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Abstract

Local causal-states are latent representations that capture or-
ganized pattern and structure in complex spatiotemporal sys-
tems. We expand their functionality, framing them as space-
time autoencoders. Previously, they were only considered as
maps from observable spacetime fields to latent local causal-
state fields. Here, we show that there is a stochastic decoding
that maps back from the latent fields to observable fields. Fur-
thermore, their Markovian properties define a stochastic dy-
namic in the latent space. Combined with stochastic decod-
ing, this gives a new method for forecasting spacetime fields.

Introduction

Physics-based representation learning is a key emerging tool
for analyzing high-dimensional nonlinear systems (Willard
et al. 2020; Brunton, Noack, and Koumoutsakos 2020),
and one with a long history in dynamical systems (Crutch-
field and McNamara 1987). Nonlinear systems often re-
quire additional tools beyond computer simulation to ex-
tract actionable insight from the complex behaviors they
exhibit. There are two main aspects to physics-based rep-
resentation learning. The first is dimensionality-reduction:
Learn a low-dimensional representation of a behavior—such
as coherent structures in fluid flows (Holmes et al. 2012;
Peacock and Haller 2013)—that provide a more human-
interpretable accounting for the full system’s behavior. The
second is generative modeling: Provide a modeling alterna-
tive to numerical simulation of the equations of motion that
can be applied directly to data. This is particularly helpful
if the proper equations of motion are unknown. For high-
dimensional systems the data-driven models are typically
computationally less expensive than direct numerical sim-
ulation.

For learning representations of high-dimensional nonlin-
ear dynamics, several approaches have been introduced.
Proper Orthogonal Decomposition (POD)—rather similar
to Principle Component Analysis (PCA)—is a canonical
method for fluid flows (Holmes et al. 2012; Rowley and
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Dawson 2017). POD modes provide a low-dimensional la-
tent representation that can give interpretable insights into
a flow’s large-scale organization. Flow equations of motion
may also incorporate a set of POD modes, through Galerkin
projection, giving a truncated set of ODEs as a generative
model that is less expensive to simulate than the full Navier-
Stokes PDE. Like PCA, the POD modes are linear latent
representations. For that matter, PCA is equivalent to a lin-
ear autoencoder (Baldi and Hornik 1989). Representation
linearity substantially restricts the complexity of flow struc-
tures that can be modeled appropriately.

Addressing this, the Perron-Frobenius and Koopman op-
erators recently gained popularity as nonlinear general-
izations for spectral (modal) analysis of high-dimensional
dynamical systems (Froyland and Padberg 2009; Mezi¢
2013; Klus et al. 2019). As with nonlinear autoencoders,
these operators’ modes are typically used for nonlinear
dimensionality-reduction.

Similarly, the Koopman operator (Alexander and Gian-
nakis 2020) and autoencoders (Hernandez et al. 2018) are
now used for generative modeling which, in the dynamical
systems setting, is a form of predictive forecasting. As an
aside, reservoir computing was shown to be effective for pre-
dictive modeling (Pathak et al. 2018). It is somewhat anal-
ogous to Koopman operator approaches, as the system dy-
namics are learned in a higher-dimensional latent space.

Success with operator-approximation methods turns on a
fortuitous matching of their chosen (or inherent) function-
basis dictionary and a system’s emergent structures. The
reality, though, is that spatially-extended nonlinear sys-
tems generate a diverse set of complicated organizations—
vortices, target patterns, dislocations, and the like. In short,
these emergent structures are not easily or naturally modeled
in terms of known or numerically-approximated spatially-
global function bases. Recent work employs nonlinear au-
toencoders (Lusch, Kutz, and Brunton 2018; Mardt et al.
2018; Otto and Rowley 2019) as a means to bypass explicit
dictionary choices. Issues still persist with these methods,
however; finding the “best” finite-dimensional operator ap-
proximations for a given application remains an open prob-
lem.

