m = 0 for m ≥ νλ. The index νλ of the eigenvalue λ

is the size of the largest Jordan block associated with λ.

The Perron–Frobenius theorem guarantees that all

eigenvalues on the unit circle have an index of one: i.e.,

νλ = 1 for all λ ∈ Λρ(T ). This means that the algebraic

and geometric multiplicities of these eigenvalues coincide

and they are all associated with diagonalizable subspaces.

Taking advantage of the index-one nature of the eigen-

values on the unit circle, and using the shorthand Tλ ≡
Tλ,0 for the spectral projection operators, we define:

Θ ≡
∑

λ∈Λρ(T )

λTλ

and

F ≡ T −Θ .

We then consider how the spectral decomposition of T τ

splits into contributions from these two independent com-

ponents: From Ref. [66], and employing the simplifying

notation that 0τ−m = δτ−m,0, we find:

T τ =
∑
λ∈ΛT

νλ−1∑
m=0

λτ−m
(
τ

m

)
Tλ,m

=
( ∑
λ∈Λρ(T )

λτTλ

)
+
( ∑
λ∈ΛT \Λρ(T )

νλ−1∑
m=0

λτ−m
(
τ

m

)
Tλ,m

)
= Θτ + F τ ,

where
(
τ
m

)
= 1

m!

∏m
n=1(τ −n+ 1) is the generalized bino-

mial coefficient.

As the sequence length N → ∞, the summation over

τ in Eq. (C1) divided by the sequence length becomes:

lim
N→∞

N∑
τ=1

N − τ
N

T τe−iωτ

=

∞∑
τ=1

T τe−iωτ

=
( ∞∑
τ=1

Θτe−iωτ
)

+
( ∞∑
τ=1

F τe−iωτ
)
. (C4)

In Eq. (C4), only the summation involving Θ is capable

of contributing δ-functions. Expanding that sum yields:

∞∑
τ=1

Θτe−iωτ

=
∑

λ∈Λρ(T )

Tλ

∞∑
τ=1

(λe−iω)τ

=
∑

λ∈Λρ(T )

Tλ

(
−1 +

∞∑
τ=0

ei(ωλ−ω)τ
)

=
∑

λ∈Λρ(T )

Tλ

( −1

1− ei(ω−ωλ)
+

∞∑
k=−∞

π δ(ω − ωλ + 2πk)
)
,

(C5)

where ωλ is related to λ by λ = eiωλ . The last line is

obtained using well-known properties of the discrete-time

Fourier transform [142].

From Eqs. (C1), (C4), and (C5), we find that the po-

tential δ-function at ωλ (and its 2π-periodic offsets) has

integrated magnitude:
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∆λ ≡ lim
ε→0

∫ ωλ+ε

ωλ−ε
P (ω) dω

= lim
ε→0

∫ ωλ+ε

ωλ−ε
2 Re 〈π|Ω

(
lim
N→∞

N∑
τ=1

N − τ
N

T τe−iωτ
)

Ω |1〉 dω

= lim
ε→0

∫ ωλ+ε

ωλ−ε
2 Re 〈π|Ω

( ∞∑
τ=1

Θτe−iωτ
)

Ω |1〉 dω

= lim
ε→0

∫ ωλ+ε

ωλ−ε
2 Re 〈π|Ω

∑
ζ∈Λρ(T )

Tζ

( −1

1− ei(ω−ωζ)
+

∞∑
k=−∞

π δ(ω − ωζ + 2πk)
)

Ω |1〉 dω

= 2πRe 〈π|ΩTλ Ω |1〉 lim
ε→0

∫ ωλ+ε

ωλ−ε
δ(ω − ωλ) dω

= 2πRe 〈π|ΩTλ Ω |1〉 . (C6)

Finally, from Eq. (C6) and the 2π-periodicity of the

power spectrum, we obtain the full discrete (i.e., δ-

function) contribution to the power spectrum:

Pd(ω) =
∑

λ∈Λρ(T )

2πRe 〈π|ΩTλΩ |1〉
∞∑

k=−∞

δ(ω − ωλ + 2πk).

(C7)

Appendix D: A new condition for 1/f noise

Here we obtain a sufficient condition for 1/f noise.

Eq. (14) gave the general formula for power spectra

from continuous-time processes:

Pc(f) =
∑
λ∈ΛG

νλ−1∑
m=0

2 Re
〈π|ΩGλ,mΩ |1〉
(i2πf − λ)m+1

.

We now restrict attention to diagonalizable transition

rate operators. To simplify notation, we relabel the spec-

tral intensity as cλ ≡ 〈π|ΩGλ,0Ω |1〉. Recall the follow-

ing.

Definition 1. An observable continuous-time process

has doubly harmonic diminution if:

1. its generator of time evolution G is diagonalizable

and has N + 1 evenly spaced eigenvalues along the

real line ΛG = {−na}Nn=0 for some a > 0, and

2. its spectral intensity fades with increasing frequency

according to c−na = c/n for n ≥ 1 and some c ∈ R.

We will show that any process with doubly harmonic

diminution produces 1/f noise over a frequency band-

width proportional to N .

For a process with doubly harmonic diminution, the

power spectrum simplifies considerably to:

Pc(f) =
∑
λ∈ΛG

2 Re
cλ

i2πf − λ

=

N∑
n=1

2 Re
c/n

i2πf + na

=
2c

a

N∑
n=1

1

n2 +
(

2πf
a

)2 . (D1)

By considering various limits, we see that Eq. (D1)

leads to nearly perfect 1/f noise over a significant band-

width.

1. Constant spectrum for f � a/2π

If 2πf � a, then 1+
(

2πf
na

)2 ≈ 1 for all n ≥ 1. Accord-

ingly:

P (f) =
2c

a

N∑
n=1

1

n2
[
1 +

(
2πf
na

)2]
≈ 2c

a

N∑
n=1

1

n2
=

2c

a
HN,2

→ cπ2

3a
as N →∞ ,

where HN,2 =
∑N
n=1

1
n2 is a generalized harmonic num-

ber. Notably, HN,2 → π2/6 as N →∞.
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2. 1/f2 spectrum for f � Na/2π

If 2πf � Na, then 2πf � na and 1 +
(
na
2πf

)2 ≈ 1 for

all n ≤ N . Accordingly:

P (f) =
2c

a

N∑
n=1

1(
2πf
a

)2[
1 +

(
na
2πf

)2]
≈ ac

2π2f2

N∑
n=1

1 =
caN

2π2f2
.

3. 1/f spectrum for a
2π
� f � Na

2π

If 2πf � Na, then 2πf � na and 1 +
(

2πf
na

)2 ≈ 1 for

any n ≥ N . Then:

P (f) = 2c
a

[( ∞∑
n=1

1

n2+
(

2πf
a

)2

)
−
( ∞∑
n=N+1

1

n2

[
1+
(

2πf
na

)2
])]

≈ 2c
a

[( ∞∑
n=1

1

n2 +
(

2πf
a

)2)− ( ∞∑
n=N+1

1

n2

)]

= 2c
a

[( ∞∑
n=1

1

n2 +
(

2πf
a

)2)− (π2

6 −HN,2

)]
.

With the identity

∞∑
n=1

1

n2 +
(

2πf
a

)2 =
a coth(2π2f/a)

4f
− 1

2
(

2πf
a

)2 ,

this yields:

P (f) ≈ c coth(2π2f/a)

2f
− ac

(2πf)2
− 2c

a

(
π2

6 −HN,2

)
for 2πf � Na.

For f > a
2π2 , the hyperbolic cotangent coth(2π2f/a)

quickly converges to unity. Hence, for a
2π2 � f � Na

2π ,

the power spectrum is well approximated by:

P (f) ≈ c

2f

(
1− a

2π2f

)
− 2c

a

(
π2

6 −HN,2

)
≈ c

2f
− 2c

a

(
π2

6 −HN,2

)
.

Moreover, π2

6 −HN,2 → 0 as N →∞.

4. Combining the regimes

We showed that any process with doubly harmonic

diminution has three distinctive regimes in its power

spectrum: nearly constant for very low frequency, 1/f

decay over a broad bandwidth, and 1/f2 decay at very

large frequencies.

The transition frequencies between these three behav-

ior regimes is found more specifically by looking for the

crossover frequencies—f∗ where the constant and 1/f

approximations meet, and f∗∗ where the 1/f and 1/f2

approximations meet.

The first transition frequency f∗, from constant to 1/f

behavior, satisfies 2c
a HN,2 = c

2f∗ − 2c
a

(
π2

6 − HN,2

)
. We

find that:

f∗ =
3a

2π2
. (D2)

The second transition frequency f∗∗, from 1/f behav-

ior to 1/f2 behavior, satisfies:

c

2f∗∗
− 2c

a

(
π2

6 −HN,2

)
=

acN

2π2(f∗∗)2
.

We find that:

f∗∗ =
a

8
(
π2

6 −HN,2

)(1−
√

1− 8
3N
(
1− 6HN,2

π2

))
.

This exact expression for f∗∗ can be expanded in terms

of the small parameter:

ε =
8

3
N
(
1− 6HN,2

π2

)
such that:

f∗∗ =
aN

2π2ε

[
1− (1− ε)1/2

]
=
aN

2π2

∞∑
k=1

(
1/2

k

)
(−ε)k−1

=
aN

4π2

(
1− 1

4ε+ 1
8ε

2 −O(ε3)
)
,

that, to first order, yields the approximation f∗∗ ≈ aN
4π2 .

Altogether, this leads to:

P (f) ≈


2c
a HN,2 if f < 3a

2π2

c
2f − 2c

a

(
π2

6 −HN,2

)
if 3a

2π2 < f < f∗∗

caN
2π2f2 if f > f∗∗

or, more simply:

P (f) ∼


constant if f < 3a

2π2

1/f if 3a
2π2 < f . aN

4π2

1/f2 if f & aN
4π2

.
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Appendix E: Brownian Noise

Here, we show how to recover the power spectrum of

Brownian motion using the tools of Sec. II F. This simple

example indicates how to leverage the tools more gener-

ally to analyze the power spectra of more sophisticated

Langevin-type differential equations that can transduce

arbitrarily sophisticated noise models.

