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metadynamics of predicting their behavior. Using the resulting spectral decomposition, we derive
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The prequel laid out a new toolset that al-

lows one to analyze in detail how complex sys-

tems store and process information. Here, we

use the tools to calculate in closed form almost

all complexity measures for processes generated

by finite-state hidden Markov models. Helpfully,

the tools also give a detailed view of how subpro-

cess components contribute to a process’ informa-

tional architecture. As an application, we show

that the widely-used methods based on Fourier

analysis and power spectra fail to capture the

structure of even very simple structured pro-
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cesses. We introduce the spectrum of past-future

mutual information and show that it allows one

to detect such structure.

I. INTRODUCTION

Tracking the evolution of a complex system, a time se-

ries of observations often appears quite complicated in

the sense of temporal patterns, stochasticity, and behav-

ior that require significant resources to predict. Such

complexity arises from many sources. Apparent complex-

ity, even in simple systems, can be induced by practical

measurement and analysis issues, such as small sample

size, inadequate collection of probes, noisy or system-

atically distorted measurements, coarse-graining, out-of-

class modeling, nonconvergent inference algorithms, and

so on. The effects can either increase or decrease ap-

parent complexity, as they add or discard information,

hiding the system of interest from an observer to one

degree or another. Assuming perfect observation, com-

plexity can also be inherent in nonlinear stochastic dy-

namical processes—deterministic chaos, superexponen-

tial transients, high state-space dimension, nonergodic-

ity, nonstationarity, and the like. Even in ideal settings,

the smallest sufficient set of a system’s maximally pre-

dictive features is generically uncountable, making ap-

proximations unavoidable, in principle [1]. With nothing

else said, these facts obviate physical science’s most ba-

sic goal—prediction—and, without that, they preclude

understanding how nature works. How can we make

progress?

The prequel, Part I, argued that this is too pessimistic

a view. It introduced constructive results that address

hidden structure and the challenges associated with pre-

dicting complex systems. It showed that questions re-

garding correlation, predictability, and prediction each

require their own analytical structures. Measures of

correlation—including autocorrelation functions, power

spectra, and Greeen–Kubo transport coefficients—are di-

rect signatures of the transition dynamic of any hidden

Markov model (HMM) representation of a process. How-

ever, Part I explained that synchronizing to the hidden

linear dynamic in systems induces a nondiagonalizable

metadynamics, even if the dynamics are diagonalizable

in their underlying state-space. Hence, questions about

predictability—for example: “How much of the future

can be predicted from past observations?” and “What

is the irreducible randomness of the process?”—and the

burdens of actually predicting—“How much memory

must be allocated to predict what is predictable?” and

“How much time must be invested before an observer is

sufficiently synchronized to make good predictions?”—

are instead answered by the nondiagonalizable transition

dynamics of so-called mixed state presentations (MSPs)

of the process.

Part I gave operator expressions that begin to an-

swer these questions. However, assuming normal and

diagonalizable dynamics, so familiar in mathematical

physics, simply fails in this setting. Thus, nondiago-

nalizable dynamics presented an analytical roadblock.

Part I reviewed a calculus for functions of nondiago-

nalizable operators—the recently developed meromor-

phic functional calculus of Ref. [2]—that directly ad-

dresses nondiagonalizability, giving constructive calcula-

tional methods and algorithms. Part I also highlighted

a spectral weighted directed-graph theory that can give

useful shortcuts for determining a process’ spectral de-

composition.

Part II now goes a step further, providing the first

closed-form expressions for many of the complexity mea-

sures in wide use. In following through the derivations,

we discover a timescale—the symmetry collapse index—

that indicates the sophistication of finite computational

structures in infinite-Markov-order processes. We are

also led to the introduction of complexity spectra that

give a frequency-decomposition of predictable features.

In the following, we consider wide-sense stationary

stochastic processes . . . Xt−1XtXt+1 . . . with a discrete

domain. The random variable Xt can take on values

x ∈ A, which we assume to be a finite set. The inter-

dependencies among the random variables can be inter-

preted as intrinsic computations carried out by the pro-

cess under observation. While such stochastic processes

are natural in discrete-time signal processing [3, 4] and

on discrete lattices [5], they are sometimes also obtained

from continuous-time chaotic systems via regular sam-

pling. Moreover, while finite alphabets A are intrinsic

to certain sources, they may also be obtained from con-

tinuous phase-spaces, either by measurement precision

limitations or by intentional parsimony as in the case of

generating partitions used in symbolic dynamics [6–8].

Such processes are typically non-Markovian and can ap-

pear very complicated, but we unravel their complexities

via analysis of a HMM representation of the process—

where the HMM may be obtained from first principles or

may be inferred by any number of methods (see Ref. [9]

and references therein).

A. Notational review

Part II here uses Part I’s notation and assumes famil-

iarity with its results.

In Part I, we reviewed relevant background in stochas-

tic processes and their complexities and the hidden
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Markov models (HMMs) that generate them. Part I de-

lineated several classes of HMMs—Markov chains, unifi-

lar HMMs, and nonunifilar HMMs. It also reviewed

their mixed-state presentations (MSPs)—HMM gener-

ators of a process that track distributions induced by

observation. Related constructions included the mixed-

functional presentations and cryptic-operator presenta-

tions. MSPs are key to calculating complexity mea-

sures within an information-theoretic framing. Part I

then showed how each complexity measure reduces to a

linear algebra of an appropriate HMM adapted to the

cascading- or accumulating-question genre. It summa-

rized the meromorphic functional calculus and several of

its mathematical implications in relation to spectral pro-

jection operators.

Recall that a distribution η over the states S of

an HMM M =
(
S,A, {T (x)}x∈A,S0 ∼ η

)
induces a

probability distribution over subsequent words x0:L =

x0x1 . . . xL−1 generated by the process:

Pr
S0∼η

(X0:L = x0:L) = 〈η|T (x0:L)|1〉

= 〈η|T (x0)T (x1) . . . T (xL−1)|1〉 ,

where the labeled transition matrices, with elements

T
(x)
i,j = Pr(Xt = x,St+1 = sj |St = si), sum to the row-

stochastic transition matrix T =
∑
x∈A T

(x), and |1〉 is

the all-ones vector such that T |1〉 = |1〉.
Ergodic processes will have a single stationary distri-

bution π, such that 〈π|T = 〈π|. (Non-ergodic processes

can still have a specified stationary distribution π over

states, but it could no longer be uniquely identified from

T alone.) The synchronizing MSP (S-MSP) introduced

in Part I is a metadynamic of how distributions over M
are updated by observation, starting in the mixed state π

and thus starting in the peaked distribution δπ over the

set of mixed states. The full set of observation-induced

mixed states is Rπ = ∪w∈L
{
〈π|T (w)

〈π|T (w)|1〉

}
, where L ⊂ A∗

is the language of observable words. Although its dy-

namic is ‘meta’ in relation to the dynamic of the original

HMM, the MSP itself is also a HMM with labeled transi-

tion operators W (x) summing to the row-stochastic and

generically nondiagonalizable mixed-state-to-state tran-

sition dynamic W .

Recall that the meromorphic functional calculus pre-

scribes the construction of a new operator from an arbi-

trary function f of a linear operator A as:

f(A) =
∑

λ∈ΛA

νλ−1∑

m=0

Aλ,m
1

2πi

∮

Cλ

f(z)

(z − λ)m+1
dz ,

where ΛA is the set of A’s eigenvalues, νλ is the index of

the eigenvalue λ (i.e., the size of the largest Jordan block

associated with λ), z ∈ C, Cλ is a positively oriented Jor-

dan curve around λ that includes no other singularities

besides possibly at λ itself, and Aλ,m = Aλ(λI − A)m

where I is the identity operator and Aλ is the spectral

projection operator, more simply known as the eigenpro-

jector. The eigenprojector can be constructed as:

Aλ =

n∑

k=1

mk∑

m=1

δλ,λk |λ
(m)
k 〉 〈λ(mk+1−m)

k | ,

where |λ(m+1)
k 〉 and 〈λ(m+1)

k | are themth generalized right

and left eigenvectors, respectively, of the kth Jordan chain

such that:

(A− λkI) |λ(m+1)
k 〉 = |λ(m)

k 〉

and:

〈λ(m+1)
k | (A− λkI) = 〈λ(m)

k | ,

for 0 ≤ m ≤ mk − 1, where |λ(0)
j 〉 = ~0 and 〈λ(0)

j | =

~0. Specifically, |λ(1)
k 〉 and 〈λ(1)

k | are conventional right

and left eigenvectors, respectively—these are sometimes

written more simply as |λ〉 and 〈λ|, when the algebraic

multiplicity aλ = 1 and there is thus no risk of ambiguity.

After imposing normalization, we find that:

〈λ(m)
j |λ(n)

k 〉 = δj,kδm+n,mk+1 .

Perhaps counterintuitively, this implies for example that

the most generalized right eigenvectors are dual to the

least generalized left eigenvectors.

Usefully, Part I also demonstrated how eigenvalues can

be read off from graph motifs and how eigenvectors and

spectral projection operators can be built up hierarchi-

cally. Part I should be consulted for further details.

B. Outline of main results

With Part I’s toolset laid out, Part II now derives the

promised closed-form complexities of a process. Section

§II investigates the range of possible behaviors for corre-

lation and myopic uncertainty via convergence to asymp-

totic correlation and asymptotic entropy rates. Sec-

tion §III then considers measures related to accumulat-

ing quantities during the transient relaxation to synchro-

nization. Section §IV introduces closed-form expressions

for a wide range of complexity measures in terms of the

spectral decomposition of a process’ dynamic. It also in-

troduces complexity spectra and highlights common sim-

plifications for special cases, such as almost diagonaliz-

able dynamics. The excess entropy spectrum should be
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an especially useful diagnostic tool since it shows not

only the extent but also the timescales over which the

past can yield predictions about the future. Addition-

ally, we discover a new timescale—the symmetry collapse

index—reflective of computational structures in infinite-

Markov-order processes. Section §V gives a new kind

of signal analysis in terms of coronal spectrograms. A

suite of examples in §VI and §VII ground the theoretical

developments and are complemented with an in-depth

pedagogical example worked out in App. §A. Finally, we

conclude with a brief retrospective of Parts I and II and

give an eye towards future applications.

II. CORRELATION AND MYOPIC

UNCERTAINTY

Using Part I’s methods, our first step is to solve for

the autocorrelation function:

γ(L) =
〈
XtXt+L

〉
t

(1)

and the myopic uncertainty or finite-history Shannon en-

tropy rate:

hµ(L) = H [XL|X1:L] . (2)

While the first of these indicates how a time-series cor-

relates with itself across time, the second indicates how

much new information is generated by a single observa-

tion beyond what could be inferred from the last L ob-

servations. A comparison is informative. We then deter-

mine the asymptotic correlation and myopic uncertainty

from the resulting finite-L expressions.

A. Nonasymptotics

A central result in Part I was the spectral decomposi-

tion of powers of a linear operator A, even if that operator

is nondiagonalizable. Recall that for any L ∈ C:

AL =

[ ∑

λ∈ΛA
λ 6=0

νλ−1∑

m=0

(
L

m

)
λL−mAλ,m

]

+ [0 ∈ ΛA]

ν0−1∑

m=0

δL,mA0A
m , (3)

where
(
L
m

)
is the generalized binomial coefficient:

(
L

m

)
=

1

m!

m∏

n=1

(L− n+ 1) , (4)

(
L
0

)
= 1, and [0 ∈ ΛA] is the Iverson bracket. The latter

takes on value 1 if zero is an eigenvalue of A and 0 if not.

In light of this, the autocorrelation function γ(L) is

simply a superposition of weighted eigen-contributions.

Part I showed that Eq. (1) has the operator expression:

γ(L) = 〈πA|T |L|−1 |A1〉 ,

where T is the transition dynamic of any HMM presen-

tation of the process, A is the output symbol alphabet,

and we defined the row vector:

〈πA| = 〈π|
(∑

x∈A
xT (x)

)

and the column vector:

|A1〉 =
(∑

x∈A
xT (x)

)
|1〉 .

Substituting Part I’s spectral decomposition of matrix

powers, Eq. (3) above, directly leads to the spectral de-

composition of γ(L) for nonzero integer L:

γ(L) =
∑

λ∈ΛT
λ 6=0

νλ−1∑

m=0

〈πA|Tλ,m |A1〉
(|L| − 1

m

)
λ|L|−1−m

+ [0 ∈ ΛT ]

ν0−1∑

m=0

〈πA|T0T
m |A1〉 δ|L|−1,m (5)

= γ (L) + γ((L) . (6)

We denote the persistent first term of Eq. (5) as γ , and

note that it can be expressed:

γ (L) = 〈πA|TDTT |L|−1 |A1〉
= 〈πA|TDT |L| |A1〉 ,

where TD is T ’s Drazin inverse. We denote the ephemeral

second term as γ(, which can be written as:

γ((L) = 〈πA|T0T
|L|−1 |A1〉 ,

where T0 is the eigenprojector associated with the eigen-

value of zero; T0 = 0 if 0 /∈ ΛT .

From Eq. (5), it is now apparent that the index of T ’s

zero eigenvalue gives a finite-horizon contribution (γ()

to the autocorrelation function. Beyond index ν0 of T ,

the only L-dependence comes via a weighted sum of terms

of the form
(|L|−1

m

)
λ|L|−1−m—polynomials in L times de-

caying exponentials. The set
{
〈πA|Tλ,m |A1〉

}
simply

weights the amplitudes of these contributions. In the

familiar diagonalizable case, the behavior of autocorrela-

tion is simply a sum of decaying exponentials λ|L|.

Similarly, in light of Part I’s expression for the myopic
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entropy rate in terms of the MSP—starting in the initial

unsynchronized mixed-state π and evolving the state of

uncertainty via the observation-induced MSP transition

dynamic W :

hµ(L) = 〈δπ|WL−1 |H(WA)〉 , (7)

where

|H(WA)〉 ≡ −
∑

η∈Rπ

|δη〉
∑

x∈A
〈δη|W (x) |1〉 log2〈δη|W (x) |1〉

is simply the column vector whose ith entry is the en-

tropy of transitioning from the ith state of S-MSP—and

its spectral decomposition of AL, we find the most gen-

eral spectral decomposition of the myopic entropy rates

hµ(L) to be:

hµ(L) =
∑

λ∈ΛW
λ 6=0

νλ−1∑

m=0

〈δπ|Wλ,m |H(WA)〉
(
L− 1

m

)
λL−1−m

+ [0 ∈ ΛW ]

ν0−1∑

m=0

δL−1,m 〈δπ|W0W
m |H(WA)〉 (8)

= h (L) + h((L) . (9)

We denote the persistent first term of Eq. (8) as h , and

note that it can be expressed directly as:

h (L) = 〈δπ|WDWWL−1 |H(WA)〉
= 〈δπ|WDWL |H(WA)〉 ,

where WD is the Drazin inverse of the mixed-state-

to-state net transition dynamic W . We denote the

ephemeral second term as h(, which can be written as:

h((L) = 〈δπ|W0W
L−1 |H(WA)〉 .

