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We introduce a simple analysis of the structural complexity of infinite-memory processes built
from random samples of stationary, ergodic finite-memory component processes. Such processes are
familiar from the well known multi-arm Bandit problem. We contrast our analysis with computation-
theoretic and statistical inference approaches to understanding their complexity. The result is an
alternative view of the relationship between predictability, complexity, and learning that highlights
the distinct ways in which informational and correlational divergences arise in complex ergodic and
nonergodic processes. We draw out consequences for the resource divergences that delineate the
structural hierarchy of ergodic processes and for processes that are themselves hierarchical.
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I. INTRODUCTION

Truly complex stochastic processes—the infinitary pro-

cesses [1] whose mutual information between past and

future diverges—arise in many physical and biological

systems [2–5], such as those in critical states. They

are implicated in many natural phenomena, from the

geophysics of earthquakes [6] and physiological measure-

ments of neural avalanches [7] to semantics in natural

language [8] and cascading failure in power transmission

grids [9]. Their apparent infinite memory makes em-

pirical estimation and modeling particularly challenging.

The difficulty is reflected in the computational complex-

ity of inference [10]: the resources required to predict

and model them diverge in sample size, in memory for

storing model parameters, and in memory required for

prediction. Resource scaling suggests that for infinitary

processes we look for statistical signatures that track di-

vergences. Since resource divergences are sensitive to

a process’s inherent randomness and organization, one

hopes that their scaling forms are uniquely revealing in-

dicators of process complexity and can guide the selection

of appropriate models.

To date, though, there are few tractable construc-

tions with which to explore possible general relation-

ships between prediction, complexity, and learning for

infinitary processes. One of the few tractable and gen-

eral constructions is the class of Bandit processes consist-
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ing of repeated trials of an experiment whose properties

are, themselves, varying stochastically from trial to trial

[11, 12]. Even if each individual trial is a realization gen-

erated by a stationary process with finite memory and

exponentially decaying correlations, the resulting process

over many trials can be infinitary [3–5].

Why can the past-future mutual information of Ban-

dit processes diverge? The answer is remarkably simple:

Bandit processes are nonergodic. More to the point, the

divergence is driven by memory in the nonergodic part

of their construction—the mechanism in each trial that

selects and then remembers the operant ergodic compo-

nent. Here, we use that insight to provide a simple, alter-

native derivation of information divergence for this class

of infinitary process: a structural complexity scaling that

directly accounts for nonergodicity.

Information divergence in Bandit processes has been

interpreted as reflecting a universal property of learning:

a unique indicator of the number of process parameters

[3]. The derivation presented here recovers the connec-

tion between the complexity of parameter estimation and

divergence in past-future information. However, it also

identifies other structural features, such as infinitary er-

godic components, that can drive divergences. Thus, in-

formation divergences in Bandit processes reflect partic-

ular structural properties of this class, rather than over-

arching principles of prediction, complexity, and learning

for infinitary processes. Nonetheless, the issues raised

highlight the need for a more balanced view of truly com-

plex processes and their challenges. We hope our sim-

plified analysis introduces tools appropriate to further,

detailed scaling analysis of both ergodic and nonergodic
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infinitary processes.

Analyzing structural complexity is often conflated with

statistical and computation-theoretic approaches to com-

plex processes. To ameliorate this, the next section re-

views these alternatives. Then we move on to construct

Bandit processes and analyze their structural complex-

ity. We then discuss the results, draw out contrasts with

computation-theoretic and statistical approaches, high-

light the structural hierarchy of ergodic processes, and

close with a brief discussion of hierarchical processes with

nested organization.

II. PREDICTION, COMPLEXITY, AND

LEARNING

There is a relationship between, on the one hand, the

inherent unpredictability and memory in a process and,

on the other, the difficulty of learning a model from time

series samples and predicting the time series. Alterna-

tive framings lead to different views of this relationship.

There are those that attempt to exactly describe a time

series, those that try to express persistent regularities,

and those that consider the consequences for inference.

Their methods are closely related.

The Kolmogorov-Chaitin complexity monitors the com-

putational resources—specifically, length of the minimal

program for a given Universal Turing Machine (UTM)—

required to reconstruct an individual time series [13–18].

It is a measure of randomness: A random time series has

no smaller description than itself. Elaborating on this,

logical depth [19] and sophistication [20] track comple-

mentary computational resources. Logical depth is the

number of compute steps the minimal UTM program re-

quires to generate the time series. Sophistication is the

length of that part of the UTM program which captures

regularities and organization, effectively discounting the

time series’ irreducible randomness. All these are uncom-

putable, though, even if one is given a generative model.

