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We recount recent history behind building compact models of nonlinear, complex processes and
identifying their relevant macroscopic patterns or “macrostates”. We give a synopsis of computa-
tional mechanics, predictive rate-distortion theory, and the role of information measures in moni-
toring model complexity and predictive performance. Computational mechanics provides a method
to extract the optimal minimal predictive model for a given process. Rate-distortion theory pro-
vides methods for systematically approximating such models. We end by commenting on future
prospects for developing a general framework that automatically discovers optimal compact models.
As a response to the manuscript cited in the title above, this brief commentary corrects potentially
misleading claims about its state space compression method and places it in a broader historical
setting.
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I. INTRODUCTION

Building compact models of nonlinear processes goes to
the heart of our understanding the complex world around
us—a world replete with unanticipated, emergent pat-
terns. Via discovery mechanisms that we do not yet un-
derstand well, we eventually do come to know many of
these patterns, even if we have never seen them before.
Such discoveries can be substantial. At a minimum, com-
pact models that capture such emergent “macrostates”
are essential tools in harnessing complex processes to use-
ful ends. Most ambitiously, one would hope to automate
the discovery process itself, providing an especially useful
tool for the era of Big Data.

One key problem in the larger endeavor of pattern discov-
ery is dimension reduction: reduce the high-dimensional
state space of a stochastic dynamical system into smaller,
more manageable models that nonetheless still capture
the relevant dynamics. The study of complex systems
always requires this. For better or worse, it is frequently
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accomplished in an ad hoc fashion [I 2]. Indeed, it is
desirable to have an overarching framework for this kind
of analysis that can be applied across the many mani-
festations of complex systems, but to date such a broad
theory has not been forthcoming. Thus, the need for this
kind of research remains and is more timely than ever [3].
Not surprisingly, it has a long and active history.

This is the setting into which steps a recent arxiv.org
preprint “A framework for optimal high-level descriptions
in science and engineering—preliminary report” [4]. As
a solution to the problem of dimension reduction, it ad-
vocates for state space compression (SSC): Form a com-
pressed variable Y; that predicts a target statistic €2; of
a system’s behavior ... X; 1X;X;y1.... When viewed
in a historical context, it is unclear if SSC is more than
an alternative notation and vocabulary for extant ap-
proaches to dimension reduction. Here, we explain this
question. We are concerned about several instances in
Ref. [4] where statements are made about research we ei-
ther participated in or are quite familiar with that do not
accurately reflect that work. The following comments air
our concerns, providing several constructive suggestions.

Our response to Ref. [] is organized as follows. We
recall the history over the last half century driving in-
terest and research on reconstructing optimal minimal
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models, specifically as it bears on nonlinear complex sys-
tems. We briefly recount the approach of computational
mechanics, which defined what optimal predictive mod-
els are and gave the general solution to finding them.
We then draw connections to predictive rate-distortion
theory that systematically approximates those optimal
models. We also comment on information-theoretic ways
to quantify model complexity and predictive performance
and how they trade-off against each other. Our goal is to
respond directly and briefly to Ref. [4], but not to review
the broad and extensive literature on the topic of opti-
mal descriptions of complex systems. As such, citations
are intentionally narrowed to support a single narrative
thread.

II. RECONSTRUCTING LOW-DIMENSIONAL
MODELS OF COMPLEX PROCESSES

The research program to automate theory building for
complex systems has its origins in fluid turbulence—a
high-dimensional system, if there ever was one—studied
for many decades, of great practical import, and at the
time, according to Heisenberg [5], one of the premier
problems in nonlinear physics. Cracking this problem
relied on developing a connection between the abstract
theory of dynamical systems and hydrodynamic experi-
ment. This came in the attractor reconstruction method
that extracted “Geometry from a Time Series” [6] using
one or a few signals from a high-dimensional complex sys-
tem. Attractor reconstruction eventually led to demon-
strating that deterministic chaos is the mechanism gener-
ating weak turbulence [7], verifying a long-standing con-
jecture [8] in dynamical systems theory that over-threw
the decades-old quasi-periodic theory of turbulence due
to Landau and Lifschitz [9].