Local causal states are yet another tool for physics-based



representation learning. They start from a markedly different
conceptualization of latent space, however, with the promise
of learning the more complex emergent patterns generated
by nonlinear pattern-forming systems. Recall that reduc-
ing dimension through spectral decomposition implicitly
assumes algebraic representations that are spatially global
and spatially coherent. In contrast, local causal states are
spatially-local latent representations that are learned at each
point in spacetime. As such, they are better adapted to cap-
ture structures that self-organize from local interactions gov-
erning the dynamics—structures that consist of many lo-
calized or “coherent” substructures (Rupe and Crutchfield
2018; Rupe et al. 2019). Crucially, since the representations
are learned locally, the latent space shares the same coordi-
nate geometry as the observable spacetime fields. This adds,
among other benefits, a helpful visual interpretability. The
following formally connects local causal states and space-
time autoencoders and presents preliminary results for pre-
dictive forecasting using them.

Local Causal States

The local causal states are part of the computational me-
chanics framework (Crutchfield 2012), which learns non-
parametric models of dynamical systems in an unsupervised
fashion using the causal equivalence relation:

Pt ~e prr <= Pr(Futurei|p;) = Pr(Futurey |py) .

The induced equivalence classes over pasts {p;} are a sys-
tem’s causal states—the unique minimal sufficient statistic
of the past for optimally predicting the future.

For spatiotemporal systems, lightcones are local features
that represent pasts and futures; see Fig. 1. Lightcones cap-
ture the history and propagation of local interactions in the
system through space and time. A lightcone configuration
is an assignment of observable values to the lightcone tem-
plates shown in Fig. 1. Two past lightcone configurations £
and ¢ are causally equivalent if they have the same condi-

tional distribution over future lightcones L+:
by ~e by = Pr(LT[(7) =Pr(LT[(]).

The resulting equivalence classes are the system’s local
causal states (Shalizi 2003). They are the unique minimal
sufficient statistic of past lightcones for optimally predicting
future lightcones.

Encoding

The lightcone equivalence relation can be recast as a func-
tion that generates the causal equivalence classes—the e-
Sfunction e : £~ — £ maps from past lightcone configurations
£~ to local causal states £. This local mapping from observ-
ables to their corresponding latent local causal-state repre-
sentation is central to using and interpreting our method.
Specifically, €(¢7) is applied in parallel to all points (7,t)
in a spacetime field X, mapping the entire field to its as-
sociated local causal state field S = ¢(X). Every feature
X (7,t) is mapped to its latent variable (local causal state)
via its past lightcone & = S(7,t) = €(¢™(7,t)). One re-
sult is that the global latent spacetime field S maintains Xs
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Figure 1: Lightcones: past lightcone L™ (rg, to) (red) and fu-
ture lightcone L™ (7, o) (blue) shown for spacetime point
X (ro,to) (green) for a system with radius R = 1 interac-
tions, such as the map lattice example shown below.

coordinate geometry such that S(7, t) is the local latent vari-
able corresponding to the local observable X (7, t). (This is
markedly unlike neural network autoencoders.) The shared
geometry of the observable space X and the latent space
S facilitates extracting physical features of X from special
(e.g., algebraic) properties in the corresponding spacetime
region in S.

For real-valued systems, such as the map lattice analyzed
shortly, local causal state inference requires a discretiza-
tion to empirically estimate Pr(L*|¢™) (Goerg and Shalizi
2012). Rather than discretize observable space, we discretize
in the lightcone feature space using K-Means to cluster light-
cones using distance metric:

ch(a, b)E \/(al_b1)2 +...+ e—Td(n)(an_an) (])

where a and b are flattened lightcone vectors, d(n) is the
temporal depth of the lightcone vector at index n, and 7 is
the temporal decay rate (1/7 can be thought of as a coher-
ence time).

Two past lightcones are considered v~ -equivalent if they
are placed into the same cluster C'~ by the distance-based
clustering:

Y ()= () = {;€eCTandl;€CT . (2)
Similarly for future lightcones.