Fortunately, for a process’ typical realizations the

Kolmogorov-Chaitin complexity grows linearly with time

series length, with coefficient equal to Shannon source en-

tropy rate hµ (a measure of a process’ unpredictability)

and offset equal to the statistical complexity Cµ (a mea-

sure of a process’ memory) [21, and references therein].

Given a generative model called the ε-machine—a pro-

cess’ minimal maximally predictive model—both the en-

tropy rate and statistical complexity are computable; if

the ε-machine is finite, they are calculable in closed form

[22].

We say that hµ, Cµ, and the finite-time excess en-

tropy discussed later are intrinsic measures of a process’

structure, randomness, and organization. By intrinsic,

we mean that these measures exist independently of the

amount of data that we have observed. The aforemen-

tioned algorithmic complexities explicitly depend on the

amount of data seen so far, but if the process is ergodic,

then algorithmic complexities are also (almost always)

intrinsic to a process in the limit of an arbitrarily large

amount of data.

Such analyses of intrinsic properties should be con-

trasted with how statistical inference approaches com-

plex processes. Statistical learning theory [23, 24] analy-

ses and machine learning complexity controls [25–28] are

not intrinsic in the sense that they show how to choose

the best in-class model, but the choice of that class re-

mains subjective. The problem of out-of-class modeling

always exists as a practical necessity, but it is rarely, if

ever, tackled directly. Of course, in the happy circum-

stance a correct generative model is in-class, then one

has identified something intrinsic about a process. This,

however, begs the question of discovering the class in the

first place. And, practically, such luck is rarely the case.

Worse, when they do not work well, complexity controls

give no prescription for choosing an alternative class.

Intrinsic complexity characterizations have been most

constructively and thoroughly developed for finite-

memory, finite-randomness processes, despite the fact

that many important natural processes are infinitary.

The latter include the critical phenomena [29] of statisti-

cal physics and the routes to chaos in nonlinear dynam-

ics [2], to mention only two. They exhibit arbitrarily

long-range spatiotemporal correlations, infinite memory,

and infinite parameter space dimension. The relation-

ship between prediction, complexity, and learning is es-

pecially interesting when confronted with infinitary pro-

cesses, and, paralleling Ref. [3], we re-investigate that

relationship for nonergodic Bandit processes.

III. BANDIT PROCESS CONSTRUCTION

The simplest construction of a Bandit process is the

following. Consider the stochastic process generated

by a biased coin whose bias P is itself a random vari-

able. First, a coin bias p is chosen from a user-

specified distribution Pr(P); next, a bi-infinite sequence

x1 = . . . x−1x0x1x2 . . . is generated from a coin with this

particular bias; then, this is repeated for an arbitrar-

ily large number of such trials; generating an ensemble

{x1,x2,x3, . . .} of sequences at different biases. The pro-

cess of interest is this sequence ensemble. We denote the

random variable block between times a and b, but not

that at time b, as Xa:b = XaXa+1 . . . Xb−1. We suppress

denoting indices that are infinite. And so, the process of

interest is denoted X:. To denote the random variable
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block conditioned on a random variable Z taking real-

ization z we use Xa:b|Z = z. So here, the subprocess

X:|P = p is that produced by a coin with bias p.

A single one of these bi-infinite sequences comes from

an ergodic process that is memoryless in every sense of

the word. In particular, since in each trial past and fu-

ture are independent, the conditional past-future mutual

information I[X−M :0;X0:N |P = p] vanishes for any M ,

N , and p. However, each of these bi-infinite chains is

statistically distinct. The mean number of heads, say,

in one is very different than the mean number of heads

in another. For sufficiently long chains, such differences

are almost surely not the consequence of finite-sample

fluctuations.

The overall process X: does not distinguish between

sequences generated by different biased coins. So, by

making the coin bias a random variable, the past and fu-

ture are no longer independent. Both share information

about the underlying coin bias p. As we will now show,

the shared information or excess entropy E(M,N) =

I[X−M :0;X0:N ] diverges with M and N when P is a con-

tinuous random variable.

IV. INFORMATION ANALYSIS

To see why, we abstract to a more general case. What

follows is an alternative, direct derivation of results in

Ref. [3, Sec. 4] that, due to its simplicity, lends addi-

tional transparency to the mechanisms driving the diver-

gence.

