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Using an information-theoretic framework, we examine how an intelligent agent, given an accurate
model of its environment, synchronizes to the environment—i.e., comes to know in which state the
environment is. We show that the total uncertainty experienced by the agent during the process
is closely related to the transient information, a new quantity that captures the manner in which
the environment’s entropy growth curve converges to its asymptotic form. We also discuss how
an agent’s estimates of its environment’s structural properties are related to its estimate of the
environment entropy rate. If structural properties are ignored, the missed regularities are converted
to apparent randomness. Conversely, using representations that assume too much memory results
in false predictability.

PACS: 02.50.Ey 05.45.-a 05.45.Tp 89.75.Kd Santa Fe Institute Working Paper 01-03-020

I. INTRODUCTION: AGENTS AND
ENVIRONMENTS

The question of how an intelligent agent learns about
its environment arises in one fashion or another in many
disciplines—such as, economics [1,2], social psychology
[3,4], collective cognition [5,6], distributed computing
[7,8], automata theory [9], and reinforcement learning
[10]. For our purposes here, intelligent agent simply
refers to an observer that actively builds internal mod-
els of its environment using available sensory stimuli and
takes action based on these models. This terminology
follows the basic framework laid out in the field of re-
inforcement learning [10]. Here, however, we use an
information-theoretic approach to examine how an agent
learns about its environment. In so doing, we consider
two scenarios—learning about randomness and structure
in the environment and synchronizing to the environ-
ment’s hidden states.
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FIG. 1. The Learning Channel: The internal states
{A,B,C} of the system are reflected, only indirectly, in the
observed measurement of 1s and 0s. An agent works with this
impoverished data to build a model of the underlying system.
After Ref. [11].

A. The Learning Channel

The first of these scenarios, an adaptation of Shannon’s
communication channel [12], is illustrated in Fig. 1. We
assume that there is an environment (source or process)
that produces a sensory data stream (message)—a string
of symbols drawn from a finite alphabet (A). The task for
the agent (receiver or observer) is to estimate the prob-
ability distribution of sequences and, thereby, estimate
how random the environment is. In this scenario, we as-
sume that the agent does not know the environment’s
structure or internal dynamics; the range of the environ-
ment’s states and their transition structure are hidden
from the agent. Since the agent does not have direct
access to the environment’s internal, hidden states, we
picture instead that the agent simply collects blocks of
measurements from the data stream and stores the block
probabilities in a histogram. This histogram functions
for the agent as an internal model of the environment.
In this scheme, the agent can estimate, to arbitrary ac-
curacy, the probability of measurement sequences by ob-
serving for arbitrary lengths of time.

In the particular case illustrated in Fig. 1, the en-
vironment is a three-state deterministic finite automa-
ton. However, the agent does not see the internal states
{A,B,C}. Instead, it has access only to the measure-
ment symbols A = {0, 1} generated on state-to-state
transitions by the hidden automaton. The environment
depicted in Fig. 1 belongs to the class of stochastic pro-
cesses known as hidden Markov models. The transitions
from internal state to internal state are Markovian, in
that the probability of a given transition depends only
upon which state the process is currently in. However,

1



these internal states are not seen by the agent—hence the
name hidden Markov model [13,14] is often used to de-
scribe this type of environment. (In general, however, we
do not require that the environment be hidden Marko-
vian.)

B. Synchronization

In the second scenario we assume that the agent al-
ready has a correct, finite model of the environment in
hand before encountering the environment and making
measurements. The issue, then, is how difficult is it for
the agent, using sequences of environmental observations,
to determine in which hidden state the environment is.
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FIG. 2. Synchronizing to the Environment: The agent has
an accurate (5-state) model of the environment. In (a), the
agent has yet to make an observation and so can assume in
this case that all environmental states are equally likely. This
is denoted by the fractions inscribed in the agent’s model
states. In (b), one observation has been made, a 0, and the
agent adjusts its guess of the state probabilities accordingly.
Having seen a 0, the environment can only be in one of two
hidden states. In (c), sufficient measurement information has
been gathered so that the agent is synchronized. Having ob-
served the sequence 01, the agent is certain in which state
(D) the environment is.