This allows us to build empirical distributions over

lightcone-clusters from simple counting. Two past lightcone

clusters are considered -equivalent if they have (approxi-
mately) the same empirical predictive distributions:

V(C;) = ¥(C)) < Pr(CTIC)~Pr(CTIC)) . (3)
This approximates the e-function as:

() =p(y (7). )
Decoding

Previously, when performing coherent-structure segmenta-
tion the e-function encoded observable spacetime fields X



to a corresponding latent local causal state field S (Rupe and
Crutchfield 2018; Rupe et al. 2019). Such dimensionality-
reduction identifies coherent structures pointwise in observ-
able spacetime fields. We now introduce, for the first time,
the e~ !-function—a stochastic decoding that maps from la-
tent spacetime fields S to reconstructed observable fields X.

Each local causal state £ in .S is defined by its predictive
distribution Pr(LT|£), since every past lightcone configura-
tion £; in & has, by definition, the same predictive distribu-
tion: Pr(L*|¢;) = Pr(L*|¢), for all £; € &. The decod-
ing X = ¢~1(9) is performed by sampling the distributions
Pr(L*|¢) for each £ in S as follows. For each spacetime co-
ordinate (r, t):

1. Retrieve the local causal state £ = S(r,t);
2. Sample a future cluster C* from Pr(C|¢);

3. Retrieve the centroid £+ of C'T; and then
4. Place /+ in X, with base at (r, t).

Since we use K-Means to cluster both past and future
lightcones, we take the centroid /1 as a representative real-
valued future lightcone for cluster C. Due to the spacetime
extent of nontrivial future lightcones, each point X (r,t) €
X makes predictions from several local causal states. In fact,
for future-lightcone depth 4" a prediction will be made from
each point in its ™t -depth past lightcone. The ultimate pre-
diction for X (r, t) averages these predictions, with the same
time-exponential weighting used in the lightcone metric of
Eq. (1). That is, predictions made further out in time are dis-
counted exponentially compared to more recent predictions.

Combining the e-function encoding with the ¢ ~!-function
decoding, the local causal states form a spacetime autoen-
coder. As shown in the top portion of Fig. 2, the e-function
encodes an observable spacetime field X to the compressed
latent field S and e~ decodes to a reconstructed observable
field X = ¢ 1(S). Said another way, the identity I ~ eoe~*
is learned through the causal state bottleneck S.

There are several points to emphasize. First, unlike neural
network autoencoders, the local causal states are nonpara-
metric models. And so, rather than using the encoding and
decoding together to train parameters as in neural network
autoencoders, the e-map and its inverse are learned directly
by approximating the local causal equivalence relation from
data. Second, as already noted, a crucial distinction is that
the e-map encoding is done locally so that the latent space
and observable space share spacetime coordinate geometry.
The latent space of neural network autoencoders, in contrast,
does not share geometry with its inputs due to how their bot-
tleneck is created. For local causal states approximated from
real-valued spacetime data, the bottleneck comes from hav-
ing a finite number of latent local causal states and the latter
are determined by the inherent structural dynamics. How-
ever, this alone is a rather weak notion of autoencoder. Last,
along these lines, accounting for temporal evolution is criti-
cal for capturing pattern and structure that is spontaneously
generated by complex spatiotemporal systems. Accounting
for dynamics leads to a more powerful view of a causal state
autoencoder.

Latent Space Dynamics

In fact, a stochastic dynamic can be defined over the local
causal states. This combined with ¢! decoding gives space-
time forecasting: infer the local causal states and their dy-
namics up to the present time, evolve the states forward in
time, then decode to a forecasted observable field. This view
of the local causal states as predictive spacetime autoen-
coders is much more useful than the weak notion above. It
synthesizes the two main aspects of representation learning
in physics—dimensionality-reduction and generative mod-
eling. For nonlinear dynamical systems the generative mod-
eling of interest is predictive forecasting, which generates
sequential states and captures how they are correlated and
organized in time.

The local causal state field exhibits Markov shielding
(Shalizi 2003). The e-function uniquely determines a local
causal state £ = S(r,t) from a full past lightcone ¢~ (r, t)
of observables. If the local causal states are known for each
point in ¢~ (r, t), only the states in the immediately preced-
ing time step are required to determine £. That is, S(r,t) is
independent of the local causal states in £~ (r, ), given the
local causal states in its depth-1 past lightcone—the local
neighborhood n(S(r,t — 1)) of S(r,t — 1).

