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We recount recent history behind building compact models of nonlinear, complex processes and
identifying their relevant macroscopic patterns or “macrostates”. We give a synopsis of computa-
tional mechanics, predictive rate-distortion theory, and the role of information measures in moni-
toring model complexity and predictive performance. Computational mechanics provides a method
to extract the optimal minimal predictive model for a given process. Rate-distortion theory pro-
vides methods for systematically approximating such models. We end by commenting on future
prospects for developing a general framework that automatically discovers optimal compact models.
As a response to the manuscript cited in the title above, this brief commentary corrects potentially
misleading claims about its state space compression method and places it in a broader historical
setting.
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I. INTRODUCTION

Building compact models of nonlinear processes goes to

the heart of our understanding the complex world around

us—a world replete with unanticipated, emergent pat-

terns. Via discovery mechanisms that we do not yet un-

derstand well, we eventually do come to know many of

these patterns, even if we have never seen them before.

Such discoveries can be substantial. At a minimum, com-

pact models that capture such emergent “macrostates”

are essential tools in harnessing complex processes to use-

ful ends. Most ambitiously, one would hope to automate

the discovery process itself, providing an especially useful

tool for the era of Big Data.

One key problem in the larger endeavor of pattern discov-

ery is dimension reduction: reduce the high-dimensional

state space of a stochastic dynamical system into smaller,

more manageable models that nonetheless still capture

the relevant dynamics. The study of complex systems

always requires this. For better or worse, it is frequently
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accomplished in an ad hoc fashion [1, 2]. Indeed, it is

desirable to have an overarching framework for this kind

of analysis that can be applied across the many mani-

festations of complex systems, but to date such a broad

theory has not been forthcoming. Thus, the need for this

kind of research remains and is more timely than ever [3].

Not surprisingly, it has a long and active history.

This is the setting into which steps a recent arxiv.org

preprint “A framework for optimal high-level descriptions

in science and engineering—preliminary report” [4]. As

a solution to the problem of dimension reduction, it ad-

vocates for state space compression (SSC): Form a com-

pressed variable Yt that predicts a target statistic Ωt of

a system’s behavior . . . Xt−1XtXt+1 . . .. When viewed

in a historical context, it is unclear if SSC is more than

an alternative notation and vocabulary for extant ap-

proaches to dimension reduction. Here, we explain this

question. We are concerned about several instances in

Ref. [4] where statements are made about research we ei-

ther participated in or are quite familiar with that do not

accurately reflect that work. The following comments air

our concerns, providing several constructive suggestions.

Our response to Ref. [4] is organized as follows. We

recall the history over the last half century driving in-

terest and research on reconstructing optimal minimal
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models, specifically as it bears on nonlinear complex sys-

tems. We briefly recount the approach of computational

mechanics, which defined what optimal predictive mod-

els are and gave the general solution to finding them.

We then draw connections to predictive rate-distortion

theory that systematically approximates those optimal

models. We also comment on information-theoretic ways

to quantify model complexity and predictive performance

and how they trade-off against each other. Our goal is to

respond directly and briefly to Ref. [4], but not to review

the broad and extensive literature on the topic of opti-

mal descriptions of complex systems. As such, citations

are intentionally narrowed to support a single narrative

thread.

II. RECONSTRUCTING LOW-DIMENSIONAL

MODELS OF COMPLEX PROCESSES

The research program to automate theory building for

complex systems has its origins in fluid turbulence—a

high-dimensional system, if there ever was one—studied

for many decades, of great practical import, and at the

time, according to Heisenberg [5], one of the premier

problems in nonlinear physics. Cracking this problem

relied on developing a connection between the abstract

theory of dynamical systems and hydrodynamic experi-

ment. This came in the attractor reconstruction method

that extracted “Geometry from a Time Series” [6] using

one or a few signals from a high-dimensional complex sys-

tem. Attractor reconstruction eventually led to demon-

strating that deterministic chaos is the mechanism gener-

ating weak turbulence [7], verifying a long-standing con-

jecture [8] in dynamical systems theory that over-threw

the decades-old quasi-periodic theory of turbulence due

to Landau and Lifschitz [9].