An example of this scenario is illustrated in Fig. 2.
Imagine that you have planned a vacation to a remote,
deserted island where the weather is always three days
of sun followed by two days of rain. (Sunny days are en-
coded in the figure by a 1; rainy days by a 0.) Thus, you,
the intelligent agent, have an accurate model of the envi-
ronment. Having not yet arrived on the island, the least

biased inference is that each day in the weather pattern is
equally likely and that the chance of rain on your arrival
is 40%. (See Fig. 2(a).) If, after landing on the island,
you observe that it is raining, you realize that only two
days out of the five-day cycle are compatible with that in-
formation and so infer a new distribution of the likelihood
of the environment being in only two states. Your esti-
mate now is that tomorrow there is a 50% chance of rain.
(See Fig. 2(b).) The next day, as it turns out, no matter
whether it is sunny or rainy, you will be certain in which
state the environment is. (See Fig. 2(c) for the inference
that follows from the day being sunny.) We call this con-
dition of model-state certainty being synchronized, which
will be defined more carefully below. One benefit of be-
ing synchronized is that, unlike the previous days, from
today forward, you can accurately (and exactly) predict
the weather.

In this and related scenarios, several questions nat-
urally arise about the relationship between the agent
and its environment. For one, we might be interested
in knowing how many observations, on average, must be
made before the agent is synchronized. We might also
wonder how uncertain the environment appears to the
agent while it is synchronizing to it. This issue is of rele-
vance, for example, if the agent is compelled to act before
synchronization; perhaps it must make decisions—what
to wear, what vacation activities to plan—even though
it is not fully synchronized. We analyze this kind of un-
certainty in Sec. IV.

Questions concerning synchronization have also re-
ceived considerable attention in other domains. For
example, Refs. [15–18] look at schemes that allow an
agent to quickly determine the phase of a long peri-
odic sequence. Such schemes are central to a range of
communications and engineering applications. More re-
cently, LeBaron suggested that, in the context of an
autonomous-agent stock market, understanding the man-
ner in which the agents synchronize to their background
environment is essential to understanding market dynam-
ics [19].

II. INFERRING RANDOMNESS

We will revisit the two scenarios below. Before doing
so, however, we review several information theoretic mea-
sures of unpredictability, structure, and synchronization.

Let Pr(sL) denote the probability distribution over
blocks sL = s0, s1, . . . , sL−1 of L consecutive environ-
ment observations, si ∈ A. Then the total Shannon en-
tropy of these L consecutive measurements is defined to
be:

H(L) ≡ −
∑

sL∈AL

Pr(sL) log2 Pr(sL) , (1)

where L > 0. The sum runs over all possible blocks of
L consecutive symbols. The units of H(L) are bits. The

2



entropy H(L) measures the uncertainty associated with
sequences of length L. For a more detailed discussion of
the Shannon entropy and related information theoretic
quantities, see, e.g., Ref. [20].
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FIG. 3. Total Shannon entropy growth for a finite-memory
information source: a schematic plot of H(L) versus L. H(L)
increases monotonically and asymptotes to the line E + hµL,
where E is the excess entropy and hµ is the source entropy
rate. The shaded area is the transient information T. After
Ref. [21].

The environment entropy rate hµ is the rate of increase
with respect to L of the total Shannon entropy in the
large-L limit:

hµ ≡ lim
L→∞

H(L)
L

, (2)

The units of hµ are bits/symbol, and µ denotes the mea-
sure over infinite sequences that induces the L-block
joint distribution Pr(sL). Alternatively, one can define
a finite-L approximation to hµ,

hµ(L) = H(L)−H(L−1) , (3)
= H [SL|SL−1SL−2 . . . S0] , (4)

where H [X |Y ] is the entropy of the random variable X
conditioned on the random variable Y :

H [X |Y ] =
∑
x,y

Pr(x, y) log2 Pr(x|y) . (5)

One can then show [20] that hµ = limL→∞ hµ(L).
Thus, the entropy rate hµ is the uncertainty of a sin-

gle measurement, given that statistics over infinitely long
blocks of measurements have been taken into account.
In this sense the entropy rate quantifies the irreducible
randomness in the sequences observed by the agent—the
randomness that persists even after the agent accounts
for statistics over longer and longer blocks of observa-
tions.