Markov shielding was derived in the setting of stochastic
field theories, where the observable field X is not from a de-
terministic dynamical system. The stochasticity inherent in
the system, along with Markov shielding, implies the tempo-
ral dynamics over the local causal states is a stochastic cellu-
lar automaton (SCA), where S(r, t) is given by a stochastic
function ¢ of the local neighborhood n(S(r, ¢ — 1)).

While our ultimate interests lie in deterministic systems
(e.g., those governed by partial differential equations), the
local causal state dynamics is still an SCA in this case. For
systems with finite-range local interactions, which define a
system’s lightcones, a site value X (r,¢) in X is uniquely
determined by the past lightcone of X (r,t). In fact, for de-
terministic, non-delay dynamics X (r,¢) is uniquely deter-
mined by (X (r,t — 1)). In this way, Markov shielding in
the local causal states is inherited from the dynamics of the
observable field. Since the local causal states are compressed
(local) representations, the local causal states alone are not
sufficient for deterministic evolution and, in general, the in-
formation loss in the bottleneck implies the dynamic ¢ over
the local causal states must be stochastic. Note that this ar-
gument is agnostic to the functional form of the observable
dynamics (i.e., the equations of motion). In this way, the lo-
cal causal states and their SCA dynamic ® provide a uni-
versal probabilistic model for spatially-extended dynamical
systems.

Consider a finite set = of symbols (e.g., local causal state
labels). A radius-R deterministic cellular automata (CA)
over E is specified by a local update rule ¢ : n — & that
is a deterministic function of radius- R neighborhoods 7. In
1 + 1-dimensions (one space, one time), the neighborhoods
are tuples of symbols from Z. For example, in a radius-1
CA in 1 + 1-dimensions: {(r,t + 1) = ¢(n(é(r,1))) =
o (&(r — 1,1),&(r, t)é(r + 1,t)). The global CA dynamic
®, that evolves spatial configurations over a time step, ap-
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Figure 2: Spacetime local causal-state autoencoder: (Top-left) Observable spacetime field X [0, T'] of the circle map lattice used
for training. A 250-site portion of the 20, 000 spatial sites are shown (horizontal), which are evolved for an initial 200 time
steps (vertical) for training. (Top-middle) Encoded latent local causal state field S = e(X [0, T}) Each unique color represents
a unique local causal state. This compressed latent space provides a compressed representation of X [0, T'| for dimensionality-
reduction. (Top-right) Reconstructed observable field X = ¢~1(.9), decoded from S. (Bottom-middle) Forecasted local causal

state field, evolved forward in time after inference, starting at 7' = 199, using S = ®(.5) as described above. (Bottom-right)

Forecasted observable field X, decoded from the evolved local causal state field X = e_l(g). (Bottom-left) Ground-truth
observable field X [T, 300], evolved using the circle map lattice equation of motion.

plies the local update ¢ synchronously and in parallel across
a configuration. For the more general stochastic CAs, the
local update ¢ is still a function of local neighborhoods 7.
However, instead of outputting a single symbol &, it outputs
a probability mass function (PMF) over symbols from =.
Deterministic CAs then are the special case when the PMFs
assign unity mass to and only one symbol.

For a given observable spacetime field X, once the asso-
ciated local causal state field S = €(X) has been inferred,
the state dynamic @ can be estimated from S, again by sim-
ple counting. Empty histograms are initialized for all possi-
ble neighborhoods 7 of local causal states. For a particular
neighborhood 7; found at S(r, t), the histogram of ¢(1;) is
incremented at £ for £ = S(r,t + 1).

Since real-valued systems require approximation schemes
and models are always inferred from finite data, using ® es-
timated in this way to evolve the local causal states forward
in time may yield a neighborhood 7 not seen in the original
inferred field S. The local dynamic ¢ outputs an empty his-
togram in this case. In practice, to circumvent this issue we
keep and update a separate PMF over local causal states that
is the spatial distribution over the local causal states.

At each t we estimate a histogram over the local causal
states according to the spatial configuration S(t) of the local

causal state field. If an empty histogram is encountered dur-
ing the evolution S(¢ + 1) = ®(S(¢)), a local causal state
for that point is chosen from the spatial PMF instead. This
heuristic leaves room for variation, and we use a running-
estimate spatial distribution since the distribution over local
causal states generally is not temporally stationary.

