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We introduce a theory of sequential causal inference in which learners in a chain estimate a
structural model from their upstream “teacher” and then pass samples from the model to their
downstream “student”. It extends the population dynamics of genetic drift, recasting Kimura’s
selectively neutral theory as a special case of a generalized drift process using structured populations
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I. “SEND THREE- AND FOUR-PENCE, WE’RE
GOING TO A DANCE”

This phrase was heard, it is claimed, over the radio
during WWI instead of the transmitted tactical phrase
“Send reinforcements we’re going to advance” [1]. As
illustrative as it is apocryphal, this garbled yet compre-
hensible transmission sets the tone for our investigations
here. Namely, what happens to knowledge when it is
communicated sequentially along a chain, from one indi-
vidual to the next? What fidelity can one expect? How
is information lost? How do innovations occur?

To answer these questions we introduce a theory of se-
quential causal inference in which learners in a commu-
nication chain estimate a structural model from their up-
stream “teacher” and then, using that model, pass along
samples to their downstream “student”. This reminds
one of the familiar children’s game Telephone. By way of
quickly motivating our sequential learning problem, let’s
briefly recall how the game works.

To begin, one player invents a phrase and whispers
it to another player. This player, believing they have
understood the phrase, then repeats it to a third and
so on until the last player is reached. The last player
announces the phrase, winning the game if it matches
the original. Typically it does not, and that’s the fun.
Amusement and interest in the game derive directly from
how the initial phrase evolves in odd and surprising ways.
The further down the chain, the higher the chance that
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errors will make recovery impossible and the less likely
the original phrase will survive.

The game is often used in education to teach the lesson
that human communication is fraught with error. The fi-
nal phrase, though, is not merely accreted error but the
product of a series of attempts to parse, make sense, and
intelligibly communicate the phrase. The phrase’s evo-
lution is a trade off between comprehensibility and ac-
cumulated distortion, as well as the source of the game’s
entertainment. We employ a much more tractable setting
to make analytical progress on sequential learning, based
on computational mechanics [2–4], intentionally selecting
a simpler language system and learning paradigm than
likely operates with children.

Specifically, we develop our theory of sequential learn-
ing as an extension of the evolutionary population dy-
namics of genetic drift, recasting Kimura’s selectively
neutral theory [5] as a special case of a generalized drift
process of structured populations with memory. This
is a substantial departure from the unordered popula-
tions used in evolutionary biology. Notably, this requires
a new and more general information-theoretic notion of
fixation. We examine the diffusion and fixation prop-
erties of several drift processes, demonstrating that the
space of drift processes is highly organized. This organi-
zation controls fidelity, facilitates innovations, and leads
to information loss in sequential learning and evolution-
ary processes with and without memory. We close by
describing applications to learning, inference, and evolu-
tion, commenting on related efforts.

To get started, we briefly review genetic drift and fix-
ation. This will seem like a distraction, but it is a nec-
essary one since available mathematical results are key.
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Then we introduce in detail our structured variants of
these concepts—defining the generalized drift process and
formulating a generalized definition of fixation appropri-
ate to it. With the background laid out, we begin to
examine the complexity of structural drift behavior. We
demonstrate that it is a diffusion process within a space
that decomposes into a connected network of structured
subspaces. Building on this decomposition, we explain
how and when processes jump between these subspaces—
innovating new structural information or forgetting it—
thereby controlling the long-time fidelity of the commu-
nication chain. We then close by outlining future re-
search and listing several potential applications for struc-
tural drift, drawing out consequences for evolutionary
processes that learn.

Those familiar with neutral evolution theory are urged
to skip to Sec. V, after skimming the next sections to
pick up our notation and extensions.

II. FROM GENETIC TO STRUCTURAL DRIFT

Genetic drift refers to the change over time in geno-
type frequencies in a population due to random sampling.
It is a central and well studied phenomenon in popula-
tion dynamics, genetics, and evolution. A population of
genotypes evolves randomly due to drift, but typically
changes are neither manifested as new phenotypes nor
detected by selection—they are selectively neutral. Drift
plays an important role in the spontaneous emergence
of mutational robustness [6, 7], modern techniques for
calibrating molecular evolutionary clocks [8], and non-
adaptive (neutral) evolution [9, 10], to mention only a
few examples.

Selectively neutral drift is typically modeled as a
stochastic process: A random walk that tracks finite pop-
ulations of individuals in terms of their possessing (or
not) a variant of a gene. In the simplest models, the
random walk occurs in a space that is a function of geno-
types in the population. For example, a drift process can
be considered to be a random walk of the fraction of indi-
viduals with a given variant. In the simplest cases there,
the model reduces to the dynamics of repeated binomial
sampling of a biased coin, in which the empirical estimate
of bias becomes the bias in the next round of sampling.
In the sense we will use the term, the sampling process
is memoryless. The biased coin, as the population being
sampled, has no memory: The past is independent of the
future. The current state of the drift process is simply
the bias, a number between zero and one that summa-
rizes the state of the population.

The theory of genetic drift predicts a number of mea-
surable properties. For example, one can calculate the
expected time until all or no members of a population
possess a particular gene variant. These final states are
referred to as fixation and deletion, respectively. Vari-
ation due to sampling vanishes once these states are
reached and, for all practical purposes, drift stops. From

then on, the population is homogeneous; further sam-
pling can introduce no genotypic variation. These states
are fixed points—in fact, absorbing states—of the drift
stochastic process.

The analytical predictions for the time to fixation and
time to deletion were developed by Kimura and Ohta
[5, 11] in the 1960s and are based on the memoryless mod-
els and simplifying assumptions introduced by Wright
[12] and Fisher [13] in the early 1930s. The theory has
advanced substantially since then to handle more realistic
models and to predict additional effects due to selection
and mutation. These range from multi-allele drift mod-
els and F -statistics [14] to pseudohitchhiking models of
“genetic draft” [15].

The following explores what happens when we relax
the memoryless restriction. The original random walk
model of genetic drift forces the statistical structure at
each sampling step to be an independent, identically dis-
tributed (IID) stochastic process. This precludes any
memory in the sampling. Here, we extend the IID the-
ory to use time-varying probabilistic state machines to
describe memoryful population sampling.

In the larger setting of sequential learning, we will show
that memoryful sequential sampling exhibits structurally
complex, drift-like behavior. We call the resulting phe-
nomenon structural drift. Our extension presents a num-
ber of new questions regarding the organization of the
space of drift processes and how they balance structure
and randomness. To examine these questions, we require
a more precise description of the original drift theory.