From Eq. (8), we see that the index of W ’s zero eigen-

value gives a finite horizon contribution (h() to the my-

opic entropy rate. Beyond index ν0 of W , the only L-

dependence comes via a weighted sum of terms of the

form
(
L−1
m

)
λL−1−m—polynomials in L times decaying ex-

ponentials. The set
{
〈δπ|Wλ,m |H(WA)〉

}
weights the

amplitudes of these contributions.

For stationary processes we anticipate that, for all

ζ ∈ {λ ∈ ΛW : |λ| = 1, λ 6= 1}, 〈δπ|Wζ = 0 and thus

〈δπ|Wζ |H(WA)〉 = 0. Hence, we can save ourselves from

superfluous calculation by excluding the nonunity eigen-

values on the unit circle, when calculating the myopic

entropy rate for stationary processes. In the diagonaliz-

able case, again, its behavior is simply a sum of decaying

exponentials λL.

In practice, γ( often vanishes, whereas h( is often

nonzero. This practical difference between γ( and h(
stems from the difference between typical graph struc-

tures of the respective dynamics. For a stationary pro-

cess’ generic transition dynamic, zero eigenvalues (and

so ν0(T ) of T ) typically arise from hidden symmetries in

the dynamic. In contrast, the MSP of a generic tran-

sition dynamic often has tree-like ephemeral structures

that are primarily responsible for the zero eigenvalues

(and ν0(W )). Nevertheless, despite their practical typi-

cal differences, the same mathematical structures appear

and contribute to the most general behavior of each of

these cascading quantities.

The breadth of qualitative behaviors shared by auto-

correlation and myopic entropy rate is common to the

solution of all questions that can be reformulated as a

cascading hidden linear dynamic; the myopic state un-

certainty H+(L) is just one of many other examples. As

we have already seen, however, different measures of a

process reflect signatures of different linear operators.

Next, we explore similarities in the qualitative behavior

of asymptotics and discuss the implications for correla-

tion and entropy rate.

B. Asymptotic correlation

The spectral decomposition reveals that the autocor-

relation converges to a constant value as L → ∞, un-

less T has eigenvalues on the unit circle besides unity

itself. This holds if index ν0 is finite, which it is for

all processes generated by finite-state HMMs and also

many infinite-state HMMs. If unity is the sole eigen-

value with magnitude one, then all other eigenvalues have

magnitude less than unity and their contributions van-

ish for large enough L. Explicitly, if ν0(T ) < ∞ and

argmaxλ∈ΛT |λ| = {1}, then:

lim
L→∞

γ(L)

= lim
L→∞

∑

λ∈ΛT
λ6=0

νλ−1∑

m=0

〈πA|Tλ,m |A1〉
(
L− 1

m

)
λL−1−m

= 〈πA|T1 |A1〉
= 〈πA|1〉〈π |A1〉

=
∣∣∣
∑

x∈A
xPr(x)

∣∣∣
2

=
∣∣〈x〉

∣∣2 .

This used the fact that ν1 = 1 and that T1 = |1〉 〈π|
for an ergodic process. This confirms the expecta-

tion that 〈XtXt+L〉t − 〈Xt〉t 〈Xt〉t → 0 as L → ∞ if

argmaxλ∈ΛT |λ| = {1}, since the random variables (Xt
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and Xt+L) then become de-correlated in the limit of large

L.

If other eigenvalues in ΛT besides unity lie on the unit

circle, then the autocorrelation approaches a periodic se-

quence as L gets large. This latter case includes not only

deterministically periodic processes, but also stochastic

processes with periodic randomness.

C. Asymptotic entropy rate

By the Perron–Frobenius theorem, νλ = 1 for all eigen-

values of W on the unit circle. Hence, in the limit of

L → ∞, we obtain the asymptotic entropy rate for any

stationary process:

hµ ≡ lim
L→∞

hµ(L) (10)

= lim
L→∞

∑

λ∈ΛW
|λ|=1

λL−1 〈δπ|Wλ |H(WA)〉 (11)

= 〈δπ|W1 |H(WA)〉 , (12)

since, for stationary processes, 〈δπ|Wζ = 0 for all ζ ∈
{λ ∈ ΛW : |λ| = 1, λ 6= 1}. For nonstationary processes,

the limit may not exist, but hµ may still be found in a

suitable sense as a function of time. If the process has

only one stationary distribution over mixed states, then

W1 = |1〉 〈πW | and we have:

hµ = 〈πW |H(WA)〉 , (13)

where πW is the stationary distribution over W ’s states,

found either from 〈πW | = 〈δπ|W1 or from solving

〈πW |W = 〈πW |.
A simple but interesting example of when ergodicity

does not hold is the multi-armed bandit problem [10, 11].

In this, a realization is drawn from an ensemble of dif-

ferently biased coins or, for that matter, over any other

collection of IID processes. More generally, there can

be many distinct memoryful stationary components from

which a given realization is sampled, according to some

probability distribution. With many attracting compo-

nents we have the stationary mixed-state eigenprojector

W1 =
∑a1

k=1 |1k〉 〈1k|, with 〈1j |1k〉 = δj,k, where the alge-

braic multiplicity a1(T ) = a1(W ) of the ‘1’ eigenvalue is

the number of attracting components. The entropy rate

becomes:

hµ =

a1∑

k=1

〈δπ| 1k〉〈1k |H(WA)〉 (14)

=
〈
h(component k)
µ

〉
k
. (15)

Above, 〈δπ| 1k〉 is the probability of ending up in compo-

nent k, while 〈1k |H(WA)〉 is component k’s entropy rate.

Thus, if nonergodic, the process’ entropy rate may not

be the same as the entropy of any particular realization.

Rather, the process’ entropy rate is a weighted average

of those for the ensemble of sequences constituting the

process.

For unifilar M, the topology, transition probabilities,

and stationary distribution over the recurrent states are

the same for both M and its S-MSP. Hence, for unifilar

M we have:

hµ = 〈πW |H(WA)〉
= 〈π|H(TA)〉 . (16)

One can easily show that Eq. (16) is equivalent to the

well-known closed-form expression for hµ for unifilar pre-

sentations:

〈π|H(TA)〉 = −
∑

σ∈S
Pr(σ)

∑

x∈A
σ′∈S

T
(x)
σ,σ′ log2(T

(x)
σ,σ′) . (17)

For nonunifilar presentations, however, we must use the

more general result of Eq. (13). This is similar to the

calculation in Eq. (17), but must be performed over the

recurrent states of a mixed-state presentation, which may

be countable or uncountable.

III. ACCUMULATED TRANSIENTS FOR

DIAGONALIZABLE DYNAMICS

In the diagonalizable case, autocorrelation, myopic en-

tropy rate, and myopic state uncertainty reduce to a sum

of decaying exponentials. Correspondingly, we can find

the power spectrum, excess entropy, and synchronization

information respectively via geometric progressions.

For example, if W is diagonalizable and has no zero

eigenvalue, then the myopic entropy rate reduces to:

hµ(L) =
∑

λ∈ΛW

〈δπ|Wλ |H(WA)〉λL−1

= 〈δπ|W1 |H(WA)〉+
∑

λ∈ΛW
|λ|<1

λL−1 〈δπ|Wλ |H(WA)〉 ,

where 〈δπ|W1 |H(WA)〉 is identifiable as the entropy rate

hµ.

It then follows that the excess entropy, which is the

mutual information E = I[
←−
X ;
−→
X ] between the past and

the future—and thus how much of the future can be pre-
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dicted from the past—is:

E ≡
∞∑

L=1

[hµ(L)− hµ]

=

∞∑

L=1

∑

λ∈ΛW
|λ|<1

λL−1 〈δπ|Wλ |H(WA)〉

=
∑

λ∈ΛW
|λ|<1

〈δπ|Wλ |H(WA)〉
∞∑

L=1

λL−1

︸ ︷︷ ︸
=
∑∞
L=0 λ

L= 1
1−λ

=
∑

λ∈ΛW
|λ|<1

1

1− λ 〈δπ|Wλ |H(WA)〉 . (18)

Note that larger eigenvalues (closer to unity magnitude)

drive the denominator 1 − λ closer to zero and, thus,

increase 1
1−λ . Hence, larger eigenvalues—controlling

modes of the mixed-state transition matrix that decay

slowly—have the potential to contribute most to excess

entropy. Small eigenvalues—quickly decaying modes—do

not contribute significantly. Putting aside the language

of eigenvalues, one can paraphrase: slowly decaying tran-

sient behavior (of the distribution of distributions over

process states) has the most potential to make a process

appear complex.

Continuing, the transient information, used in the con-

text of synchronization and distinguishing periodic struc-

tures [12], is:

T ≡
∞∑

L=1

L [hµ(L)− hµ]

=

∞∑

L=1

∑

λ∈ΛW
|λ|<1

LλL−1 〈δπ|Wλ |H(WA)〉

=
∑

λ∈ΛW
|λ|<1

〈δπ|Wλ |H(WA)〉
∞∑

L=1

LλL−1

︸ ︷︷ ︸
=
∑∞
L=0

d
dλλ

L= d
dλ (

∑∞
L=0 λ

L)= d
dλ ( 1

1−λ )= 1
(1−λ)2

=
∑

λ∈ΛW
|λ|<1

1

(1− λ)2
〈δπ|Wλ |H(WA)〉 .

We now see that the transient information is very closely

related to the excess entropy, differing only via the square

in the denominators. This comparison between E and T

closed-form expressions suggests an entire hierarchy of

informational quantities based on eigenvalue weighting.

Performing a similar procedure for the synchronization

information S′ [13] shows that:

S′ ≡
∞∑

L=0

[
H(L)−H

]

=

∞∑

L=0

∑

λ∈ΛW
|λ|<1

〈δπ|Wλ |H[η]〉 λL

=
∑

λ∈ΛW
|λ|<1

〈δπ|Wλ |H[η]〉
∞∑

L=0

λL

=
∑

λ∈ΛW
|λ|<1

1

1− λ 〈δπ|Wλ |H[η]〉 ,

where |H[η]〉 ≡∑η∈Rπ
|δη〉H [η] is the column vector of

entropies associated with each mixed-state.

The expressions reveal a remarkably close relationship

between S′ and E. Define 〈·| ≡∑∞L=0 〈δπ|WL. Then:

〈·| =
∑

λ∈ΛW
|λ|<1

1

1− λ 〈δπ|Wλ .

The relationship is now made plain:

E = 〈· |H(WA)〉 and

S′ = 〈· |H[η]〉 .

Although a bit more cumbersome, perhaps better intu-

ition emerges if we rewrite 〈·| as 〈
∫

Pr(η, L)dL|.
Again, large eigenvalues—slowly decaying modes of the

mixed-state transition matrix—can make the largest con-

tribution to synchronization information; small eigenval-

ues correspond to quickly decaying modes that do not

have the opportunity to contribute. In fact, the poten-

tial of large eigenvalues to make large contributions is a

recurring theme for many questions one has about a pro-

cess. Simply stated, long-term behavior—what we often

interpret as “complex” behavior—is dominated by a pro-

cess’s largest-eigenvalue modes.

That said, a word of warning is in order. Although

large-eigenvalue modes have the most potential to make

contributions to a process’s complexity, the actual set of

largest contributors also depends strongly on the ampli-

tudes {〈δπ|Wλ |. . .〉}, where |. . .〉 is some quantifier vec-

tor of interest; e.g., |. . .〉 = |H[η]〉, |. . .〉 = |H(WA)〉, or

|. . .〉 = |1〉.
Hence, there is as-yet unanticipated similarity between

E and T and another between E and S′—at least assum-

ing diagonalizability. We would like to know the relation-

ships between these quantities more generally. However,

deriving the general closed-form expressions for accumu-

lated transients is not tractable via the current approach.
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Rather, to derive the general results, we deploy the mero-

morphic functional calculus directly at an elevated level,

as we now demonstrate.

IV. EXACT COMPLEXITIES AND

COMPLEXITY SPECTRA

We now derive the most general closed-form solutions

for several complexity measures, from which expressions

for related measures follow straightforwardly. This in-

cludes an expression for the past–future mutual informa-

tion or excess entropy, identifying two distinct persistent

and transient components, and a novel extension of ex-

cess entropy to temporal frequency spectra components.

We also give expressions for the synchronization informa-

tion and power spectra. We explicitly address the class—

a common one we argue—of almost diagonalizable dy-

namics. The section finishes by highlighting finite-order

Markov order processes that, rather than being simpler

than infinite Markov order processes, introduce technical

complications that must be addressed.

Before carrying this out, we define several useful ob-

jects. Let ρ(A) be the spectral radius of matrix A:

ρ(A) = max
λ∈ΛA

|λ| .

For stochastic W , since ρ(W ) = 1, let Λρ(W ) denote the

set of eigenvalues with unity magnitude:

Λρ(W ) = {λ ∈ ΛW : |λ| = 1} .

We also define:

Q ≡W −W1 (19)

and

Q ≡W −
∑

λ∈Λρ(W )

λWλ . (20)

Eigenvalues with unity magnitude that are not them-

selves unity correspond to perfectly periodic cycles of the

state-transition dynamic. By their very nature, such cy-

cles are restricted to the recurrent states. Moreover, we

expect the projection operators associated with these cy-

cles to have no net overlap with the start-state of the

MSP. So, we expect:

〈δπ|Wλ = ~0 , (21)

for all λ ∈ Λρ(W ) \ {1}. Hence:

〈δπ|QL = 〈δπ| QL . (22)

We will also use the fact that, since ρ(Q) < 1:

∞∑

L=0

QL = (I −Q)−1 ;

and furthermore:

〈δπ| (I −Q)−1 = 〈δπ| (I −Q)−1 ,

as a consequence of Eq. (21) and our spectral decompo-

sition.

