
Santa Fe Institute Working Paper 10-08-015
arxiv.org:1007.5354 [cond-mat.stat-mech]

Synchronization and Control in Intrinsic and Designed Computation:
An Information-Theoretic Analysis of

Competing Models of Stochastic Computation

James P. Crutchfield,1, 2, ∗ Christopher J. Ellison,2, † Ryan G. James,2, ‡ and John R. Mahoney2, §

1Complexity Sciences Center and Physics Department,
University of California at Davis, One Shields Avenue, Davis, CA 95616

2Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, NM 87501
(Dated: August 23, 2010)

We adapt tools from information theory to analyze how an observer comes to synchronize with
the hidden states of a finitary, stationary stochastic process. We show that synchronization is
determined by both the process’s internal organization and by an observer’s model of it. We analyze
these components using the convergence of state-block and block-state entropies, comparing them
to the previously known convergence properties of the Shannon block entropy. Along the way, we
introduce a hierarchy of information quantifiers as derivatives and integrals of these entropies, which
parallels a similar hierarchy introduced for block entropy. We also draw out the duality between
synchronization properties and a process’s controllability. The tools lead to a new classification of
a process’s alternative representations in terms of minimality, synchronizability, and unifilarity.

Keywords: controllability, synchronization information, stored information, entropy rate, statis-
tical complexity, excess entropy, crypticity, information diagram, presentation, minimality, gauge
information, oracular information

PACS numbers: 02.50.-r 89.70.+c 05.45.Tp 02.50.Ey 02.50.Ga

CONTENTS

I. Introduction 2
A. Precis 3
B. Synchronization and Control: Related

Work 3

II. Block Entropy and Its Convergence Hierarchy 4
A. Stationary Stochastic Processes 4
B. Block Entropy 4
C. Source Entropy Rate 4
D. Excess Entropy 4
E. Block Entropy Asymptotics 5
F. The Convergence Hierarchy 5

III. Process Presentations 6
A. The Causal State Representation 6
B. General Presentations 7

IV. State-Block and Block-State Entropies 8
A. Convergence Hierarchies 8
B. Asymptotics 9

V. Synchronization 9

∗chaos@ucdavis.edu
†cellison@cse.ucdavis.edu
‡rgjames@ucdavis.edu
§jrmahoney@ucdavis.edu

A. Duality of Synchronization and Control 9
B. Synchronizing to the ε-Machine 10

VI. Presentation Quantifiers 11
A. Crypticity 11
B. Oracular Information 12
C. Gauge Information 12
D. Synchronization Information 13
E. Cryptic Order 13
F. Oracular Order 13
G. Gauge Order 13
H. Synchronization Order 14
I. Synchronization Time 14

VII. Classifying Presentations 15
A. Case: Minimal Unifilar Presentation 16
B. Case: Weakly Asymptotically

Synchronizable Presentations 16
C. Case: Unifilar Presentations 18
D. Case: Nonunifilar Presentations 20

VIII. Conclusions 21

A. Notation Change for Total Predictability 22

B. State-Block Entropy Rate Estimate 23

C. Reducing the Presentation I-Diagram 23

Acknowledgments 24

References 24

mailto:chaos@ucdavis.edu
mailto:cellison@cse.ucdavis.edu
mailto:rgjames@ucdavis.edu
mailto:jrmahoney@ucdavis.edu


2

Nonlinear dynamical systems store and gen-

erate information—they intrinsically compute.

Real computing devices use nonlinearity to do

the same, except that they are designed to com-

pute—the information serves some utility or func-

tion determined by the designer. Intuitively, use-

ful computing devices must be constructed out of

(physical, chemical, or biological) processes that

have some minimum amount of intrinsic compu-

tational capability. However, the exact relation-

ship between intrinsic and designed computation

remains elusive. In fact, bridging intrinsic and de-

signed computation requires solving a number of

intermediate problems. One is to understand the

diversity of intrinsic computations of which non-

linear dynamical systems are capable. Another

is to determine if one can practically manipulate

these systems in the service of functional infor-

mation generation and storage.