III. GENETIC DRIFT

We begin with the definition of an allele, which is one of
several alternate forms of a gene. The textbook example
is given by Mendel’s early experiments on heredity [16],
in which he observed that the flowers of a pea plant were
colored either white or violet, this being determined by
the combination of alleles inherited from its parents. A
new, mutant allele is introduced into a population by the
mutation of a wild-type allele. A mutant allele can be
passed on to an individual’s offspring who, in turn, may
pass it on to their offspring. Each inheritance occurs with
some probability.

Genetic drift, then, is the change of allele frequencies
in a population over time. It is the process by which
the number of individuals with an allele varies genera-
tion after generation. The Fisher-Wright theory [12, 13]
models drift as a stochastic evolutionary process with nei-
ther selection nor mutation. It assumes random mating
between individuals and that the population is held at
a finite, constant size. Moreover, successive populations
do not overlap in time.

Under these assumptions the Fisher-Wright theory
reduces drift to a binomial or multinomial sampling
process—a more complicated version of familiar random
walks such as Gambler’s Ruin or Prisoner’s Escape [17].
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Offspring receive either the wild-type allele A1 or the
mutant allele A2 of a particular gene A from a random
parent in the previous generation with replacement. A
population of N diploid1 individuals will have 2N total
copies of these alleles. Given i initial copies of A2 in the
population, an individual has either A2 with probability
i/2N or A1 with probability 1− i/2N. The probability that
j copies of A2 exist in the offspring’s generation given i
copies in the parent’s generation is:

pij =

(
2N

j

)(
i

2N

)j (
1− i

2N

)2N−j

. (1)

This specifies the transition dynamic of the drift
stochastic process over the discrete state space
{0, 1/2N, . . . , (2N−1)/2N, 1}.

This model of genetic drift is a discrete-time random
walk, driven by samples of a biased coin, over the space
of biases. The population is a set of coin flips, where
the probability of Heads or Tails is determined by the
coin’s current bias. After each generation of flips, the
coin’s bias is updated to reflect the number of Heads or
Tails realized in the new generation. The walk’s absorb-
ing states—all Heads or all Tails—capture the notion
of fixation and deletion.

IV. GENETIC FIXATION

Fixation occurs with respect to an allele when all in-
dividuals in the population carry that specific allele and
none of its variants. Restated, a mutant allele A2 reaches
fixation when all 2N alleles in the population are copies
of A2 and, consequently, A1 has been deleted from the
population. This halts the random fluctuations in the
frequency of A2, assuming A1 is not reintroduced.

Let X be a binomially distributed random variable
with bias probability p that represents the fraction of
copies of A2 in the population. The expected number
of copies of A2 is E[X] = 2Np. That is, the expected
number of copies of A2 remains constant over time and
depends only on its initial probability p and the total
number (2N) of alleles in the population. However, A2

eventually reaches fixation or deletion due to the change
in allele frequency introduced by random sampling and
the presence of absorbing states. Prior to fixation, the
mean and variance of the change in allele frequency ∆p
are:

E[∆p] = 0 and (2)

Var[∆p] =
p (1− p)

2N
, (3)

1 Though we first use diploid populations (two alleles per individ-
ual and thus a sample length of 2N) for direct comparison to
previous work, we later transition to haploid (single allele per
individual) populations for notational simplicity.

respectively.
On average there is no change in frequency. However,

sampling variance causes the process to drift towards the
absorbing states at p = 0 and p = 1. The drift rate is
determined by the current generation’s allele frequency
and the total number of alleles. For the neutrally selec-
tive case, the average number of generations until fixation
(t1) or deletion (t0) is given by Kimura and Ohta [5]:

t1(p) = −1

p
[4Ne(1− p) log(1− p)] and (4)

t0(p) = −4Ne

(
p

1− p

)
log p , (5)

where Ne denotes effective population size. For simplic-
ity we take Ne = N , meaning all individuals in the pop-
ulation are candidates for reproduction. As p→ 0, the
boundary condition is given by:

t1(0) = 4Ne . (6)

That is, excluding cases of deletion, an initially rare mu-
tant allele spreads to the entire population in 4Ne gen-
erations.

One important consequence of the theory is that when
fixation (p = 1) or deletion (p = 0) are reached, variation
in the population vanishes: Var[∆p] = 0. With no varia-
tion there is a homogeneous population, and sampling
from this population produces the same homogeneous
population. In other words, this establishes fixation and
deletion as absorbing states of the stochastic sampling
process. Once there, drift stops.

Figure 1 illustrates this, showing both the simulated
and theoretically predicted number of generations until
fixation occurs for N = 10, as well as the predicted time
to deletion for reference. Each simulation was performed
for a different initial value of p and averaged over 400
realizations. Using the same methodology as Kimura and
Ohta [5], we include only those realizations whose mutant
allele reaches fixation.

Populations are produced by repeated binomial sam-
pling of 2N uniform random numbers between 0 and 1.
An initial probability 1− p is assigned to allele A1 and
probability p to allele A2. The count i of A2 in the initial
population is incremented for each random number less
than p. This represents an individual acquiring the allele
A2 instead of A1. The maximum likelihood estimate of
allele frequency in the initial sample is simply the num-
ber of A2 alleles over the sample length: p = i/2N. This
estimate of p is then used to generate a new population
of offspring, after which we re-estimate the value of p.
These steps are repeated each generation until fixation
at p = 1 or deletion at p = 0 occurs. This is the Monte
Carlo (MC) sampling method.

Kimura’s theory and simulations predict the time to
fixation or deletion of a mutant allele in a finite popula-
tion by the process of genetic drift. The Fisher-Wright
model and Kimura’s theory assume a memoryless popu-
lation in which each offspring inherits allele A1 or A2 via
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FIG. 1. Time to fixation for a population of N = 10 individu-
als (sample size 2N = 20) plotted as a function of initial allele
probability p under the Monte Carlo (MC) sampling regime
and as given by theoretical prediction (solid line) of Eq. (4).
Time to deletion is also shown (dashed line), Eq. (5).
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FIG. 2. Time to stasis as a function of initial Pr[Heads]
for structural drift (SD) of the Biased Coin Process versus
Monte Carlo (MC) simulation of Kimura’s model. Kimura’s
predicted times to fixation and deletion are shown for refer-
ence. Each estimated time is averaged over 100 realizations
with sample size N = 1000.

an IID binomial sampling process. We now generalize
this to memoryful stochastic processes, giving a new def-
inition of fixation and exploring examples of structural
drift behavior.