The reconstruction method, though, only produced a

reduced-dimension space of effective states of the infinite-

dimensional fluid dynamics, ignoring the dynamical

mechanism that generated the turbulent motion. Gen-

eralizing attractor reconstruction, Refs. [10, 11] intro-

duced methods to infer the effective theory or equations

of motion from time-series generated by chaotic dynam-

ical systems. Reference [10], in particular, also pro-

vided a critique of the general reconstruction approach,

highlighting its subjectivity—one must choose a class of

model representation. Such ad hoc choices preclude an

objective measure of a system’s complexity. Reference

[12] solved the subjectivity problem. It was the first to

state the problem of optimal predictive, minimal mod-

els of complex processes and provided its solution—the

ε-machine and its causal states. Using this foundation,

it was able to define the statistical complexity—the first

consistent, constructive measure of structural complex-

ity. And, it introduced intrinsic computation—the idea

that all physical systems store and process information.

Influenced by the goals of artificial intelligence at the

time, it also challenged future researchers to develop an

artificial science—automating the construction of min-

imal causal models of complex systems. Using these

methods, which came to be called computational mechan-

ics, Ref. [13] went on to give the first quantitative def-

inition of the emergence of macrostate organization in

terms of increasing structural complexity and intrinsic

computation. It argued that there is a natural hierarchy

of causal organization and introduced a renormalization-

group method for moving up the hierarchy—a method of

genuine pattern discovery. A recent review of this history

is found in Ref. [14].

III. CAUSAL STATES AND MACROSTATES

Identifying emergent organization, especially if pursued

as a problem in theoretical physics, is often couched in

terms of finding system macrostates. The metaphorical

intuition behind this framing is roughly that emergent or-

ganization is the analog of the macroscopic, measurable

properties of a thermodynamic system. A macrostate—

say, given by particular values of temperature and

pressure—is the set of the many microscopic molecular

configurations or microstates that lead to the same mea-

surable properties. In this framing, macrostates emerge

from the microstates under the action of the dynamics

on the microscopic scale as it relaxes to equilibrium [15].

The practicing statistical physicist, more specifically, of-

ten begins the analysis of a system’s properties by search-

ing for an “order parameter” or for insightful “coarse-

grainings”, which are analogous concepts at our general

level of discussion here.

A system’s causal states, being groupings of microscopic

trajectories that capture a system’s emergent behaviors

and organization, play a role very analogous to the sys-

tem’s macrostates and not its microstates [16]. Reference

[4] offers a view that is substantially at variance with this.

SSC addresses this in terms of the descriptions to which

given behavior is compressed. Notably, Ref. [4, page 6]

starts by restricting the microscopic dynamics:

The microstate ... evolves in time according

to a (usually) Markovian process . . .

And then, on page 41 it notes that the observations of

the stochastic processes analyzed in computational me-
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chanics:

. . . do not evolve according to a first-order

Markov process, and so cannot be identified

with the fine-grained values Xt of SSC. On

the other hand, . . . , evolution over the space

of causal sets is first-order Markov. This sug-

gests that we identify the causal states with

SSC’s fine-grained space, not its compressed

space.

In the page 6 quote, however, SSC assumed first-

order Markov dynamics on the underlying process (mi-

crostates). In the context described above, in which the

target Ωt is the future XtXt+1 . . . and Yt compresses the

past . . . Xt−2Xt−1, the causal states are interpreted as

coarse-grainings only of Xt. Thus, in SSC the dynamics

on the causal states and the observed process are both

first-order Markov. These restrictions are unnecessary.

A telling consequence of SSC’s misidentification of how

computational mechanics is used is that the assump-

tion of a first-order Markov process for the microstates

simplifies the dimension-reduction problem to the point

that the computational complexity of identifying causal

states would fall in P and no longer be NP-hard, as it is

more generally. Overall, the simplification to first-order

Markov obscures the relationship between computational

mechanics and SSC. Computational mechanics can be

applied to any stochastic process, including the Marko-

vian one assumed to govern SSC’s microscopic variables

. . . Xt−1XtXt+1 . . ..

Apparently, despite being defined as a coarse-graining,

SSC (incorrectly) associates causal states with its mi-

crostates Xt for no reason other than their Markovian

nature. This is a confusing association for two reasons:

First, the Xt values were introduced as being (usually)

Markovian, not necessarily Markovian; and second, by

construction computational mechanics’ causal states are

a coarse-graining of trajectories and so by definition are

a form of state-space compression. SSC’s association is

based on reasoning that is fundamentally flawed, reflect-

ing a basic misunderstanding of causal states and how to

apply computational mechanics.