Here, we address both of these problems from

the perspective of information theory. We de-

scribe new information processing characteristics

of dynamical systems and the stochastic processes

they generate. We focus particularly on two key

aspects that impact design: synchronization and

control. Synchronization concerns how we come

to know the hidden states of a process through

observations; while control concerns how we ma-

nipulate a process into a desired internal condi-

tion.

I. INTRODUCTION

Given a model of a stationary stochastic process, how

much information must one extract from observations to

exactly know which state the process is in? With this, an

observer is said to be synchronized to the process. (For

an introduction to the problem, see Ref. [1].)

Given that one has designed a stochastic process, is

there a series of inputs that reliably drive it to a desired

internal condition? If so, the designed process is said to

be controllable.

Synchronization and control are dual to each other: In

synchronization, an observer attempts to predict the pro-

cess’s internal state from incomplete and indirect obser-

vations, typically starting with complete ignorance and

hopefully ending with complete certainty. In control, one

must extract from the design a series of manipulations,

typically indirect, that will drive the process to a de-

sired state or set of states. The duality is simply that

the observer’s measurements can be interpreted as the

designer’s control inputs.

Synchronization and control are key aspects in intrin-

sic and designed computation, both for detecting intrin-

sic computation in dynamical systems and for leverag-

ing a dynamical system’s intrinsic computation into use-

ful computation. For the latter, the circuit designer at-

tempts to build circuits, themselves dynamical systems,

that synchronize to incoming signals.

For example, even the most mundane initial opera-

tion is essential: When power is first applied, a digital

computer must predictably reach a stable and repeat-

able state, without necessarily being able to perform even

small amounts of digital intelligent control or analysis

of its changing environment. Without reliably reaching

a stable condition—now a quite elaborate operation in

modern microprocessors—no useful information process-

ing can be initiated. The device is still a dynamical sys-

tem, of course, but it fails at raising itself from that pro-

saic condition to the level of a computing device.

Once digital computing operations have commenced,

similar concerns arise in the timing and control of infor-

mation being loaded from memory into a register. Not

only must each data bus line synchronize properly or risk

misconstruing the voltage level offered up by the wires,

but this must happen simultaneously across a number of

component devices— busses as wide as 128 or 256 lines

are not uncommon today.

Stepping back a bit, one must wonder what tools dy-

namical systems theory itself provides to analyze and de-

sign computation. Indeed, many of the properties of-

ten used to characterize and classify dynamical systems

are time-asymptotic—the Kolmogorov-Sinai entropy or

Shannon entropy rate, the spectrum of Lyapunov char-

acteristic exponents, the fractal and information dimen-

sions (which rely on the asymptotic invariant measure),

come to mind. However, real computing is not asymp-

totic. Individual logic gates, as dynamical systems, de-

liver their results on the short term. Indeed, the faster

they do this, the better.

How can we bridge the gap between dynamical sys-

tems theory and the need to characterize the short term

properties of dynamical systems? A suggestive exam-

ple is found in the analysis of escape rates [2], a prop-

erty of transient, short-term behavior. Another answer

is found in synchronization and controllability, as they

too are properties of the short term behavior of dynam-

ical systems. We will show that there is a connection

between these properties and the more typical asymp-

totic view of dynamical behavior: Synchronization and

control are determined by the nature of convergence to

the asymptotic—this convergence will be explored.

Given the duality between synchronization and con-

trol, in the following we present results in terms of only

one notion—synchronization. The results apply equally
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well to control, though with different interpretations.

A. Precis

Analyzing informational convergence properties is the

main strategy we will use. However, as we will see, dif-

ferent properties have a variety of convergence behaviors.

Moreover, we will consider a variety of representations for

any given process. The result, while giving insight into

informational properties and how representations can dis-

tort them, ends up being a rather elaborate classification

scheme. To reduce the apparent complication, it will be

helpful to give a detailed summary of the steps we employ

in the development.

After describing related work, we review the use of

Shannon block entropy and related quantities, analyz-

ing their asymptotic behavior and aspects of conver-

gence. We introduce a single framework—the conver-

gence hierarchy—to call out the systematic nature of con-

vergence properties.