V. SEQUENTIAL LEARNING

How can genetic drift be a memoryful stochastic pro-
cess? Consider a population of N haploid organisms.
Each generation consists of N alleles and so is repre-
sented by a string of N symbols, e.g. A1A2 . . . A1A1,
where each symbol corresponds to an individual with a
particular allele. In the original drift models, a genera-
tion of offspring is produced by a memoryless binomial
sampling process, selecting an offspring’s allele from a
parent with replacement. In contrast, the structural drift
model produces a generation of individuals in which the
sample order is tracked. The population is now a string of
alleles, giving the potential for memory and structure in
sampling—spatial, temporal, or other interdependencies
between individuals within a sample.

At first, this appears as a major difference from the
usual setting employed in population biology, where pop-
ulations are treated as unordered collections of individ-
uals and sampling is modeled as an independent, identi-
cally distributed stochastic process. That said, the struc-
ture we have in mind has several biological interpreta-
tions, such as inbreeding and subdivision [18] or the life
histories of heterogeneous populations [19]. We later re-

turn to these alternative interpretations when consider-
ing applications.

The model class we select to describe memoryful sam-
pling is the ε-machine: the unique, minimal, and opti-
mal representation of a stochastic process [4]. As we will
show, these properties give an important advantage when
analyzing structural drift, since they allow one to moni-
tor the amount of structure innovated or lost during drift.
We next give a brief overview of ε-machines and refer the
reader to the previous reference for details.

The ε-machine representations of the finite-memory
discrete-valued stochastic processes we consider here
form a class of (deterministic) probabilistic finite-state
machine or unifilar hidden Markov model. An ε-machine
consists of a set of causal states S = {0, 1, . . . , k − 1} and
a set of per-symbol transition matrices:

{T (a)
ij : a ∈ A} , (7)

where A = {A1, . . . , Am} is the set of alleles and where

the transition probability T
(a)
ij gives the probability of

transitioning from causal state Si to causal state Sj and
emitting allele a. The causal state probability Pr(σ),
σ ∈ S, is determined as the left eigenvector of the state-
to-state transition matrix T =

∑
a∈A T

(a).
Maintaining our connection to (haploid) popu-

lation dynamics, we think of an ε-machine as
a generator of populations or length-N strings:
αN = a1a2 . . . ai . . . aN , ai ∈ A. As a model of a sampling
process, an ε-machine gives the most compact representa-
tion of the distribution of strings produced by sampling.
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A 0.5 |T0.5 |H

FIG. 3. ε-Machine for the Fair Coin Process consisting of
a single causal state S = {A} and a self-transition for both
Heads and Tails. Each transition is labeled p | a to indicate

the probability p = T
(a)
ij of taking that transition and emitting

allele a ∈ A.

BA

1.0 | 1

1.0 | 0

FIG. 4. ε-Machine for the Alternating Process consisting of
two causal states S = {A,B} and two transitions. State A
emits allele 0 with probability one and transitions to state B,
while B emits allele 1 with probability one and transitions
to A.

BA

1.0 | 1

p | 0
1− p | 1

FIG. 5. ε-Machine for the Golden Mean Process consisting
of two causal states S = {A,B} that generates a population
with no consecutive 0s. In state A the probabilities of gener-
ating a 0 or 1 are p and 1− p, respectively.

Consider a simple binary process that alternately gen-
erates 0s and 1s called the Alternating Process shown in
Fig. 4. Its ε-machine generates either the string 0101 . . .
or 1010 . . . depending on the start state. The per-symbol
transition matrices are:

T (0) =

(
0.0 1.0
0.0 0.0

)
and (8)

T (1) =

(
0.0 0.0
1.0 0.0

)
. (9)

Enforcing the alternating period-2 pattern requires two
states, A and B, as well as two positive probability tran-

sitions T
(0)
AB = 1.0 and T

(1)
BA = 1.0. Branching transitions

are required for a process to structurally drift; the Al-
ternating Process has none. Two simple ε-machines with
branching structure are the smaller Fair Coin Process
(Fig. 3) and more complex Golden Mean Process (Fig. 5).
Both are discussed in detail later.

Beyond using ε-machines as generators of stochastic
processes, as just described, several alternative recon-
struction algorithms exist to infer ε-machines from data
samples—tree-merging [2], state-splitting [20], and spec-
tral [21]. These algorithms share a general approach:
First, estimate the distribution of subsequences. (If
given data as a single string, for example, slide a win-
dow of length N over the string and count subsequences
of lengths 1 . . . N .) Second, compute the distinct prob-

ability distributions of future subsequences conditioned
on past subsequences (histories). Third, partition his-
tories into equivalence classes (causal states) that give
the same conditional future distributions. And, finally,
calculate the transition dynamic between states. Prop-
erly reconstructed, the causal states form a minimal suffi-
cient statistic for prediction in the sense of Kullback [22].
Here, we circumvent these methods’ complications. Sec-
tion VIII C introduces an alternative that avoids them
and is, at the same time, more computationally efficient.

We are now ready to describe sequential learning, de-
picted in Fig. 6. We begin by selecting the ε-machine M0

as an initial population generator. Following a path
through M0, guided by its transition probabilities, pro-
duces a length-N string αN0 = a1 . . . aN that repre-
sents the first population of N individuals possessing
alleles ai ∈ A. We then infer an ε-machine M1 from
the population αN0 . M1 is then used to produce a
new population αN1 , from which a new ε-machine M2

is estimated. This new population has the same al-
lele distribution as the previous, plus some amount of
variance. The cycle of inference and re-inference is re-
peated while allele frequencies drift each generation un-
til fixation or deletion is reached. At that point, the
populations (and so ε-machines) cannot vary further.
The net result is a stochastically varying time series of
ε-machines (M0,M1,M2, . . .) that terminates when the
populations αNt stop changing.

Thus, at each step a new representation or model is
estimated from the previous step’s sample. The infer-
ence step highlights that this is learning: a model of the
generator is estimated from the given finite data. The
repetition of this step creates a sequential communica-
tion chain. Sequential learning is thus closely related to
genetic drift except that sample order is tracked, and this
order is used in estimating the next generator.

The procedure is analogous to flipping a biased coin
a number of times, estimating the bias from the results,

M0 αN
0 = a0 a1 · · · aN

M1 αN
1 = a0 a1 · · · aN

M2 · · ·

Generate
alleles

Generate
alleles

Infer
ε-machine

Infer
ε-machine

FIG. 6. Sequential inference with a chain of ε-machines. An
initial population generator M0 produces a length-N string
αN0 = a1 . . . aN from which a new model M1 is inferred. These
steps are repeated using M1 as the population generator and
so on, until a terminating condition is met.
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and re-flipping the newly biased coin. Eventually, the
coin will be completely biased towards Heads or Tails.
In our drift model the coin is replaced by an ε-machine,
which removes the IID model constraint and allows for
the sampling process to take on structure and mem-

ory. Not only do the transition probabilities T
(a)
ij change,

but the structure of the generator itself —the number of
states and the presence or absence of transitions—drifts
over time to capture the statistics of the sample using
as little information as possible. This is an essential and
distinctive aspect of structural drift.