The reconstruction method, though, only produced a
reduced-dimension space of effective states of the infinite-
dimensional fluid dynamics, ignoring the dynamical
mechanism that generated the turbulent motion. Gen-
eralizing attractor reconstruction, Refs. [I0, [I1] intro-
duced methods to infer the effective theory or equations
of motion from time-series generated by chaotic dynam-
ical systems. Reference [I0], in particular, also pro-
vided a critique of the general reconstruction approach,
highlighting its subjectivity—one must choose a class of
model representation. Such ad hoc choices preclude an
objective measure of a system’s complexity. Reference
[12] solved the subjectivity problem. It was the first to
state the problem of optimal predictive, minimal mod-
els of complex processes and provided its solution—the
e-machine and its causal states. Using this foundation,

it was able to define the statistical complexity—the first
consistent, constructive measure of structural complex-
ity. And, it introduced intrinsic computation—the idea
that all physical systems store and process information.
Influenced by the goals of artificial intelligence at the
time, it also challenged future researchers to develop an
artificial science—automating the construction of min-
imal causal models of complex systems. Using these
methods, which came to be called computational mechan-
ics, Ref. [I3] went on to give the first quantitative def-
inition of the emergence of macrostate organization in
terms of increasing structural complexity and intrinsic
computation. It argued that there is a natural hierarchy
of causal organization and introduced a renormalization-
group method for moving up the hierarchy—a method of
genuine pattern discovery. A recent review of this history
is found in Ref. [14].

III. CAUSAL STATES AND MACROSTATES

Identifying emergent organization, especially if pursued
as a problem in theoretical physics, is often couched in
terms of finding system macrostates. The metaphorical
intuition behind this framing is roughly that emergent or-
ganization is the analog of the macroscopic, measurable
properties of a thermodynamic system. A macrostate—
say, given by particular values of temperature and
pressure—is the set of the many microscopic molecular
configurations or microstates that lead to the same mea-
surable properties. In this framing, macrostates emerge
from the microstates under the action of the dynamics
on the microscopic scale as it relaxes to equilibrium [I5].
The practicing statistical physicist, more specifically, of-
ten begins the analysis of a system’s properties by search-
ing for an “order parameter” or for insightful “coarse-
grainings”, which are analogous concepts at our general
level of discussion here.

A system’s causal states, being groupings of microscopic
trajectories that capture a system’s emergent behaviors
and organization, play a role very analogous to the sys-
tem’s macrostates and not its microstates [16]. Reference
[] offers a view that is substantially at variance with this.
SSC addresses this in terms of the descriptions to which
given behavior is compressed. Notably, Ref. [4, page 6]
starts by restricting the microscopic dynamics:

The microstate ... evolves in time according
to a (usually) Markovian process ...

And then, on page 41 it notes that the observations of
the stochastic processes analyzed in computational me-



chanics:

...do not evolve according to a first-order
Markov process, and so cannot be identified
with the fine-grained values X; of SSC. On
the other hand, ..., evolution over the space
of causal sets is first-order Markov. This sug-
gests that we identify the causal states with
SSC’s fine-grained space, not its compressed
space.

SSC assumed first-
order Markov dynamics on the underlying process (mi-
crostates). In the context described above, in which the
target ()4 is the future X3 X341 ... and Y; compresses the
past ... X; 25X 1, the causal states are interpreted as
coarse-grainings only of X;. Thus, in SSC the dynamics
on the causal states and the observed process are both
first-order Markov. These restrictions are unnecessary.

In the page 6 quote, however,

A telling consequence of SSC’s misidentification of how
computational mechanics is used is that the assump-
tion of a first-order Markov process for the microstates
simplifies the dimension-reduction problem to the point
that the computational complexity of identifying causal
states would fall in P and no longer be NP-hard, as it is
more generally. Overall, the simplification to first-order
Markov obscures the relationship between computational
mechanics and SSC. Computational mechanics can be
applied to any stochastic process, including the Marko-
vian one assumed to govern SSC’s microscopic variables
. CERD. €9, CTR I

Apparently, despite being defined as a coarse-graining,
SSC (incorrectly) associates causal states with its mi-
crostates X; for no reason other than their Markovian
nature. This is a confusing association for two reasons:
First, the X; values were introduced as being (usually)
Markovian, not necessarily Markovian; and second, by
construction computational mechanics’ causal states are
a coarse-graining of trajectories and so by definition are
a form of state-space compression. SSC’s association is
based on reasoning that is fundamentally flawed, reflect-
ing a basic misunderstanding of causal states and how to
apply computational mechanics.