Having seen complexity measures associated with pre-

diction all take on a similar form in terms of the S-MSP

state-transition matrix, we expect to encounter similar

forms for generically nondiagonalizable state-transition

dynamics.

A. Excess entropy

We are now ready to develop the excess entropy in full

generality. Our tools turn this into a direct calculation.

We find:

E ≡
∞∑

L=1

[hµ(L)− hµ]

=

∞∑

L=1

[
〈δπ|WL−1 |H(WA)〉 − 〈δπ|W1 |H(WA)〉

]

=

∞∑

L=0

[
〈δπ|WL |H(WA)〉 − 〈δπ|W1 |H(WA)〉

]

=

∞∑

L=0

〈δπ|
[
(W −W1︸ ︷︷ ︸

≡Q

)L − δL,0W1

]
|H(WA)〉

= −〈δπ|W1 |H(WA)〉︸ ︷︷ ︸
=hµ

+

∞∑

L=0

〈δπ|QL︸ ︷︷ ︸
=〈δπ|QL

|H(WA)〉

= 〈δπ|
( ∞∑

L=0

QL
)
|H(WA)〉 − hµ

= 〈δπ| (I −Q)−1 |H(WA)〉 − hµ
= 〈δπ| (I −Q)−1 |H(WA)〉 − hµ .

Note that (I − Q)−1 = inv(I − Q) here, since unity is

not an eigenvalue of Q. Indeed, the unity eigenvalue was

explicitly extracted from the former matrix to make an

invertible expression.

For an ergodic process, where W1 = |1〉 〈πW |, this be-

comes:

E = 〈δπ|
(
I −W + |1〉 〈πW |

)−1 |H(WA)〉 − hµ . (23)

Computationally, Eq. (23) is wonderfully useful. How-
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ever, the subtraction of hµ is at first mysterious. Espe-

cially so, when compared to the compact result for the

excess-entropy spectral decomposition in the diagonaliz-

able case given by Eq. (18).

Let’s explore this. Recall that Ref. [2] showed:

(I − T )D = [I − (T − T1)]
−1 − T1 , (24)

for any stochastic matrix T , where T1 is the projection

operator associated with eigenvalue λ = 1. From this,

we see that the general solution for E takes on its most

elegant form in terms of the Drazin inverse of I −W :

E = 〈δπ| (I −Q)−1 |H(WA)〉 − hµ
= 〈δπ|

[
(I −Q)−1 −W1

]
|H(WA)〉

= 〈δπ| (I −W )D |H(WA)〉 . (25)

Recall too Part I’s explicit spectral decomposition:

(I − T )D =
∑

λ∈ΛT \{1}

νλ−1∑

m=0

1

(1− λ)m+1
Tλ,m , (26)

which uses the companion operators Tλ,m from there.

From this and Eq. (25), we see that the past–future mu-

tual information—the amount of the future that is pre-

dictable from the past—has the general spectral decom-

position:

E =
∑

λ∈ΛW \{1}

νλ−1∑

m=0

1

(1− λ)m+1
〈δπ|Wλ,m |H(WA)〉 . (27)

B. Persistent excess

In light of Eq. (9), we see that there are two qualita-

tively distinct contributions to the excess entropy E =

E + E(. One comprises the persistent leaky contribu-

tions from all L:

E ≡
∞∑

L=1

[h (L)− hµ]

= 〈δπ|WDW (I −W )D |H(WA)〉

and the other is a completely ephemeral piece that con-

tributes only up to W ’s zero-eigenvalue index ν0:

E( ≡
∞∑

L=1

h((L)

=

ν0∑

L=1

h((L)

= 〈δπ|W0(I −W )D |H(WA)〉 .

C. Excess entropy spectrum

Equation (25) immediately suggests that we general-

ize the excess entropy, a scalar complexity measure, to

a complexity function with continuous part defined in

terms of the resolvent—say, via introducing the complex

variable z:

E(z) = 〈δπ| (zI −W )−1 |H(WA)〉 .

Such a function not only monitors how much of the future

is predictable, but also reveals the time scales of inter-

dependence between the predictable features within the

observations. Directly taking the z-transform of hµ(L)

comes to mind, but this requires tracking both real and

imaginary parts or, alternatively, both magnitude and

complex phase. To ameliorate this, we employ a trans-

form of a closely related function that contains the same

information.

Before doing so, we should briefly note that ambiguity

surrounds the appropriate excess-entropy generalization.

There are many alternate measures that approach the

excess entropy as frequency goes to zero. For example,

directly calculating from the meromorphic functional cal-

culus, letting z = eiω we find:

lim
ω→0

Re 〈δπ| (eiωI −W )−1 |H(WA)〉 = E− 1

2
hµ .

We are challenged, however, to interpret the fact that

Re 〈δπ| (eiωI − W )−1 |H(WA)〉 + 1
2hµ is not necessarily

positive at all frequencies. Another direct calculation

shows that:

lim
ω→0

Re 〈δπ| eiω(eiωI −W )−1 |H(WA)〉 = E +
1

2
hµ .

Enticingly, Re 〈δπ| eiω(eiωI −W )−1 |H(WA)〉 − 1
2hµ ap-

pears to be positive over all frequencies for all examples

checked. It is not immediately clear which, if either, is

the appropriate generalization, though. Fortunately, the

Fourier transform of a two-sided myopic-entropy conver-

gence function makes our upcoming definition of E(ω)

interpretable and of interest in its own right.

Let hh be the two-sided myopic entropy convergence

function defined by:

hh(L) =





H[X0|X−|L|+1:0] for L < 0 ,

log2 |A| for L = 0 , and

H[X0|X1:L] for L > 0 .

For stationary processes, it is easy to show that

H[X0|X−L+1:0] = H[X0|X1:L], with the result that hh
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is a symmetric function. Moreover, hh then simplifies to:

hh(L) = hµ(|L|) ,

where hµ(0) ≡ log2 |A| and, as before, hµ(L) =

H[XL|X1:L] for L ≥ 1 with hµ(1) = H[X1].

The symmetry of the two-sided myopic entropy conver-

gence function hh guarantees that its Fourier transform

is also real and symmetric. Explicitly, the continuous

part of the Fourier transform turns out to be:

h̃hc(ω) = R + 2Re 〈δπ| (eiωI −W )−1 |H(WA)〉 ,

a strictly real and symmetric function of the angular fre-

quency ω. Here, R is the redundancy of the alphabet

R ≡ log2 |A| − hµ, as in Ref. [12].

The transform h̃h also has a discrete impulsive compo-

nent. For stationary processes this consists solely of the

Dirac δ-function at zero frequency:

h̃hd(ω) = 2πhµ
∑

k∈Z
δ(ω + 2πk) .

Recall that the Fourier transform of a discrete-domain

function is 2π-periodic in the angular frequency ω. This

δ-function is associated with the nonzero offset of the

entropy convergence curve of positive-entropy-rate pro-

cesses. The full transform is:

h̃h(ω) = h̃hc(ω) + h̃hd(ω) .

Direct calculation using Ref. [2]’s meromorphic func-

tional calculus shows that:

lim
ω→0

Re 〈δπ| (eiωI −W )−1 |H(WA)〉 = E− 1

2
hµ . (28)

This motivates introducing the excess-entropy spectrum

E(ω):

E(ω) ≡ 1
2

(
h̃h(ω)−R + hµ

)
(29)

= Re 〈δπ| (eiωI −W )−1 |H(WA)〉+ 1
2hµ

+ πhµ
∑

k∈Z
δ(ω + 2πk) . (30)

The excess-entropy spectrum rather directly displays im-

portant frequencies of apparent entropy reduction. For

example, leaky period-5 processes have a period-5 signa-

ture in the excess entropy spectrum.

As with its predecessors, the excess-entropy spectrum

also has a natural decomposition into two qualitatively

distinct components:

E(ω) = E (ω) + E((ω) .

The excess-entropy spectrum gives an intuitive and

concise summary of the complexities associated with a

process’ predictability. For example, given a graph of

the excess entropy spectrum, the past–future mutual in-

formation can be read off as the height of the continuous

part of the function as it approaches zero frequency:

E = lim
ω→0
E(ω)

= Ec(ω = 0) .

Indeed, the limit of zero frequency is necessary due to

the δ-function in the Fourier transform at exactly zero

frequency:

hµ = lim
ε→0

1

π

∫ ε

−ε
E(ω) dω .

Reflecting on this, the δ-function indicates one of the

reasons the excess entropy has been difficult to compute

in the past. This also sheds light on the role of the Drazin

inverse: It removes the infinite asymptotic accumulation,

revealing the transient structure of entropy convergence.

We also have a spectral decomposition of the excess-

entropy spectrum:

E(ω)c =
∑

λ∈ΛW

νλ−1∑

m=0

Re

( 〈δπ|Wλ,m |H(WA)〉
(eiω − λ)m+1

)

=

ν0−1∑

m=0

cos
(
(m+ 1)ω

)
〈δπ|W0W

m |H(WA)〉

+
∑

λ∈ΛW \0

νλ−1∑

m=0

Re

( 〈δπ|Wλ,m |H(WA)〉
(eiω − λ)m+1

)
,

where, in the last equality, we assume that W0 is real.

This shows that, in addition to the contribution of typ-

ical leaky modes of decay in entropy convergence, the

zero-eigenvalue modes contribute uniquely to the excess

entropy spectrum. In addition to Lorentzian-like spectral

curves contributed by leaky periodicities in the MSP, the

excess-entropy spectrum also contains sums of cosines up

to a frequency controlled by index ν0, which corresponds

to the depth of the MSP’s nondiagonalizability. This is

simply the duration of ephemeral synchronization in the

time domain.

D. Synchronization information

Once expressed in terms of the S-MSP transition dy-

namic, the derivation of the excess synchronization in-

formation S′ closely parallels that of the excess entropy,

only with a different ket |·〉 appended. We calculate, as
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before, finding:

S′ ≡
∞∑

L=0

[H(L)−H]

=

∞∑

L=0

[
〈δπ|WL |H[η]〉 − 〈δπ|W1 |H[η]〉

]

=

∞∑

L=0

〈δπ|
[
(W −W1︸ ︷︷ ︸

≡Q

)L − δL,0W1

]
|H[η]〉

= −〈δπ|W1 |H[η]〉︸ ︷︷ ︸
=H

+

∞∑

L=0

〈δπ|QL︸ ︷︷ ︸
=〈δπ|QL

|H[η]〉

= 〈δπ|
( ∞∑

L=0

QL
)
|H[η]〉 − H

= 〈δπ| (I −Q)−1 |H[η]〉 − H
= 〈δπ| (I −Q)−1 |H[η]〉 − H .

For an ergodic process where W1 = |1〉 〈πW |, this be-

comes:

S′ = 〈δπ|
(
I −W + |1〉 〈πW |

)−1 |H[η]〉 − H . (31)

From Eq. (24), we see that the general solution for S′

takes on its most elegant form in terms of the Drazin

inverse of I −W :

S′ = 〈δπ| (I −Q)−1 |H[η]〉 − H
= 〈δπ|

[
(I −Q)−1 −W1

]
|H[η]〉

= 〈δπ| (I −W )D |H[η]〉 . (32)

From Eq. (32) and Eq. (26), we also see that the ex-

cess synchronization information has the general spectral

decomposition:

S′ =
∑

λ∈ΛW \{1}

νλ−1∑

m=0

1

(1− λ)m+1
〈δπ|Wλ,m |H[η]〉 . (33)

Again the form of Eq. (32) suggests generalizing syn-

chronization information from a complexity measure to

a complexity function S(ω). In this case, the result is

simply related to the Fourier transform of the two-sided

myopic state-uncertainty H(L).

E. Power spectra

The extended complexity functions, E(ω) and S(ω) just

introduced, give the same intuitive understanding for en-

tropy reduction and synchronization respectively as the

power spectrum P (ω) gives for pairwise correlation. Re-

call from Part I that the power spectrum can be written

as:

Pc(ω) =
〈
|x|2
〉

+ 2 Re 〈πA|
(
eiωI − T

)−1 |A1〉 .

We see that
(
eiωI − T

)−1
is the resolvent of T evaluated

along the unit circle z = eiω for ω ∈ [0, 2π). Hence, by

Part I’s decomposition of the resolvent, the general spec-

tral decomposition of the continuous part of the power

spectrum is:

Pc(ω) =
〈
|x|2
〉

+ 2
∑

λ∈ΛT

νλ−1∑

m=0

Re
〈πA|Tλ,m |A1〉
(eiω − λ)m+1

.

As with E(ω) and S(ω), all continuous frequency depen-

dence of the power spectrum again lies simply and en-

tirely in the denominator of the above expression.

Analogous to Ref. [14]’s results, the power-spectrum δ-

functions arise from the eigenvalues of T that lie on the

unit circle:

Pd(ω) =

∞∑

k=−∞

∑

λ∈ΛT
|λ|=1

2π δ(ω − ωλ + 2πk)

× Re
(
λ−1 〈πA| Tλ |A1〉

)
,

where ωλ is related to λ by λ = eiωλ . An extension of the

Perron–Frobenius theorem guarantees that the eigenval-

ues of T on the unit circle have index νλ = 1.

Together, these equations yield structural constraints

via particular functional forms that are key to solving the

inverse problem of inferring process models from mea-

sured data.

F. Almost diagonalizable dynamics

The nondiagonalizability that appears most commonly

in prediction metadynamics is of a special form that we

call almost diagonalizable: when all eigenspaces except

one—usually that associated with λ = 0—are diagonal-

izable subspaces. In the current setting, we say that a

matrix is almost diagonalizable if all of its eigenvalues

with magnitude greater than zero have geometric multi-

plicity equal to their algebraic multiplicity.

Definition 1. W is almost diagonalizable if and only if

gλ = aλ for all λ ∈ Λ
\0
W ≡ ΛW \ {0}.

Fortunately, we treat such nondiagonalizability

straightforwardly using WL’s spectral decomposition for

singular matrices. First off, Eq. (3) simplifies to:

WL =
∑

λ∈ΛW

λLWλ +

ν0−1∑

m=1

δL,mW0W
m . (34)
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Then, to obtain the projection operators associated

with each eigenvalue in Λ
\0
W for an almost diagonaliz-

able matrix W , we use Part I’s expression for operators

with index-one eigenvalues with νλ = 1 for all λ ∈ Λ
\0
W .