We then take a short tour introducing the range of pos-

sible descriptions a process can have, noting their defin-

ing properties. One description, the ε-machine, plays a

particularly central role, as it allows one to calculate all of

a process’s intrinsic properties. Other descriptions typi-

cally do not allow this to the same broad extent.

With a model in hand, one can start to discuss how

one synchronizes to its states. When the model is the

ε-machine, one can speak of synchronizing to the process

itself. To do this, we analyze the convergence properties

of two new entropies: the state-block entropy and the

block-state entropy. We establish their general asymp-

totic properties, introducing convergence hierarchies of

their own, paralleling that for the block entropy. For

finitary processes, the latter converges from below, but

the new block-state entropy converges from above to the

same asymptote. One benefit is that estimation methods

can be improved through use of bounds from above and

below.

When we specialize to the ε-machine, we establish

a direct connection between synchronization and con-

vergence of block entropies. We provide an infor-

mational measure—synchronization information—that

summarizes the total uncertainty encountered during

synchronization. We relate this back to the transient in-

formation introduced previously, which derives only from

the observed sequences, not requiring a model or a notion

of state. Along the way, we discuss a process’s Markov

order—the scale at which “asymptotic” statistics set in—

and its cryptic order—the length scale over which inter-

nal state information is spread. These scales control syn-

chronization.

The development then, step-by-step, relaxes the

ε-machine’s defining properties in order to explore an in-

creasingly wide range of models. A particular emphasis

in this is to show how nonoptimal models bias estimates

of a process’s informational properties. Conversely, we

learn how certain classes of models, some widely used in

mathematical statistics and elsewhere, make strong as-

sumptions and, in some cases, preclude the estimation of

important process properties.

Starting with the class of minimal, optimally predictive

models that synchronize (finitary ε-machines), we first

relax the minimality assumption. We show that need-

less model elaborations—such as more, but redundant

states—can affect synchronization. We identify that class

which still does synchronize. Then, we consider nonmin-

imal unifilar, nonsynchronizing models. Finally, we relax

the unifilarity assumption. At each stage, we see how the

convergence properties of the various entropies change.

These changes, in turn, induce a number of informational

measures of what the models themselves contribute to a

process’s now largely-apparent information processing.

A key tool in the analysis takes advantage of the

fact that the various multivariable information quantities

form a signed measure [3]. Their visual display, a form

of Venn diagram called an information diagram, brings

some order to the notation and classification chaos.

B. Synchronization and Control: Related Work

Controlling dynamical systems and stochastic pro-

cesses has an extensive history. For linear dynamical

systems see, for example, Ref. [4] and for hidden Markov

models see, for example, Ref. [5]. More recently, there

has been much work on controlling nonlinear dynami-

cal systems, a markedly more difficult problem in its full

generality; see Refs. [6–8].

Synchronization, too, has been very broadly studied

and for much longer, going back at least to Huygens [9].

It is also an important property of symbolic dynamical

systems [10]. It has even become quite popularized of

late, being elevated to a general principle of natural or-

ganization [11].

Here, we consider a form of synchronization that is,

at least at this point, different from the dynamical

kind. Moreover, we take a complementary, but dis-

tinct approach—that of information theory—to address

control and synchronization. This was introduced in

Ref. [12] and several applications are given in Refs. [1, 13].

A roughly similar problem setting for synchronization is

found in Ref. [14]. We note that the closely related top-

ics of state estimation and control are addressed in infor-

mation theory [15, 16], nonlinear dynamics [17–19], and
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Markov decision processes [20].

Adapting the present approach to continuous dynam-

ical systems and stochastic processes remains a future

effort. For the present, the closest connections found will

be to the works cited above on hidden Markov models

and symbolic dynamical systems.

II. BLOCK ENTROPY AND ITS

CONVERGENCE HIERARCHY

It is an interesting fact, perhaps now intuitive, that to

estimate even the randomness of an information source,

one must also estimate its internal structure. Refer-

ence [12] gives a review of this interdependence and it

serves as a starting point for our analysis of synchro-

nization, which is a question about coming to know the

source’s states from observations. Indeed, if one has to

make estimates of internal organization just to get to ran-

domness, then one, in effect and without too much more

effort, can also address issues of synchronization. This is

an intimate relationship that we hope to establish.