Let Θ be a random variable with realizations θ in

a (parameter) space of dimension K. Θ has some

as-yet unspecified relationship with observations X: =

. . . X−2, X−1, X0, X1, . . .. We can always perform the fol-

lowing information-theoretic decomposition of the com-

posite process’s excess entropy:

I[X−M :0;X0:N ] = I[X−M :0;X0:N |Θ]

+ I[X−M :0;X0:N ; Θ] . (1)

The first term quantifies the range of temporal correla-

tions of the observed process given Θ, and the second

term quantifies the dependencies between past and fu-

ture purely due to Θ. When the fixed-parameter pro-

cess X:|Θ = θ is ergodic and the composite process X:

is not, then Eq. (1) can be viewed as a decomposition

of I[X−M :0;X0:N ] into ergodic and nonergodic contribu-

tions, respectively.

The second term I[X−M :0;X0:N ; Θ] is a multivariate

mutual information [30] or co-information [31]. It is

closely related to parameter estimation, as expected [3],

since it provides information about the dimension K of

Θ. Standard information-theoretic identities yield:

I[X−M :0;X0:N ; Θ] = H[Θ] +H[Θ|X−M :N ]

−H[Θ|X−M :0]−H[Θ|X0:N ] . (2)

The first term H[Θ] quantifies our intrinsic uncertainty in

the bias. When Θ is a continuous random variable, H[Θ]

is a differential entropy. The subsequent terms describe

how our uncertainty in Θ decreases after seeing blocks of

lengths M +N , M , or N .

Altogether, Eqs. (1) and (2) give:

I[X−M :0;X0:N ] = I[X−M :0;X0:N |Θ] +H[Θ]

+H[Θ|X−M :N ]−H[Θ|X−M :0]

−H[Θ|X0:N ] . (3)

Thus, assuming one chose a prior with finite entropy

H[Θ], divergences in I[X−M :0;X0:N ] can come from di-

vergences in I[X−M :0;X0:N |Θ] or from divergences in

H[Θ|X−M :N ]−H[Θ|X−M :0]−H[Θ|X0:N ].

Let’s take the cases covered in Ref. [3, Secs. 4.1-4.4].

There, Θ consists of the model parameters, θ are realiza-

tions of Θ, and X:|Θ = θ consists of (noisy, potentially

temporally correlated) sequences generated by the model

with parameters θ. For instance, Θ could be the firing

rate of a Poisson neuron and X:|Θ = θ could be the

time-binned spike trains at firing rate θ. Or, Θ could be

transition probabilities in a finite Hidden Markov Model

(HMM) and X:|Θ = θ could be the generated process

given transition probabilities θ. The result, in any case,

is a nonergodic process X: constructed from a mixture of

ergodic component processes X:|Θ = θ.

In these examples, the component-process excess en-

tropy I[X−M :0;X0:N |Θ] = 〈I[X−M :0;X0:N |Θ = θ]〉θ
does not diverge with M or N , since finite HMMs have

finite excess entropy, which is bounded by the internal

state entropy [4, 32]. In fact, the excess entropy for many

ergodic stochastic processes is finite, even if generated by

infinite-state HMMs. Any divergence in the composite

process I[X−M :0;X0:N ] therefore comes from divergences

in H[Θ|X−M :N ]−H[Θ|X−M :0]−H[Θ|X0:N ].

Since the composite process includes sequences xi from

trials with different θ, one’s intuition might suggest that

Pr(Θ = θ|X−M :0 = x−M :0) is multimodal for most

x−M :0. However, existing results [33–36] on the asymp-

totic normality of posteriors carry over to this setting,

since they essentially rely on the log-likelihood function

log Pr(X−M :0 = x−M :0|Θ = θ) being sufficiently well be-

haved.

For instance, consider the Bandit process construction

of Sec. III. A crude derivation of the asymptotic normal-

ity of Pr(Θ = θ|X−M :0 = x−M :0) [37] starts with Bayes
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Rule:

Pr(Θ = θ|X−M :0 = x−M :0)

=
Pr(X−M :0 = x−M :0|Θ = θ) Pr(Θ = θ)

Pr(X−M :0 = x−M :0)
.

The denominator Pr(X−M :0 = x−M :0) is quite compli-

cated to calculate, but this normalization factor does not

affect the θ-dependence of Pr(Θ = θ|X−M :0 = x−M :0).