IV. STATE SPACE COMPRESSION VERSUS
RATE DISTORTION THEORY

Now, let’s turn to consider how SSC defines its
“macrostates” via coarse-graining microstates. In this,
we find a basic connection between SSC and Shan-
non’s rate-distortion theory applied to prediction—what

is called predictive rate distortion (PRD) [17]. SSC
largely ignores this important connection to prior work.
This is strange since Shannon introduced rate-distortion
theory explicitly to solve dimension reduction problems
[18,[19]: find a compact “encoding” of a data source sub-
ject to a set of constraints, such as transmission rate,
accuracy, processing, delay, and the like. Optimal mod-
eling can be framed in just this way, for example, as found
in Rissanen’s minimum description length approach [20].
The physics metaphor for building models extends to
this setting, too: data are the microstates, compressed
model variables are macrostates, and coding constraints
are physical boundary conditions.

Take SSC’s target €; to be the future of X;, and find
some Y; that compresses the past of X; to retain ex-
pected accuracy in predicting 2; without unnecessarily
increasing asymptotic coding cost of transmitting Y; to
another observer. When accuracy is heavily prioritized
over coding cost, the causal states are recovered, as shown
by Refs. [21],22] and as discussed in Ref. [23]. In fact, the
causal states are essentially the answer to the question:
Among all possible compressions with minimal accuracy
cost, which has the minimal coding cost? Both issues
of accuracy and coding cost can be extended directly to
the case in which the target €); is some coarse-graining
of the future of X, so that one searches for compressed
predictive and perceptual features or macrostates. Re-
cent PRD work shows, in fact, how to extract just such
coarse-grained macrostates, given a process’s e-machine
[17], noting that the latter can be calculated theoretically
[24, 28] or estimated empirically [26H28].

However, a major conceptual difference between PRD
and the SSC framework is that SSC explicitly restricts
X, to be first-order Markov; whereas, PRD can address
arbitrary order and infinite-order Markov processes. The
first-order Markov assumption is simply not realistic. Mi-
crostates are rarely experimentally accessible; e.g., the
spike trains from neurophysiological studies are a very
coarse-grained observable of underlying membrane volt-
age fluctuations [29] and, as such, their dynamics is of-
ten infinite-order Markov [30]. This remains true even
if the underlying membrane voltage dynamics are first-
order Markov.

PRD and computational mechanics actually do state
space compression. They find compressed predictive rep-
resentations of a time series. Moreover, computational
mechanics finds a hidden Markov model (HMM) for the
given (non-Markovian) time series. Indeed, that’s the
point of the e-machine and, for lossy versions, the point
of causal rate-distortion theory [I7] and the recursive in-
formation bottleneck method [23].



V. CODING COST

This all leads to the central question of how to quan-
tify the organization captured by these macrostates.
PRD and computational mechanics use the statisti-
cal complexity—the Shannon information in the causal
states or in their coarse-grainings. SSC takes issue with
the use of information theory in these approaches [4, page
40]:

Statistical complexity plays a role in the ob-
jective function of [77] that is loosely analo-
gous to the role played by accuracy cost in
the SSC objective function.

[Emphasis ours.] However, SSC’s coding cost H[Yp] is the
information contained in its version of the causal states.
This is a simplified version of the statistical complexity
C,, once one restricts to first-order Markov processes and
predictive mappings from pasts ... X; 2 X; 1 to Y;. That
is, C, is a coding cost, not an accuracy cost.

Moreover, on Ref. [4, page 40], we read:

...the authors consider a ratio of costs rather
than a linear combination of them, like we
consider here.

However, PRD objective functions—e.g., as described by
Refs. [23] BI]—are linear combinations of mutual infor-
mations.

VI. MUTUAL INFORMATION AS ACCURACY
COST

Reference [, page 46] criticizes the use of general mul-
tivariate mutual information in noting a difficulty with
systems governed by a time-varying dynamic:

The underlying difficulty is inherent in the
very notion of using mutual information to
define accuracy cost, and is intrinsic to con-
sideration of the relation between Y and X
at more than two moments in time.

Using mutual information at more than two moments
in time is simply not a problem for ergodic stationary
processes [32]. Moreover, it’s not necessarily a problem
for nonergodic or nonstationary processes either. For
these, several examples in Ref. [33], as well as those in
Refs. [34] [35], calculate the past-future mutual informa-
tion (excess entropy) that involves all moments in time.