Each spatial dimension of a Brownian trajectory be-

haves independently and simply integrates white noise.

In the discrete-time case, the fundamental equation for

Brownian noise is:

Yt − Yt−1 = Xt , (E1)

where Xt is a Gaussian white noise of variance σ2 =

2Dτ0, where D is the diffusion coefficient, which implies

PXX(ω) = σ2/f0 = 2D/f2
0 . Equation (E1) corresponds

to P(D) = D0 −D and Q(D) = D0, which leads to:

|HX→Y (ω)|2 =
|Q(eiω)|2
|P(eiω)|2

=
1

|1− eiω|2 =
1

2
(
1− cos(ω)

) (E2)

and

PY Y (ω) =
2D/f2

0

2
(
1− cos(ω)

) (E3)

=
D

2π2f2

[
1− π2

3

(
f
f0

)2

+O
((

f
f0

)4
)] (E4)

→ D

2π2f2
as f

f0
→ 0 . (E5)

The last line gives the limiting power spectrum of Brow-

nian noise in the continuous-time case, where it is well-

known that PY Y (f) ∝ 1/f2.

It is worth noting that, at finite sampling frequency,

the experimentally or numerically obtained power spec-

trum deviates significantly from the 1/f2 spectrum as

f → f0/2, according to Eq. (E4). This could lead to

misidentifying 1/fα noise.

Appendix F: Proof of Lemma 1

Recall Lemma 1:

Any stochastic process (not necessarily stationary) with

the Single-Condition-Independent Property (SCIP):

Pr(Xt|Xt′ = x) = Pr(Xt)

= Pr(Xt′) ,

for all x ∈ A and all t 6= t′, generates a flat power spec-

trum, mimicking white noise.

Proof. For any such process, Pr(Xt) is the stationary

distribution µX of the instantaneous observable under the

stochastic dynamic. Moreover, SCIP means that the joint

probability of any two observations decomposes:

Pr(Xt = x,Xt+τ = x′) = Pr(Xt+τ = x′|Xt = x) Pr(Xt = x)

= Pr(Xt+τ = x′) Pr(Xt = x)

= µX(x′)µX(x) .

Substituting µX(x′)µX(x) for Pr(Xt = x,Xt+τ = x′)

in the autocorrelation definition of Eq. (2) immediately

implies that SCIP processes have τ -independent pairwise

correlation γ(τ) = |〈x〉|2 for τ 6= 0. The power spectrum

is thus flat over all frequencies, except possibly with a

δ-function at ω = 0.

Appendix G: Proof of Theorem 2

We define the set Ξ of average outputs exhibited by the

states: Ξ ≡ ⋃
s∈S
{
〈x〉p(X|s)

}
. Furthermore, we define

Sξ ⊂ S as the set of states that all exhibit the same av-

erage output ξ ∈ Ξ. Explicitly, Sξ ≡ {s ∈ S : 〈x〉p(X|s) =

ξ}.
Recall Theorem 2:

Let {Xt}t be a stochastic process generated by a

hidden-state model M(~m). Xt is the random variable

for the observable at time t, and St is the random vari-

able for the hidden state at time t. Such processes have

constant autocorrelation and a flat power spectrum if:

Pr(St+τ ∈ Sξ′ |St ∈ Sξ) = Pr(St+τ ∈ Sξ′)
= Pr(St ∈ Sξ′) , (G1)

for all separations τ > 0, for all t ∈ T , and for all ξ, ξ′ ∈
Ξ.

Proof. Starting from Eq. (17), we find the autocorrela-

tion for all such processes (for τ ≥ 1):

γ(τ) =
〈
〈x〉p(X|St) 〈x〉p(X|St+τ )

〉
Pr(St,St+τ )

=
∑
s,s′∈S

Pr(St = s,St+τ = s′) 〈x〉p(X|s) 〈x〉p(X|s′)

=
∑
ξ,ξ′∈Ξ

Pr(St ∈ Sξ,St+τ ∈ Sξ′) ξ ξ′

=
∑
ξ∈Ξ

Pr(St ∈ Sξ)ξ

×
∑
ξ′∈Ξ

Pr(St+τ ∈ Sξ′ |St ∈ Sξ)ξ′ . (G2)
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Combining Eq. (G1) and Eq. (G2), we see that:

γ(τ) =
∑
ξ∈Ξ

Pr(St ∈ Sξ)ξ
∑
ξ′∈Ξ

Pr(St+τ ∈ Sξ′)ξ′

= |〈ξ〉|2 ,

which is a constant. With the same reasoning, we like-

wise find that γ(τ) = |〈ξ〉|2 for τ ≤ −1. The autocor-

relation function is thus γ(τ) = | 〈ξ〉 |2 + cδτ,0, where

c ≡ γ(0)−| 〈ξ〉 |2 is a constant. Thus, the power spectrum

is flat, if Eq. (G1) holds.

Appendix H: Proof of Theorem 3

Recall Theorem 3: Let {Xt}t and {Yt}t be two

stochastic processes generated by any of the hidden-state

models M(~m) discussed above, including autonomous

HMMs and input-dependent generators, Xt and Yt the

random variables for the observables at time t, and St ∈
S and Rt ∈ R the random variables for the respective

hidden states at time t. These processes have identical

power spectra, up to a constant offset, if:

Pr(St ∈ Sξ,St+τ ∈ Sξ′) = Pr(Rt ∈Rξ,Rt+τ ∈Rξ′) ,

for all separations τ > 0, for all t ∈ T , and for all

ξ, ξ′ ∈ Ξ, which is the set of average outputs emitted by

the states.

Proof. Let γ(τ) be the autocorrelation function for the

first process {Xt}t, and let γ′(τ) be the autocorrelation

function for the second process {Yt}t. Assume:

Pr(St ∈ Sξ,St+τ ∈ Sξ′) = Pr(Rt ∈Rξ,Rt+τ ∈Rξ′)

for all separations τ > 0, for all t ∈ T , and for all

ξ, ξ′ ∈ Ξ. Then, starting from Eq. (17), we find the au-

tocorrelation for the first process (for τ ≥ 1):

γ(τ) =
〈
〈x〉p(X|St) 〈x〉p(X|St+τ )

〉
Pr(St,St+τ )

=
∑
s,s′∈S

Pr(St = s,St+τ = s′) 〈x〉p(X|s) 〈x〉p(X|s′)

=
∑
ξ,ξ′∈Ξ

Pr(St ∈ Sξ,St+τ ∈ Sξ′) ξ ξ′

=
∑
ξ,ξ′∈Ξ

Pr(Rt ∈Rξ,Rt+τ ∈Rξ′) ξ ξ
′

=
∑

r,r′∈R
Pr(Rt = r,Rt+τ = r′) 〈x〉p(X|r) 〈x〉p(X|r′)

=
〈
〈x〉p(X|Rt) 〈x〉p(X|Rt+τ )

〉
Pr(Rt,Rt+τ )

= γ′(τ) .

With the same reasoning, we find that γ(τ) = γ′(τ) for

τ ≤ −1. Hence, the autocorrelations for the two processes

agree everywhere except possibly at τ = 0.

Define the constant c ≡ γ(0) − γ′(0). The autocor-

relation functions for the two processes are then related

by γ(τ) = γ′(τ) + cδτ,0 for all τ . It then follows that

the power spectrum of the processes differ at most by a

constant offset.

Appendix I: Diffraction patterns of chaotic crystals

from HMMs

Let’s analyze two examples of HMM-designed chaotic

crystals.

1. Example One

Consider a p-parametrized stochastic process for the

stacking of layers of a close-packed structure. The

stochastic stacking process is described by a HMM, where

the transition matrix and average-observation matrix are:

T =

0 1 0

p 0 1− p
1 0 0

 and Ω =

A 0 0

0 B 0

0 0 C

 ,

respectively. For p = 1, we recover the deterministic

period-2 hcp structure. For p = 0, we recover the deter-

ministic period-3 ccp structure. For other values of p, the

structure is described by a stochastic stacking process.

For any p, the eigenvalues of the transition matrix are

ΛT =
{

1,− 1
2 ±
√
p− 3

4

}
. The transition matrix is diago-

nalizable unless p = 3/4, where it becomes nondiagonal-

izable.

We aim to calculate the diffracted intensity for any p

in closed form via Eq. (10):

Pc(ω) =
〈
|x|2
〉

+
∑
λ∈ΛT

νλ−1∑
m=0

2 Re
〈π|ΩT Tλ,mΩ |1〉

(eiω − λ)m+1

and Eq. (11):

Pd(ω) =

∞∑
k=−∞

∑
λ∈ΛT
|λ|=1

2π δ(ω−ωλ+2πk) Re 〈π|ΩTλΩ |1〉 .

We note that 〈|x|2〉 = 〈|ψ|2〉 = |ψ|2.

For p 6= 3/4, the continuous spectrum simplifies to:

Pc(ω) = |ψ|2 +
∑
λ∈ΛT

2 Re
λ 〈π|ΩTλΩ |1〉

eiω − λ ,
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and each spectral projection operator is given by Tλ =

|λ〉 〈λ|, with:

〈λ| = 1

3λ2 − p
[
λ 1 λ2 − p

]
and

|λ〉 =
[
λ λ2 1

]>
,

where > denotes transposition. Recall that the sta-

tionary distribution is the left eigenvector 〈π| = 〈1| =
1

3−p
[
1 1 1− p

]
.