Finding:

Wλ =

(
W

λ

)ν0 ∏

ζ∈Λ
\0
W

ζ 6=λ

W − ζI
λ− ζ , (35)

for each λ ∈ Λ
\0
W . Or, when more convenient in a calcu-

lation, we let ν0 → a0 − g0 + 1 or even ν0 → a0 in Eq.

(35), since multiplying Wλ by W/λ has no effect.

With the set of projection operators Wλ for all λ ∈ Λ
\0
W

in hand, we can use the fact from Part I that projection

operators sum to the identity to determine the projection

operator associated with the zero eigenvalue:

W0 = I −
∑

λ∈Λ
\0
W

Wλ .

This is sometimes simpler and easier to automate than

evaluating W0 via the methods of symbolic inversion and

residues or via finding all left and right eigenvectors and

generalized eigenvectors.

Almost diagonalizable metadynamics play a prominent

role in prediction for both processes of finite Markov or-

der and for the much more general class of processes

with broken partial symmetries that can be detected

within a finite observation window—the processes of fi-

nite symmetry-collapse discussed next.

G. Markov order versus symmetry collapse

What if zero is the only eigenvalue in the transient

structure of a process’ MSP? That is, what if there are no

loops in the S-MSP transient structure? The associated

processes turn out to have finite Markov order.

For processes with finite Markov order R—such as,

those whose support is a subshift of finite type [15]—the

entropy-rate approximates not only converge but also be-

come equal to the true entropy rate when conditioning

on long enough histories. Explicitly, for ` ≥ R+ 1 [12]:

hµ(`)− hµ = 0 , (36)

or, equivalently, for L ≥ R:

〈δπ|WL |H(WA)〉 − 〈πW |H(WA)〉 = 0 .

For a finite-order Markov process, all MSP transient

states must have identically zero probability after R time

steps. The only way to achieve this is if the S-MSP’s

transient structure is an acyclic directed graph with all

probability density flowing away from the unique start-

state down to the recurrent component. This means that

all eigenvalues associated with the transient states are

zero. Moreover, the index of the zero-eigenvalue of the

ε-machine’s S-MSP is equal to the Markov order for finite

Markov-order processes. That is, if ΛW \ΛT = {0}, then:

ν0(W ) = R .

In contrast, for stochastic processes whose support is

a strictly sofic subshift [15], the Markov order diverges,

but ν0 can vanish or be finite or infinite. Yet, in either

the finite-type or sofic case, ν0 still tracks the duration of

exact state-space collapse within the transient dynamics

of synchronization. This suggests that ν0 captures the

index of broken symmetries for strictly sofic processes, in

analogy to the Markov order for subshifts of finite type.

The name symmetry-collapse index captures the essence

of ν0’s role in both cases.

Let’s explain. In the first ν0 time steps, symmetries

are broken that synchronize an observer to the process.

For the simple period-two process . . . 010101010 . . . the

“symmetry” that is broken is the degeneracy of possible

phases—the 0 phase or the 1 phase of the period-2 oscil-

lation. Initially, without making a measurement the two

phases are indistinguishable. After a single observation,

though, the observer learns the phase and is completely

synchronized to the process. Hence, ν0 = 1 for this order-

1 Markov process. Simple periodic processes with larger

periods have a longer time before the phase information

is fully known; hence, their larger Markov order.

For the more complex strictly sofic processes, there

may also be symmetries, such as phase information, that

are completely broken within a finite amount of time.

However, this is only part of the overall transient meta-

dynamics of synchronization. And so, the symmetries

completely broken within the symmetry-collapse epoch

occur in addition to lingering state uncertainties about

a strictly sofic process. As a practical matter, a process’

predictability is often substantially enhanced through the

finite epoch of symmetry-collapse. This becomes appar-

ent in the examples to follow.

V. SPECTRAL ANALYSIS VIA CORONAL

SPECTROGRAMS

Coronal spectrograms are a broadly useful tool in vi-

sualizing complexity spectra, from power spectra to ex-

cess entropy spectra. They were recently introduced

by Ref. [14] to demonstrate how diffraction patterns of

chaotic crystals emanate from the eigenvalue spectrum
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(b) A coronated horizon combines the frequency-dependent function f(!) of the process together with the eigenvalues ⇤A of
the hidden linear dynamic by unwrapping the unit circle. Again, it is evident that f(!) emanates from the eigenvalues.

FIG. 4: Pictorial introduction to the coronal spectrogram and coronated horizon.

Re(λ)

Im(λ)

36

(1–1)-GM (2–1)-GM (5–3)-GM

Process ✏-machine

� �1

�A �B

1 : 2p
1+p

1 : 1+p
20 : 1�p

1+p 0 : 1�p
2

0 : 1� p

1 : p

1 : 1

.

A B0 : 1� p

1 : p

1 : 1

.

�

�A �B

0 : 1
1+p 0 : p

1+p

0 : 1� p

1 : p

0 : 1

.

A B0 : 1� p

1 : p

0 : 1

.

A

G

F

E D

C

B

0 : 1� p

0 : 1 1 : p

0 : 1

0 : 1

1 : 1

1 : 1

1 : 1

R = 4
k = 3

.

2

.

A

G

G

F

E

D

C

B

0 : 1

0 : 1� p

1 : p

1 : 1

1 : 1

1 : 11 : 1

0 : 1

0 : 1

.

A

C B

0 : 1

0 : 1� p

1 : p

1 : 1

4

.

A

G

G

F

E

D

C

B

0 : 1

0 : 1� p

1 : p

1 : 1

1 : 1

1 : 11 : 1

0 : 1

0 : 1

.

A

C B

0 : 1

0 : 1� p

1 : p

1 : 1

4

Autocorrelation

Power Spectrum

0

⇡
4

⇡
2

3⇡
4

�

5⇡
4

3⇡
2

7⇡
4

0.2
0.4

0.6
0.8

1

�T

P (�)

0

⇡
4

⇡
2

3⇡
4

�

5⇡
4

3⇡
2

7⇡
4

0.2
0.4

0.6
0.8

1

�T

P (�)

0

⇡
4

⇡
2

3⇡
4

�

5⇡
4

3⇡
2

7⇡
4

0.2
0.4

0.6
0.8

1

�T

P (�)

S-MSP of ✏-machine

� �1

�A �B

1 : 2p
1+p

1 : 1+p
20 : 1�p

1+p 0 : 1�p
2

0 : 1� p

1 : p

1 : 1

.

A B0 : 1� p

1 : p

1 : 1

.

�

�A �B

0 : 1
1+p 1 : p

1+p

0 : 1� p

1 : p

0 : 1

.

A B0 : 1� p

1 : p

0 : 1

.

A

G

F

E D

C

B

0 : 1� p

0 : 1 1 : p

0 : 1

0 : 1

1 : 1

1 : 1

1 : 1

R = 4
k = 3

.

2

. . . . . .

hµ(L)

H(L)

TABLE III: Select complexity analysis for processes of finite Markov order. Quantitative data corresponds to
p = 1/2.

solved in the transient structure of the MSP. The MSP

of the RRX Process is shown in Fig. 7. Since we have

derived the MSP of the ✏-machine in particular, W = W.

Hence, the layout of the MSP intuitively shows the in-

formation processing involved with synchronizing to the

process—the burden of an optimal predictor who will

asymptotically only need to learn an average of hµ bits

per observation to fill in their knowledge of every partic-

ω

P (ω)

ΛT

(a) How spectra emanate from eigenvalues: Coronal spectrogram (far right) combines a discrete-time process’ eigenvalues ΛT (far left) of
the hidden linear dynamic T together with a frequency-dependent function P (ω) (middle) by wrapping the latter around the unit circle.
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(b) A coronated horizon combines the frequency-dependent function f(!) of the process together with the eigenvalues ⇤A of
the hidden linear dynamic by unwrapping the unit circle. Again, it is evident that f(!) emanates from the eigenvalues.

FIG. 4: Pictorial introduction to the coronal spectrogram and coronated horizon.
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solved in the transient structure of the MSP. The MSP

of the RRX Process is shown in Fig. 7. Since we have

derived the MSP of the ✏-machine in particular, W = W.

Hence, the layout of the MSP intuitively shows the in-

formation processing involved with synchronizing to the

process—the burden of an optimal predictor who will

asymptotically only need to learn an average of hµ bits

per observation to fill in their knowledge of every partic-

ω

P (ω)

ΛT

ω

|λ
|

(b) Coronated horizon (far right) combines the frequency-dependent function f(ω) (far left) together with a continuous-time process’
eigenvalues ΛA of the hidden linear dynamic by unwrapping the unit circle.

FIG. 1. Spectra and eigenvalues: (a) Coronal spectrogram and (b) coronated horizon.

of the hidden spatial dynamic of stacked modular layers.

Coronal spectrograms display any frequency-

dependent measure f(ω) of a process wrapped around

the unit circle while showing the eigenvalues ΛT of

the relevant linear dynamic T within the unit circle in

the complex plane. Figure 1a gives an example. This

is appropriate for discrete-domain (e.g., discrete-time

or discrete-space) dynamics. For continuous-time dy-

namics, the coronal spectrogram unwraps into what we

call the coronated horizon, via the familiar discrete-

to-continuous conformal mapping of the inside of the

unit circle of the complex plane to the left half of the

complex plane [16]. Figure 1b displays a discrete-time

version of the coronated horizon. Ultimately, either the

coronal spectrogram or coronated horizon yield the same

information and lend the same important lesson: the

eigenvalues of the hidden linear dynamic control allowed

system behaviors.

Coronal spectrograms demonstrate that complex sys-

tems behave according to the spectrum of their hidden

linear dynamic. The relevant frequency-dependent mea-

sure f(ω) emanates from the nonzero eigenvalues of the

hidden linear dynamic: the closer eigenvalues approach

the unit circle, the sharper the observed peaks. At

one extreme, one observes Bragg-like reflections (delta-

function contributions) when the eigenvalues fall on the

unit circle. The collection of diffuse peaks observed is a

sum of Lorentzian-like and, what we might call, super-

Lorentzian-like line profiles. Indeed, the Lorentzian-like

line profiles are the discrete-time version of a Lorentzian

curve. While the continuous-domain Lorentzian is given

by Re
(

c
ω−λ

)
, the continuous-to-discrete conformal map-

ping ω → eiω directly yields our discrete-domain ana-

log Re
(

c
eiω−λ

)
. The super-Lorentzian-like line profiles,

from nondiagonalizable contributions, have the form

Re
[
( c
eiω−λ )n

]
.
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(a) (4-3)-GM Process of the (R-k)-Golden
Mean family with
0 ≤ k = ν0(ζ) ≤ R = ν0(W) <∞, which
generates processes with finite but tunable
Markov-order R and cryptic-order k.
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(b) (4-3)-GP-(3) Process of the
(ν0(W)-k)-Golden Parity-(P ) family with
0 ≤ k = ν0(ζ) ≤ ν0(W) < R =∞
whenever P > 1, generates processes with
infinite Markov-order R, tunable finite
cryptic-order k, and tunable finite
symmetry-collapse index ν0(W).
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(c) (4-3)-GPZ-(3-3) Process of the
(ν0(W)-ν0(ζ))-Golden Parity-(P -Z) family
with 0 ≤ ν0(ζ) ≤ ν0(W) < k = R =∞
whenever Z > 1. Markov order is infinite
whenever either P > 1 or Z > 1.
Cryptic-order is infinite when Z > 1. This
family generates processes with finite but
tunable symmetry-collapse index ν0(W)
and cryptic index ν0(ζ).

FIG. 2. Process families for exploring the roles of and interplay between Markov-order R, cryptic-order k, the symmetry-
collapse index ν0(W) of the zero eigenvalue of the synchronizing dynamic over mixed states, and the cryptic index ν0(ζ) of the
zero eigenvalue of the cryptic operator presentation. We always have k ≤ R and ν0(ζ) ≤ ν0(W). Whenever ΛW = ΛT ∪ {0},
R is finite, R = ν0(W) and k = ν0(ζ). Whenever Λζ = ΛT ∪ {0}, k is finite, whether or not R is, and k = ν0(ζ). When k or
R is infinite, the cryptic index and symmetry-collapse index reveal more nuanced features of the cryptic and synchronization
dynamics.

Zero eigenvalues also contribute to f(ω), but only si-

nusoidal contributions of discrete increments from cos(ω)

up to cos(ν0 ω). Since these are qualitatively distinct

from the super-Lorentzian contributions and do not em-

anate radially from the eigenvalues the same way con-

tributions from nonzero eigenvalues do, coronal spectro-

grams are most useful for understanding the contribu-

tions of nonzero eigenvalues. Nevertheless, the two con-

tributions can be usefully disentangled, as shown later.

We use both coronal spectrograms and coronated hori-

zons to visualize various features in the examples to fol-

low.

VI. EXAMPLES

A. Golden Mean Processes

To explore finite Markov order in relation to vari-

ous complexity measures let’s consider the (R-k)-Golden

Mean (GM) Processes [17]. This process family de-

scribes a unique transition-parametrized process for each

Markov-order R ∈
{
ν ∈ Z : ν ≥ 1

}
and each cryptic-

order k ∈
{
κ ∈ Z : 1 ≤ κ ≤ R

}
. The ε-machine for the

(4-3)-Golden Mean Process is shown in Fig. 2a. From

this the construction of all other (R-k)-Golden Mean pro-

cesses can be discerned. In words, (R-k)-Golden Mean

Processes are binary with alphabet A = {0, 1} and if the

most recent history consists of at least k consecutive 0s

(and no 1s since then) then there is a probability p of

next observing a 1 and a probability 1− p of simply see-

ing another 0. The first possibility (observing a 1) entails

R consecutive 1s followed by at least k consecutive 0s.

The eigenvalues of the internal state-to-state transition

matrix of the ε-machine’s recurrent component are:

ΛT =
{
λ ∈ C :

(
λ− (1− p)

)
λR+k−1 = p

}
.

In the limit of p → 1, all (R-k)-Golden Mean Processes

become perfectly periodic. In this limit, the eigenvalues

are evenly distributed on the unit circle:

ΛT →
{
ein2π/(R+k)

}R+k−1

n=0
.