IV. STATE SPACE COMPRESSION VERSUS

RATE DISTORTION THEORY

Now, let’s turn to consider how SSC defines its

“macrostates” via coarse-graining microstates. In this,

we find a basic connection between SSC and Shan-

non’s rate-distortion theory applied to prediction—what

is called predictive rate distortion (PRD) [17]. SSC

largely ignores this important connection to prior work.

This is strange since Shannon introduced rate-distortion

theory explicitly to solve dimension reduction problems

[18, 19]: find a compact “encoding” of a data source sub-

ject to a set of constraints, such as transmission rate,

accuracy, processing, delay, and the like. Optimal mod-

eling can be framed in just this way, for example, as found

in Rissanen’s minimum description length approach [20].

The physics metaphor for building models extends to

this setting, too: data are the microstates, compressed

model variables are macrostates, and coding constraints

are physical boundary conditions.

Take SSC’s target Ωt to be the future of Xt, and find

some Yt that compresses the past of Xt to retain ex-

pected accuracy in predicting Ωt without unnecessarily

increasing asymptotic coding cost of transmitting Yt to

another observer. When accuracy is heavily prioritized

over coding cost, the causal states are recovered, as shown

by Refs. [21, 22] and as discussed in Ref. [23]. In fact, the

causal states are essentially the answer to the question:

Among all possible compressions with minimal accuracy

cost, which has the minimal coding cost? Both issues

of accuracy and coding cost can be extended directly to

the case in which the target Ωt is some coarse-graining

of the future of Xt, so that one searches for compressed

predictive and perceptual features or macrostates. Re-

cent PRD work shows, in fact, how to extract just such

coarse-grained macrostates, given a process’s ε-machine

[17], noting that the latter can be calculated theoretically

[24, 25] or estimated empirically [26–28].

However, a major conceptual difference between PRD

and the SSC framework is that SSC explicitly restricts

Xt to be first-order Markov; whereas, PRD can address

arbitrary order and infinite-order Markov processes. The

first-order Markov assumption is simply not realistic. Mi-

crostates are rarely experimentally accessible; e.g., the

spike trains from neurophysiological studies are a very

coarse-grained observable of underlying membrane volt-

age fluctuations [29] and, as such, their dynamics is of-

ten infinite-order Markov [30]. This remains true even

if the underlying membrane voltage dynamics are first-

order Markov.

PRD and computational mechanics actually do state

space compression. They find compressed predictive rep-

resentations of a time series. Moreover, computational

mechanics finds a hidden Markov model (HMM) for the

given (non-Markovian) time series. Indeed, that’s the

point of the ε-machine and, for lossy versions, the point

of causal rate-distortion theory [17] and the recursive in-

formation bottleneck method [23].
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V. CODING COST

This all leads to the central question of how to quan-

tify the organization captured by these macrostates.

PRD and computational mechanics use the statisti-

cal complexity—the Shannon information in the causal

states or in their coarse-grainings. SSC takes issue with

the use of information theory in these approaches [4, page

40]:

Statistical complexity plays a role in the ob-

jective function of [77] that is loosely analo-

gous to the role played by accuracy cost in

the SSC objective function.

[Emphasis ours.] However, SSC’s coding cost H[Y0] is the

information contained in its version of the causal states.

This is a simplified version of the statistical complexity

Cµ, once one restricts to first-order Markov processes and

predictive mappings from pasts . . . Xt−2Xt−1 to Yt. That

is, Cµ is a coding cost, not an accuracy cost.

Moreover, on Ref. [4, page 40], we read:

. . . the authors consider a ratio of costs rather

than a linear combination of them, like we

consider here.

However, PRD objective functions—e.g., as described by

Refs. [23, 31]—are linear combinations of mutual infor-

mations.

VI. MUTUAL INFORMATION AS ACCURACY

COST

Reference [4, page 46] criticizes the use of general mul-

tivariate mutual information in noting a difficulty with

systems governed by a time-varying dynamic:

The underlying difficulty is inherent in the

very notion of using mutual information to

define accuracy cost, and is intrinsic to con-

sideration of the relation between Y and X

at more than two moments in time.

Using mutual information at more than two moments

in time is simply not a problem for ergodic stationary

processes [32]. Moreover, it’s not necessarily a problem

for nonergodic or nonstationary processes either. For

these, several examples in Ref. [33], as well as those in

Refs. [34, 35], calculate the past-future mutual informa-

tion (excess entropy) that involves all moments in time.