From these elements, we can calculate the spectral in-

tensity:

〈π|ΩTλΩ |1〉 =
|ψ|2

(3− p)(3λ2 − p)
[
1 1 1− p

] 1

e−i2π/3

ei2π/3

 λλ2

1

 [λ 1 λ2 − p
] 1

ei2π/3

e−i2π/3

1

1

1


=

|ψ|2
(3− p)(3λ2 − p)

(
λ+ λ2e−i2π/3 + (1− p)ei2π/3

)(
λ+ ei2π/3 + (λ2 − p)e−i2π/3

)
(I1)

for any λ ∈ ΛT and for any p 6= 3/4.

For λ = 1, Eq. (I1) reduces to:

〈π|ΩT1Ω |1〉 =
p2|ψ|2

(3− p)2
, (I2)

where we have used the identity 1 + ei2π/3 + e−i2π/3 = 0.

Equation (I2) is in fact valid for any p ∈ [0, 1].

For p ∈ (0, 1), transition matrix T only has one eigen-

value on the unit circle, so the discrete (Bragg) spectrum

has a single contribution from the eigenvalue of unity:

Pd(ω) =
2πp2|ψ|2
(3− p)2

∞∑
k=−∞

δ(ω+2πk) . (I3)

Although not resulting from a deterministic periodicity,

this Bragg reflection can nevertheless be regarded as a

result of spatial periodicity in probabilistic behavior.

In fact, for any p > 0, the top-left panel of Fig. 9 shows

that orientations A and B are more common than orien-

tation C. However, Eq. (I3) survives a cyclic permuta-

tion of the alphabet (i.e., A 7→ B, B 7→ C, and C 7→ A).

So, this Bragg reflection persists even in multi-crystalline

materials—where each component chaotic crystal, with

its own absolute orientation, is stacked according to ei-

ther the process in Fig. 9 or one of its cyclic permutations.

There is a diffuse contribution to the power spectrum

for all p ∈ (0, 1). For p ∈ (0, 3/4) ∪ (3/4, 1), this contri-

bution is:

Pc(ω) = |ψ|2
(

1− p2

(3− p)2

)
+

∑
λ∈ΛT \{1}

2 Re
〈π|ΩTλΩ |1〉
eiω/λ− 1

.

Expanding this via Eq. (I1) initially appears unwieldy,

but the expressions can be simplified as soon as one rec-

ognizes that λ2 = p − 1 − λ for λ ∈ ΛT \ {1}. Further
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FIG. 12. Example One stochastic stacking process at p = 1/2
(left inset) and its diffraction pattern. (Main) Numerical
diffraction pattern (thin blue line) generated from a sampled
stacking sequence of 220 layers, using the Welch method to
calculate the power spectrum on subsamples of length 29. It
closely matches the thick gray line, which is the analytic solu-
tion for the diffracted intensity. (Right inset) HMM stacking
process diffraction pattern and eigenvalues, as a coronal spec-
trogram.

simplification leverages the properties of the eigenvalues

in the distinct regimes of p > 3/4 and p < 3/4. For

p > 3/4, all eigenvalues have distinct real values. For

p < 3/4, the two nonunity eigenvalues are complex con-

jugate pairs and, accordingly, have the same real part

(Re(λ) = −1/2) and the same magnitude (|λ| = √1− p),
with angular frequencies ωλ = π ± arctan(

√
3− 4p).

Figure 12 shows the “corrected” diffraction pattern
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P (ω)/|ψ|2 for p = 1/2. There is a Bragg reflection at

ω = 2πn (for all n ∈ Z) due to the eigenvalue of unity.

The nonunity eigenvalues λ = −1/2±i/2 appear at angu-

lar frequencies ωλ ∈ {3π/4, 5π/4}. The Lorentzian line

profile contributed at ωλ = 3π/4 is prominent. There is

a local feature around ωλ = 5π/4, but it is more nuanced

since it is not a peak in the diffracted intensity. Rather,

the contribution from the eigenvalue at ωλ = 5π/4 pri-

marily depresses the diffraction pattern around it, which

allows for the zero at ω = 4π/3. Diffracted intensity is

forbidden at 4π/3 since the stochastic process does not

allow for a full anti-cyclic sequence of layers; i.e., CBA,

BAC, and ACB are all forbidden sequences.

For p = 1, the continuous spectrum vanishes while the

discrete spectrum picks up another Bragg reflection at

ω = π with intensity 〈π|ΩT−1Ω |1〉 = 3
4 |ψ|2, yielding

the diffraction pattern for a 2H hcp crystal:

P (ω)= 2π|ψ|2
∞∑

k=−∞

[1
4
δ(ω+2πk) +

3

4
δ(ω−π+2πk)

]
.

Similarly, for p = 0, the continuous spectrum vanishes

while the discrete spectrum picks up a Bragg reflection at

ω = 2π/3 with intensity 〈π|ΩTei2π/3Ω |1〉 = |ψ|2, yield-

ing the diffraction pattern for a 3C+ ccp crystal:

P (ω)= 2π|ψ|2
∞∑

k=−∞

δ(ω−2π/3+2πk) .

Notice from Eq. (I2) that the former Bragg reflection at

ω = 0 has vanished at p = 0.

For p = 3/4, the transition matrix is nondiagonal-

izable. Since the spectral projection operators always

sum to the identity, we can calculate T−1/2 easily via

T−1/2 = I − |1〉 〈π|, with 〈π| = 1
9

[
4 4 1

]
, which yields:

T−1/2 =
1

9

 5 −4 −1

−4 5 −1

−4 −4 8

 .

The spectral companion operator T−1/2,1 is then found

as:

T−1/2,1 = T−1/2(T +
1

2
I)

=
1

12

−2

1

4

 [1 −2 1
]
.

To obtain the diffracted intensity, we calculate:

〈π|ΩT−1/2Ω |1〉 = 8|ψ|2/9

and

〈π|ΩT−1/2,1Ω |1〉 =
|ψ|2

3
ei2π/3 .

We then leverage the fact that TT−1/2,1 = − 1
2T−1/2,1

and TT−1/2 = − 1
2T−1/2 + T−1/2,1 to calculate:

〈π|ΩTT−1/2,1Ω |1〉 = −|ψ|
2

6
ei2π/3

and:

〈π|ΩTT−1/2Ω |1〉 =
(
−4

9
+

1

3
ei2π/3

)
|ψ|2 .

Finally, this yields the nondiagonalizable power spectrum

at p = 3/4:

Pc(ω)

|ψ|2 =
8

9
− 1

3
Re

ei2π/3

(eiω + 1
2 )2

+
2

3
Re
ei2π/3 − 4

3

eiω + 1
2

.

2. Example Two

Here, we analyze a generalization of the second chaotic

crystal discussed in the main body. For any q, the tran-

sition matrix and average-observation matrix are:

T =

0 1− q q

1 0 0

1 0 0

 and Ω =

A 0 0

0 B 0

0 0 C

 ,

respectively. The transition matrix eigenvalues are ΛT ={
0,±1

}
, independent of q.

Each spectral projection operator is given by Tλ =

|λ〉 〈λ|, with:

〈λ| = 1

3λ− 1

[
λ λ2 − q q

]
and:

|λ〉 =
[
λ 1 (λ2 + q − 1)/q

]>
.

Recall that the stationary distribution is the left eigen-

vector 〈π| = 〈1| = 1
2

[
1 1− q q

]
. From these elements,

we calculate 〈π|ΩTλΩ |1〉 and the power spectrum ana-

lytically as a function of the transition parameter q. In

particular:

〈π|ΩT1Ω |1〉 =
1

4
(3q2 − 3q + 1)|ψ|2

and:

〈π|ΩT−1Ω |1〉 =
3

4
(q2 − q + 1)|ψ|2 .
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The net power spectrum thus consists of a flat “white

noise” component:

Pc(ω) =
3

2
q(1− q)|ψ|2

in addition to two Bragg reflections per 2π of angular

frequency bandwidth

Pd(ω) =
π|ψ|2

2

∞∑
k=−∞

[
(3q2 − 3q + 1)δ(ω+2πk)

+ 3(q2 − q + 1)δ(ω−π+2πk)
]
.

Appendix J: Potassium ion channel: Details

This section lays out the details for the voltage-gated

potassium ion channel, as an input-dependent transi-

tion rate matrix for partially-observable conformational

states—i.e., a continuous-time input-dependent HMM.

Potassium ion channels are embedded in neural mem-

branes and, together with sodium ion channels, are criti-

cal to generating and propagating action potentials that

transmit and process information throughout the brain.

α

4β

2α

3β

3α

2β

4α

β

FIG. 13. Voltage-dependent continuous-time Markov chain
specifying the transition rates between the conformational
states of the K+ channel. α and β are voltage-dependent
transition rates. Only the empty (green) state conducts cur-
rent. The other states have between one and four activation
gates (indicated by the number of red dots) blocking the chan-
nel. This model is thus an input-dependent continuous-time
HMM for potassium ion current through the channel.

What are the dynamics and power spectra of potas-

sium current flowing through the channel? Only one of

the five conformational states corresponds to an open

channel where current can flow. The other states are dis-

tinguished by the number of activation gates closing the

channels (from one to four), but observation of the cur-

rent does not allow for direct observation of these confor-

mational states. Nevertheless, the dynamics among these

states influence the statistical properties of the current.

In particular, the current is non-Markovian and exhibits

a nonexponential distribution of closure durations.

The transition structure between conformational states

of the K+ channel is depicted in Fig. 13. The Hodgkin–

Huxley model’s voltage-dependent transition rates α and

β—often denoted αn and βn—describe the probability

that an activation gate opens or closes (respectively) at

a given voltage:

α =
(v + 55)/100ms

1− e−(v+55)/10
and β =

1

8ms
e−(v+65)/80 ,

where v is the voltage (in mV) across the membrane [110,

113]. The voltage-dependent transition rate matrix can

be written explicitly as:

G(S→S|v) ≡
−4β 4β 0 0 0

α −(α+ 3β) 3β 0 0

0 2α −(2α+ 2β) 2β 0

0 0 3α −(3α+ β) β

0 0 0 4α −4α

 .