III. INFERRING MEMORY

Having looked at length-L sequences, an agent can es-
timate the true environment randomness hµ by calculat-
ing hµ(L), defined in Eq. (3). With enough sensory data
it can get good approximations to hµ by using long se-
quences. But what if the agent has insufficient resources
to allow this? To answer this we must determine how the
estimates hµ(L) converge to hµ. One measure of conver-
gence is provided by the excess entropy E:

E ≡
∞∑

L=1

[hµ(L)− hµ] . (6)

The units of E are bits. The excess entropy is not a
new quantity; it was first introduced almost two decades
ago and sometimes goes by the names “stored informa-
tion,” “predictive information,” and “effective measure
complexity” [22–26]. For recent reviews see [21,27,26].

The excess entropy E can also be given a direct ge-
ometric interpretation. As is well known—see, e.g.,
Refs. [23,24,26,28], the excess entropy is the subexten-
sive part of H(L): that is,

E = lim
L→∞

[H(L)− hµL] . (7)

When the limit exists, this implies the following asymp-
totic form for entropy growth:

H(L) ∼ E + hµL , as L →∞ . (8)

Thus, we see that E is the L = 0 intercept of the lin-
ear function Eq. (8) to which H(L) asymptotes. This
observation is shown graphically in Fig. 3.

Fig. 3 illustrates the relationships between the growth
of the total entropy H(L), its rate of growth hµ, and
excess entropy E. It is clear geometrically from the fig-
ure that E is one quantity that measures the conver-
gence of hµ(L) and so it plays a role in how an agent
comes to know how random its environment is. But what
property does E quantify? The length-L approximation
hµ(L) overestimates the entropy rate hµ at finite L by an
amount hµ(L)− hµ. This difference measures how much
more random single measurements appear using the finite
L-block statistics than the statistics of infinite sequences.
In other words, this excess randomness tells us how much
additional information must be gained from the environ-
ment in order to reveal the actual per-symbol uncertainty
hµ. Thus, we can think of the difference hµ(L) − hµ as
the redundancy per symbol in length-L sequences: that
portion of information-carrying capacity in the L-blocks
which is not actually random, but is due instead to corre-
lations. The excess entropy E, then, is the total amount
of this redundancy and, as such, a measure of one type
of memory intrinsic to an environment.

Another way to understand excess entropy is through
its expression as a type of mutual information. One can
show [23,24] that the excess entropy is the mutual infor-
mation between the past and the future:

3



E = lim
L→∞

I[s0s1 · · · s2L−1; s2Ls2L+1s2L−1] , (9)

when the limit exists. The mutual information [20] is the
reduction in the entropy of one variable due to knowledge
of another; I[X ; Y ] ≡ H [X ] −H [X |Y ]. The variable Y
carries information about X to the extent to which, on
average, knowledge of Y reduces the uncertainty about
X .

Eq. (9) says that E measures the extent to which obser-
vations of the past provide information about the future
environment behavior. This information can be used to
predict the environment’s future behavior, but typically
more than E bits of information are required for optimal
prediction. For a discussion of the subtleties associated
with interpreting E and also the limitations of using E,
see Ref. [27]. Due to these limitations, we interpret E as
the amount of apparent memory of the environment and
do not use the descriptive phrases quoted above.

Eq. (9) also shows that E can be interpreted as the
cost of amnesia: If an agent suddenly loses track of its
environment, so that it cannot be predicted at an error
level determined by the entropy rate hµ, then the envi-
ronment suddenly appears more random by a total of E
bits.

IV. MEASURING SYNCHRONIZATION

A. Transient Information

With this review of measuring randomness and the en-
vironment’s apparent memory, we are now in a position
to address the questions raised in Sec. I B: If an agent has
a correct model of the environment in hand, how uncer-
tain is it while it makes its initial observations and syn-
chronizes to the environment? We begin by first defining
synchronization more precisely.