Before we can explore this dynamic, we first need to
examine how an ε-machine reaches fixation or deletion.

VI. STRUCTURAL STASIS

Recall the Alternating Process from Fig. 4, produc-
ing the strings 0101 . . . and 1010 . . . depending on the
start state. Regardless of the initial state, the original
ε-machine is re-inferred from any sufficiently long string
it produces. In the context of sequential learning, this
means the population at each generation is the same.

However, if we consider allele A1 to be represented
by symbol 0 and A2 by symbol 1, neither allele reaches
fixation or deletion according to current definitions.
Nonetheless, the Alternating Process prevents any vari-
ance between generations and so, despite the population
not being all 0s or all 1s, the population does reach an
equilibrium: half 0s and half 1s. For these reasons, one
cannot use the original population-dynamics definitions
of fixation and deletion.

This leads us to introduce structural stasis to com-
bine the notions of fixation, deletion, and the inability to
vary caused by periodicity. Said more directly, structural
stasis corresponds to a process becoming nonstochastic,
since it ceases to introduce variance between generations
and so prevents further drift. However, we need a method
to detect the occurrence of structural stasis in a drift pro-
cess.

A state machine representing a periodic sampling pro-
cess enforces the constraint of periodicity via its internal
memory. One measure of this memory is the population
diversity H(N) [23]:

H(N) = H[A1 . . .AN ] (10)

= −
∑

aN∈AN

Pr(aN ) log2 Pr(aN ) , (11)

where the units are [bits].2 The population diversity of
the Alternating Process is H(N) = 1 bit at any size
N � 1. This single bit of information corresponds to
the machine’s current phase or state. Generally, though,
the value diverges—H(N) ∝ N—for arbitrary sampling
processes, and so population diversity is not suitable as

a general test for stasis.
Instead, the condition for stasis can be given as the

vanishing of the growth rate of population diversity:

hµ = lim
N→∞

[
H(N)−H(N − 1)

]
. (12)

Equivalently, we can test the per-allele entropy of the
sampling process. We call this allelic entropy :

hµ = lim
N→∞

H(N)

N
, (13)

where the units are [bits per allele]. Allelic entropy gives
the average information per allele in bits, and structural
stasis occurs when hµ = 0. While closer to a general test
for stasis, this quantity is difficult to estimate from pop-
ulation samples since it relies on an asymptotic estimate
of the population diversity. However, the allelic entropy
can be calculated in closed-form from the ε-machine rep-
resentation of the sampling process:

hµ = −
∑
σ∈S

Pr(σ)
∑
a∈A
σ′∈S

T
(a)
σσ′ log2 T

(a)
σσ′ , (14)

When hµ = 0, the sampling process has become peri-
odic and lost all randomness generated via its branching
transitions. This new criterion subsumes the notions of
fixation and deletion as well as periodicity. An ε-machine
has zero allelic entropy if any of these conditions occur.
More formally, we have the following statement.

Definition. Structural stasis occurs when the sampling
process’s allelic entropy vanishes: hµ = 0.

Proposition 1. Structural stasis is a fixed point of
finite-memory structural drift.

Proof. Finite-memory means that the ε-machine repre-
senting the population sampling process has a finite num-
ber of states. Given this, if hµ = 0, then the ε-machine

has no branching in its recurrent states: T
(a)
ij = 0 or 1,

where Si and Sj are asymptotically recurrent states. This
results in no variation in the inferred ε-machine when
sampling sufficiently large populations. Lack of varia-
tion, in turn, means the transition probabilities can no
longer change and so the drift process stops. If allelic
entropy vanishes at time t and no mutations are allowed,
then it is zero for all t′ > t. Thus, structural stasis is an
absorbing state of the drift stochastic process.

VII. EXAMPLES

While more can be said analytically about structural
drift, our present purpose is to introduce the main con-
cepts. We will show that structural drift leads to inter-
esting and nontrivial behavior. First, we calibrate the

3 For background on information theory as used here, the reader
is referred to Ref. [24].
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FIG. 7. Drift of allelic entropy hµ and Pr[Heads] for a
single realization of the Biased Coin Process with sample
size N = 100. The drift of Pr[Heads] is annotated with its
initial machine M0 (left inset) and the machine at stasis M115

(right inset).
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FIG. 8. Drift of Pr[Heads] for a single realization of the
Biased Coin, Golden Mean, and Even Processes, plotted as a
function of generation. The Even and Biased Coin Processes
become the Fixed Coin Process at stasis, while the Golden
Mean Process becomes the Alternating Process. Note that the
definition of structural stasis recognizes the lack of variance
in the Alternating Process subspace even though the allele
probability is neither 0 nor 1.

new class of drift processes against the original genetic
drift theory.

A. Memoryless Drift

The Biased Coin Process is represented by a single-
state ε-machine with a self loop for both Heads and
Tails symbols; see Fig. 3. It is an IID sampling process
that generates populations with a binomial distribution
of alleles. Unlike the Alternating Process, the coin’s bias
p is free to drift during sequential inference. These prop-
erties make the Biased Coin Process an ideal candidate
for exploring memoryless drift.

Fig. 7 shows structural drift, using two different mea-
sures, for a single realization of the Biased Coin Process
with initial p = Pr[Heads] = Pr[Tails] = 0.5. Struc-
tural stasis (hµ = 0) is reached after 115 generations.
The initial Fair Coin ε-machine occurs at the left of Fig.
7 and the final, completely biased ε-machine occurs at
the right.

Note that the drift of allelic entropy hµ and
p = Pr[Tails] are inversely related, with allelic entropy
converging quickly to zero as stasis is approached. This
reflects the rapid drop in population diversity. After sta-
sis occurs, all randomness has been eliminated from the
transitions at state A, resulting in a single transition that
always produces Tails. Anticipating later discussion, we

note that during this run only Biased Coin Processes were
observed.

The time to stasis of the Biased Coin Process as a func-
tion of initial p = Pr[Heads] was shown in Fig. 2. Also
shown there was the previous Monte Carlo Kimura drift
simulation modified to terminate when either fixation or
deletion occurs. This experiment illustrates the defini-
tion of structural stasis and allows direct comparison of
structural drift with genetic drift in the memoryless case.