However, there is perhaps another underlying difficulty

with using mutual information as an accuracy cost: It is

used alternatively as either the coding cost or an inverse

accuracy cost in the information bottleneck method [36].

And, there, mutual information as an ‘inverse accuracy

cost’ really amounts to an accuracy cost that employs the

KL-divergence between Pr(Ωt|Yt) and Pr(Ωt|Xt) in the

more general PRD framework.

Generally, though, the rate-distortion theorem [37] jus-

tifies the use of mutual information as a coding cost re-

gardless of distortion measure. And, helpfully, this has

been extended to the nonasymptotically large block cod-

ing limit [38, 39], demonstrating that one should not be

glib about introducing new coding costs.

VII. GENERALITY

SSC is offered as an improvement on the current liter-

ature for being a principled and constructive method of

generating macrostates. Reference [4]’s abstract states:

This State Space Compression framework

makes it possible to solve for the optimal

high-level description of a given dynamical

system . . ..

This brings up two concerns, one explicit in the quote

and one implicit.

First, what is provided is not a constructive framework;

it does not provide methods to solve for the macrostates.

Moreover, each of the provided macrostate examples is

constructed in an ad hoc manner.

Second, the burden of proof lies with SSC’s advocates.

Since alternative frameworks exist and are contrasted

against, at this date progress behooves the authors to

provide examples where their framework succeeds and

others fail.

SCC’s lack in these regards should be compared with how

alternatives had to develop new calculational methods for

the challenging problems that are entailed in modeling

complex systems. For example, computational mechan-

ics extended methods from holomorphic functional calcu-

lus that now give closed-form expressions for a process’s

information measures [40].

We emphasize that SSC’s H(Y0) is exactly the compu-

tational cost-based objective function used to identify

causal states, in which we constrain ourselves to deter-

ministic mappings Yt = f(Xt) such that Pr(Ωt|Yt0) =

Pr(Ωt|f(Xt0)). Indeed, more broadly interpreted, causal

states are the unique and minimal macrostate choice for
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SSC in the limit of high premium on accuracy and min-

imal concern about computational cost. Adapting the

proof of Thm. 1 in Ref. [22] will be helpful here. In any

case, the causal states are the minimal sufficient statistic

for prediction [41]. In other words, any process statistic

can be calculated from them and this raises the bar quite

high for SSC’s proposed alternative macrostates.

In terms of implementations, PRD and computational

mechanics are constructive. In rate-distortion the-

ory generally there’s the Blahut-Arimoto algorithm

and its generalizations for calculating coarse-grained

macrostates [37, 42]. And, there are several statistical

inference algorithms that estimate ε-machines from vari-

ous kinds of data [26, 27, 43, 44].

The general problem of dimension reduction for complex

systems is an important one, and we encourage efforts

along these lines. We appreciate that the synopses of

computational mechanics, PRD, and information mea-

sures above address but a small part SSC’s stated goals

and the goals earlier researchers have set. It is impor-

tant, though, that SSC start with correct assumptions

and an understanding of its antecedents. In any case, we

hope that our comments remedy, in a constructive way,

misleading impressions that Ref. [4] gives of the state of

the art of computational mechanics and predictive rate

distortion.

VIII. RUBBER, MEET ROAD

Finally, let’s end on a practical note. We are advocates

for a broad, even pluralistic approach to automated non-

linear model building—i.e., for artificial science. How-

ever, our repeated experience is that general “frame-

works” seriously stub their toes on application to experi-

ments. Despite this, we are still optimists. Those wishing

to contribute, however, should pick at least one applica-

tion area and drill all the way down to show their alter-

native discovers a particular new scientific phenomenon.

This is a necessary calibrating exercise for any attempt

at generality.

In contrast to SSC, its antecedents have done their due

diligence. Rate-distortion theory, developed for over a

decade into the information bottleneck method [36], has

been applied to test how close sensory spike trains are

to stimuli predictive information functions [45]. For our

part, computational mechanics led to a new theory of

structure in disordered materials [28] and to measuring

novel information processing in neural spike trains [30].

Looking forward to future engineering of complex sys-

tems, the structural understanding developed in these

applications moves us in a direction to design novel semi-

conducting materials for a new generation of computing
technology and the next generation of nanoscale spike-

train probes that will scale to monitoring the activity of

thousands of neurons [46].
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