At the other extreme, as p→ 0, all eigenvalues evolve to

zero, except the stationary eigenvalue at z = 1. At any



15

FIG. 3. Evolution of eigenvalues ΛT of the recurrent compo-
nent of the (5–3)-GM Process’s ε-machine. Displayed within
the unit circle of the complex plane, the trajectory of each
eigenvalue follows a line that starts thick blue and ends thin
red as the transition parameter p evolves from 1 to 0. In ad-
dition to the seven eigenvalues that move from the nontrivial
eighth roots of unity towards zero along nonlinear trajecto-
ries, the eigenvalue at z = 1 does not change with p.

setting of p, the nonunity eigenvalues lie approximately

on a circle within the complex plane whose radius de-

creases nonlinearly from 1 to 0 as p is swept from 1 to 0.

Simultaneously, this circle’s center moves from the origin

to a positive real value and back to the origin as p is

swept from 1 to 0. Figure 3 shows how the eigenvalues of

the (5-3)-Golden Mean Process evolve over the full range

of p as it sweeps from 1 to 0.

In contrast to the p-dependent spectrum of the recur-

rent structure just discussed, the only eigenvalue corre-

sponding to the transient structure of the S-MSP is equal

to zero, regardless of the transition parameter p. Recall

that this is necessarily true for any process with finite

Markov order. Hence, ΛW = ΛT ∪{0}, with ν0(W) = R.

The cryptic structure is similar: Λζ = ΛT ∪ {0}, with

ν0(ζ) = k, where ζ is the state-to-state transition matrix

of the cryptic operator presentation.

Table I compares the ε-machines, autocorrelation,

power spectra, MSPs, myopic entropy rates, and myopic

state uncertainties for three p-parametrized examples of

(R-k)-GM processes.

The autocorrelation of each process captures their

‘leaky periodic’ behaviors: The leakiness originates from

the self-transition at state A that adds a phase-slip noise

to otherwise (R + k)–periodic behavior. Moreover, each

process’ phase, and so its ε-machine’s internal state, is

uniquely identified after R observations. This corre-

sponds to the depth of the S-MSP tree-like structure

ν0(W) = R, the convergence of the myopic entropy rate

hµ(L) to the true entropy rate hµ when conditioning

on observations of finite block-length L − 1 = R, and

the complete loss of causal state uncertainty H(L) after

L = R observations.

A paradigm of finite Markov order, the (5-3)-Golden

Mean Process has a strictly tree-like structure in its

MSP’s transients, which have a maximum depth equal

to both ν(W) and its Markov order of 5.

These analyses illustrate the typical behaviors of com-

plexity measures for finite Markov-order processes. We

next investigate examples of infinite Markov-order pro-

cesses to draw attention to the characteristic differences

of nonzero eigenvalues in their MSP transient structures.

B. Even Process

The Even Process, shown in the first column of Ta-

ble II, is a well known example of a stochastic process

that cannot be generated by any finite Markov-order ap-

proximation, yet it is generated by a simple two-state

HMM.

Infinite Markov order, in this case, stems from the fact

that the process generates only an even number of con-

secutive 1s, between 0s. The countably infinite set of

Markov chain states necessary to track this parity re-

flects the infinite order. Moreover, the surplus entropy

rate hµ(L)−hµ incurred when using a finite order-(L−1)

Markov approximation vanishes only asymptotically, be-

ing the sum of decaying exponentials. (See Table II.)

Such long-lived decay is driven by nonzero eigenvalues in

the S-MSP transient structure.

This is in stark contrast to the myopic entropy rate for

the finite Markov order processes of Table I. For them

hµ(L) drops to hµ exactly at L = R + 1. Similarly, the

average state uncertainty H(L) for infinite Markov pro-

cesses converges only asymptotically—and with the same

set of decay rates as hµ(L)—to its asymptotic value of 0.

(This curve is not shown in Table II for lack of space.)

The Even Process is a relatively simple example of

an infinite Markov-order process. As expected for in-

finite Markov-order, its MSP’s transient structure had

nonzero eigenvalues. Generally, though, two ranges of

contribution are to be expected in synchronization dy-

namics. The first is a finite-horizon contribution to the

past–future mutual information, corresponding to com-

pletely ephemeral zero eigenvalues in the MSP’s transient

structure. The second is an infinite-horizon contribu-

tion to the past–future mutual information, arising from

nonzero eigencontributions.
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TABLE III: Select complexity analysis for processes of finite Markov order. Quantitative data corresponds to
p = 1/2.
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solved in the transient structure of the MSP. The MSP

of the RRX Process is shown in Fig. 7. Since we have

derived the MSP of the ✏-machine in particular, W = W.

Hence, the layout of the MSP intuitively shows the in-

formation processing involved with synchronizing to the

process—the burden of an optimal predictor who will

asymptotically only need to learn an average of hµ bits

per observation to fill in their knowledge of every partic-
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22

Derivatives of cascading "

Integrals of cascading #

Discrete time Continuous time

Cascading h·|AL|·i h·|etG|·i
Accumulated transients h·|

�P
L(A�A1)

L
�
|·i h·|

�R
(etG �G0) dt

�
|·i

modulated accumulation h·|
�P

L(zA)L
�
|·i h·|

�R
(zeG)t dt

�
|·i

TABLE III. Once we identify the hidden linear dynamic behind our questions, most questions we tend to ask are either of
the cascading or accumulating type. If a complexity measure accumulates transients, the Drazin inverse is likely to appear.
Interspersed accumulation can be a nice theoretical tool, since all derivatives and integrals of cascading can be calculated if we
know the modified accumulation with z � C. With z � C, modulated accumulation involves an operator-valued z-transform.
With z = ei! and ! � R, modulated accumulation involves an operator-valued Fourier-transform.

Genre
Implied linear

transition dynamic

Example Questions
Cascading Accumulated transients Modulated accumulation

Overt

Observational

Transition matrix T

of any HMM

Correlations, �(L):

h⇡A| T |L|�1 |A1i
Green–Kubo

transport coe�cients

Power spectra, P (!):

2R h⇡A|
�
ei!I � T

��1 |A1i

Predictability
Transition matrix W

of MSP of any HMM

Myopic entropy rate, hµ(L):

h�⇡| W L�1 |H(W A)i
Excess entropy, E:

h�⇡| (I � W )D |H(W A)i
E(z):

h�⇡| (zI � W )�1 |H(W A)i
Optimal

Prediction

Transition matrix W
of MSP of ✏-machine

Causal state uncertainty, H+(L):

h�⇡| WL |H[�]i
Synchronization info, S:

h�⇡| (I � W)D |H[�]i
S(z):

h�⇡| (zI � W)�1 |H[�]i
...

...
...

...
...

TABLE IV. Several genres of questions about the complexity of a process are given in the left column of the table in order of
increasing sophistication. Each genre implies a di↵erent linear transition dynamic. Closed-form formulae are given for example
complexity measures, showing the deep similarity among formulae of the same column, while formulae in the same row have
matching bra-ket pairs. The similarity within the column corresponds to similarity in the type of time-evolution implied by
the question type. The similarity within the row corresponds to similarity in the genre of the question.
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FIG. 8: Ephemeral and persistent contributions to the
myopic entropy rate. The ephemeral contribution lasts

only up to L = ⌫0(W ) = 2.
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FIG. 9: The tails of the myopic entropy convergence
shown in Fig. 8 decay according to two di↵erent leaky

period-three envelopes, corresponding to the two
qualitatively di↵erent types of transient synchronization
cycles in the MSP of Fig. 7. One of the transient cycles
has a relatively fast decay rate of r2 = (1/4)1/3, while

the slower decay rate of r1 = (1/2)1/3 dominates
hµ(L)’s deviation from hµ at large L.

FIG. 10: The spectrum of the MSP of ✏-machine of
RRX process emits a structured entropy curve,

indicating that the process is indeed structured, with
leaky periodicities in the convergence to optimal

predictability.
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TABLE III: Select complexity analysis for processes of finite Markov order. Quantitative data corresponds to
p = 1/2.

solved in the transient structure of the MSP. The MSP

of the RRX Process is shown in Fig. 7. Since we have

derived the MSP of the ✏-machine in particular, W = W.

Hence, the layout of the MSP intuitively shows the in-

formation processing involved with synchronizing to the

process—the burden of an optimal predictor who will

asymptotically only need to learn an average of hµ bits

per observation to fill in their knowledge of every partic-
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H 

⌫(W) = 1 ⌫(W) = 2

⌫(W) = 5

TABLE III: Select complexity analysis for processes of finite Markov order. Quantitative data corresponds to
p = 1/2.TABLE I. Complexity analyses for finite Markov-order processes. Quantitative data used p = 1/2.

C. Golden–Parity Process Family

To further explore the nature of infinite Markov or-

der processes, we introduce the (ν0-k)-Golden-Parity-(P )

Processes. This family subsumes and extends the ex-

amples analyzed so far. The role of each parameter is

explained in Fig. 2b, which displays a state-transition

diagram of the (4-3)-GP-(3) Process’ ε-machine.

If P = 1, the family reduces to the (ν0-k)-Golden

Mean Process family, with tunable Markov R = ν0(W )

and cryptic k orders. That is, (ν0(W)-k)-GP-(1) =

(ν0(W)-k)-GM. However, the Markov order becomes in-

finite whenever P > 1. In this case the index ν0(W) of

the S-MSP’s zero-eigenvalue—which controls the finite

duration necessary to resolve all broken symmetries—

and the cryptic order k can still be tuned independently.
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TABLE V: Select complexity analysis for processes of
infinite Markov order. Quantitative data corresponds to

p = 1/2 and q = 1/3.
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Derivatives of cascading "

Integrals of cascading #

Discrete time Continuous time

Cascading h·|AL|·i h·|etG|·i
Accumulated transients h·|

�P
L(A�A1)

L
�
|·i h·|

�R
(etG �G0) dt

�
|·i

modulated accumulation h·|
�P

L(zA)L
�
|·i h·|

�R
(zeG)t dt

�
|·i

TABLE III. Once we identify the hidden linear dynamic behind our questions, most questions we tend to ask are either of
the cascading or accumulating type. If a complexity measure accumulates transients, the Drazin inverse is likely to appear.
Interspersed accumulation can be a nice theoretical tool, since all derivatives and integrals of cascading can be calculated if we
know the modified accumulation with z � C. With z � C, modulated accumulation involves an operator-valued z-transform.
With z = ei! and ! � R, modulated accumulation involves an operator-valued Fourier-transform.

Genre
Implied linear

transition dynamic

Example Questions
Cascading Accumulated transients Modulated accumulation

Overt

Observational

Transition matrix T

of any HMM

Correlations, �(L):

h⇡A| T |L|�1 |A1i
Green–Kubo

transport coe�cients

Power spectra, P (!):

2R h⇡A|
�
ei!I � T

��1 |A1i

Predictability
Transition matrix W

of MSP of any HMM

Myopic entropy rate, hµ(L):

h�⇡| W L�1 |H(W A)i
Excess entropy, E:

h�⇡| (I � W )D |H(W A)i
E(z):

h�⇡| (zI � W )�1 |H(W A)i
Optimal

Prediction

Transition matrix W
of MSP of ✏-machine

Causal state uncertainty, H+(L):

h�⇡| WL |H[�]i
Synchronization info, S:

h�⇡| (I � W)D |H[�]i
S(z):

h�⇡| (zI � W)�1 |H[�]i
...

...
...

...
...

TABLE IV. Several genres of questions about the complexity of a process are given in the left column of the table in order of
increasing sophistication. Each genre implies a di↵erent linear transition dynamic. Closed-form formulae are given for example
complexity measures, showing the deep similarity among formulae of the same column, while formulae in the same row have
matching bra-ket pairs. The similarity within the column corresponds to similarity in the type of time-evolution implied by
the question type. The similarity within the row corresponds to similarity in the genre of the question.
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FIG. 8: Ephemeral and persistent contributions to the
myopic entropy rate. The ephemeral contribution lasts

only up to L = ⌫0(W ) = 2.
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FIG. 9: The tails of the myopic entropy convergence
shown in Fig. 8 decay according to two di↵erent leaky

period-three envelopes, corresponding to the two
qualitatively di↵erent types of transient synchronization
cycles in the MSP of Fig. 7. One of the transient cycles
has a relatively fast decay rate of r2 = (1/4)1/3, while

the slower decay rate of r1 = (1/2)1/3 dominates
hµ(L)’s deviation from hµ at large L.

FIG. 10: The spectrum of the MSP of ✏-machine of
RRX process emits a structured entropy curve,

indicating that the process is indeed structured, with
leaky periodicities in the convergence to optimal

predictability.
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TABLE IV: Select complexity analysis for processes of infinite Markov order. Quantitative data corresponds to
p = 1/2 and q = 1/3.

MSP, and an infinite-horizon contribution to the past–

future mutual information arising from non-zero eigen-

contributions.

C. The (⌫0(W)–k)-Golden—Parity-(P ) Process

Family

To further explore the nature of infinite Markov order

processes, we introduce the family of (⌫0–k)-Golden—

Parity-(P ) processes, which subsumes and extends all of

the example processes discussed so far.

TABLE II. Complexity analyses for infinite Markov-order processes. Quantitative data used p = 1/2 and q = 1/3.

The Even Process considered earlier is the (0-0)-Golden-

Parity-(2) Process.

Three examples of (ν0(W)-k)-Golden-Parity-(P ) pro-

cesses are analyzed in Table II. The S-MSP transient

structure for the second two clarifies the difference be-

tween (i) the symmetry collapse associated with com-

pletely ephemeral transient states that are fully depleted

of probability density after ν0(W) time steps and (ii) the

long-lived leaky transients whose probability density only

vanishes as more-refined ambiguity is resolved.

Examining the myopic entropy convergence hµ(L), the

effect of these distinct routes to synchronization on the

predictability can be seen: The process is much more

predictable, on average, after ν0(W) time steps. How-
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ever, the average predictability of an infinite-Markov-

order process continues to increase with increasing ob-

servation window, albeit with exponentially diminishing

returns. In general, we showed that this asymptotic con-

vergence occurs as a sum of decaying exponentials from

diagonalizable subspaces and as the product of polyno-

mials and exponentials in the case of nondiagonalizable

structures associated with nonzero eigenvalues. The ap-

parent oscillations under the exponential decays are com-

pletely described by the leaky periodicities of the eigen-

values in the transient belief states.

Finally, note that the excess entropy spectrum E(ω)

shows the frequency domain view of observation-induced

predictability. E = limω→0 E(ω) is the total past–future

mutual information, which is also the excess entropy ob-

served before full synchronization. The ν0(W) symme-

try collapse contributes significantly and early to the to-

tal excess entropy of the last two examples. Whereas,

the asymptotic tails of synchronization associated with

leaky periodicity of particular transient states of uncer-

tainty accumulate their contribution to excess entropy

rather slowly.