The average current through a single channel is

binary—either 0 or I0. Appreciable current only flows

in the open conformation. In the open conformation,

I0 = g0(v − VK), where g0 is the conductance of an

open K+ channel and VK is the Nernst potential for

potassium. Accordingly, the average-observation oper-

ator for the ion current is Ω = I0 |open〉 〈open|, where

〈open| =
[
1 0 0 0 0

]
denotes the open conformation

(i.e., the green state in Fig. 13).

The rate matrix eigenvalues are ΛG = {−n(α+β)}4n=0.

Applying Eq. (14), the power spectrum at a fixed volt-

age is:

Pc(f) =
∑
λ∈ΛG

νλ−1∑
m=0

2 Re
〈π|ΩGλ,mΩ |1〉
(i2πf − λ)m+1

=

4∑
n=0

2 Re
〈π|ΩG−n(α+β)Ω |1〉
i2πf + n(α+ β)

= 2I2
0 〈π|open〉

4∑
n=0

Re
〈open|G−n(α+β) |open〉

i2πf + n(α+ β)

= 2I2
0 〈π|open〉

4∑
n=1

〈open|G−n(α+β) |open〉

n(α+ β)
[
1 +

(
2πf

n(α+β)

)2] .
For convenience, define the opening bias ψ ≡ α/β as

the ratio between an individual gate’s rates of open-

ing versus closing. The spectral projection operators

{G−n(α+β)}n are simple analytic functions of ψ. We then

find the open state’s overlap with the spectral projection

operators:

〈open|G−n(α+β) |open〉 =

(
4

n

)
ψ4−n

(1 + ψ)4
.

By setting n = 0, this expression also yields the station-

ary probability of the open state: 〈π|open〉 =
(

ψ
1+ψ

)4
.
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The power spectrum for potassium current is thus:

Pc(f) =
I2
0

π

( ψ

1 + ψ

)8 4∑
n=1

(
4
n

)
ψ−n

nw
(

1 +
(
f
nw

)2) , (J1)

where w ≡ (α + β)/2π. Each nonzero eigenmode con-

tributes a Lorentzian profile to the power spectrum, each

with a different crossover frequency fc = nw depending

on n. This spread of crossover frequencies smooths the

transition between the flat power spectrum at low fre-

quencies and the 1/f2 spectrum at high frequencies. At

v = −40 mV, the crossover frequency of the net spectrum

is fnet
c ≈ 3w.

In fact, a power spectral signature of this general form

has been experimentally observed above the 1/f back-

ground noise [115]. That said, the empirically observed

crossover frequency suggests that the model is not a com-

plete description of the ion channel dynamics.

Equation (J1), derived from the rate matrix’s spectral

properties, agrees with the much earlier results calcu-

lated via alternative methods in Refs. [116, 117]. For

ease of comparison with those references, note that the

Hodgkin–Huxley parameter n∞ is related to ψ via n∞ =

ψ/(1 + ψ).

In voltage-clamped experiments, a common neuro-

physiological measurement technique, the voltage is held

fixed. Then, the finite-duration transition matrix is sim-

ply T = eτ0G, where τ0 is the duration between measure-

ments. Since K+ current (rather than conformational

states) is measured, this gives the transition matrix of

a HMM for the observed current. The finite sampling

rate associated with such a discrete-time HMM allows

exactly predicting the expected empirical spectrum. At

high frequencies, this deviates from the continuous-time

spectrum as the latter implicitly assumes an infinite sam-

pling rate.

Appendix K: Cross-correlation and spectral densities

Cross-correlation and cross-spectral densities are often

important in applications [143, 144]. These may be espe-

cially useful when analyzing input–output processes, to

characterize the correlation of input and output, or to

characterize the correlation between different aspects of

the output. Our results can be easily extended to address

these quantities.

Using an HMM that describes the joint stochastic pro-

cess of two observables (x, y) ∈ A, it is straightforward to

generalize our developments to cross-correlation γXY (τ):

γXY (τ) = 〈XtYt+τ 〉

(rather than necessarily autocorrelation γ = γXX) and

the associated cross-spectral densities PXY (ω):

PXY (ω) = lim
N→∞

1
N

〈( N∑
t=1

Xte
iωt
)( N∑

t=1

Yte
−iωt

)〉

= lim
N→∞

1
N

N∑
τ=−N

(
N − |τ |

)
γXY (τ)e−iωτ

of distinct observables x ∈ X and y ∈ Y. The indi-

vidual stochastic processes for each observable by itself

can simply be obtained by marginalizing over the other

observable.

Explicitly, the expressions take the form:

γXY (τ) =


〈π|ΩY T |τ | ΩX |1〉 if τ ≤ 1〈
XtYt

〉
if τ = 0

〈π|ΩX T |τ | ΩY |1〉 if τ ≥ 1

,

where:

ΩY =
∑
s∈S
〈Y 〉p(X,Y |s) |s〉 〈s| ,

and: 〈
XtYt

〉
=
∑
s∈S
〈π|s〉 〈XY 〉p(X,Y |s) .

Moreover, the continuous part of the cross-spectral den-

sity is given by:

PXY c(ω) =
〈
XtYt

〉
+ 〈π|ΩX T

(
eiωI − T

)−1
ΩY |1〉

+ 〈π|ΩY T
(
e−iωI − T

)−1
ΩX |1〉 .

And so on.

Appendix L: Pairwise mutual information example

For the process generated by the HMM given in Fig. 6,

if we take the limit of ever-narrower Gaussians in the

state-conditioned PDFs, so that we work with pairs of δ-

functions, then the process becomes Markovian and the
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pairwise mutual information can be calculated exactly:

I(X0;Xτ ) = H(X0)−H(Xτ |X0)

= H(X0,S0)−H(Xτ ,Sτ |X0,S0)

= H(S0) + H(X0|S0)−H(Xτ ,Sτ |S0)

= H(S0) + H(X0|S0)−H(Sτ |S0)−H(Xτ |Sτ )

= H(S0)−H(Sτ |S0)

= H(π)−
∑
s∈S

π(s)H(Sτ |S0 = s)

= H(π)−
∑
s∈S

π(s)H
(
〈s|T τ

)
= H(π) +

∑
s,s′∈S

π(s) 〈s|T τ |s′〉 log 〈s|T τ |s′〉 , (L1)

where π = [1, 1− p, 1− p, 1− p]/(4− 3p).

Continuing, 〈s|T τ |s′〉 can be calculated via T ’s spec-

tral decomposition. Since T is diagonalizable and nonde-

generate for all values of the transition parameter p, we

find:

〈s|T τ |s′〉 =
∑
λ∈ΛT

λτ 〈s|Tλ |s′〉 .

Moreover:

〈s|T1 |s′〉 = 〈s|1〉 〈π|s′〉
= π(s′) ,

so 〈s|T τ |s′〉 simplifies somewhat to:

〈s|T τ |s′〉 = π(s′) +
∑

λ∈ΛT \{1}

λτ 〈s|Tλ |s′〉

In fact, Eq. (L1) is valid for any set of four PDFs we

could have chosen for the example HMM’s states, as long

as the PDFs all have mutually exclusive support for the

observable output, since this then makes the hidden state

a function of the instantaneous observable.

Using the linear algebra of Eq. (L1), we calculate the

pairwise mutual information and POPI spectrum numer-

ically. The pairwise mutual informations are shown for

p ∈ {0.1, 0.5, 0.9} in Fig. 14. Reasonably, the loss of

information is monotonic over temporal distance. More

surprisingly, the decay of pairwise mutual information is

very-nearly exponential as made clear in the inset loga-

rithmic plot.

The POPI spectrum, which can be rewritten for a

wide-sense stationary process as:

I(ω) = lim
N→∞

2

N∑
τ=1

cos(ωτ) I(X0;Xτ ) ,

is shown for these same p-values in Fig. 15. The POPI

spectrum was approximated by truncating the summa-

tion of modulated pairwise mutual informations at a suf-

ficiently large separation of τ = 2000.

τ

I(
X

0
;X

τ
)

lo
g
2
I(
X

0
;X

τ
)

FIG. 14. Nontrivial pairwise mutual information for the pro-
cess from Fig. 6 with a flat power spectrum.

ω

I(
ω
)

FIG. 15. Power-of-Pairwise-Information (POPI) spectrum for
the process from Fig. 6.

Appendix M: Measurement Feedback Models

Let’s now turn to describe an alternative set of

possibly-input-dependent models, which may be more

convenient for describing certain phenomena. For exam-

ple, they are more natural for describing measured quan-

tum systems. They also reduce to the canonical models

used in computational mechanics [84, 86] after a number
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of simplifying assumptions.

After introducing them, we show that Thm. 2 applies

to them as well as to the other model types discussed

in the main body. In this way, we extend the theory of

fraudulent white noise to these models as well.

The models we consider generate observable behav-

ior during transitions between states, rather than in the

states themselves. This is a natural approach in the

quantum setting since measurement feedback changes the

state of the quantum system with dependence on the

measurement outcome. For projective measurements,

measurement fully defines the new state, but for the

much more general class of quantum measurements de-

scribed by positive operator valued measures (POVMs),

the measurement outcome plays a more nuanced role in

updating the state. More generally, edge-emitting models

can be natural descriptors of complex systems with con-

trol and feedback. And, fittingly, edge-emitting models

have been used elsewhere as well. For instance, they ap-

pear extensively in computer science and computational

mechanics—the latter of which spans the study of nat-

ural computation in physical systems and the minimal

resources required for prediction.