For finite-memory (E < ∞) environments, H(L) scales
as E + hµL for large L, Eq. (8). When this scaling form
is attained, we say that the agent is synchronized to the
environment. In other words, when

T(L) ≡ E + hµL−H(L) = 0 , (10)

we say the agent is synchronized at length-L sequences.
The quantity T(L) provides a measure of the agent’s de-
parture from synchronization. Note that T(L) ≥ 0.

We now define the the transient information T:

T ≡
∞∑

L=0

T(L) =
∞∑

L=0

[E + hµL−H(L)] . (11)

Note that the units of T are bits × symbols. In contrast
with E, the transient information is a new quantity, re-
cently introduced by us in Ref. [21].

The environment’s transient information, being a sum
of the agent’s finite-L departures from synchronization,

captures how difficult it is for an agent to synchronize to
that environment. We refer to T as transient since dur-
ing synchronization the agent’s prediction probabilities
change, stabilizing only after it has collected a sufficient
number of observations.

B. Synchronizing to Markovian Environments

To ground our interpretation, we can establish a di-
rect relation between the transient information T and
the amount of information required for synchronization
to order-R Markovian environments. An environment is
order-R Markovian if its states are directly observable
and the probability of the next state depends only upon
the values of the previous R states. The environment
depicted in Fig. 1 is not Markovian, since the states are
not directly observable. In the context of dynamical sys-
tems, a restriction to Markov processes might seem quite
limiting. However, in the field of reinforcement learning,
such restrictions are fairly common [10]; as they are in
statistical mechanics [29].

Assume that the agent has a correct model M =
{V , T } of the environment, where V is a set of states and
T is the rule governing transitions between states. The
task for the agent is to make observations and determine
the state v ∈ V of the environment. This is exactly the
process depicted in Figs. 2(a)-(c). Once the agent knows
with certainty the current state, it is synchronized to the
environment, and the average per-symbol uncertainty is
exactly hµ.

The agent’s knowledge of V is given by a distribution
over the states v ∈ V . Let Pr(v|sL,M) denote the distri-
bution over V , given that the particular sequence sL has
been observed and the agent has internal model M. The
entropy of this distribution measures the agent’s average
uncertainty in inferring v ∈ V . Averaging this uncer-
tainty over the possible length-L sequences, we obtain
the average agent-environment uncertainty:

H(L) ≡
−

∑
sL

Pr(sL)
∑
v∈V

Pr(v|sL,M) log2 Pr(v|sL,M) . (12)

The quantityH(L) can be used as a criterion for synchro-
nization. The agent is synchronized to the environment
when H(L) = 0—that is, when the agent is completely
certain about the state v ∈ V of the mechanism gener-
ating the sequence. When the condition in Eq. (10) is
met, H(L) = 0, and the uncertainty associated with the
prediction of the next state is exactly hµ.

However, while the agent is still unsynchronized,
H(L) > 0. We refer to the total average uncertainty
experienced by an agent during the synchronization pro-
cess as the synchronization information S:

S ≡
∞∑

L=0

H(L) . (13)
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The synchronization information measures the total
agent-environment uncertainty H(L) experienced by an
agent during synchronization. If the agent is in a position
where it must take immediate action, it does not have
the option of waiting for synchronization. In this cir-
cumstance, the synchronization information S provides
an information-theoretic (average-case) measure of the
error incurred by the agent during the synchronization
process.

C. Synchronization and Transient Informations

For an order-R Markovian environment, one can es-
tablish a direct relationship between the synchronization
information S and the transient information T:

S = T +
1
2
R(R + 1)hµ . (14)

A detailed proof of this result was given by us in Ref. [21].
Here, we sketch the key pieces in the argument.

First, note that for L ≥ R, H(L) = E + hµL, and
thus T(L) = 0 and H(L) = 0, for all L ≥ R. Second,
observe that H(L) = H(R) −H(L) for L < R. This re-
sult follows by recalling that, since the process is order-R
Markovian, the states of the agent’s model are in a one-
to-one correspondence with the directly observable states
of the Markov process. At L = 0, no measurements have
been made, and the agent’s uncertainty over its states
is exactly H(R), the entropy of an R-block. At L > 0,
the observer has gained H(L) bits of information about
the current state, and so the agent’s state-uncertainty is
reduced from H(R) to H(R) − H(L). Once one estab-
lishes that H(L) = H(R) −H(L), Eq. (14) follows from
relatively simple manipulations of finite sums.