In addition to new intuitions about convergence be-

haviors in stochastic processes, the general and broadly

applicable theoretical results here allow novel numerical

investigations and unprecedentedly-accurate analyses of

infinite-Markov-order processes. As an example of the

latter, let us summarize several of the exact results de-

rived in App. A for the (p, q)-parametrized (2-1)-GP-(2)

process explored in Table II’s second column.

Depending on whether the transition parameter p is

larger or smaller than 2
√
q − q, App. A found qualita-

tively distinct behaviors dominate the (2-1)-GP-(2) pro-

cess. This hints at a general principle: behaviorally dis-

tinct regions are separated by a critical line in the (p, q)-

parameter space along which the transition dynamic T

becomes nondiagonalizable. For p < 2
√
q − q, the auto-

correlation for |L| ≥ 2 has the exact solution:

γ(L) = β2 + β q|L|/2 Re
(
ζ eiωξ|L|

)
, (37)

where β ≡ 2(p + 2q)/(1 + p + 2q), ζ ≡ (ξ + 1)2(pξ +

2q)/(ξ(ξ3 +pξ+ 2q)), ξ ≡ − 1
2 (p+ q) + i 1

2

√
4q − (p+ q)2,

and ωξ ≡ π
2 + arctan

(
(p+ q)/

√
4q − (p+ q)2

)
. The cor-

responding power spectrum is:

P (ω) =
8q

1 + p+ 2q
+

2p

1 + p+ 2q

[
1− cos(ω)

]

+ βRe
( ζξ

eiω − ξ +
ζξ

e−iω − ξ
)

+ 2πβ2
∞∑

k=−∞

δ(ω + 2πk) . (38)

For any parameter setting, the metadynamic of

observation-induced synchronization to the (2-1)-GP-(2)

process is nondiagonalizable due to the index-2 zero

eigenvalue. This leads to a completely ephemeral con-

tribution to hµ(L) up to L = 2. For L ≥ 3, we find the

myopic entropy rate relaxes asymptotically to the true

entropy rate according to:

hµ(L)− hµ =

{−p log p+(1+p) log(1+p)−2p√
p(1+p+2q) pL/2 for odd L,

p log p−(1+p) log(1+p)+2
(1+p+2q) pL/2 for even L,

where the process’ true entropy rate is:

hµ =
−q log q − p log p− (1− p− q) log(1− p− q)

1 + p+ 2q
.

Interestingly, while the autocorrelation at separation L

scales as ∼ qL/2, the predictability of transitions between

single-symbol-shifted histories of length L converges as

∼ pL/2—indicating two rather independent decay rates.

The amount of the future that can be predicted from

the past is the total mutual information between the ob-

servable past and observable future:

E = (1−p−q) log(1−p−q)−p log p−q log q−(1−p) log(1−p)
1+p+2q

+ log(1 + p+ 2q) .

However, to actually perform prediction requires more

memory than this amount of shared information. Cal-

culation of additional measures and more detail can be

found in App. A.

To explore the structure in infinite-cryptic order pro-

cesses, one can use the more generalized family of

(ν0(W)-ν0(ζ))-GP-(P -Z) Processes. For them, ν0(ζ) is

the index of the zero-eigenvalue of the cryptic operator

presentation and the process has infinite cryptic order

whenever Z > 1. Above, Z = 1 and (ν0(W)-ν0(ζ))-

GP-(P -1) = (ν0(W)-ν0(ζ))-GP-(P ). Since the preceding

examples served well enough to illustrate the power of

spectral decomposition, our main goal, we leave a full

analysis of this family to interested others.

VII. PREDICTING SUPERPAIRWISE

STRUCTURE

The Random–Random–XOR (RRXOR) Process is

generated by a simple HMM. Figure 4 displays its five-

state ε-machine. However, it illustrates nontrivial, coun-

terintuitive features typical of stochastic dynamic infor-

mation processing systems. The process is defined over

three steps that repeat: (i) a 0 or 1 is output with equal

probability, (ii) another 0 or 1 is output with equal prob-
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FIG. 4. RRXOR Process ε-machine.

ability, and then (iii) the eXclusive-OR operation (XOR)

of the last two outputs is output.

Surprisingly, but calculations easily verify, there are no

pairwise correlations. All of its correlations are higher

than second order. One consequence is that its power

spectrum is completely flat—the signature of white noise;

see Fig. 5. This would lead a casual observer to incor-

rectly conclude that the generated time series has no

structure. In fact, a white noise spectrum is an indi-

cation that, if structure it present, it must be hidden in

higher-order correlations.

The RRXOR Process clearly is not structureless—via

the exclusive OR, it transforms information in a sub-

stantial way. We show that the complexity measures in-

troduced above can detect this higher-order structure.

However, let us first briefly consider why the correlation-

based measures fail to detect structure in the RRXOR

Process.

It is sometimes noted that information measures are

superior to standard measures of correlation since they

capture nonlinear dependencies, while the standard cor-

relation relies on linear models. And so, we can avoid this

problem by using the information correlation I[X0;Xτ ]

rather than autocorrelation. Analogous to autocorrela-

tion, it too has a spectral version—the power-of-pairwise

information (POPI) spectrum:

I(ω) ≡ −H(X0) + lim
N→∞

N∑

τ=−N
e−iωτ I[X0;Xτ ] . (39)

It is easy to show that I(ω) = 0 for the RRXOR Pro-

cess. Hence, as Fig. 5 showed, such measures are still not

sufficient to detect even simple computational structure,

since they only can detect pairwise statistical dependen-

cies.

In stark contrast, the excess entropy spectrum E(ω)

does identify the structure of hidden dependencies in

the RRXOR Process; see Fig. 6. Why? The brief de-

�⇡ 0 ⇡

!

0

1
4

P (!)

I(!)

FIG. 5. Power spectrum P (ω) and POPI spectrum I(ω) of the
RRXOR Process: The first is flat and the second identically
zero. One might incorrectly conclude the RRXOR Process is
structureless white noise.

tour through power spectra, information correlation, and

POPI spectra brings us to a deeper understanding of

why E(ω) is successful at detecting nuanced computa-

tional structure in a time series. Since it partitions all

random variables throughout time, the excess entropy it-

self picks up any systematic influence the past has on

the future. The excess entropy spectrum further iden-

tifies the frequency decomposition of any such linear or

nonlinear dependencies. In short, all multivariate depen-

dencies contribute to the excess entropy spectrum.

Let us now consider the hidden structure of the

RRXOR Process in more detail. With reference to

Fig. 4, we observe that the expected probability density

over causal states evolves through the ε-machine with a

period-3 modulation. In a given realization, the partic-

ular symbols emitted after each phase resetting (φ = 0)

break symmetries with respect to which “wings” of the

ε-machine structure are traversed. This is reflected in

T ’s eigenvalues: the three roots of unity {ein2π/3}2n=0

and two zero eigenvalues, with a0(T ) = g0(T ) = 2 giving

index ν0(T ) = 1.

The period-3 modulation leads to a phase ambiguity

when an observer synchronizes to the process—an am-

biguity resolved in the MSP transient structure. This

resolution is rather complicated, as made explicit in the

RRXOR Process’ S-MSP, shown in Fig. 7. There are

31 transient states of uncertainty, in addition to the five

recurrent states—36 mixed states in total.

Since we derived the ε-machine’s S-MSP, W = W.

Hence, the MSP’s layout depicts the information pro-

cessing involved while an observer synchronizes to the

RRXOR Process. This graphically demonstrates the bur-

den on an optimal predictor—the prerequisite paths to

synchronization before an observer is surprised by the
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TABLE V: Select complexity analysis for processes of
infinite Markov order. Quantitative data corresponds to

p = 1/2 and q = 1/3.
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Derivatives of cascading "

Integrals of cascading #

Discrete time Continuous time

Cascading h·|AL|·i h·|etG|·i
Accumulated transients h·|

�P
L(A�A1)

L
�
|·i h·|

�R
(etG �G0) dt

�
|·i

modulated accumulation h·|
�P

L(zA)L
�
|·i h·|

�R
(zeG)t dt

�
|·i

TABLE III. Once we identify the hidden linear dynamic behind our questions, most questions we tend to ask are either of
the cascading or accumulating type. If a complexity measure accumulates transients, the Drazin inverse is likely to appear.
Interspersed accumulation can be a nice theoretical tool, since all derivatives and integrals of cascading can be calculated if we
know the modified accumulation with z � C. With z � C, modulated accumulation involves an operator-valued z-transform.
With z = ei! and ! � R, modulated accumulation involves an operator-valued Fourier-transform.

Genre
Implied linear

transition dynamic

Example Questions
Cascading Accumulated transients Modulated accumulation

Overt

Observational

Transition matrix T

of any HMM

Correlations, �(L):

h⇡A| T |L|�1 |A1i
Green–Kubo

transport coe�cients

Power spectra, P (!):

2R h⇡A|
�
ei!I � T

��1 |A1i

Predictability
Transition matrix W

of MSP of any HMM

Myopic entropy rate, hµ(L):

h�⇡| W L�1 |H(W A)i
Excess entropy, E:

h�⇡| (I � W )D |H(W A)i
E(z):

h�⇡| (zI � W )�1 |H(W A)i
Optimal

Prediction

Transition matrix W
of MSP of ✏-machine

Causal state uncertainty, H+(L):

h�⇡| WL |H[�]i
Synchronization info, S:

h�⇡| (I � W)D |H[�]i
S(z):

h�⇡| (zI � W)�1 |H[�]i
...

...
...

...
...

TABLE IV. Several genres of questions about the complexity of a process are given in the left column of the table in order of
increasing sophistication. Each genre implies a di↵erent linear transition dynamic. Closed-form formulae are given for example
complexity measures, showing the deep similarity among formulae of the same column, while formulae in the same row have
matching bra-ket pairs. The similarity within the column corresponds to similarity in the type of time-evolution implied by
the question type. The similarity within the row corresponds to similarity in the genre of the question.
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FIG. 8: Ephemeral and persistent contributions to the
myopic entropy rate. The ephemeral contribution lasts

only up to L = ⌫0(W ) = 2.
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FIG. 9: The tails of the myopic entropy convergence
shown in Fig. 8 decay according to two di↵erent leaky

period-three envelopes, corresponding to the two
qualitatively di↵erent types of transient synchronization
cycles in the MSP of Fig. 7. One of the transient cycles
has a relatively fast decay rate of r2 = (1/4)1/3, while

the slower decay rate of r1 = (1/2)1/3 dominates
hµ(L)’s deviation from hµ at large L.

FIG. 10: The spectrum of the MSP of ✏-machine of
RRX process emits a structured entropy curve,

indicating that the process is indeed structured, with
leaky periodicities in the convergence to optimal

predictability.
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TABLE IV: Select complexity analysis for processes of infinite Markov order. Quantitative data corresponds to
p = 1/2 and q = 1/3.

MSP, and an infinite-horizon contribution to the past–

future mutual information arising from non-zero eigen-

contributions.

C. The (⌫0(W)–k)-Golden—Parity-(P ) Process

Family

To further explore the nature of infinite Markov order

processes, we introduce the family of (⌫0–k)-Golden—

Parity-(P ) processes, which subsumes and extends all of

the example processes discussed so far.

TABLE IV: Select complexity analysis for processes of infinite Markov order. Quantitative data corresponds to
p = 1/2 and q = 1/3.

B. Even Process

The Even Process, shown in the first column of Ta-

ble IV, is a well known example of a stochastic process

that cannot be fully described by any finite Markov-order

approximation, yet it accommodates an apparently sim-

ple two-state hidden-Markov model description.

Infinite Markov order, in this case, stems from the fact

that only even numbers of consecutive 1s are ever pro-

duced by the process. The resources necessary to track

this parity induce the infinite Markov order. Moreover,

the surplus entropy rate hµ(L) � hµ that would be in-

curred upon using a finite order-(L� 1) Markov approx-

|λ
|

ω

FIG. 6. Excess entropy spectrum of the RRXOR Process,
together with the eigenvalues of the S-MSP transition matrix
W. Among the power spectrum, POPI spectrum, and excess
entropy spectrum, only the excess entropy spectrum is able
to detect structure in the RRXOR Process since the struc-
ture is beyond pairwise. The eigenspectrum of the MSP of
the RRXOR ε-machine and the excess entropy spectrum both
indicate that the RRXOR Process is indeed structured, with
both ephemeral symmetry breaking and leaky periodicities in
the convergence to optimal predictability.

irreducible uncertainty of only hµ bits per observation,

and before the observer only needs to heed the relevant

bµ bits per observation to stay synchronized, on average.

The MSP introduces new, relevant zero eigenvalues as-

sociated with its transient states. In particular, the first-

encountered tree-like transients (starting with mixed-

state π) introduce new Jordan blocks up to dimension

2. Overall, the 0-eigenspace of W has index 2, so that

ν0(W ) = 2.

Two different sets of leaky-period-3 structures appear

in the MSP transients. There are four leaky three-state

cycles, each with the same leaky-period-3 contributions

to the spectrum:
{

( 1
4 )1/3ein2π/3

}2

n=0
. There are also four

leaky four-state cycles, each with a leaky-period-3 con-

tribution and symmetry-breaking 0-eigenvalue contribu-

tion to the spectrum:
{

( 1
2 )1/3ein2π/3

}2

n=0
∪ {0}. The

difference in eigenvalue magnitude, ( 1
4 )1/3 versus ( 1

2 )1/3,

implies different timescales of synchronization associated

with distinct learning tasks. For example, an immediate

lesson is that it takes longer (on average) to escape the
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FIG. 7. MSP of the RRXOR Process’ ε-machine: Grayed out
(and dashed) transitions permanently leave the states from
which they came. Recognizing the manner by which these
transitions partition the mixed-state space allows simplified
spectrum calculations. The directed graph structure is in-
herently nonplanar. The large blue recurrent state should be
visualized as being behind the transient states; it does not
contain them.

4-state leaky-period-3 components (from the time of ar-

rival) than to escape the preceding 3-state leaky-period-3

components of the synchronizing metadynamic.

The entropy rate convergence plots of Figs. 8 and 9 re-

veal a sophisticated predictability modulation that sim-

ply could not have been gleaned from the spectra of

Fig. 5. Figure 9 emphasizes the dominance of the slowest-

decaying eigenmodes for large L. Such oscillations under

the exponential convergence to synchronization are typi-

cal. However, as seen in comparison with Fig. 8 much of

the uncertainty may be reduced before this asymptotic

mode comes to dominate. Ultimately, synchronization to

optimal prediction may involve important contributions

from all modes of the mixed-state-to-state metadynamic.