Not surprisingly, we can interpret genetic drift as a
special case of the structural drift process for the Bi-
ased Coin. Both simulations follow Kimura’s theoreti-
cally predicted curves, combining the lower half of the
deletion curve with the upper half of the fixation curve
to reflect the initial probability’s proximity to the absorb-
ing states. A high or low initial bias leads to a shorter
time to stasis as the absorbing states are closer to the
initial state. Similarly, a Fair Coin is the furthest from
absorption and thus takes the longest average time to
reach stasis.

B. Structural Drift

The Biased Coin Process represents an IID sampling
process with no memory of previous flips, reaching sta-
sis when Pr[Heads] = 1.0 or 0.0 and, correspondingly,
when hµ(Mt) = 0.0. We now introduce memory by start-
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ing drift with M0 as the Golden Mean Process, which
produces binary populations with no consecutive 0s. Its
ε-machine was shown in Fig. 5. Note that one can ini-
tialize drift using any stochastic process; for example, see
the ε-machine library of Ref. [25].

Like the Alternating Process, the Golden Mean Pro-
cess has two causal states. However, the transitions from
state A have nonzero entropy, allowing their probabili-
ties to drift as new ε-machines are inferred from genera-
tion to generation. If the A→ B transition probability p
(Fig. 5) becomes zero the transition is removed, and the
Golden Mean Process reaches stasis by transforming into
the Fixed Coin Process (top right, Fig. 7). Instead, if
the same transition drifts towards probability p = 1, the
A→ A transition is removed. In this case, the Golden
Mean Process reaches stasis by transforming into the Al-
ternating Process (Fig. 4).

To compare structural drift behaviors, consider also
the Even Process. Similar in form to the Golden Mean
Process, the Even Process produces populations in which
blocks of consecutive 1s must be even in length when
bounded by 0s [24]. Figure 8 compares the drift of
Pr[Heads] for a single realization of the Biased Coin,
Golden Mean, and Even Processes. One observes that
the Even and Biased Coin Processes reach stasis as the
Fixed Coin Process, while the Golden Mean Process
reaches stasis as the Alternating Process. For different
realizations, the Even and Golden Mean Processes might
instead reach different stasis points.

It should be noted that the memoryful Golden Mean
and Even Processes reach stasis markedly faster than the
memoryless Biased Coin. While Fig. 8 shows only a sin-
gle realization of each sampling process type, the top
panel of Fig. 10 shows the large disparity in stasis times
holds across all settings of each process’s initial bias. This
is one of our first general observations about memoryful
processes: The structure of memoryful processes substan-
tially impacts the average time to stasis by increasing
variance between generations. In the cases shown, time
to stasis is greatly shortened.

VIII. ISOSTRUCTURAL SUBSPACES

To illustrate the richness of structural drift and to un-
derstand how it affects average time to stasis, we ex-
amine the complexity-entropy (CE) diagram [26] of the
ε-machines produced over several realizations of an arbi-
trary sampling process. The CE diagram displays how
the allelic entropy hµ of an ε-machine varies with the
allelic complexity Cµ of its causal states:

Cµ = −
∑
σ∈S

Pr(σ) log2 Pr(σ) , (15)

where the units are [bits]. The allelic complexity is the
Shannon entropy over an ε-machine’s stationary state
distribution Pr(S). It measures the memory needed to

maintain the internal state while producing stochastic
outputs. ε-Machine minimality guarantees that Cµ is
the smallest amount of memory required to do so. Since
there is a one-to-one correspondence between processes
and their ε-machines, a CE diagram is a projection of
process space onto the two coordinates (hµ, Cµ). Used in
tandem, these two properties differentiate many types of
sampling process, capturing both their intrinsic memory
(Cµ) and the diversity (hµ) of populations they generate.

A. Subspace Diffusion

Two such CE diagrams are shown in Fig. 9, illus-
trating different subspaces and stasis points reachable by
the Golden Mean Process during structural drift. Con-
sider the left panel first. An ε-machine reaches stasis
by transforming into either the Fixed Coin or the Al-
ternating Process. To reach the former, the ε-machine
begins on the upper curve in the left panel and drifts un-
til the A→ B transition probability nears zero and the
inference algorithm decides to merge states in the next
generation. This forces the ε-machine to jump to the
Biased Coin subspace on the line Cµ = 0 where it will
most likely diffuse until the Fixed Coin stasis point at
(hµ, Cµ) = (0, 0) is reached. If instead the A→ B tran-
sition probability drifts towards zero, the Golden Mean
stays on the upper curve until reaching the Alternat-
ing Process stasis point at (hµ, Cµ) = (0, 1). Thus, the
two stasis points are differentiated not by hµ but by Cµ,
with the Alternating Process requiring 1 bit of memory
to track its internal state and the Biased Coin Process
requiring none.

What emerges from these diagrams is a broader view
of how population structure drifts in process space.
Roughly, the Mt diffuse locally in the parameter space
specified by the current, fixed architecture of states and
transitions. During this, transition probability estimates
vary stochastically due to sampling variance. Since Cµ
and hµ are continuous functions of the transition proba-
bilities, this variance causes the Mt to fall on well defined
curves or regions corresponding to a particular process
subspace. (See Figs. 4 and 5 in Ref. [26] and the theory
for these curves and regions there.)

We refer to these curves as isostructural curves and
the associated sets of ε-machines as isostructural sub-
spaces. They are metastable subspaces of sampling
processes that are quasi-invariant under the structural
drift dynamic. When one or more ε-machine param-
eters diffuse sufficiently so that inference is forced to
change topology by adding or removing states or tran-
sitions to reflect the statistics of the sample, this quasi-
invariance is broken. We call such topological shifts sub-
space jumps to reflect the new region occupied by the
resulting ε-machine in process space, as visualized by the
CE diagram. Movement between subspaces is often not
bidirectional—innovations from a previous topology may
be lost either temporarily (when the innovation can be re-
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FIG. 9. Complexity-entropy diagram for 30 realizations of the Golden Mean Process with N = 1000, both without (left) and
with (right) structural innovation. Alternating Process and Fixed Coin pathways are clearly visible in the left panel where the
Golden Mean subspace exists on the upper curve and the Biased Coin subspace exists on the line Cµ = 0. ε-Machines within
the same isostructural subspace have identical colors.

stored by returning to the subspace) or permanently. For
example, the Golden Mean subspace commonly jumps to
the Biased Coin subspace but the opposite is highly im-
probable without mutation. (We consider the latter type
of structural drift elsewhere.)