Before moving on, there are several additional com-
ments we should make to clarify the transient informa-
tion and its relevance to intelligent agents.

First, the transient information T—together with the
entropy rate hµ and the order R of the Markov process—
measures how difficult it is to synchronize to an environ-
ment. If a system has a large T, then, on average, an
agent will be highly uncertain about the internal state
of the environment while synchronizing to it. Thus, T
measures an important structural feature of the environ-
ment: how difficult it is for an agent to synchronize to
it.

The second comment concerns a distinction between
the transient information T and the excess entropy E.
Note that Eq. (14) implies that the E does not play a di-
rect role in synchronization. (Although it is the case the
E forms a lower bound for T [21].) Moreover, the excess
entropies for all periodic processes of a given period are
the same; a period-p process has E = log2 p. However,
the transient information is not the same for all period-p
sequences. In fact, the transient information of period-p
sequences varies considerably [21,30]. Since hµ = 0 for a

periodic sequence, we have T = S, giving, in this case, a
direct interpretation of T as the difficulty of synchroniza-
tion. Thus, there is a range of different synchronization
behaviors within the set of periodic sequences of a given
period; these structural distinctions are not captured by
the excess entropy E.

Finally, it turns out that the transient information T is
not directly proportional to the average number of mea-
surements needed to synchronize. For example, there
are three sets of period-5 sequences with distinct H(L)
behaviors. Direct calculation shows that, of these three
sets, the set including the sequence (10101)∞ requires the
most observations, on average, to synchronize. It does
not have the largest T among the period-5 sequences,
however. That honor is reserved for (10000)∞ [21]. Thus,
the transient information does not directly measure the
time it takes to synchronize. Instead, it measures the
total uncertainty experienced by the agent during the
process of synchronizing.

V. UNTANGLING SOURCES OF RANDOMNESS
AND STRUCTURE

Using hµ, E, and T, one can distinguish between envi-
ronments structured in qualitatively and quantitatively
different ways. See, e.g., Refs. [21,26,31] and references
therein. But how might an agent, gathering statistics
over larger and larger blocks of observations, estimate
hµ and E? Not surprisingly, errors in the estimation of
these quantities are linked; this can be seen graphically
in Fig. 3. A misestimate of hµ affects estimates of E
and T and vice versa. We consider three special cases
of the inter-relationship of these quantities and draw out
the consequences for how an agent comes to know its
environment.

A. Disorder as the Price of Ignorance

First, let’s recall the consequences for an agent at-
tempting to estimate the environment’s randomness hµ

via the approximation hµ(L). Assuming the agent has
a finite memory, stopping the estimate at finite L is a
necessity. This results in an entropy rate hµ(L) which
is almost always larger (and never smaller) than the ac-
tual rate hµ. That is, the environment appears more
random if the agent ignores correlations between obser-
vations separated by more than L steps.

For example, suppose the environment is periodic: the
environment consists of the repeating length-16 sequence
1010111011101110. The environment entropy rate is thus
0. However, if the agent only keeps track of statistics
over length-4 sequences, then the agent will estimate
hµ(4) ≈ 0.303 bits per symbol. The environment ap-
pears random to the agent, even though hµ = 0.
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We are assuming here that, while the agent is only
able to account for statistics over sequences of length L,
it is nevertheless able to estimate these probabilities to
arbitrary accuracy. When this is not the case, there are
schemes that an agent can employ to improve on its esti-
mation of block probabilities; see, for example, Ref. [32].

B. Instantaneous Synchronization and Predictability

Second, let’s consider a scenario in which the agent
happens to know the exact amount of apparent environ-
mental memory E. When this is the case, what happens
to the agent’s estimates of how random the environment
is? In particular, what happens if the agent assumes it
is synchronized to the environment at some finite L?