More to the point, the prior’s contribution Pr(Θ = θ) is

dwarfed by the likelihood:

Pr(|X−M :0 = x−M :0|Θ = θ)

= θ
∑M−1

i=0 xi(1− θ)M−
∑M−1

i=0 xi ,

in the large-M limit. Let θ∗ be the unique maximum

of Pr(Θ = θ|X−M :0 = x−M :0): θ∗ = 1
M

∑M−1
i=0 xi +

O(1/M). Taylor-expanding log Pr(Θ = θ|X−M :0 =

x−M :0) about θ∗ suggests that Pr(Θ = θ|X−M :0 =

x−M :0) is approximately normal in the large-M limit,

with variance decaying as ∼ 1/M . (Any one of the

many sources [33–36] on asymptotic normality of pos-

teriors provides rigorous and generalized statements.)

Armed with such asymptotic normality, we now

turn our attention to find the asymptotic form of

H[Θ|X−M :0 = x−M :0], H[Θ|X0:N = x0:N ], and

H[Θ|X−M :N = x−M :N ] in the large-M and -N lim-

its. The differential entropy of a normal distribution

is 1
2 log |det Σ|, where Σ is the covariance matrix; here,

det Σ ∼ 1/M . This captures the error distribution for

each of the K parameters. So, this and asymptotic nor-

mality of the posterior imply that:

H[Θ|X−M :0 = x−M :0] ∼ −K
2

logM ,

plus corrections of O(1) in M , and thus:

H[Θ|X−M :0] ∼ −K
2

logM ,

where K is the parameter space dimension.

At first blush, the result is counterintuitive. In the

limit that M and N tend to infinity, and we see longer

and longer sequences x−M :0, we become more certain as

to Θ’s value. This increasing certainty should mean that

the conditional entropy H[Θ|X−M :0 = x−M :0] vanishes.

However, if Θ is a continuous random variable (such as a

Poisson rate), then H[Θ|X−M :0 = x−M :0] is a differential

entropy. As our variance in Θ|X−M :0 = x−M :0 decreases

to 0, the differential entropy H[Θ|X−M :0 = x−M :0] di-

verges to negative infinity. It is exactly this well known

divergence that causes a divergence in I[X−M :0;X0:N ] for

the nonergodic processes we are considering.

From these results and Eq. (3), one has:

I[X−M :0;X0:N ; Θ] ∼ K

2
log

MN

M +N
.

And, recalling that the ergodic-component information

does not diverge, we immediately recover:

I[X−M :0;X0:N ] ∼ K

2
log

MN

M +N
. (4)

Lower-order terms in M and N include the expected log-

determinant of the Fisher information matrix for maxi-

mum likelihood estimates of Θ [38]. The joint divergence

in past (M) and future (N) lengths is new here; cf. Ref.

[3] which examined the case of E(−∞, N).

A similar information-theoretic decomposition can be

used to upper-bound the excess entropy of ergodic pro-

cesses as well. For instance, App. A, uses a similar de-

composition to show that the temporal excess entropy of

an Ising spin on a two-dimensional Ising lattice at criti-

cality is finite.

Logarithmic divergences in excess entropy also occur

in stationary ergodic processes, such as exhibited at the

onset of chaos through period-doubling [2]. And, al-

ternative scalings are known, such as power-law diver-

gences [3, Sec. 4.5]. For natural language texts there

is empirical evidence that the excess entropy diverges.

One form is referred to as Hilberg’s Law [8, 39, 40]:

I[X−N :0;X0:N ] ∝
√
N .

In contrast with Sec. IV’s rather direct calculation,

it is far less straightforward to analyze these power-law

divergences:

I[X:0;X0:N ] ∼ Nγ , (5)

with γ ∈ [0, 1). While there are results on asymptotics of

posteriors for nonparametric Bayesian inference, many

aim to establish asymptotic normality of the posterior;

e.g., as in Refs. [41, 42]. As far as we know, no result

yet recovers the aforementioned power-law divergence;

likely, since existing asymptotic analyses avoid the es-

sential singularity for the prior utilized in Ref. [3, Sec.

4.5] to obtain power-law divergence.

V. DISCUSSION

We investigated one large, but particular class of in-

finitary processes in terms of how information measures

diverge; recovering, in short order, a previously reported

logarithmic divergence in Bandit-like process past-future

mutual information. Practically, this suggests that one

could use the scaling of empirical estimates of past-future

information as a function of sequence length to estimate
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a process’s parameter space dimension. Mathematically

and somewhat surprisingly, the derivation shows that the

reason Bandit-like processes exhibit information diver-

gences derives from the role nominally finite-sample ef-

fects (asymptotic normality) play in a framework that

otherwise assumes arbitrarily large amounts of data.