Forecasting Spacetime Fields

To demonstrate that local causal states are spacetime autoen-
coders, along with their predictive forecasting, the following
presents preliminary results for a nonlinear map lattice sys-
tem based on the circle map. While the choice is somewhat
arbitrary, we selected the circle map lattice due to the com-
plexity of the self-organized patterns and structures it gener-
ates. Map lattices are also markedly simpler to simulate than
PDE:s, such as the Kuramoto-Sivashinsky equation popular
in data-driven forecasting explorations (Pathak et al. 2018;
Otto and Rowley 2019), that require elaborate numerical in-
tegration schemes.

A one-dimensional map lattice (Crutchfield and Kaneko
1987) is a spatially-extended dynamical system that evolves
configurations on a discrete spatial lattice Z in discrete time



steps according to the local dynamics:
a(r,t+1)=(1—a)f(z(r,t)+

!
5 [f(z(r+1,8) + fz(r—1,8))] ,
where r is the spatial index, ¢ is the time index, « is the cou-
pling strength, and f is an iterated map of the unit interval:
z(t+1) = f(z(t)), z € [0,1]. We use the circle map:

&)

K
f@)=z4+w-— 5 sin(27rz) mod 1,
71'

where w is a phase shift and K is the strength of the nonlin-
earity. Following (Gravner and Johnson 2018), Fig. 2 uses
w=0.5, K =1.0,and o = 1.0.

The map lattice’s complex behaviors seen there in the
observable spacetime field X in the left panels arise from
two competing background domains. One is spatial period-
2 (vertical stripes) and the other is temporal period-2 (hori-
zontal stripes). Interfaces between these domains (also know
as dislocations in the statistical mechanics literature) diffuse
through space over time and sometimes pairwise annihi-
late upon collision. Due to pairwise annihilation, the macro-
scopic behavior of domains and the interactions of their in-
terfaces is not stationary in time.

When evolved from random initial conditions, as done
here, there are initially many domain interfaces that quickly
annihilate. These pairwise interactions decrease over time
until the system’s spacetime behavior is mostly comprised
of domain regions. We are interested here in intermediate
times that have a balance between dislocation dynamics and
(meta-)stable domain regions. To this end, we let the map
lattice evolve for 300 time steps before starting local causal
state inference. Note that time ¢ = 0 in Fig. 2 starts after this
initial transient time. We use a lattice size of N = 20, 000
(only a portion of which is shown in Fig. 2) and periodic
boundary conditions for our map lattice.

After the initial 300-step transient time, the map lattice
is evolved for another 7' = 200 time steps to produce the
training observable field X [0, T that is used for local causal
state inference. For inference we use past lightcone depth
h™ = 6, future lightcone depth h™ = 1, and propagation
speed ¢ = 1 (determined by the radius R = 1 local inter-
actions of the map lattice). In the lightcone clustering step,
i.e. y-equivalence, we use K = 10 for past lightcone clus-
tering and K = 40 for future lightcone clustering. For -
equivalence, we use hierarchical agglomerative clustering,
using a x? test with o = 0.05 for distribution comparison.

After inference, the training observable field X0, T
is encoded using the approximated e-map, e({~) =
0 (fy_ (e )), to produce the associated local causal state field
S = ¢(X][0,T7), shown in the top-middle panel of Fig. 2.
Each unique local causal state is assigned an arbitrary inte-
ger label during inference, and these integer labels are then
assigned arbitrary colors for the latent field visualizations in
Fig. 2. Each unique color seen in S identifies a unique local
causal state at that point.

As the two domains in X are period-2, each is described
by two local causal states in S = ¢(X). The result is that

only four local causal states capture the majority of the
observed spacetime behavior, with additional local causal
states capturing particular interactions at the domain inter-
faces. From the dimensionality-reduction perspective, these
are the structures that one would like to capture and in terms
of which we would then re-express the system’s evolution.
Note that at the “microscopic” level, in terms of the full spa-
tial lattice, the dynamics of the system are deterministic, fol-
lowing Eq. (5), while the evolution of the reduced “macro-
scopic” description is probabilistic, following the stochastic
diffusion and annihilation of domain interfaces.