Before describing the diversity seen in the CE diagram
of Fig. 9’s right panel, we first turn to analyze in some de-
tail the time-to-stasis underlying the behavior illustrated
in the left panel.

B. Subspace Decomposition

A pathway is a set of subspaces passed through by any
drift realization starting from some initial process and
reaching a specific stasis point. The time to stasis of
a drift process P is the sum of time spent in the sub-
spaces γ visited by its pathways to stasis ρ, weighted by
the probabilities that these pathways and subspaces will
be reached. The time spent in a subspace γi+1 merely
depends on the transition parameter(s) of the ε-machine
at the time of entry and is otherwise independent of the
prior subspace γi. Thus, calculating the stasis time of
a structured population can be broken down into inde-
pendent subspace times when we know the values of the
transition parameters at subspace jumps. These values
can be derived both empirically and analytically, and we
aim to develop the latter for general drift processes in
future work.

More formally, the time to stasis ts of a drift process P
is simply the weighted sum of the stasis times for its

connected pathways ρ:

ts(P) =

|ρ|∑
i=1

Pr(ρi|P)ts(ρi|P) , (16)

Similarly, the stasis time of a particular pathway decom-
poses into the time spent diffusing in its connected sub-
spaces γ:

ts(ρi|P) =

|γ|∑
i=1

Pr(γi|ρi,P)t(γi|ρi,P) . (17)

To demonstrate, Fig. 10 shows the stasis time of the
Golden Mean Process (GMP) with initial bias p0 in more
detail. Regression lines along with their 95% confidence
intervals are displayed for simulations with initial biases
0.1, 0.2, . . . , and 0.9. The middle panel shows the total
time to stasis as the weighted sum of its Fixed Coin (FC)
and Alternating Process (AP) pathways:

ts(GMP(p0)) = Pr(FC|GMP(p0))ts(FC|GMP(p0))

+ Pr(AP|GMP(p0))ts(AP|GMP(p0)) .

For low p0, the transition from state A to state B is
unlikely, so 0s are rare and the AP pathway is reached
infrequently. Thus, the total stasis time is initially dom-
inated by the FC pathway (Pr(FC|GMP(p0)) is high).
As p0 → 0.3 and above, the AP pathway is reached more
frequently (Pr(AP|GMP(p0)) grows) and its stasis time
begins to influence the total. The FC pathway is less
likely as p0 → 0.6 and the total time becomes dominated
by the AP pathway (Pr(AP|GMP(p0)) is high).

Since the AP pathway visits only one subspace, the
bottom panel shows the stasis time of the FC pathway as
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FIG. 10. Top: Time to stasis of the Golden Mean, Even, and
Biased Coin Processes. Middle: Stasis time of the Golden
Mean Process as the weighted sum of stasis times for the Fixed
Coin (FC) and Alternating Process (AP) pathways. Bottom:
Stasis time of the FC pathway as the weighted sum of Golden
Mean (GM) and Biased Coin (BC) subspace diffusion times.

the weighted sum of the Golden Mean (GM) and Biased
Coin (BC) subspace times:

ts(FC|GMP(p0)) =

Pr(GM|FC,GMP(p0))t(GM|FC,GMP(p0)) +

Pr(BC|FC,GMP(p0))t(BC|FC,GMP(p0)) . (18)

This corresponds to time spent diffusing in the GM sub-
space before the subspace jump and time spent diffusing
in the BC subspace after the subspace jump. Note that
the times quoted are simply diffusion times within a sub-
space, since not every subspace in a pathway contains a
stasis point.

These expressions emphasize the dependence of stasis
time on the transition parameters at jump points as well
as on the architecture of isostructural subspaces in drift
process space. For example, if the GM jumps to the BC
subspace at p = 0.5, the stasis time will be large since
the ε-machine is maximally far from either stasis point.
However, the inference algorithm will typically jump at
very low values of p resulting in a small average stasis
time for the BC subspace in the FC pathway. Due to
this, calculating the stasis time for the GMP requires
knowing the AP and FC pathways as well as the value of
p where the GM → BC jump occurs.

C. Structural Innovation and Loss

Inference of ε-machines from finite populations is com-
putationally expensive, particularly in our sequential
setting with many realizations. The topology of the
ε-machine is inferred directly from the statistics of finite
samples; both states and transitions are added and re-
moved over time to capture innovation and loss of popula-
tion structure. In the spirit of Kimura’s pseudo-sampling
variable (PSV) method [27], we introduce a PSV al-
gorithm for efficient structural drift simulation and in-
creased control of the trade-off between structural inno-
vation and loss.

Instead of inferring and re-inferring an ε-machine each
generation, we explicitly define the conditions for topo-
logical changes to the ε-machine of the previous genera-
tion. To test for structural innovation, a random causal
state from the current Mt is cloned and random incoming
transitions are routed instead to the cloned state. This
creates a new model M ′t that describes the same pro-
cess. Gaussian noise is then added to the cloned state’s
outgoing transitions to represent some change in popu-
lation structure. The likelihood of the population αNt is
calculated for both Mt and M ′t and the model with the
maximum a posteriori (MAP) likelihood is retained:

MMAP = argmax{Pr(αNt |Mt),Pr(αNt |M ′t)} . (19)

If the original Mt was retained, its transition parameters
are updated by feeding the sample through the model
to obtain edge counts which are then normalized to ob-
tain probabilities. This produces a generator for the next
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generation’s population in a way that allows for innova-
tion. As well, it side-steps the computational cost of the
inference algorithm.

To capture structural loss, we monitor near-zero transi-
tion probabilities where an ε-machine inference algorithm
would merge states. When such a transition exists we
test for structural simplification by considering all pair-
wise mergings of causal states and select the topology
via the MAP likelihood. However, unlike above, we pe-
nalize likelihood using the Akaike Information Criterion
(AIC) [28]:

AIC = 2k − 2 ln(L) , (20)

and, in particular, the AIC corrected for finite sample
sizes [29]:

AICc = AIC +
2k(k + 1)

n− k − 1
, (21)

where k is the number of model parameters, L is the
sample likelihood, and n is the sample size. A penal-
ized likelihood is necessary because a smaller ε-machine
is more general and cannot fit the data as well. When
penalized by model size, however, a smaller model with
sufficient fit to the data may be selected over a larger,
better fitting model. This method allows loss to occur
while again avoiding the expense of the full ε-machine
inference algorithm. Extensive comparisons with several
versions of the latter show that the new PSV structural
drift algorithm produces qualitatively the same behavior.