Infinitary

Finitary

Generative

Sofic

Markov

E→∞

Cgen →∞

Cµ →∞

R→∞

FIG. 1. Prediction hierarchy for stationary ergodic processes:
Each level describes a process class with finite informational
quantities. A class above finitely models the processes in
the class below. Classes are separated by divergence in the
corresponding informational quantity. Moving up the hier-
archy corresponds to it diverging. Example processes that
are finitely presented at each level, but infinitely presented
at the preceding lower level. Sofic: typical unifilar HMMs,
e.g., Even Process [1]; Generative: typical nonunifilar HMMs
[32]; Finitary : typical infinite nonunifilar HMMs; Infinitary :
highly atypical infinite HMMs with long-range memory, e.g.,
the ergodic construction in Ref. [4].

Section IV’s scaling analysis left open the possibility

that information divergences can be driven by the ergodic

components themselves. So, what is known about infor-

mation divergences in ergodic processes? An information

divergence hints at a structural level in the space of er-

godic processes; a space that is itself highly organized.

This is seen in the hierarchy of divergences separating

processes into classes of distinct architecture, depicted in

Fig. 1. (See also Table 1, Fig. 18, and Sec. 5 in Ref.

[43].) Processes at each level are distinguished by differ-

ent scalings for their complexity and in how difficult they

are to learn and predict.

At the lowest level (Markov) are processes described

by finite ε-machines with finite history dependence (fi-

nite Markov order R); e.g., those described by existing

Maximum Caliber models [44] or by measure subshifts of

finite type [45]. Though very commonly posited as mod-

els, they inhabit a vanishingly small measure in the space

of processes [46]. At the next level (Sofic) of structure are

processes described by ε-machines with finite Cµ. These

typically have infinite Markov order; e.g., the measure-

sofic processes. Above this level are processes generated

by general (that is, nonunifilar) HMMs with uncountable

recurrent causal states and divergent statistical complex-

ity that, nonetheless, have finite generative complexity,

Cgen <∞ [32]. Processes at the generative level not only

have infinite Markov order and storage, but also require a

growing amount of memory for accurate prediction. One

consequence is that they are inherently unpredictable by

any observer with finite resources. Note, however, that

predictability is complicated at all levels by cryptic pro-

cesses [47]—those with arbitrarily small excess entropy,

but large statistical complexity. When the smallest gen-

erative model is infinite but the process still has short-

term memory, we arrive at the class of finitary processes

(E <∞).

Processes with divergent excess entropy—infinitary

processes—inhabit the upper reaches of this hierarchy.

Predicting such processes necessarily requires infinite re-

sources, but accurate prediction can also return infinite

dividends. We agree, here, with Ref. [3]: the asymptotic

rate of information divergence is a useful proxy for pro-

cess complexity. Historically, this view appears to have

been anticipated in Shannon’s introduction of the dimen-

sion rate [48, App. 7] of an ensemble of functions:

λ = lim
δ→0

lim
ε→0

lim
T→∞

N(ε, δ, T )

T log ε
,

where N(ε, δ, T ) is the smallest number of elements that

can be chosen such that all elements of the ensemble,

apart from a set of measure δ, are within the distance ε

of at least one of those chosen.

However, it is as important to know which process

mechanism drives the divergence as it is to know the

divergence rate. Infinitary Bandit processes store mem-

ory entirely in their nonergodic component. Our analysis

identified the divergence in this memory with the well

known divergence in the differential entropy of highly

peaked distributions of vanishing width. Generalizing

Bandit processes to have structured ergodic components,

we now see that even finite ε-machines trivially gener-

ate infinitary processes when their transition probabili-

ties are continuous random variables.

Thus, in this case, we also agree that information di-

vergence is a “necessary but not sufficient” criteria for

process complexity [5]. (Appendix A, however, looks at

critical phenomena in spin systems to call out a caveat.)

This leaves open a broad challenge to understand the suf-

ficient mechanisms for information divergences. For ex-

ample, we have yet to develop similar informational and

computation-theoretic analyses for the infinitary ergodic

processes in Refs. [4, 5].

Looking forward, the simplicity of our structural com-
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plexity analysis opens up the possibility to better frame

information in hierarchical processes [43, Sec. 5], such as

the structural hierarchy in biology [49, Fig. 6], epochal

evolution [50], and knowledge hierarchies in social sys-

tems such as semantics in human language [51]. These

are processes in which multiple levels of mechanism are

manifest and operate simultaneously and in which each

level is separated from those below via phase transi-

tions that lead to distinct signatures of informational and

structural divergence.