Recall that the ¢~ !-function is also learned during in-
ference, and it is then used to create the reconstruction
X = ¢71(9) of X[0,T], shown in the top-right panel of
Fig. 2. The reconstructed observable field X qualitatively
reproduces the macroscopic behavior observed in X0, 77,
even though the microscopic details are noisy due to the
stochasticity of the decoding. Given that the latent space .S
is comprised of just 10 local causal states, the reconstructed
observable field X = ¢~1(S) is surprisingly faithful to the
original observable field X [0, T1.

Once the local causal state field .S has been inferred, the
stochastic latent space dynamic ® can be estimated, as de-
scribed above. Using the estimated dynamic, the latent space
is evolved forward in time to produce a forecasted local

causal state field S = ®(.5). In the bottom-middle of Fig. 2
the local causal state field is predicted forward in time an-
other 100 time steps. Note that in the original inferred latent
space field S = e(X 0,T ]) no local causal states are placed
in regions that do not have full past or future lightcones of
the chosen depths. These points are known collectively as
the margin of the latent space field S. Due to the periodic
boundaries in space, there are only time margins. Margin
points are assigned a unique label in .S, rather than just being
omitted, so that S is the same shape as the observable field
it is trained on. Since we use future lightcone depth h* = 1
here, there are no local causal states assigned at time step
199. Thus, as can be seen in the bottom panels of Fig. 2, the
forecast starts at 7" = 199.

There are several points to note for the forecasted local
causal state field S = ®(S) in the bottom-middle panel.
We again emphasize that the following analysis is enabled
and enhanced by the visual interpretability afforded by the
shared coordinate geometry of the observable and latent
spaces. From visual inspection, we can see that the most sta-
ble and well-predicted regions are the periodic domains. By
relying on the previous-time spatial distribution when null
PMFs are encountered applying ®, the domain regions are
stable to incorrect predictions, to some degree. We can see
this, for instance, in the predicted domain region around site
r = 140. There is noise present in the prediction of this do-
main, as there are local causal states present other than the
two states that identify this domain in the same region in the
inferred field S = (X0, T) just before the forecast starts.
The domain persists in the prediction, despite this noise.

However, resilience to incorrect predictions does not hold
generally. As can be seen, for instance on the right-hand side

of S after ¢t ~ 220, prediction errors can sometimes cause



cascading failures in the forecast, which typically travel
around the propagation speed of ¢ = 1. Once a cascading
failure starts, it is generally not recoverable due to instabil-
ity in the inferred dynamic and the forecast breaks down.

Again using the e~ !-function, we decode S to produce a

forecasted observable field X = ¢~ 1(S). As with the re-
constructed field X, the small-scale details are noisy, but
the large-scale behavior predicted by the local causal state
field S is reproduced in the observable forecast. Comparing
to the ground-truth observable field X [T, 300], provided by
evolving the map lattice forward another 100 time steps af-
ter creating the training field, we see that the domain regions
are forecasted well. Several interfaces remain stable for the
full duration without breaking down into a cascading failure,
such as those near r = 140.

Ideally, the forecast should not produce the kind of cas-

cading failures seen in S and X. These are likely due to
empty PMFs encountered when applying the estimated la-
tent space dynamic ®. Clearly, there is room for improve-
ment in the algorithms, heuristics, and training protocols.
These preliminary results nonetheless demonstrate the two-
fold benefit of the local causal states for physics-based repre-
sentation learning: dimensionality-reduction and generative
modeling—predictive forecasting, in this case. However the
method is improved, we suspect there will ultimately be a
trade-off between these two aspects of local causal states.
Allowing for more local causal states to be learned dur-
ing inference (the hyperparameter choice of K in K-Means
cluster over past lightcones sets an upper bound to the pos-
sible number of states that can be learned) will generally
increase forecasting performance, but at the same time de-
tract from with visual interpretability of the latent space for
dimensionality-reduction.

Python source code and a Jupiter notebook that produces
the results shown in Fig. 2 is available at https://github.com/
adamrupe/spacetime_autoencoders.
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