Having explained how the pseudo-drift algorithm intro-
duces structural innovation and loss we can now describe
the drift runs of Fig. 9’s right panel. In contrast to the
left panel, structural innovation was enabled. The imme-
diate result is that the drift process visits a much wider
diversity of isostructural subspaces—sampling processes
that are markedly more complex. ε-Machines with 8 or
more states are created, some of which are quite entropic
and so produce high sampling variance. Stasis ε-machines
with periods 3, 4, 5, and 6 are seen, while only those with
periods 1 and 2 are seen in runs without innovation (left
panel).

By way of closing this first discussion of structural
drift, it should be emphasized that none of the preceding
phenomena occur in the limit of infinite populations or
infinite sample size. The variance due to finite sampling
drives sequential learning, the diffusion through process
space, and the jumps between isostructural subspaces.

IX. APPLICATIONS AND EXTENSIONS

Much of the previous discussion focused on structural
drift as a kind of stochastic process, with examples and
behaviors selected to emphasize the role of structure. Al-
though there was a certain terminological bias toward
neutral evolution theory since the latter provides an en-
tree to analyzing how structural drift works, our presen-

tation was intentionally general. Motivated by a vari-
ety of potential applications and extensions, we describe
these now and close with several summary remarks on
structural drift itself.

A. Emergent Semantics and Learning in
Communication Chains

Let’s return to draw parallels with the opening ex-
ample of the game of Telephone or, more directly, to
the sequential inference of temporal structure in an ut-
terance passed along a serially coupled communication
chain. There appears to be no shortage of related theo-
ries of language evolution. These range from the popula-
tion dynamics of Ref. [30] and the ecological dynamics of
Ref. [31] to the cataloging of error sources in human com-
munication [32] and recent efforts to understand cultural
evolution as reflecting learning biases [33, 34].

By way of contrast, structural drift captures the
language-centric notion of dynamically changing seman-
tics and demonstrates how behavior is driven by finite-
sample fluctuations within a semantically organized sub-
space. The symbols and words in the generated strings
have a semantics given by the structure of a subspace’s
ε-machine; see Ref. [3]. A particularly simple ex-
ample was identified quite early in the information-
theoretic analysis of natural language: The Golden Mean
ε-machine (Fig. 5) describes the role of isolated space
symbols in written English [35, Fig. 1]. Notably, this
structure is responsible for the Mandelbrot-Zipf power-
law scaling of word frequencies [36, 37]. More gener-
ally, though, the semantic theory of ε-machines shows
that causal states provide dynamic contexts for interpre-
tation as individual symbols and words are recognized.
Quantitatively, the allelic complexity Cµ(Mt) is the to-
tal amount of semantic content that can be generated by
an Mt [3]. In this way, shifts in the architecture of the
Mt during drift correspond to semantic changes. That
is, diffusion within an isostructural subspace corresponds
to constant semantics, while jumps between isostructural
subspaces correspond to semantic innovations (or losses).

In the drift behaviors explored above, the Mt went
to stasis (hµ = 0) corresponding to periodic formal lan-
guages. Clearly, such a long-term condition falls far short
as a model of human communication chains. The result-
ing communications, though distant from those at the
beginning of the chain, are not periodic. To more closely
capture emergent semantics in the context of sequential
language learning, we have extended structural drift to
include mutation and selection. In future work we will
use these extensions to investigate how the former pre-
vents permanent stasis and the latter enables a preference
for intelligible phrases.
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B. Cultural Evolution and Iterated Learning

Extending these observations, the Iterated Learning
Model (ILM) of language evolution [38, 39] is of partic-
ular interest. In this model, a language evolves by re-
peated production and acquisition by agents under cul-
tural pressures and the “poverty of the stimulus” [38].
Via this process, language is effectively forced through a
transmission bottleneck that requires the learning agent
to generalize from finite data. This, in turn, exerts pres-
sure on the language to adapt to the bias of the learner.
Thus, in contrast to traditional views that the human
brain evolved to learn language, ILM suggests that lan-
guage also adapts to be learnable by the human brain.

ILM incorporates the sequential learning and propaga-
tion of error we discuss here and provides valuable insight
into the effects of error and cultural mutations on the evo-
lution of language for the “human niche”. There are var-
ious simulation approaches to ILM with both single and
multiple agents based on, for example, neural networks
and Bayesian inference, as well as experiments with hu-
man subjects. We suggest that structural drift could also
serve as the basis for single-agent ILM experiments, as
found in Swarup et al. [40], where populations of alle-
les in the former are replaced by linguistic features of
the latter. The benefits are compelling: an information-
theoretic framework for quantifying the trade-off between
learner bias and transmission bottleneck pressures, visu-
alization of cultural evolution via the CE diagram, and
decomposition of the time-to-stasis of linguistic features
in terms of isostructural subspaces as presented above.

C. Epochal Evolution

Beyond applications to knowledge transmission via se-
rial communication channels, structural drift gives an al-
ternative view of drift processes in population genetics.
In light of new kinds of evolutionary behavior, it reframes
the original questions about underlying mechanisms and
extends their scope to phenomena that exhibit memory
in the sampling process or that derive from structure in
populations. Examples of the latter include niche con-
struction [41], the effects of environmental toxins [42],
changes in predation [43], and socio-political factors [44]
where memory lies in the spatial distribution of popula-
tions. In addition to these, several applications to areas
beyond population genetics proper suggest themselves.

An intriguing parallel exists between structural drift
and the longstanding question about the origins of punc-
tuated equilibrium [45] when modeled as the dynamics of
epochal evolution [46, 47]. The possibility of evolution’s
intermittent progress—long periods of stasis punctuated
by rapid change—dates back to Fisher’s demonstration
of metastability in drift processes with multiple alleles
[13].

Epochal evolution, though, presented an alternative
to the view of metastability posed by Fisher’s model and

Wright’s adaptive landscapes [48]. Within epochal evo-
lutionary theory, equivalence classes of genotype fitness,
called subbasins, are connected by fitness-changing por-
tals to other subbasins. A genotype is free to diffuse
within its subbasin via selectively neutral mutations, un-
til an advantageous mutation drives genotypes through a
portal to a higher-fitness subbasin. An increasing num-
ber of genotypes derive from this founder and diffuse in
the new subbasin until another portal to higher fitness
is discovered. Thus, the structure of the subbasin-portal
architecture dictates the punctuated dynamics of evolu-
tion.