This detailed analysis of the RRXOR Process suggests

several general lessons about how we view information

in stochastic processes. First, as information processing

increases in sophistication, a vanishing amount of a pro-

cess’ intrinsic structure will be discernible at low-orders

of correlation. Second, logical computation, as imple-

mented by universal logic gates, primarily operates above

pairwise correlation. And so, finally, there is substantial

motivation to move beyond measures of pairwise corre-
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FIG. 8. Ephemeral (h((L)) and persistent (h (L)) contri-
butions to the myopic entropy rate (hµ(L)). The ephemeral
contribution lasts only up to L = ν0(W ) = 2.
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FIG. 9. Tails of the myopic entropy convergence hµ(L) shown
in Fig. 8 decay according to two different leaky period-three
envelopes. The latter correspond to the two qualitatively dif-
ferent types of transient synchronization cycles in the MSP
of Fig. 7. One of the transient cycles has a relatively fast
decay rate of r2 = (1/4)1/3. While the slower decay rate of

r1 = (1/2)1/3 dominates hµ(L)’s deviation from hµ at large
L.

lation. We must learn to recognize hidden structures

and to use higher-order structural investigations to bet-

ter understand information processing. This is critical to

empirically probing functionality in biological and engi-

neered processes.

VIII. CONCLUSION

Surprisingly, many questions we ask about structured

stochastic, nonlinear processes implicate a linear dy-

namic over an appropriate hidden state space. That is,

there is an implied hidden Markov model. The promise is

that once the dynamic is found for the question of inter-

est, one can make progress in analyzing it. Unfortunately,

a roadblock immediately arises: these hidden linear dy-

namics are generically nondiagonalizable for questions re-

lated to prediction and to information and complexity

measures. Deploying Part I’s meromorphic functional

calculus, though, circumvents the roadblock. Using it,

we determined closed-form expressions for a very wide

range of information and complexity measures. Often,

these expressions turned out to be direct functions of the

HMM’s transition dynamic.

This allowed us to catalog in detail the range of

possible convergence behaviors for correlation and my-

opic uncertainty. The analytic formulas revealed a new

symmetry-collapse index that is a lower bound on the

Markov order and serves as an independent, more nu-

anced timescale of information processing. We then con-

sidered complexity measures that accumulate during the

transient relaxation to observer synchronization. We also

introduced the new notion of complexity spectra, gave a

new kind of information-theoretic signal analysis in terms

of coronal spectrograms, and highlighted common simpli-

fications for special cases, such as almost diagonalizable

dynamics. We closed by analyzing several families of fi-

nite and infinite Markov and cryptic order processes and

emphasized the importance of higher-than-pairwise-order

correlations, showing how the excess entropy spectrum is

the key diagnostic tool for them.

The analytical completeness might suggest that we

have reached an end. Partly, but the truth we seek is

rather farther down the road. The meromorphic func-

tional calculus of nondiagonalizable operators merely sets

the stage for the next challenges—to develop complexity

measures and structural decompositions for infinite-state

and infinite excess entropy processes. Hopefully, the new

toolset will help us scale the hierarchies of truly complex

processes outlined in Refs. [1, 11, 12], at a minimum giv-

ing exact answers at each stage of a convergent series of

finite-ε-machine approximations.
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FIG. 10. ε-Machine of the (2-1)-GP-(2) Process.
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Appendix A: Example Analytical Calculations

To exercise the operational nature of the framework in-

troduced, the following explicitly carries out the analytic

calculations to obtain the closed-form complexity mea-

sures for the (p, q)-parametrized (2-1)-GP-(2) Process.

This process was already visually explored in the sec-

ond column of Table II. And so, the goal here is primar-

ily pedagogical—providing insight and better explicat-

ing particular calculational steps. The appendix demon-

strates a variety of techniques in the spirit of a tutorial,

though many were not called out in the main develop-

ment.

1. Process and spectra features

The (p, q)-parametrized (2-1)-GP-(2) Process is de-

scribed by its ε-machine, whose state-transition diagram

was shown in the first row and second column of Ta-

ble II and is reproduced here in Fig. 10. Formally,

the (2-1)-GP-(2) stationary stochastic process is gener-

ated by the HMM MεM =
(
S,A, {T (x)}x∈A, η0 = π

)
.

That is, M consists of a set of hidden causal states

S = {A,B,C,D}, an alphabet A = {0, 1, 2} of sym-

bols emitted to form the observed process, and a set{
T (x) : T

(x)
s,s′ = Pr(Xt = x,St+1 = s′|St = s)

}
x∈A of

symbol-labeled transition matrices. These are:

T (0) =




1−p−q 0 0 0

0 0 0 0

0 0 0 0

1 0 0 0


 ,

T (1) =




0 p 0 0

1 0 0 0

0 0 0 0

0 0 0 0


 ,

and

T (2) =




0 0 q 0

0 0 0 0

0 0 0 1

0 0 0 0


 .

The symbol-labeled transition matrices sum to the row-

stochastic internal state-to-state transition matrix:

T =
∑

x∈A
T (x) =




1−p−q p q 0

1 0 0 0

0 0 0 1

1 0 0 0


 .

This is a Markov chain over the hidden states. From it

we find the stationary state distribution 〈π| = 〈π|T :

〈π| = 1

1 + p+ 2q

[
1 p q q

]
.

The first analysis task is to determine the eigenvalues

and associated projection operators for the internal state-

to-state transition matrix T . From:

det(T − λI) = λ(λ− 1)
(
λ2 + (p+ q)λ+ q

)

= 0 ,

we find the four eigenvalues:

ΛT =
{

1, 0, − 1
2 (p+ q)± 1

2

√
(p+ q)2 − 4q

}
.

All eigenvalues are real for p ≥ 2
√
q − q. Two are

complex with nonzero imaginary part when p < 2
√
q −

q. Putting this together with the transition-probability

consistency constraint that p + q < 1 yields the map of

the transition-parameter space shown in Fig. 11.

For a generic choice of the parameter setting (p, q),

all T ’s eigenvalues are unique, and so T is diagonaliz-

able. However, two of the eigenvalues become degener-

ate along the parameter subspace p = 2
√
q − q, giving

ΛT = {1, 0,−√q}. We find that the algebraic multi-

plicity a−√q = 2 is larger than the geometric multiplic-



23

0.0 0.2 0.4 0.6 0.8 1.0

q

0.0

0.2

0.4

0.6

0.8

1.0

p

p = 2
p

q � q

real �

complex �

FIG. 11. Transition-probability space for the (p, q)-
parametrized (2-1)-GP-(2) Process.

ity g−√q = 1, yielding nondiagonalizability (ν−√q = 2)

along this (p = 2
√
q − q)-submanifold. More broadly,

experience has shown that eigenvalues generically induce

nondiagonalizability when they collide and scatter in the

complex plane. For example, this occurs when a pair of

eigenvalues first “entangle” to become complex conjugate

pairs.

For any parameter setting (p, q), we find T ’s right

eigenvectors from (T − λI) |λ〉 = ~0. They are:

|0〉 =
[
0 1 −p/q 0

]>

and

|λ〉 =
[
λ2 λ 1 λ

]>
,

for all λ ∈ ΛT \ {0}. Similarly, we find the left eigenvec-

tors of T from 〈λ| (T − λI) = ~0:

〈0| =
[
0 1 0 −1

]

and

〈λ| =
[
λ2 pλ qλ q

]
,

for all λ ∈ ΛT \ {0}. Clearly, the left eigenvectors are

not simply the complex-conjugate transpose of the right

eigenvectors. This is a signature of the more intricate

algebraic structure in these processes.

Since T is generically diagonalizable, all of the projec-

tion operators are simply the normalized ket-bra outer

products:

Tλ =
|λ〉 〈λ|
〈λ|λ〉 ,

so long as p 6= 2
√
q − q. To wit:

T1 =
|1〉 〈1|
〈1|1〉

= |1〉 〈π| .

Along the nondiagonalizable (p = 2
√
q−q)-subspace of

parameter settings: 〈−√q|−√q〉 = 0. This corresponds

to the fact that the right and left eigenvectors are now

dual to the left and right generalized eigenvectors, rather

than being dual to each other. We find the projection

operator for the nondiagonalizable eigenspace is:

T−√q =
|−√q(1)〉 〈−√q(2)|
〈−√q(2)|−√q(1)〉

+
|−√q(2)〉 〈−√q(1)|
〈−√q(1)|−√q(2)〉

,

where:

|−√q(1)〉 =
[
q −√q 1 −√q

]>
,

|−√q(2)〉 =
[
−√q 0 1/

√
q 0
]>

,

〈−√q(1)| =
[
q q(
√
q − 2) −q√q q

]
, and

〈−√q(2)| =
[
−√q 0 0

√
q
]
.

Equivalently, T−√q = I − T1 − T0. The projection oper-

ators for the remaining (λ = 0, 1) eigenspaces retain the

same form as before: Tλ = |λ〉 〈λ| / 〈λ|λ〉.

2. Observed correlation

The pieces are now in place to calculate the observable

correlation and power spectrum. Recall that we derived

the general spectral decomposition of the autocorrelation

function γ(L) =
〈
XtXt+L

〉
t
:

γ(L) =
∑

λ∈ΛT
λ6=0

νλ−1∑

m=0

〈πA|Tλ,m |A1〉
(|L| − 1

m

)
λ|L|−1−m

+ [0 ∈ ΛT ]

ν0−1∑

m=0

〈πA|T0T
m |A1〉 δ|L|−1,m

for nonzero integer L, where:

〈πA| = 〈π|
∑

x∈A
xT (x)

=
1

1 + p+ 2q

[
p p 2q 2q

]
,
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and:

|A1〉 =
∑

x∈A
xT (x) |1〉

=
[
p+ 2q 1 2 0

]>
.

For generic parameter settings, this reduces to:

γ(L) =
〈πA| 0〉〈0 |A1〉

〈0|0〉 δ|L|,1

+
∑

λ∈ΛT
λ 6=0

〈πA|λ〉〈λ |A1〉
〈λ|λ〉 λ|L|−1

= 4

(
p+ 2q

1 + p+ 2q

)2

+
−p

1 + p+ 2q
δ|L|,1

+
p+ 2q

1 + p+ 2q

∑

λ∈ΛT
λ 6=0,1

(λ+ 1)2(pλ+ 2q)

λ3 + pλ+ 2q
λ|L|−1 .

Notably, the autocorrelation splits into an ephemeral

part (via the Kronecker delta) due to the zero eigen-

value, an exponentially decaying oscillatory part due to

the two eigenvalues with magnitude between 0 and 1, and

an asymptotic part that survives even as L → ∞ due

to the eigenvalue of unity. Moreover, for p < 2
√
q − q,

the two nontrivial eigenvalues become complex conjugate

pairs. This allows us to rewrite the autocorrelation for

the (2-1)-GP-(2) process for |L| ≥ 2 concisely as:

γ(L) = β2 + β q|L|/2 Re
(
ζ eiωξ|L|

)
,

where:

β ≡ 2(p+ 2q)

1 + p+ 2q
,

ζ ≡ (ξ + 1)2(pξ + 2q)

ξ(ξ3 + pξ + 2q)
,

ξ ≡ −1

2
(p+ q) + i

1

2

√
4q − (p+ q)2 , and

ωξ ≡
π

2
+ arctan

( p+ q√
4q − (p+ q)2

)
.

The latter form reveals that the magnitude of the largest

nonunity eigenvalue |ξ| = √q controls the slowest rate of

decay of observed correlation |γ(L)| ∼ √qL and that the

complex phase of the eigenvalues determine the oscilla-

tions within this exponentially decaying envelope.

We found the general spectral decomposition of the

continuous part of the power spectrum is:

Pc(ω) =
〈
|x|2
〉

+ 2
∑

λ∈ΛT

νλ−1∑

m=0

Re
〈πA|Tλ,m |A1〉
(eiω − λ)m+1

.

Also, recall from earlier that the δ-functions of the

power spectrum arise from T ’s eigenvalues that lie on

the unit circle:

Pd(ω) =

∞∑

k=−∞

∑

λ∈ΛT
|λ|=1

2π δ(ω − ωλ + 2πk)

× Re
(
λ−1 〈πA| Tλ |A1〉

)
,

where ωλ is related to λ by λ = eiωλ . As long as p+q < 1,

λ = 1 is the only eigenvalue that lies on the unit circle,

so that:

Pd(ω) =

∞∑

k=−∞

2π δ(ω + 2πk)Re 〈πA| T1 |A1〉 ,

with:

Re 〈πA| T1 |A1〉 = β2

= 4

(
p+ 2q

1 + p+ 2q

)2

.

Putting this all together we find the complete power

spectrum for the (2-1)-GP-(2) Process:

P (ω) =
8q

1 + p+ 2q
+

2p

1 + p+ 2q

[
1− cos(ω)

]

+ β
∑

λ∈ΛT
λ6=0,1

Re

(
(λ+ 1)2(pλ+ 2q)

λ3 + pλ+ 2q
· 1

eiω − λ

)

+ 2πβ2
∞∑

k=−∞

δ(ω + 2πk) ,

Thus, the process exhibits δ-functions from the eigen-

value on the unit circle, continuous Lorentzian-like line

profiles emanating from finite eigenvalues inside the unit

circle which express the process’ chaotic nature, and the

unique sinusoidal contribution that can only come from

zero eigenvalues.

Whenever p < 2
√
q − q, the two nontrivial eigenval-

ues become complex conjugate pairs. This allows us to

rewrite the process’ power spectrum in a more transpar-

ent way:

P (ω) =
8q

1 + p+ 2q
+

2p

1 + p+ 2q

[
1− cos(ω)

]

+ βRe

(
ζξ

eiω − ξ +
ζξ

e−iω − ξ

)

+ 2πβ2
∞∑

k=−∞

δ(ω + 2πk) ,

which is clearly symmetric about ω = 0.

The level of completeness achieved is notable: we cal-
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culated these properties exactly in closed form for this

infinite-Markov order stochastic process over the full

range of possible parameter settings. Moreover, once it

constructs the process’ S-MSP, the next section goes on

to produce the same level of analytical completeness but

for predictability.