We briefly review Ref. [12], largely to introduce no-

tation and highlight the main ideas needed for synchro-

nization. This review and our development of synchro-

nization requires the reader to be facile with information

theory at the level of the first half of Ref. [21], signed in-

formation measures and information diagrams of Ref. [3],

and their uses in Refs. [22–24].

A. Stationary Stochastic Processes

The approach in Ref. [12] starts simply: Any station-

ary process P is a joint probability distribution Pr(
←−
X,
−→
X )

over past and future observations. This distribution can

be thought of as a communication channel with a spec-

ified input distribution Pr(
←−
X ). It transmits informa-

tion from the past
←−
X = . . . X−3X−2X−1 to the future−→

X = X0X1X2 . . . by storing it in the present. Xt is the

random variable for the measurement outcome at time

t; the lowercase xt denotes a particular value. Through-

out, we always use
←−
X and

−→
X in the limiting sense. That

is, we work with length-L sequences or blocks of random

variables XL
t = XtXt+1 · · ·Xt+L−1 and take the limit as

L approaches infinity.

In the following, we consider only discrete measure-

ment outcomes—x ∈ A = {1, 2, . . . , k}—and stationary

processes—Pr(XL
t ) = Pr(XL

0 ), for all times t and block

lengths L. Unlike some definitions of stationarity, this

makes no assumptions about the process’s internal start-

ing conditions, as such knowledge obviates the very ques-

tion of synchronization.

Such processes include those found in the field of

stochastic processes, of course, but one also has in mind

the symbolic dynamics of continuous-state continuous-

time or continuous-state discrete-time dynamical systems

on their invariant sets. The notions also apply equally

well to one-dimensional spatial configurations of spin sys-

tems and of deterministic and probabilistic cellular au-

tomata, where one interprets the spatial coordinate as a

“time”.

B. Block Entropy

One measure of the diversity of length-L sequences

generated by a process is its Shannon block entropy :

H(L) ≡ H[XL
0 ] (1)

= −
∑
w∈AL

Pr(w) log2 Pr(w) , (2)

where w = x0x1 . . . xL−1 is a word in the set AL of

length-L sequences. It has units of [bits] of informa-

tion. One can think of the block entropy as a kind of

transform that reduces a process’s distribution over the

(typically infinite) number of sequences to a function of

a single variable L. In this view, Ref. [12] focused on

a simple question: What properties of a process can be

determined solely from its H(L)?

C. Source Entropy Rate

One of those properties, and historically the most

widely used and technologically important, is Shannon’s

source entropy rate:

hµ = lim
L→∞

H(L)

L
. (3)

The entropy rate is the irreducible unpredictability of a

process’s output—the intrinsic randomness left after one

has extracted all of the correlational information from

past observations. The difference between it and the al-

phabet size, log2 |A| − hµ, indicates how much the raw

measurements can be compressed. More precisely, Shan-

non’s First Theorem states that the output sequences xL

from an information source can be compressed, without

error, to Lhµ bits [21]. Moreover, Shannon’s Second The-

orem gives operational meaning to the entropy rate [21]:

A communication channel’s capacity must be larger than

hµ for error-free transmission.

D. Excess Entropy

As noted, any process—chaotic dynamical system, spin

chain, cellular automata, to mention a few—can be con-

sidered a channel that communicates its past to its fu-



5

ture. The messages to be transmitted in this way are the

pasts which the process can generate. Thus, the “capac-

ity” of this channel is not something that one optimizes

as done in Shannon’s theory to engineer channels and

construct error-free encodings. Rather, we think of it as

how much of the process’s channel is actually used.