Given an adaptive system which learns structure by
sampling its past organization, structural drift theory
implies that its evolutionary dynamics are inevitably
described by punctuated equilibria. Diffusion in an
isostructural subspace corresponds to a period of struc-
tured equilibrium in a subbasin and subspace jumps cor-
respond to rapid innovation or loss of organization during
the transit of a portal. In this way, structural drift es-
tablishes a connection between evolutionary innovation
and structural change, identifying the conditions for cre-
ation or loss of organization. Extending structural drift
to include mutation and selection will provide a theoret-
ical framework for epochal evolution using any number
of structural constraints in a population.

D. Evolution of Graph-Structured Populations

We focused primarily on the drift of sequentially or-
dered populations in which the generator (an ε-machine)
captured the structure and randomness in that ordering.
We aimed to show that a population’s organization plays
a crucial role in its dynamics. This was, however, only
one example of the general class of drift process we have
in mind. For example, computational mechanics also de-
scribes structure in spatially extended systems [49, 50].
Given this, it is straightforward to build a model of
drift in geographically distributed populations that ex-
hibit spatiotemporal structure.

Though they have not tracked the structural complex-
ity embedded in populations as we have done here, a
number of investigations consider various classes of struc-
tured populations. For example, the evolutionary dy-
namics of structured populations have been studied using
undirected graphs to represent correlations between in-
dividuals. Edge weights wij between individuals i and j
give the probability that i will replace j with its offspring
when selected to reproduce.

By studying fixation and selection behavior on differ-
ent types of graphs, Lieberman et al. found that graph
structures can sometimes amplify or suppress the effects
of selection, even guaranteeing the fixation of advan-
tageous mutations [51]. Jain and Krishna [52] inves-
tigated the evolution of directed graphs and the emer-
gence of self-reinforcing autocatalytic networks of inter-
action. They identified the attractors in these networks
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and demonstrated a diverse range of behaviors from the
creation of structural complexity to its collapse and per-
manent loss.

Graph evolution is a model of population structure
complementary to that presented by structural drift. In
the latter, ε-machine structure evolves over time with
nodes representing equivalence classes of the distribu-
tion of selectively neutral alleles. Unlike ε-machines, the
multinomial sampling of individuals in graph evolution
is a memoryless process. A combined approach will al-
low one to examine how amplification and suppression of
selection and the emergence of autocatalysis are affected
by external influences on the population structure. For
example, this could include how a population uses tem-
poral memory to maintain desirable properties in antici-
pation of structural shifts in the environment. The result
would provide a theory for niche construction in which a
nonlinear dynamics of pattern formation spontaneously
changes population structure.

X. FINAL REMARKS

The Fisher-Wright model of genetic drift can be viewed
as a random walk of coin biases, a stochastic process that
describes generational change in allele frequencies based
on a strong statistical assumption: the sampling process
is memoryless. Here, we developed a generalized struc-
tural drift model that adds memory to the process and
examined the consequences of such population sampling
memory.

Memoryful sampling is a substantial departure from
modeling evolutionary processes with unordered popula-
tions. Rather than view structural drift as a replacement
for the well understood theory of genetic drift, and given
that the latter is a special case of structurally drifting
populations, we propose that it be seen as a new avenue
for theoretical invention. Given its additional ties to lan-
guage and cultural evolution, we believe it will provide a
novel perspective on evolution in nonbiological domains,
as well.

The representation selected for the population sam-
pling mechanism was the class of probabilistic finite-
state hidden Markov models called ε-machines. We dis-
cussed how a sequential chain of ε-machines inferred and
re-inferred from the finite data they generate parallels
the drift of alleles in a finite population, using otherwise
the same assumptions made by the Fisher-Wright model.
The mathematical foundations developed for the latter
and its related models provide a good deal quantitative,
predictive power. Much of this has yet to be exploited.
In concert with this, ε-machine minimality allowed us to
monitor information processing, information storage, and
causal architecture during the drift process. We intro-
duced the information-theoretic notion of structural sta-
sis to combine the concepts of deletion, fixation, and pe-
riodicity for drift processes. Generally, structural stasis
occurs when the population’s allelic entropy vanishes—

a quantity one can calculate in closed form due to the
ε-machine representation of the sampling process.

We revisited Kimura and Ohta’s early results measur-
ing the time to fixation of drifting alleles and showed
that the generalized structural drift process reproduces
these well known results when staying within the mem-
oryless sampling process subspace. Starting with struc-
tured populations outside of that subspace led the sam-
pling process to exhibit memory effects including struc-
tural innovation and loss, complex transients, and greatly
reduced stasis times.

Simulations demonstrated how an ε-machine diffuses
through isostructural process subspaces during sequen-
tial learning. The result was a very complex time-to-
stasis dependence on the initial probability parameter—
much more complicated than Kimura’s theory describes.
Nonetheless, we showed that a process’ time to stasis
can be decomposed into sums over these independent
subspaces. Moreover, the time spent in an isostructural
subspace depends on the value of the ε-machine prob-
ability parameters at the time of entry. This suggests
an extension to Kimura’s theory for predicting the time
to stasis for each isostructural component independently.
Much of the phenomenological analysis was facilitated
by the global view of drift process space given by the
complexity-entropy diagram.

Drift processes with memory generally describe the
evolution of structured populations without mutation or
selection. Nonetheless, we showed that structure leads
to substantially shorter stasis times. This was seen in
drifts starting with the Biased Coin and Golden Mean
Processes, where the Golden Mean jumps into the Bi-
ased Coin subspace close to an absorbing state. This
suggests that even without selection, population struc-
ture and sampling memory matter in evolutionary dy-
namics. The temporal or spatial memory captured by
the ε-machine can be interpreted as nonrandom mating,
reducing the effective population size Ne and, in doing
so, increasing sampling variance. It also suggests that
memoryless models restrict sequential learning and over-
estimate stasis times for structured populations.

We demonstrated how structural drift—diffusion,
structural innovation and loss—are controlled by the ar-
chitecture of connected isostructural subspaces. Many
questions remain about these subspaces. What is the de-
gree of subspace-jump irreversibility? Can we predict the
likelihood of these jumps? What does the phase portrait
of a drift process look like? Thus, to better understand
structural drift, we need to analyze the high-level orga-
nization of generalized drift process space.

Fortunately, ε-machines are in one-to-one correspon-
dence with structured processes [25]. Thus, the pre-
ceding question reduces to understanding the space of
ε-machines and how they can be connected by diffusion
processes. Is the diffusion within each process subspace
predicted by Kimura’s theory or some simple variant?
We have given preliminary evidence that it does. And
so, there are reasons to be optimistic that in face of the
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open-ended complexity of structural drift, a good deal
can be predicted analytically. And this, in turn, will lead
to quantitative applications.
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