0 L

E > 0

H(L)
E+h  Lµ

E = 0

E+h  Lµ

^

FIG. 4. Assumed synchronization converted to false pre-
dictability: Schematic illustration of how an agent, assuming
it is synchronized, makes an underestimate chµ (slope of dot-
ted line) for an environment with excess entropy E > 0 and
entropy rate hµ (slope of dashed line).

In so doing, the agent is assuming H(L) = E+ hµL at
that L. The geometric construction for this scenario is
given in Fig. 4. In effect the environment is erroneously
considered to be a completely observable Markovian pro-
cess in which H(L) has converged to its asymptotic form
exactly at some finite L [21,31]. If the agent then uses
its value for E, one arrives at the estimator ĥµ where

ĥµ ≡ H(L)−E
L

6= hµ . (15)

The line E + ĥµL appears fixed at E when that inter-
cept should be lower at the given L. The result, easily
gleaned from Fig. 4, is that the entropy rate hµ is under-
estimated as ĥµ. In other words, the agent will believe
the environment to be more predictable than it actually
is.

C. Assumed Synchronization Implies Reduced
Apparent Memory

We now consider a different, less straightforward situa-
tion. Suppose that, because of some prior knowledge, the
agent knows the exact environment entropy rate hµ. For
example, the agent could know before making any obser-
vations that the environment was periodic and, hence,
had an hµ of zero.

Given this situation, what happens if the agent as-
sumes it is synchronized, when it is not? Figure 5 il-
lustrates this situation. In this case, the agent infers an
excess entropy Ê that is less than the true environment
excess entropy E.

0 L

E > 0 H(L)

E +h  Lµ

E = 0

E+h  Lµ

Ê

^

FIG. 5. Assumed synchronization leads to less apparent
memory: Schematic illustration of how assuming synchro-
nization to an environment, in this case implicitly assuming
H(L) = E + hµL, leads to an underestimate bE of the actual
memory E > 0.

If, at a given L, the agent approximates the entropy-
rate estimate hµ(L) = H(L) − H(L − 1) by the true
entropy hµ, then the offset between the asymptote and
H(L) is simply E+hµL−H(L). From Fig. 5 we see that
we have a reduced apparent memory Ê ≤ E of

Ê = H(L)− hµL . (16)

If, instead of using the exact environment entropy rate
hµ, as we just did, the agent uses the estimate hµ(L),
the agent will infer an excess entropy that is even smaller
than Ê. To see this, note that hµ(L) ≥ hµ and replace hµ

by hµ(L) in Eq. (16). Thus, assuming synchronization,
in the sense that hµ(L) = hµ, leads one to underesti-
mate the apparent memory E. And so, the environment
appears less structurally complex than it is.

In this section we considered just three among a num-
ber of possible tradeoffs encountered during an agent’s
inferring its environment’s structure and memory. We
discuss these tradeoffs more thoroughly, although in a
different context, in Ref. [21]. The main lessons that
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emerge from this analysis are that unseen memory is con-
verted to unpredictability, assumed synchronization leads
to underestimating environmental structure, and ignor-
ing environmental structure leads to underestimating its
randomness.

VI. CONCLUSION

We have looked at a range of issues concerning how an
agent synchronizes to its environment. In so doing, we
reviewed several information theoretic properties of the
environment: the entropy rate hµ, the excess entropy
E, and the transient information T. The main result
reported here is contained in Eq. (14), which states that
the total uncertainty experienced while an agent synchro-
nizes to a Markovian environment is directly related to
T. Thus, the T captures that feature of an environment
which makes it difficult to synchronize to.

In an effort to understand the roles of the various struc-
tural quantities and to show the consequences of ignoring
them in estimating environmental randomness, structure,
and synchronization, we considered various trade-offs be-
tween finite-L estimates of the excess entropy E and the
entropy rate hµ. In particular, we argued that if an agent
does not take one or another into account (by, say, as-
suming it is synchronized, when it is not), the agent will
systematically over- or underestimate an environment’s
entropy rate hµ. As a result, even if an agent focuses
only on quantifying the randomness of its environment,
it must nevertheless have some method that accounts for
the environment’s structural features.
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