A process’s channel utilization is another property that

can be determined from the block entropy. It is called the

excess entropy and is defined, closely following Shannon’s

channel capacity definition, by:

E = I[
←−
X ;
−→
X ] , (4)

where I[Y ;Z] is the mutual information between random

variables Y and Z. It has units of [bits] and tells one how

much information the output (the future) shares with the

input (the past) and so measures how much information

is transmitted through a, possibly noisy, channel.

E. Block Entropy Asymptotics

It has been known for quite some time now that the

entropy rate and excess entropy control the asymptotic

behavior (L → ∞) of a finitary process’s block entropy.

Specifically, it scales according to the linear asymptote:

H(L) ∝ E + hµL , (5)

where

E = lim
L→∞

(H(L)− Lhµ) . (6)

E is the sublinear part of H(L). This gives important

general insight into the block entropy’s behavior. It is

also quite practical, though: If H(L) actually meets the

asymptote at some finite sequence length R, then the

process is effectively an order-R Markov chain [12, 24]:

Pr(X0|
←−
X ) = Pr(X0|XR

−R). Interestingly, many finitary

processes do not reach the asymptote at finite lengths

and so cannot be recast as Markov chains of any order.

Roughly speaking, they have various kinds of infinite-

range correlation.

F. The Convergence Hierarchy

The study of how the block entropy converges, or does

not, is a tool for classifying processes. Reference [12]

showed that the entropy rate and excess entropy are

merely two players in an infinite hierarchy that deter-

mines the shape of H(L). The central idea is to take

L-derivatives and integrals of H(L).

To start, one has the block entropy difference:

∆H[XL
0 ] ≡ H[XL

0 ]−H[XL−1
0 ] , (7)

where ∆ is the discrete derivative with respect to block

length L. It is easy to see that the right-hand side is the

conditional entropy H[XL−1|XL−1
0 ] and that, in turn,

hµ = lim
L→∞

H[XL−1|XL−1
0 ] (8)

= H[X0|
←−
X 0] , (9)

recovering the entropy rate. It is often useful to directly

refer to the length-L approximation to the entropy rate as

hµ(L) ≡ H[XL−1|XL−1
0 ]. hµ(L) ≥ hµ and so it converges

from above.

The excess entropy, for its part, controls the conver-

gence speed, as it is the discrete integral:

E =

∞∑
L=1

(hµ(L)− hµ) . (10)

It requires only a few steps to see that this form is equiv-

alent to that of Eq. (4).

Following a similar strategy, the discrete integral

T =

∞∑
L=0

[E + hµL−H(L)] (11)

measures how H(L) itself reaches its linear asymptote

E + hµL. T is called the transient information and it is

implicated in determining the Markov order and, as we

will show, synchronization.

The pattern should be clear now: At the lowest level,

the transient information indicates how quickly the block

entropy reaches its asymptote. Then, that asymptote

grows at the rate hµ and has y-intercept E. It might

be helpful to refer to the graphical summary of block-

entropy convergence and the associated information mea-

sures given in Ref. [12, Fig. 2]. Analogous diagrams will

appear shortly.

All this can be compactly summarized by introducing

two operators: a derivative and an integral that operate

on H(L). The derivative operator at the nth-level is:

∆nH[XL
0 ] ≡ ∆n−1H[XL

0 ]−∆n−1H[XL−1
0 ] , (12)

for L ≥ n = 1, 2, . . . and for L ≥ n = 0,

∆0H[XL
0 ] ≡ H[XL

0 ] . (13)
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The integrals are:

In ≡
∞∑
L=n

[
∆nH[XL

0 ]− lim
`→∞

∆nH[X`
0]

]
, (14)

n = 0, 1, 2, . . .. (This is a slight deviation from Ref. [12],

when n = 2. See App. A.)

To make the connection with what we just discussed,

in this notation we have:

hµ = lim
L→∞

∆1H[XL
0 ] , (15)

E = I1 , and (16)

T = −I0 . (17)

Additionally, I2 is a process’s total predictability G and

∆2H[XL
0 ] is its predictability gain—the rate at which

predictions improve by examining statistics of longer se-

quences.