1. Measurement Feedback Models

Here we introduce Measurement Feedback Models

(MFMs) MMFM(~m), which are input-dependent gener-

ators of an observable output process {Xt}t∈T . As be-

fore, the lengths and alphabets of the inputs and outputs

need not be commensurate. The output is generated via

MMFM(~m) =
(
S,A, {T (x)

t (~m)}t∈T ,x∈A,µ1

)
, where S is

the countable set of hidden states, A is the alphabet of

observables, and µ1 is the initial distribution over hid-

den states. For a given t and x, the matrix elements

〈s|T (x)
t (~m) |s′〉 provide the probability density of transi-

tioning from state s to s′ while emitting the observable

x; that is:

〈s|T (x)
t (~m) |s′〉 = p~m(Xt+1 = x,St+1 = s′|St = s) .

where p~m is the probability density (induced by ~m) of the

labeled transition. The symbol-labeled transition matri-

ces {T (x)
t (~m)}t∈T ,x∈A yield the net state-to-state tran-

sition probabilities when marginalizing over all possible

observations: ∫
x∈A

T
(x)
t (~m) dx = Tt(~m)

where 〈s|Tt(~m) |s′〉 = Pr~m(St+1 = s′|St = s).

Figure 16 displays two different (but equally valid)
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FIG. 16. Alternative Bayesian networks for measurement
feedback models.

dependencies among observables and latent states of a

MFM. Each decomposition suggests a preferred interpre-

tation. The decomposition of the top panel (a) allows

identifying a PDF with each directed edge between la-

tent states of a measurement feedback modelMMFM(~m).

Accordingly, panel (a) suggests that the transited edge

determines the probability of the observable. Whereas,

the decomposition of the bottom panel (b) suggests that

the observation determines the probability of the latent

state transition. The fact that both decompositions are

valid insists, perhaps surprisingly, that the interpreta-

tions have no physical distinction. The interpretation of

causality is ambiguous although each calculus of condi-

tional dependencies is reliable.

The measurement feedback models may initially ap-

pear rather restrictive when considering the possibili-

ties of, say, measuring a quantum system in different

bases and with different instruments. However, in prin-

ciple, the different measurement choices are incorpo-

rated through the different transformations Tt(~m), both

through any pre-determined measurement choices in ~m

and through dynamic-determination via feedback of the

measurement outcomes themselves.

Reference [145]’s process tensors can also be used to

model classical observable processes generated by gen-

eral quantum dynamics. Although unnecessarily elab-

orate for most purposes, process tensors are appealing

since they rigorously incorporate general quantum mea-

surements. Ultimately though, they, together with a set
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of “experiments” ~m, could be mapped onto the alterna-

tive rather-simpler models proposed here, if the goal is

only to model the observable classical output process.

2. Theorem 2 for Measurement Feedback

The MFM’s average-observation matrices are:

Ωt =

∫
x∈A

xT
(x)
t (~m) dx .

Notably, they are no longer diagonal in the hidden-state

basis. Rather, they assign to each matrix element the av-

erage observation associated with that transition, multi-

plied by the probability of the edge being traversed when

conditioned on occupying the outgoing state. That is:

〈s|Ωt |s′〉 =

∫
x∈A

xp~m(St+1 = s′, Xt = x|St = s) dx

= Pr
~m

(St+1 = s′|St = s)

×
∫
x∈A

xp~m(Xt = x|St = s,St+1 = s′) dx

= 〈s|Tt(~m) |s′〉 〈x〉p~m(Xt|St=s,St+1=s′) . (M1)

If the process is wide-sense stationary, then for τ > 0:

γ(τ) = 〈µt|Ωt Tt+1:t+τ (~m) Ωt+τ |1〉 , (M2)

which must be t-independent.

For input-independent processes with time-

independent transition dynamics—where T
(x)
t (~m) = T (x)

and µ1 = π—this simplifies to the autonomous Mealy-

type HMMs with continuous PDFs for the observable

associated with each hidden-state-to-state transition.

The autocorrelation function (for τ ≥ 1) then reduces

to:

γ(τ) = 〈π|ΩT τ−1 Ω|1〉 ,

while the power spectrum’s continuous part is:

Pc(ω) =
〈
|x|2
〉

+ 2 Re 〈π|Ω
(
eiωI − T

)−1
Ω |1〉 . (M3)

Note that this expression lacks T , the transition dynamic,

when compared to Eq. (6). This follows since Ω induces

a transition for these Mealy-type HMMs, reducing the

number of subsequent transitions by one.

Let’s return to the general setting for autocorrela-

tion given by Eq. (M2) for processes generated by

possibly-input-dependent models. Developing the ana-

log of Thm. 2 requires recognizing that the average ob-

servation on each edge matters, rather than previously,

where the average observation from each state mattered.

For MFMs, constant autocorrelation and flat power spec-

trum can again be guaranteed by a rather weak condition:

The average output of the current edge does not by itself

influence the average output of a future edge.

More explicitly, consider the set of all edges:

E(t) ≡
{

(s, s′) ∈ S × S : 〈s|Tt(~m) |s′〉 6= 0
}
,

which are transitions between hidden states that can be

traversed at time t with positive probability. Since out-

puts occur during edge transitions, we redefine Ξ as the

set of average outputs exhibited by the edges. Equa-

tion (M1) indicates that the desired definition is:

Ξ ≡
⋃
t∈T

⋃
(s,s′)∈E(t)

{ 〈s|Ωt |s′〉
〈s|Tt(~m) |s′〉

}
.

Furthermore, we define Et to be the random variable

for the edge traversed at time t; i.e., Et is the joint random

variable: Et = (St,St+1). And we define E(t)
ξ ⊂ E(t) as

the set of edges (at time t) with average output ξ ∈ Ξ:

E(t)
ξ ≡

{
(s, s′) ∈ E(t) : 〈s|Ωt|s′〉

〈s|Tt(~m)|s′〉 = ξ
}
. (M4)

With these in hand, we can state the theorem analogous

to Thm. 2.

Theorem 4. Let {Xt}t be a stochastic process generated

by any measurement feedback model MMFM(~m), includ-

ing autonomous Mealy-type HMMs and input-dependent

generators. Such processes have constant autocorrelation

and a flat power spectrum if:

Pr(Et+τ ∈ E(t+τ)
ξ′ |Et ∈ E(t)

ξ ) = Pr(Et+τ ∈ E(t+τ)
ξ′ )

and there exists a constant c ∈ C such that:∑
ξ∈Ξ

ξ Pr(Et ∈ E(t)
ξ ) = c ,

for all separations τ > 0, t ∈ T , and ξ, ξ′ ∈ Ξ.

Proof. Starting from Eq. (M2), we find the autocorrela-

tion for all such processes by calculating:
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γ(τ) = 〈µt|Ωt Tt+1:t+τ (~m) Ωt+τ |1〉
=

∑
s,s′,s′′,s′′′∈S

〈µt |s〉 〈s|Ωt |s′〉 〈s′|Tt+1:t+τ (~m) |s′′〉 〈s′′|Ωt+τ |s′′′〉 〈s′′′|1〉

=
∑

(s,s′)∈E(t)

(s′,s′′′)∈E(t+τ)

(
〈s|Ωt|s′〉
〈s|Tt(~m)|s′〉

)(
〈s′′|Ωt+τ |s′′′〉
〈s′′|Tt+τ (~m)|s′′′〉

)
〈µt |s〉 〈s|Tt(~m) |s′〉 〈s′|Tt+1:t+τ (~m) |s′′〉 〈s′′|Tt+τ (~m) |s′′′〉 〈s′′′|1〉

=
∑

(s,s′)∈E(t)

(s′,s′′′)∈E(t+τ)

( 〈s|Ωt |s′〉
〈s|Tt(~m) |s′〉

)( 〈s′′|Ωt+τ |s′′′〉
〈s′′|Tt+τ (~m) |s′′′〉

)
Pr(St = s,St+1 = s′,St+τ = s′′,St+τ+1 = s′′′)

=
∑

(s,s′)∈E(t)

(s′,s′′′)∈E(t+τ)

( 〈s|Ωt |s′〉
〈s|Tt(~m) |s′〉

)( 〈s′′|Ωt+τ |s′′′〉
〈s′′|Tt+τ (~m) |s′′′〉

)
Pr
(
Et = (s, s′), Et+τ = (s′′, s′′′)

)
=
∑
ξ,ξ′∈Ξ

ξξ′ Pr
(
Et ∈ E(t)

ξ , Et+τ ∈ E(t+τ)
ξ′

)
=
∑
ξ∈Ξ

ξ Pr
(
Et ∈ E(t)

ξ

)[∑
ξ′∈Ξ

ξ′ Pr
(
Et+τ ∈ E(t+τ)

ξ′

∣∣Et ∈ E(t)
ξ

)]
.

Now, suppose that:

Pr(Et+τ ∈ E(t+τ)
ξ′ |Et ∈ E(t)

ξ ) = Pr(Et+τ ∈ E(t+τ)
ξ′ )

and there exists some constant c ∈ C such that:∑
ξ∈Ξ

ξ Pr(Et ∈ E(t)
ξ ) = c ,

for all separations τ > 0, t ∈ T , and ξ, ξ′ ∈ Ξ. Then, we

find:

γ(τ) =
∑
ξ∈Ξ

ξ Pr
(
Et ∈ E(t)

ξ

)
×
[∑
ξ′∈Ξ

ξ′ Pr
(
Et+τ ∈ E(t+τ)

ξ′

∣∣Et ∈ E(t)
ξ

)]
=
(∑
ξ∈Ξ

ξ Pr
(
Et ∈ E(t)

ξ

))(∑
ξ′∈Ξ

ξ′ Pr
(
Et+τ ∈ E(t+τ)

ξ′

))
= |c|2 ,

which is a constant for all separations τ > 0, t ∈ T ,

and ξ, ξ′ ∈ Ξ. Finally, a process with stationary low-

order statistics and a flat autocorrelation has a flat power

spectrum, as an immediate consequence of Eq. (3). This

proves Thm. 4.

For the special case of an autonomous HMM that

generates observations during hidden-state-to-state tran-

sitions, this condition simplifies significantly. Specifi-

cally, Ωt → Ω and Tt(~m) → T become t-independent,

which furthermore means that E(t)
ξ → Eξ becomes t-

independent. For autonomous wide-sense stationary pro-

cesses, we have Pr(Et) = Pr(Et+τ ) for all separations

τ > 0 and for all t ∈ T . It then trivially follows that∑
ξ∈Ξ ξ Pr(Et ∈ Eξ) is constant for all t ∈ T . So, the

only requirement for an autonomous edge-emitting HMM

to produce fraudulent white noise is that it satisfies the

condition:

Pr(Et+τ ∈ Eξ′ |Et ∈ Eξ) = Pr(Et+τ ∈ Eξ′)

for all separations τ > 0, t ∈ T , and ξ, ξ′ ∈ Ξ.