However, there is perhaps another underlying difficulty
with using mutual information as an accuracy cost: It is
used alternatively as either the coding cost or an inverse
accuracy cost in the information bottleneck method [36].
And, there, mutual information as an ‘inverse accuracy
cost’ really amounts to an accuracy cost that employs the
KL-divergence between Pr(;|Y;) and Pr(9:|X;) in the
more general PRD framework.

Generally, though, the rate-distortion theorem [37] jus-
tifies the use of mutual information as a coding cost re-
gardless of distortion measure. And, helpfully, this has
been extended to the nonasymptotically large block cod-
ing limit [38], B9], demonstrating that one should not be
glib about introducing new coding costs.

VII. GENERALITY

SSC is offered as an improvement on the current liter-
ature for being a principled and constructive method of
generating macrostates. Reference [4]’s abstract states:

This State Space Compression framework
makes it possible to solve for the optimal
high-level description of a given dynamical
system .. ..

This brings up two concerns, one explicit in the quote
and one implicit.

First, what is provided is not a constructive framework;
it does not provide methods to solve for the macrostates.
Moreover, each of the provided macrostate examples is
constructed in an ad hoc manner.

Second, the burden of proof lies with SSC’s advocates.
Since alternative frameworks exist and are contrasted
against, at this date progress behooves the authors to
provide examples where their framework succeeds and
others fail.

SCC’s lack in these regards should be compared with how
alternatives had to develop new calculational methods for
the challenging problems that are entailed in modeling
complex systems. For example, computational mechan-
ics extended methods from holomorphic functional calcu-
lus that now give closed-form expressions for a process’s
information measures [40].

We emphasize that SSC’s H(Y)) is exactly the compu-
tational cost-based objective function used to identify
causal states, in which we constrain ourselves to deter-
ministic mappings Y; = f(X;) such that Pr(|Y;,) =
Pr(|f (X4, )). Indeed, more broadly interpreted, causal
states are the unique and minimal macrostate choice for



SSC in the limit of high premium on accuracy and min-
imal concern about computational cost. Adapting the
proof of Thm. 1 in Ref. [22] will be helpful here. In any
case, the causal states are the minimal sufficient statistic
for prediction [41]. In other words, any process statistic
can be calculated from them and this raises the bar quite
high for SSC’s proposed alternative macrostates.

In terms of implementations, PRD and computational
mechanics are constructive. In rate-distortion the-
ory generally there’s the Blahut-Arimoto algorithm
and its generalizations for calculating coarse-grained
macrostates [37, 42]. And, there are several statistical
inference algorithms that estimate e-machines from vari-
ous kinds of data [26], 27, [43], 44].

The general problem of dimension reduction for complex
systems is an important one, and we encourage efforts
along these lines. We appreciate that the synopses of
computational mechanics, PRD, and information mea-
sures above address but a small part SSC’s stated goals
and the goals earlier researchers have set. It is impor-
tant, though, that SSC start with correct assumptions
and an understanding of its antecedents. In any case, we
hope that our comments remedy, in a constructive way,
misleading impressions that Ref. [4] gives of the state of
the art of computational mechanics and predictive rate
distortion.
VIII. RUBBER, MEET ROAD

Finally, let’s end on a practical note. We are advocates
for a broad, even pluralistic approach to automated non-
linear model building—i.e., for artificial science. How-
ever, our repeated experience is that general “frame-
works” seriously stub their toes on application to experi-

ments. Despite this, we are still optimists. Those wishing
to contribute, however, should pick at least one applica-
tion area and drill all the way down to show their alter-
native discovers a particular new scientific phenomenon.
This is a necessary calibrating exercise for any attempt
at generality.

In contrast to SSC, its antecedents have done their due
diligence. Rate-distortion theory, developed for over a
decade into the information bottleneck method [36], has
been applied to test how close sensory spike trains are
to stimuli predictive information functions [45]. For our
part, computational mechanics led to a new theory of
structure in disordered materials [28] and to measuring
novel information processing in neural spike trains [30].
Looking forward to future engineering of complex sys-
tems, the structural understanding developed in these
applications moves us in a direction to design novel semi-
conducting materials for a new generation of computing
technology and the next generation of nanoscale spike-
train probes that will scale to monitoring the activity of
thousands of neurons [46].
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