The two operators, ∆n and In, define the entropy con-

vergence hierarchy for a process, capturing those proper-

ties reflected in the process’s block entropy. Given a pro-

cess’s specification, one attempts to calculate the hierar-

chy analytically; given data, to estimate it empirically. In

addition to systematizing a process’s informational prop-

erties, the hierarchy has a number of uses. For example,

structural classes of processes can be distinguished by the

n∗ at which the hierarchy becomes trivial; for example,

when ∆nH[XL
0 ] = 0, n > n∗. Other classifications turn

on bounded In∗ . The finitary processes, for example,

are defined by n∗ = 1: I1 = E < ∞. Or, conversely,

there are well known processes for which some integrals

diverge; they include the onset of chaos through period-

doubling, where the excess entropy diverges. Reference

[12, Sec. VII.A] introduces a classification of processes

along these lines.

III. PROCESS PRESENTATIONS

A. The Causal State Representation

Prediction is closely allied to the view of a process as

a communication channel: We wish to predict the future

using information from the past. At root, a prediction

is probabilistic, specified by a distribution of possible fu-

tures
−→
X given a particular past←−x : Pr(

−→
X |←−x ). At a min-

imum, a good predictive model needs to capture all of

the information I shared between the past and future:

E = I[
←−
X ;
−→
X ].

Consider now the goal of modeling—building a repre-

sentation that allows not only good prediction but also

expresses the mechanisms producing a system’s behav-

ior. To build a model of a structured process (a memo-

ryful channel), computational mechanics [25] introduced

an equivalence relation←−x ∼ ←−x ′ that clusters all histories

which give rise to the same prediction:

ε(←−x ) = {←−x ′ : Pr(
−→
X |←−x ) = Pr(

−→
X |←−x ′)} . (18)

In other words, for the purpose of forecasting the fu-

ture, two different pasts are equivalent if they result in

the same prediction. The result of applying this equiva-

lence gives the process’s causal states S = Pr(
←−
X,
−→
X )/ ∼,

which partition the space
←−
X of pasts into sets that are

predictively equivalent. So ε(←−x ) is an equivalence class,

and we call it a causal state. The set of causal states [26]

can be discrete, fractal, or continuous; see, e.g., Figs. 7,

8, 10, and 17 in Ref. [27]. There is a unique start state.

State-to-state transitions are denoted by matrices T
(x)
SS′

whose elements give the probability Pr(X = x,S ′|S) of

transitioning from one state S to the next S ′ on see-

ing measurement x. The resulting model, consisting of

the causal states and transitions, is called the process’s

ε-machine. Given a process P, we denote its ε-machine

by M(P).

Causal states have a Markovian property that they ren-

der the past and future statistically independent; they

shield the future from the past [28]:

Pr(
←−
X,
−→
X |S) = Pr(

←−
X |S) Pr(

−→
X |S) . (19)

Moreover, they are optimally predictive [25] in the sense

that knowing which causal state a process is in is just as

good as having the entire past: Pr(
−→
X |S) = Pr(

−→
X |←−X ). In

other words, causal shielding is equivalent to the fact [28]

that the causal states capture all of the information

shared between past and future: I[S;
−→
X ] = E.

ε-Machines have an important structural property

called unifilarity [25, 29]: From the start state, each

symbol sequence corresponds to exactly one sequence

of causal states [30]. The importance of unifiliarity, as

a property of any model, is reflected in the fact that

representations without unifilarity, such as generic hid-

den Markov models, cannot be used to directly calcu-

late important system properties—including the most

basic, such as hµ—how random a process is. Practi-

cally, though, unifilarity is easy to verify: For each state,

each measurement symbol appears on at most one out-

going transition [31]. Thus, the signature of unifilarity

is that on knowing the current state St and measure-

ment Xt, the uncertainty in the next state St+1 vanishes:

H[St+1|St, Xt] = 0.

Out of all optimally predictive models R̂—for which

I[R̂;
−→
X ] = E—the ε-machine captures the minimal

amount of information that a process must store in or-
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der to communicate all of the excess entropy from the

past to the future. This is the Shannon information

contained in the causal states—the statistical complex-

ity [28]: Cµ ≡ H[S] ≤ H[R̂]. It turns out that statisti-

cal complexity upper bounds the excess entropy [25, 29]:

E ≤ Cµ. In short, E is the effective information trans-

mission rate of the process, viewed as a channel, and Cµ
is the memory stored in that channel.