Theorem 4 provides a very general condition for flat

power spectra from measurement feedback models.

Appendix N: Theorem 2 for time-dependent PDFs

Moreover, Thm. 4 suggests how Thm. 2 general-

izes even further to possibly-input-dependent hidden-

state models with time-dependent PDFs associated with

each state. We will call these morphing hidden models

(MHMs)MMHM(~m). MHMs include, as special cases, all

models (Moore-type HMMs and input-dependent gener-

ators) considered in the main text. We employ methods

similar to those used in § M 2.

A MHM is a possibly-input-dependent generator of an

observable output process {Xt}t∈T . The output is gen-

erated viaMMHM(~m) =
(
S,A, {Pt(~m)}t, {Tt(~m)}t,µ1

)
.

Here, again, the lengths and alphabets of the inputs and

outputs need not be commensurate. That is, the internal

states S and output alphabet A are static. However, the

hidden-state-to-state transition matrix Tt(~m)—as well as
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the state-dependent PDFs Pt(~m)—are time-dependent

such that their values at time t are potentially a func-

tion of the full input vector ~m. More specifically, Pt(~m)

is the set of hidden-state-dependent probability density

functions p~m(Xt|s) at time t. As before, µ1 specifies the

initial distribution over hidden states: S1 ∼ µ1.

For such cases, set:

Ωt =
∑
s∈S
〈x〉p~m(Xt|s) |s〉 〈s| .

The Ωt matrix is time-dependent with the state-

conditioned expected outputs along its diagonal.

Since the average state output now varies in time, we

must generalize Ξ from its more restricted use in the main

text. Specifically, redefine Ξ as the set of state-dependent

average outputs generated throughout time:

Ξ ≡
⋃
t∈T

⋃
s∈S

{
〈x〉p~m(Xt|s)

}
.

Furthermore, we define S(t)
ξ ⊂ S as the set of states (at

time t) with average output ξ ∈ Ξ:

S(t)
ξ ≡

{
s ∈ S : 〈Xt〉p~m(Xt|s) = ξ

}
.

Using these, we can state the following theorem, which

generalizes Thm. 2.

Theorem 5. Let {Xt}t be a stochastic process gener-

ated by any morphing hidden model MMHM(~m). Such

processes have constant autocorrelation and a flat power

spectrum if:

Pr(St+τ ∈ S(t+τ)
ξ′ |St ∈ S(t)

ξ ) = Pr(St+τ ∈ S(t+τ)
ξ′ )

and there exists a constant c ∈ C such that:∑
ξ∈Ξ

ξ Pr(St ∈ S(t)
ξ ) = c ,

for all separations τ > 0, t ∈ T , and ξ, ξ′ ∈ Ξ.

Proof. For the processes under consideration, we find

the linear pairwise correlation (for τ ≥ 1) to be:

〈XtXt+τ 〉p~m(Xt,Xt+τ ) = 〈µt|Ωt Tt:t+τ (~m) Ωt+τ |1〉
=
∑
s,s′∈S

〈µt |s〉 〈s|Ωt |s〉 〈s|Tt:t+τ (~m) |s′〉 〈s′|Ωt+τ |s′〉 〈s′|1〉

=
∑
ξ,ξ′∈Ξ

ξξ′
∑
s∈S(t)

ξ

s′∈S(t+τ)

ξ′

Pr
~m

(St = s,St+τ = s′)

=
∑
ξ,ξ′∈Ξ

ξξ′ Pr(St ∈ S(t)
ξ ,St+τ ∈ S(t+τ)

ξ′ )

=
∑
ξ∈Ξ

ξ Pr(St ∈ S(t)
ξ )
(∑
ξ′∈Ξ

ξ′ Pr(St+τ ∈ S(t+τ)
ξ′ |St ∈ S(t)

ξ )
)
. (N1)

Now, suppose that:

Pr(St+τ ∈ S(t+τ)
ξ′ |St ∈ S(t)

ξ ) = Pr(St+τ ∈ S(t+τ)
ξ′ )

and there exists some constant c ∈ C such that:∑
ξ∈Ξ

ξ Pr(St ∈ S(t)
ξ ) = c

for all separations τ > 0, for all t ∈ T , and for all ξ, ξ′ ∈

Ξ. Then, we find:

〈XtXt+τ 〉p~m(Xt,Xt+τ )

=
∑
ξ∈Ξ

ξ Pr(St ∈ S(t)
ξ )
(∑
ξ′∈Ξ

ξ′ Pr(St+τ ∈ S(t+τ)
ξ′ |St ∈ S(t)

ξ )
)

=
(∑
ξ∈Ξ

ξ Pr(St ∈ S(t)
ξ )
)(∑

ξ′∈Ξ

ξ′ Pr(St+τ ∈ S(t+τ)
ξ′ )

)
= |c|2 .

is constant for all t ∈ T , and ∀ξ, ξ′ ∈ Ξ.

That 〈XtXt+τ 〉p~m(Xt,Xt+τ ) is constant verifies that the

autocorrelation does not depend on the overall time shift

of the process, so 〈XtXt+τ 〉p~m(Xt,Xt+τ ) = γ(τ). More-
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over, γ(τ) is constant. Finally, a process with constant

autocorrelation has a flat power spectrum, as an imme-

diate consequence of Eq. (3). This proves Thm. 5.

Appendix O: Analytical Polyspectra

This section derives new analytical expressions for

polyspectra, revealing their close relationship with the

time-evolution operator’s eigenspectrum and resolvent.

The (g0, . . . , gK)-polyspectrum is defined as:

Sg0,...,gK (ω1, . . . , ωK) ≡ lim
N→∞

1
N

〈
K∏
k=0

g̃k
(N)(ωk)

〉
, (O1)

where ω0 ≡ −
∑K
k=1 ωk and:

g̃(N)(ω) ≡
N∑
t=1

g(Xt)e
−iωt . (O2)

Each gk : A → C can be any function taking observables

to complex numbers.

Combining Eqs. (O1) and (O2) yields:

Sg0,...,gK (ω1, . . . , ωK) = lim
N→∞

1
N

N∑
t0=1

· · ·
N∑

tK=1

〈 K∏
k=0

gk(Xtk)
〉 K∏
k=0

e−iωktk . (O3)

The original time variables (tk)Kk=0 induce a function α : {0, 1, . . .K} → {0, 1, . . . κ} that compresses and time-orders

the indices, such that tk = t′α(k). Since α does not have a unique inverse, we define the preimage α−1(`) =
{
k ∈

{0, 1, . . .K} : α(k) = `
}

to be the set of indices that map to `.

For HMMs, we then express the expectations in Eq. (O3) as:

〈 K∏
k=0

gk(Xtk)
〉

=
〈 κ∏
`=0

gα−1(`)(Xt′`
)
〉

= tr
(
|1〉 〈π|Ωgα−1(0)

κ∏
`=1

T t
′
`−t
′
`−1Ωgα−1(`)

)
, (O4)

where tr(·) denotes the trace, the product of operators on the right maintains time ordering, we define gα−1(`)(x) ≡∏
k∈α−1(`) gk(x), and Ωg ≡

∑
s∈S 〈g(X)〉p(X|s) |s〉 〈s|.

The summations over all time variables in Eq. (O3) induce all possible functions α that permute and compress the

indices. And, within each compressed time-ordering, all possible values of the indices consistent with that ordering

are summed over. To enumerate all possible compressed time-orderings, it is useful to explicitly introduce the set F(κ)
K

where F(κ)
K is the set of all surjective functions mapping {0, 1, . . .K} onto {0, 1, . . . κ}. Then, we can rewrite Eq. (O3)

in terms of the new time-ordered set of variables (t′0, t
′
1, . . . t

′
κ) where t′k − t′k−1 > 0 for all k > 0. Dropping the prime

on the t′k variables, we obtain:

Sg0,...,gK (ω1, . . . , ωK) = lim
N→∞

1
N

K∑
κ=0

∑
α∈F(κ)

K

N−κ∑
t0=1

N−κ+1∑
t1=t0+1

. . .

N∑
tκ=tκ−1+1

〈 κ∏
k=0

gα−1(k)(Xtk)
〉 κ∏
k=0

e−iωα−1(k)tk , (O5)

where ωα−1(k) ≡
∑
`∈α−1(k) ω`.

The manifest time-ordering in Eq. (O5) allows us to use Eq. (O4) for the expectation. It is convenient to rewrite

this as:

〈 κ∏
k=0

gα−1(k)(Xtk)
〉

= tr

(
|1〉 〈π|Ωgα−1(0)

T−t0
(κ−1∏
k=1

T tkΩgα−1(k)
T−tk

)
T tκΩgα−1(κ)

)
. (O6)

Technically this assumes that the index of the transition matrix is bounded by ν0(T ) ≤ tk − tk−1. This assumption is

valid, for example, if T is not singular. Otherwise, a slight modification of the derivation is required, where the zero

eigenspace is treated separately. In either case, the final expressions we obtain for polyspectra remain unchanged.

Plugging Eq. (O6) back into Eq. (O5) consolidates and eventually eliminates the tk dependencies, starting with tκ.
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To see this, we introduce z
(α)
k ≡ e−iωα−1(k) and rearrange terms:

Sg0,...,gK (ω1, . . . , ωK)

= lim
N→∞

1
N

K∑
κ=0

∑
α∈F(κ)

K

N−κ∑
t0=1

N−κ+1∑
t1=t0+1

. . .