3. Predictability

To analyze the process’ predictability, we need the S-

MSP of any of its generators. Since we started already

with the ε-machine, we directly determine its S-MSP.

This gives the mixed-state transition matrix W = W
that, in turn, suffices for calculating both predictability

in this section and the synchronization necessary for

prediction in the next.

We construct the S-MSP by calculating all mixed

states that can be induced by observation from the start

distribution π and then calculating the transition proba-

bilities between them. There are eight such mixed-state

distributions over S. However, four of them (δA, δB, δC,

and δD) correspond to completely synchronized peaked

distributions. The other four states are new (relative

to the recurrent states) transient states and correspond

to transient states of recurrent-state uncertainty during

synchronization. Calculating, we find the eight unique

mixed-state distributions iteratively from:

〈ηwx| = 〈ηw|T (x)

〈ηw|T (x) |1〉 ,

starting with:

〈ηx| = 〈π|T (x)

〈π|T (x) |1〉 ,

are:

〈π| = 1

1 + p+ 2q

[
1 p q q

]
,

〈η1| = 1

2

[
1 1 0 0

]
,

〈η11| = 1

1 + p

[
1 p 0 0

]
,

〈η2| = 1

2

[
0 0 1 1

]
,

〈δA| =
[
1 0 0 0

]
,

〈δB| =
[
0 1 0 0

]
,

〈δC| =
[
0 0 1 0

]
, and

〈δD| =
[
0 0 0 1

]
.

In this, the transient mixed states ηw are labeled accord-

ing to the shortest word w that induces them. These

�A

�B�D �C
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⇡
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⌘11
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FIG. 12. S-MSP of the (2-1)-GP-(2) Process.

distributions constitute the set of mixed-states Rπ of

the S-MSP. Moreover, each transition probability from

mixed state 〈ηw| to mixed state 〈ηwx| is calculated as:

〈ηw|T (x) |1〉. Altogether, these calculations yield the S-

MSP of the (2-1)-GP-(2) Process, reproduced in Fig. 12

from Table II for convenience.

As a HMM, the ε-machine’s S-MSP is specified by

the 4-tuple: MS-MSP =
(
Rπ, A, {W(x)}x∈A, µ0 = δπ

)
,

where Rπ is the set of mixed states just quoted, A is

the same observable alphabet as before,
{
W(x)

}
x∈A is

the set of symbol-labeled transition matrices among the

mixed states, and 〈δπ| =
[
1 0 0 0 0 0 0 0

]
is the start

distribution over the mixed states.

With this new linear metadynamic in hand, our next

step is to calculate the eigenvalues and projection oper-

ators of the internal mixed-state-to-state transition dy-

namicW =
∑
x∈AW(x). W can be explicitly represented

in the block-matrix form:

W =

[
A B

0 T

]
,

where:

A =




0 2p
1+p+2q 0 2q

1+p+2q

0 0 1+p
2 0

0 2p
1+p 0 0

0 0 0 0


 and

B =




1−p
1+p+2q 0 0 0
1−p−q

2 0 q
2 0

1−p−q
1+p 0 q

1+p 0
1
2 0 0 1

2


 ,

and T is the same as the state-to-state internal transition

matrix of the ε-machine from earlier.

W’s eigenvalues are thus relatively straightforward to
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calculate since det(W − λI) = det(A − λI)det(T − λI)

implies that:

ΛW = ΛA ∪ ΛT .

The new eigenvalues introduced by the feedback matrix

A are ΛA = {0,±√p} with ν0 = 2. The new nonzero

eigenvalues (±√p), found most easily from Part I’s cyclic

eigenvalue rule, are associated with diagonalizable sub-

spaces. It is important to note that, while T was only

nondiagonalizable along a very special submanifold in pa-

rameter space, the mixed-state-to-state metadynamic is

generically nondiagonalizable over all parameter settings.

This nondiagonalizability corresponds to a special kind

of symmetry breaking of uncertainty during synchroniza-

tion.

W’s eigenvectors are most easily found through a two-

step process. Specifically, |±√p
A
〉 and 〈±√p

A
| (the so-

lutions of A |±√p
A
〉 = ±√p |±√p

A
〉 and 〈±√p

A
|A =

±√p 〈±√p
A
|) are found first, and the result is used

to reduce the number of unknowns when solving the

full eigenequations (W |±√pW〉 = ±√p |±√pW〉) for

|±√pW〉 and 〈±√pW |. Similarly, we can recycle the re-

stricted eigenvectors |λT 〉 and 〈λT | found earlier for the

ε-machine to reduce the number of unknowns when solv-

ing the more general eigenvector problems for |λW〉 and

〈λW | in cases where λ ∈ ΛT . Performing such a calcula-

tion, we find:

|±√pW〉 =
[

1
1+p+2q

±√p
2p

1
1+p 0 0 0 0 0

]>
,

〈±√pW | =
[
0 ±√p 1+p

2 0 − 1±√p
2 −p±

√
p

2 0 0
]
,

〈λW | =
[
0 0 0 0 λ2 pλ qλ q

]
for all λ ∈ ΛT \ {0} ,

|1W〉 =
[
1 1 1 1 1 1 1 1

]>
, and

|λW〉 =
[
0 λ(1+λ)

2
λ(1+λ)

1+p
1+λ

2 λ2 λ 1 λ
]>

,

for λ ∈ ΛT \ {0, 1}. Moreover, W’s eigenvectors and

generalized eigenvector corresponding to eigenvalue 0 are:

|0(1)
1 〉 = 〈δπ|> =

[
1 0 0 0 0 0 0 0

]>
,

|0(2)
1 〉 =

[
0 0 0 1+p+2q

2q 0 0 0 0
]>

,

|0(1)
2 〉 =

[
0 1

2
p

1+p
−p
2q 0 1 −p

q 0
]>

,

〈0(1)
1 | =

[
0 0 0 1 0 0 −1

2
−1
2

]
,

〈0(2)
1 | =

[
1+p+2q

2q 0 −(1+p)
2q 0 0 0 −1

2
−1
2

]
, and

〈0(1)
2 | =

[
0 0 0 0 0 1 0 −1

]
.

Above, we used the notation |0(m)
k 〉 for indexing general-

ized eigenvectors introduced in Part I.
All nondegenerate eigenvalues have projection opera-

tors of the form:

Wλ =
|λ〉 〈λ|
〈λ|λ〉 .

However, the degenerate and nondiagonalizable subspace

associated with the zero eigenvalue has the composite

projection operator:

W0 =
|0(1)

1 〉 〈0
(2)
1 |

〈0(2)
1 |0

(1)
1 〉

+
|0(2)

1 〉 〈0
(1)
1 |

〈0(1)
1 |0

(2)
1 〉

+
|0(1)

2 〉 〈0
(1)
2 |

〈0(1)
2 |0

(1)
2 〉

.

The fact that 〈δπ|λW〉 = 0 for all λ ∈ ΛT \
(
{1}∪ΛA

)
is

an instantiation of a general result that greatly simplifies

the calculations relating to predictability and prediction.

The remaining piece for analyzing predictability is the

vector of transition-entropies |H(WA)〉. A simple calcu-

lation, utilizing the fact that:

−
∑

i

ni
d

log
(ni
d

)
= log(d)− 1

d

∑

i

ni log ni ,

when
∑
i ni = d, yields:

|H(WA)〉 =




log(1 + p+ 2q)− 1
1+p+2q

[
2q log(2q) + 2p log(2p) + (1− p) log(1− p)

]

1− 1
2

[
q log(q) + (1 + p) log(1 + p) + (1− p− q) log(1− p− q)

]

log(1 + p)− 1
1+p

[
q log(q) + 2p log(2p) + (1− p− q) log(1− p− q)

]

1

−
[
q log(q) + p log(p) + (1− p− q) log(1− p− q)

]

0

0

0




,

where log is understood to be the base-2 logarithm log2.
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Putting this all together, we can now calculate in full

detail the myopic entropy rate hµ(L) that results from

modeling the infinite-order (2-1)-GP-(2) process as an

order-(L-1) Markov process:

hµ(L) =
∑

λ∈ΛW
λ 6=0

νλ−1∑

m=0

〈δπ|Wλ,m |H(WA)〉
(
L− 1

m

)
λL−1−m

+ [0 ∈ ΛW ]

ν0−1∑

m=0

δL−1,m 〈δπ|W0W
m |H(WA)〉

= δL,1 〈δπ|W0 |H(WA)〉+ δL,2 〈δπ|WW0 |H(WA)〉
+ 〈δπ|W1 |H(WA)〉+

∑

λ∈ΛW \ΛT

〈δπ|Wλ |H(WA)〉λL−1.

After L = 2, this teeters along an exponentially decaying

envelope as it approaches its asymptotic value of:

hµ = 〈δπ|W1 |H(WA)〉
= 〈δπ| 1W〉〈πW |H(WA)〉
= 〈πW |H(WA)〉 = 〈πT |H(TA)〉

=
−q log q − p log p− (1− p− q) log(1− p− q)

1 + p+ 2q
.

Simplifying the terms in the myopic entropy rate yields:

〈δπ|W0 |H(WA)〉 = 〈δπ |H(WA)〉

− 1 + p

1 + p+ 2q
〈δη11 |H(WA)〉

and:

〈δπ|WW0 |H(WA)〉 =
2q

1 + p+ 2q

for the two ephemeral contributions.

For L ≥ 3, we find for odd L:

hµ(L)− hµ =
−p log p+ (1 + p) log(1 + p)− 2p√

p(1 + p+ 2q)
pL/2

and for even L:

hµ(L)− hµ =
p log p− (1 + p) log(1 + p) + 2

1 + p+ 2q
pL/2 .

This highlights the period-2 nature of the asymptotic de-

cay.

The total mutual information between the observable

past and observable future, the excess entropy, is:

E =
∑

λ∈ΛW \{1}

νλ−1∑

m=0

1

(1− λ)m+1
〈δπ|Wλ,m |H(WA)〉

=
(1− p− q) log(1− p− q)− p log p

1 + p+ 2q

− q log q + (1− p) log(1− p)
1 + p+ 2q

+ log(1 + p+ 2q) .

This is the total future information that can possibly be

predicted using past observations. The structure of how

this information is unraveled over time is revealed in the

excess entropy spectrum from −π < ω ≤ π:

E(ω) = πhµδ(ω)

+

ν0−1∑

m=0

cos
(
(m+ 1)ω

)
〈δπ|W0W

m |H(WA)〉

+
∑

λ∈ΛW \0

νλ−1∑

m=0

Re

( 〈δπ|Wλ,m |H(WA)〉
(eiω − λ)m+1

)

= πhµδ(ω) +
2q

1 + p+ 2q
cos(2ω)

+
(
E +

p log p− (1 + p) log(1 + p)− 2q

1 + p+ 2q

)
cos(ω)

+
−p log p+ (1 + p) log(1 + p)

1 + p+ 2q
Re

(
eiω − p
ei2ω − p

)

+ 2p
1+p+2qRe

(
1− eiω
ei2ω − p

)
.

From this, we observe that E = limω→0 E(ω).

4. Synchronizing to predict optimally

To analyze the information-processing cost of synchro-

nizing to a process, we need its ε-machine S-MSP. We

already constructed this in the last section. Hence, we

can immediately evaluate the resources necessary for syn-

chronizing to and predicting the (2-1)-GP-(2) Process.

The only novel piece needed for this is the vector of

mixed-state entropies |H[η]〉. A simple calculation yields:

|H[η]〉 =




log(1 + p+ 2q)− p log p+2q log q
1+p+2q

1

log(1 + p)− p log p
1+p

1

0

0

0

0




,
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where log is again understood to be the base-2 logarithm

log2.

An observer, tasked with predicting the future as well

as possible, must synchronize to the causal state of the

dynamic. The remaining causal-state uncertainty H+(L)

after an observation interval of L steps is:

H+(L)

=
∑

λ∈ΛW
λ 6=0

νλ−1∑

m=0

〈δπ|Wλ,m |H[η]〉
(
L

m

)
λL−m

+ [0 ∈ ΛW ]

ν0−1∑

m=0

δL,m 〈δπ|W0Wm |H[η]〉

= δL,0
[
log(1 + p+ 2q)− 2q log q + (1 + p) log(1 + p)

1 + p+ 2q

]

+ δL,1
2q

1+p+2q +
〈√p |H[η]〉+ (−1)L〈−√p |H[η]〉

1 + p+ 2q
pL/2 .

More explicitly, for L ≥ 2, this becomes:

H+(L) =

{
2
√
p

1+p+2q p
L/2 for odd L

(1+p) log(1+p)−p log p
1+p+2q pL/2 for even L

.

The total synchronization information accumulated is

then:

S =
∑

λ∈ΛW\{1}

νλ−1∑

m=0

1

(1− λ)m+1
〈δπ|Wλ,m |H[η]〉

=
2q(1− log q)

1 + p+ 2q
+
p
[
2− log p+ (1 + p) log(1 + p)

]

(1− p)(1 + p+ 2q)

+ log(1 + p+ 2q) .

Even after synchronization, an observer must update

an average of bµ of its bits of information per observation

and must keep track of a net Cµ bits of information to

stay synchronized, where:

Cµ = H[π]

= 〈δπ |H[η]〉

= log(1 + p+ 2q)− p log p+ 2q log q

1 + p+ 2q
.

An interesting feature of prediction is a process’ cryp-

ticity:

χ = Cµ −E

=
3q log q + (1− p) log(1− p)

1 + p+ 2q

− (1− p− q) log(1− p− q)
1 + p+ 2q

,

This gives, as a function of p and q, the minimal overhead

of additional memory about the past—beyond the infor-

mation that the future can possibly share with it—that

must be stored for optimal prediction.

In summary, we now more fully appreciate, via this

rather complete analysis, the fundamental limits on pre-

dictability of our example stochastic process. It showed

many of the qualitative features, both in terms of the cal-

culation and system behavior, that should be expected

when analyzing prediction, based on the more general

results of the main development. The procedures can

be commandeered to apply to any inference algorithm

that yields a generative model, whether classical ma-

chine learning, Bayesian Structural Inference [9], or any

other favorite inference tool. With a generative model

in hand, synchronizing to real world data—necessary to

make good predictions about the real world’s future—

follows the S-MSP metadynamics. The consequence for

prediction is that typically there will be a finite epoch of

symmetry collapse followed by a slower asymptotic syn-

chronization that allows improved prediction, as longer

observations induce a refined knowledge of what lies hid-

den.
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