ACKNOWLEDGMENTS

We thank N. Ay, W. Bialek, R. D’Souza, C. Ellison, C.

Hillar, and I. Nemenman for useful conversations. The

authors thank the Santa Fe Institute for its hospitality

during visits. JPC is an SFI External Faculty member.

This material is based upon work supported by, or in

part by, the U. S. Army Research Laboratory and the

U. S. Army Research Office under contracts W911NF-

12-1-0288, W911NF-13-1-0390, and W911NF-13-1-0340.

SM was funded by a National Science Foundation Grad-

uate Student Research Fellowship and the U.C. Berkeley

Chancellor’s Fellowship.

Appendix A: Truly Complex Spin Systems?

Reference [5] pointed out that many infinitary pro-

cesses do not satisfy intuitive definitions for complexity.

It suggested that divergence in E is a “necessary but not

sufficient condition” for a process being truly complex.

While intuitively compelling, perhaps divergent E is not

even a necessary condition. Let’s explain.

Spin systems at criticality are one of the most familiar

examples of truly complex processes: global correlations

emerge from purely local interactions [29]. Evidence of

this complexity appears even if we are only allowed to

observe a single spin’s interaction with another on the

lattice. At the critical temperature, the interaction has

a power-law autocorrelation function; at all other tem-

peratures, the spin’s autocorrelation function is asymp-

totically exponential. The spatial excess entropy of these

configurations appears to diverge at criticality [52], too.

However, does the temporal excess entropy E(M,N)—

roughly, the interaction a single spin with itself at later

times—also diverge at criticality?

Surprisingly, the excess entropy of the dynamics of a

single spin on an Ising lattice is finite, even at the crit-

ical temperature, unless there are nonlocal spatial in-

teractions between lattice spins. Consider evolving the

lattice configurations via Glauber dynamics for concrete-

ness [29]. That is, spin j’s next state σjt+1 is determined

stochastically by its previous state σjt and its effective

magnetic field hjt =
∑
i Jijσ

i
t. In other words, hjt and σjt

causally shield the past←−σ jt from the future −→σ jt , implying

that:

I[σjt−M :t;σ
j
t+1:t+N |hjt ] = I[σjt ;σ

j
t+1|hjt ]

≤ H[σjt ] .

Given a finite set of spin values and local interactions, hjt
can only take a finite number of values. Thus, H[hjt ] <

∞, and so: ∣∣I[σjt−M :t;σ
j
t+1:t+N ;hjt ]

∣∣ ≤ H[hjt ]

<∞ ,

as well.

A more familiar example makes this concrete. For the

standard two-dimensional Ising lattice Jij = J , if i and

j are nearest neighbors, and Jij = 0, otherwise. There,

hjt can only take 5 possible values—hj ∈ {0, J, 2J, 3J ,

and 4J}—giving:∣∣I[σjt−M :t;σ
j
t+1:t+N ;hjt ]

∣∣ ≤ H[hjt ]

≤ log2 5 bits .

The information-theoretic decomposition in Eq. (1) ap-

plies in this particular situation. Here, observed vari-

ables Xt are spins σt, and the parameters Θ are re-

placed by hj . The bounds above then directly imply

that E(M,N) < ∞ for all M and N . In fact, for

the standard two-dimensional Ising lattice, we find that

E(−∞,∞) ≤ 1 + log2 5 = 3.4 bits. We expect excess

entropy to diverge only when hj is a continuous random

variable. This can happen when Jij is nonzero for an

infinite number of i’s. However, this necessitates global,

not local, spin-spin couplings.

On the one hand, this analysis does not negate E’s

utility as a generalized order parameter [53]. It is still

likely maximized at the critical point, even if its tempo-

ral version does not diverge. On the other, our analysis

shows that phenomena—here, spin lattices with purely

local couplings—do not necessarily have divergent E even

when many would consider their dynamics to be truly

complex when the system is critical.

At first glance, the analysis contradicts the experi-

ments in Fig. 1 of Ref. [3] for the Ising lattice with

only local interactions. A more careful look reveals that

there is no contradiction at all. There, coupling strengths

were randomly changed every 400, 000 iterations, so the

resultant time series looked like a concatenation of sam-

ples from a Bandit process. The analysis in Sec. IV then

predicts the observed logarithmic scaling in Fig. 1 there

for N . 25. However, it also implies that E(−∞, N) will

stop increasing logarithmically at or before N = 400, 000.
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