N∑
tκ=tκ−1+1

tr

(
|1〉 〈π|Ωgα−1(0)

T−t0
(κ−1∏
k=1

T tkΩgα−1(k)
T−tk

)
T tκΩgα−1(κ)

)
κ∏
k=0

e−iωα−1(k)tk

= lim
N→∞

1
N

K∑
κ=0

∑
α∈F(κ)

K

N−κ∑
t0=1

N−κ+1∑
t1=t0+1

. . .

N∑
tκ=tκ−1+1

〈π|Ωgα−1(0)
T−t0

(κ−1∏
k=1

(z
(α)
k T )tkΩgα−1(k)

T−tk
)

(z(α)
κ T )tκΩgα−1(κ)

|1〉 (z(α)
0 )t0

= lim
N→∞

1
N

K∑
κ=0

∑
α∈F(κ)

K

N−κ∑
t0=1

. . .

N−κ+`∑
t`=t`−1+1

. . .

N−1∑
tκ−1=tκ−2+1

〈π|Ωgα−1(0)
T−t0

(κ−1∏
k=1

(z
(α)
k T )tkΩgα−1(k)

T−tk
)

×
( N∑
tκ=tκ−1+1

(z(α)
κ T )tκ

)
Ωgα−1(κ)

|1〉 (z(α)
0 )t0 . (O7)

This results in summations of the form
∑b
t=a(zT )t. It is always true that (I − zT )

∑b
t=a(zT )t = (zT )a − (zT )b+1.

Hence, when z−1 /∈ ΛT , the operator (I − zT ) can be inverted to yield:

b∑
t=a

(zT )t = (I − zT )−1
(
(zT )a − (zT )b+1

)
.

The first such summation is:

N∑
tκ=tκ−1+1

(z(α)
κ T )tκ = (I − z(α)

κ T )−1
(
(z(α)
κ T )tκ−1+1 − (z(α)

κ T )N+1
)

= (z(α)
κ T )tκ−1T

(
I/z(α)

κ − T
)−1 − (I − z(α)

κ T )−1(z(α)
κ T )N+1 . (O8)

As N →∞ the contribution from the rightmost term in Eq. (O8) vanishes. This follows from the fact that

(e−iωT )N = e−iωNTN approaches
∑

λ∈Λρ(T )

(λ/eiω)NTλ as N →∞ .

In particular, the contribution from the decaying eigenmodes (with eigenvalue magnitude less than unity) vanishes as

N →∞. However, for eigenvalues λ ∈ ρ(T ) on the unit circle, (λ/eiω)N does not converge for generic ω as N →∞.

Therefore, if the polyspectrum is to be well-behaved in the N →∞ limit, the contribution from these terms also must

vanish.

The surviving term, leftmost in Eq. (O8), conveniently has a T tκ−1 operator on the lefthand side that cancels with

the T−tκ−1 operator in Eq. (O7). In effect, for:

(κ−1∏
k=1

(z
(α)
k T )tkΩgα−1(k)

T−tk
)( N∑

tκ=tκ−1+1

(z(α)
κ T )tκ

)
we substitute:

(κ−2∏
k=1

(z
(α)
k T )tkΩgα−1(k)

T−tk
)

(z
(α)
κ−1:κT )tκ−1Ωgα−1(κ−1)

T
(
I/z(α)

κ − T
)−1

,

where z
(α)
`:κ ≡

∏κ
k=` z

(α)
k = e−i

∑κ
k=` ωα−1(k) . The tκ−1 term can now be summed over in the same fashion as just done

for the tκ term. This summation and annihilation proceeds recursively to yield a surprisingly concise closed-form

solution for any polyspectrum.



48

To carry out the specified recursion, we note that each new summation is of the form:

N−κ+`∑
t`=t`−1+1

(z
(α)
`:κT )t` = (I − z

(α)
`:κT )−1

(
(z

(α)
`:κT )t`−1+1 − (z

(α)
`:κT )N−κ+`+1

)
= (z

(α)
`:κT )t`−1T

(
I/z

(α)
`:κ − T

)−1 − (I − z
(α)
`:κT )−1(z

(α)
`:κT )N−κ+`+1

→N→∞ (z
(α)
`:κT )t`−1T

(
I/z

(α)
`:κ − T

)−1
.

This provides the desired annihilation with T−t`−1 , allowing the recursion. (Again, the contribution of the rightmost

term vanishes for generic ω in the N →∞ limit.)

As an intermediate step in this recursive procedure, we obtain:

Sg0,...,gK (ω1, . . . , ωK) = lim
N→∞

1
N

K∑
κ=0

∑
α∈F(κ)

K

N−κ∑
t0=1

. . .

N−κ+`∑
t`=t`−1+1

〈π|Ωgα−1(0)
T−t0

(∏̀
k=1

(z
(α)
k T )tkΩgα−1(k)

T−tk
)

(z
(α)
`+1:κT )t`

×
( κ∏
k=`+1

T
(
I/z

(α)
k:κ − T

)−1
Ωgα−1(k)

)
|1〉 (z(α)

0 )t0

= lim
N→∞

1
N

K∑
κ=0

∑
α∈F(κ)

K

N−κ∑
t0=1

. . .

N−κ+`∑
t`=t`−1+1

〈π|Ωgα−1(0)
T−t0

(`−1∏
k=1

(z
(α)
k T )tkΩgα−1(k)

T−tk
)

(z
(α)
`:κT )t`Ωfα−1(`)

×
( κ∏
k=`+1

T
(
I/z

(α)
k:κ − T

)−1
Ωgα−1(k)

)
|1〉 (z(α)

0 )t0

= lim
N→∞

1
N

K∑
κ=0

∑
α∈F(κ)

K

N−κ∑
t0=1

. . .

N−κ+`−1∑
t`−1=t`−2+1

〈π|Ωgα−1(0)
T−t0

(`−1∏
k=1

(z
(α)
k T )tkΩgα−1(k)

T−tk
)

(z
(α)
`:κT )t`−1

×
( κ∏
k=`

T
(
I/z

(α)
k:κ − T

)−1
Ωgα−1(k)

)
|1〉 (z(α)

0 )t0 .

Eventually only the t0 summation remains:

Sg0,...,gK (ω1, . . . , ωK) = lim
N→∞

1
N

K∑
κ=0

∑
α∈F(κ)

K

N−κ∑
t0=1

N−κ+1∑
t1=t0+1

〈π|Ωgα−1(0)
T−t0

(
(z

(α)
k T )t1Ωgα−1(1)

T−t1
)

× (z
(α)
2:κT )t1

( κ∏
k=2

T
(
I/z

(α)
k:κ − T

)−1
Ωgα−1(k)

)
|1〉 (z(α)

0 )t0

= lim
N→∞

1
N

K∑
κ=0

∑
α∈F(κ)

K

N−κ∑
t0=1

〈π|Ωgα−1(0)
T−t0(z

(α)
1:κT )t0

( κ∏
k=1

T
(
I/z

(α)
k:κ − T

)−1
Ωgα−1(k)

)
|1〉 (z(α)

0 )t0

= lim
N→∞

1
N

K∑
κ=0

∑
α∈F(κ)

K

〈π|Ωgα−1(0)

( κ∏
k=1

T
(
I/z

(α)
k:κ − T

)−1
Ωgα−1(k)

)
|1〉

N−κ∑
t0=1

(z
(α)
0:κ)t0 .

It is now crucial to notice that:

z
(α)
0:κ = e−i

∑κ
k=0 ωα−1(k)

= e−i
∑K
k=0 ωk

= ei0

= 1 ,
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since ω0 = −∑K
k=1 ωk. Accordingly, the summation over t0 becomes:

N−κ∑
t0=1

(z
(α)
0:κ)t0 =

N−κ∑
t0=1

1t0

=

N−κ∑
t0=1

1

= N − κ .

Thus, for finite K, the continuous part of the (g0, . . . , gK)-polyspectrum has the closed-form expression:

Sg0,...,gK (ω1, . . . , ωK) =

K∑
κ=0

∑
α∈F(κ)

K

〈π|Ωgα−1(0)

( κ∏
`=1

T
(
I/z

(α)
`:κ − T

)−1
Ωgα−1(`)

)
|1〉
(

lim
N→∞

N − κ
N

)
(O9)

=

K∑
κ=0

∑
α∈F(κ)

K

〈π|Ωgα−1(0)

( κ∏
`=1

T
(
I/z

(α)
`:κ − T

)−1
Ωgα−1(`)

)
|1〉 . (O10)

In addition to this continuous part, the polyspectrum may also have ‘discrete’ contributions: these are hyperplanes

in the K-dimensional (ωk)Kk=1 frequency space where the magnitude of the polyspectrum diverges. From Eq. (O10),

it is evident that divergences in the polyspectrum may only appear where the constituent resolvents
(
I/z

(α)
`:κ − T

)−1

diverge. In turn, this would require the scalar 1/z
(α)
`:κ = ei

∑κ
n=`

∑
m∈α−1(n) ωm to be equal to one of the eigenvalues of

the transition matrix T on the unit circle, λ = eiωλ ∈ Λρ(T ). Mathematically, this simplifies to the condition that(∑κ
n=`

∑
m∈α−1(n) ωm

)
mod 2π = ωλ mod 2π. In words, this means that polyspectra may diverge only where subsets

of the frequencies sum to an eigenfrequency ωλ. For example, it is typical to see diagonal, vertical, and horizontal

large-magnitude streaks coexisting in a generic bispectrum, corresponding to ω1 + ω2 = ωλ, to ω1 = ωλ, and to

ω2 = ωλ, respectively. [146]

1. (Eigen)Spectral expansion of polyspectra

Using Eq. (9) to express the resolvent
(
I/z

(α)
`:κ − T

)−1
in terms of the transition-matrix eigenvalues and spectral

projection operators:

(I/z
(α)
`:κ − T )−1 =

∑
λ∈ΛT

νλ−1∑
m=0

1

(1/z
(α)
`:κ − λ)m+1

Tλ,m , (O11)

we again see that the time-evolution operator T ’s eigenspectrum directly controls the process’ polyspectrum. Fur-

thermore, recall that T =
∑
λ

(
λTλ,0 + Tλ,1

)
and Tλ,mTζ,n = δλ,ζTλ,m+n. With this we find:

Sg0,...,gK (ω1, . . . , ωK)

=

K∑
κ=0

∑
α∈F(κ)

K

∑
λ1∈ΛT

νλ1
−1∑

m1=0

∑
λ2∈ΛT

νλ2
−1∑

m2=0

· · ·
∑

λκ∈ΛT

νλκ−1∑
mκ=0

〈π|Ωgα−1(0)

(∏κ
`=1 TTλj ,mjΩgα−1(`)

)
|1〉∏κ

`=1(1/z
(α)
`:κ − λj)mj+1

. (O12)

For a diagonalizable transition matrix T , this reduces to:

Sg0,...,gK (ω1, . . . , ωK) =

K∑
κ=0

∑
α∈F(κ)

K

∑
λ1∈ΛT

∑
λ2∈ΛT

· · ·
∑

λκ∈ΛT

〈π|Ωgα−1(0)

(∏κ
`=1 TTλjΩgα−1(`)

)
|1〉∏κ

`=1(1/z
(α)
`:κ − λj)

. (O13)

The relationship between the polyspectrum and the eigenspectrum of the time-evolution operator parallels the
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FIG. 17. Five examples of F(κ)
K : Each is a set of surjective functions, relevant for constructing polyspectra. The two sets F(0)

1

and F(1)
1 are needed to construct general (g0, g1)-polyspectra S(g0,g1)(ω1). The three sets F(0)

2 , F(1)
2 , and F(2)

2 are needed to
construct general (g0, g1, g2)-polyspectra S(g0,g1,g2)(ω1, ω2).

lessons already discussed for power spectra. Peaks in the magnitude of general polyspectra likewise emanate from

the eigenspectrum—these peaks may occur wherever a subset of the frequencies sum to the angular frequency of an

eigenvalue. The peak is sharper when the eigenvalue is closer to the unit circle; the peak is more diffuse for eigenvalues

with small magnitude.

2. Polyspectra examples

It is instructive to explore several special cases of the (g0, . . . , gK)-polyspectrum. To aid in this, we explicitly

construct the surjective function sets F(0)
1 , F(1)

1 , F(0)
2 , F(1)

2 , and F(2)
2 , shown in Fig. 17.

First consider the (X,X)-polyspectrum, SX,X(ω1), which is simply the power spectrum P (ω1). In this case, K = 1.

So, we consider the functions contained in F(0)
1 =

{
0

1

0

}
and F(1)

1 =
{

0

1

0

1
, 0

1

0

1
}

. For the compressive function

α = 0

1

0 , we obtain α−1(0) = {0, 1}, yielding:

Ωgα−1(0)
= Ωg{0,1}

= Ω|X|2

=
∑
s∈S
〈|X|2〉p(X|s) |s〉 〈s| .

The (κ = 0)-contribution to the power spectrum is thus:

〈π|Ω|X|2 |1〉 =
∑
s∈S
〈|X|2〉p(X|s) 〈π|s〉 = 〈|x|2〉 ,

which is indeed the first term in Eq. (6). The (κ = 1)-contribution to the power spectrum is:∑
α∈F(1)

1

〈π|Ωgα−1(0)
T
(
eiωα−1(1)I − T

)−1
Ωgα−1(1)

|1〉 ,
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where it should be recalled that ω0 = −ω1. Plugging in the identity and swap functions of F(1)
1 , this becomes:

〈π|Ωg0T
(
eiω1I − T

)−1
Ωg1 |1〉+ 〈π|Ωg1T

(
eiω0I − T

)−1
Ωg0 |1〉

= 〈π|ΩXT
(
eiω1I − T

)−1
ΩX |1〉+ 〈π|ΩXT

(
e−iω1I − T

)−1
ΩX |1〉

= 2Re 〈π|ΩXT
(
eiω1I − T

)−1
ΩX |1〉 ,

which is indeed the last term of Eq. (6).

To see the general structure of other polyspectra, it is helpful to expand the first few κ terms of the general

polyspectra analytic expression Eq. (O10). Explicitly expanding the κ terms from 0 to 2 yields:

Sg0,...,gK (ω1, . . . , ωK) =

K∑
κ=0

∑
α∈F(κ)

K

〈π|Ωgα−1(0)

( κ∏
`=1

T
(
I/z

(α)
`:κ − T

)−1
Ωgα−1(`)

)
|1〉

= 〈π|Ωg{0,1,...,K} |1〉+

( ∑
α∈F(1)

K

〈π|Ωgα−1(0)
T
(
eiωα−1(1)I − T

)−1
Ωgα−1(1)

|1〉
)

+

( ∑
α∈F(2)

K

〈π|Ωgα−1(0)
T
(
ei(ωα−1(1)+ωα−1(2))I − T

)−1
Ωgα−1(1)

T
(
eiωα−1(2)I − T

)−1
Ωgα−1(2)

|1〉
)

+

K∑
κ=3

∑
α∈F(κ)

K

〈π|Ωgα−1(0)

( κ∏
`=1

T
(
I/z

(α)
`:κ − T

)−1
Ωgα−1(`)

)
|1〉 . (O14)

From Eq. (O14), it is now easy to specialize to the (X − 〈X〉, X − 〈X〉 , X − 〈X〉)-polyspectrum denoted

S
X−〈X〉,X−〈X〉,X−〈X〉(ω1, ω2). This is the cumulant bispectrum, Scumulant

X,X,X
(ω1, ω2), since the third-order cumulants

of the original time series are the same as the third-order moments of the modified time series with subtracted

mean [120, 124]. It is:

Scumulant
X,X,X

(ω1, ω2) = S
X−〈X〉,X−〈X〉,X−〈X〉(ω1, ω2)

= 〈π|Ω|X−〈x〉|2(X−〈x〉) |1〉+

( ∑
α∈F(1)

2

〈π|Ωgα−1(0)
T
(
eiωα−1(1)I − T

)−1
Ωgα−1(1)

|1〉
)

+
∑
α∈F(2)

2

〈π|Ωgα−1(0)
T
(
ei(ωα−1(1)+ωα−1(2))I − T

)−1
Ωgα−1(1)

T
(
eiωα−1(2)I − T

)−1
Ωgα−1(2)

|1〉 . (O15)

This leads to a fraudulent white noise theorem for the cumulant bispectrum, reminiscent of Cor. 1.

Theorem 6. Any hidden Markov chain with any arbi-

trary state-paired collection of equal-mean distributions,

i.e.:

P ∈
{
{p(X|s)}s∈S : 〈X〉p(X|s) = 〈x〉 for all s ∈ S

}
,

generates a flat bispectrum that is constant over all fre-

quencies (ω1, ω2).

Proof. Equation (O15) shows that the cumulant bispec-

trum consists of contributions from F(0)
2 , F(1)

2 , and F(2)
2 .

The only F(0)
2 contribution is 〈π|Ω|X−〈x〉|2(X−〈x〉) |1〉,

which is a constant independent of frequency. Whereas,

we show that each contribution from F(1)
2 and F(2)

2 is iden-

tically zero if the stochastic process can be generated by a

HMM with equal-mean PDFs associated with each state.

For such processes, 〈X〉p(X|s) = 〈x〉, where 〈x〉 is inde-

pendent of the latent state s.

With the aid of Fig. 17, it is easy to verify that, for

each α ∈ F(1)
2 , either Ωgα−1(0)

or Ωgα−1(1)
equals either

ΩX−〈x〉 or Ω
X−〈x〉. These latter two operators both equal

the zero operator 0 since:

ΩX−〈x〉 =
∑
s∈S
〈X − 〈x〉〉p(X|s) |s〉 〈s|

=
∑
s∈S

(
〈X〉p(X|s) − 〈x〉

)
|s〉 〈s|

= 0
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and:

Ω
X−〈x〉 =

∑
s∈S
〈X − 〈x〉〉p(X|s) |s〉 〈s|

=
∑
s∈S

(
〈X〉p(X|s) − 〈x〉

)
|s〉 〈s|

= 0 .

Each potential contribution from α ∈ F(1)
2 is therefore a

product of zero and thus vanishes.

Again with the aid of Fig. 17, it is easy to verify that

for each α ∈ F(2)
2 , the operators Ωgα−1(0)

, Ωgα−1(1)
, and

Ωgα−1(2)
are equal to either ΩX−〈x〉 or Ω

X−〈x〉 which—

as we showed—are all zero. Each potential contribution

from α ∈ F(2)
2 is therefore a product of zero and so van-

ishes.

For such processes, this establishes that the only

nonzero contribution to the cumulant bispectrum is inde-

pendent of frequency. The corresponding cumulant bis-

pectrum is thus flat with uniform height
〈
|x − 〈x〉|2(x −

〈x〉)
〉
.

[1] M. E. J. Obien, K. Deligkaris, T. Bullmann, D. J.

Bakkum, and U. Frey. Revealing neuronal function

through microelectrode array recordings. Frontiers in

Neuroscience, 8:423, 2015. 1

[2] S. Kolenikov, D. Steinley, and L. Thombs. Statistics

in the social sciences: current methodological develop-

ments. John Wiley & Sons, 2010. 1

[3] R. B. Stein, E. R. Gossen, and K. E. Jones. Neuronal

variability: noise or part of the signal? Nature Reviews

Neuroscience, 6(5):389–397, 2005. 1

[4] R. K. Pathria and P. D. Beale. Statistical Mechanics.

Elsevier Science, 2011. 2

[5] R. Kubo. The fluctuation–dissipation theorem. Reports

on progress in physics, 29(1):255, 1966. 2

[6] M. Planck. Zur Theorie des Gesetzes der Energiev-

erteilung im Normalspectrum. Verhandl. Dtsc. Phys.

Ges., 2:237, 1900. 2
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