Combined, these properties mean that the ε-machine

is the basis against which modeling should be compared,

since it captures all of a process’s information at maxi-

mum representational efficiency.

Importantly, due to unifilarity one can calculate the

entropy rate directly from a process’s ε-machine:

hµ = H[X|S]

= −
∑
{S}

Pr(S)
∑
{xS′}

T
(x)
SS′ log2

∑
{S′}

T
(x)
SS′ . (20)

Pr(S) is the asymptotic probability of the causal states,

which is obtained as the normalized principal (left) eigen-

vector of the transition matrix T =
∑
{x} T

(x). A pro-

cess’s statistical complexity can also be directly calcu-

lated from its ε-machine:

Cµ = H[S]

= −
∑
{S}

Pr(S) log2 Pr(S) . (21)

Thus, the ε-machine directly gives two important proper-

ties: a process’s rate (hµ) of producing information and

the amount (Cµ) of historical information it stores in do-

ing so. Moreover, Refs. [22, 23] showed how to calculate

a process’s excess entropy directly from the ε-machine.

B. General Presentations

The ε-machine is only one possible description of a pro-

cess. There are many alternatives: Some larger, some

smaller; some with the same prediction error, some with

larger prediction error; some that are unifilar, some not;

some that do an excellent job of capturing Pr(
←−
X,
−→
X ),

many (or most) doing only an approximate job; some

allowing for the direct calculation of the process’s prop-

erties, some precluding such calculations.

The ε-machine, compared to all other possible descrip-

tions, is arguably the best. The results in the following,

as an ancillary benefit, strengthen this conclusion con-

siderably showing in which ways it is preferred. How-

ever, it is important to keep in mind that due to imple-

mentation constraints or intended use or specified perfor-

mance criteria, alternative models may be desirable and

preferred to the ε-machine. Reference [27], for exam-

ple, compares the benefits and disadvantages of differ-

ent kinds of nonunifilar models that are smaller than the

ε-machine. We return to elaborate on this in Sec. VII D.

One refers to a process’s possible descriptions as

presentations [32]. Specifically, these are state-based

models—using states and state transitions—that exactly

describe Pr(
←−
X,
−→
X ). That is, given a finitary process P,

we consider the set of all presentations that generate

the same process language: {(w,Pr(XL = w)) : w ∈
AL, L = 1, 2, . . .}. The set of P’s presentations is the fo-

cus of our work here. (That is, we do not address models

that give only approximations to the process language.

For this, see Ref. [33].)

To be consistent with historical usage, we also refer

to presentations as rivals. A rival consists of a set R of

states and state-to-state transitions T
(s)
RR′ over the sym-

bols s in the process’s measurement alphabet A. There

is an associated mapping η : ←−x → R from pasts to ri-

val states. Generally, this mapping is multivalued in the

sense that a past can map to multiple rival states [34].

When we refer to the rival’s state as a random variable,

we will denote this as R. We use lower case ρ when we

refer to a particular realization: R = ρ, ρ ∈ R. Just

as with the ε-machine, given a rival presentation, we

can refer to the amount of information the rival states

contain—this is the presentation state entropy H[R].

Above, we noted that a process’s ε-machine is its mini-

mal unifilar presentation. But, how are the rivals related,

if at all, to the ε-machine? To explore the organization of

the space of rivals, in the following we relax those proper-

ties that make the ε-machine unique, working with pre-

sentations that are nonminimal unifilar and those that

are not even unifilar. And so, we must distinguish sev-

eral kinds of presentations. First, we define unifilarity.

Definition 1. A presentation is unifilar if and only if

H[Rt+1|Rt, Xt] = 0.

Second, we introduce the notion of reverse-time unifilar-

ity.

Definition 2. A presentation is counifilar if and only if

H[Rt|Xt,Rt+1] = 0.

Third, we will consider prescient presentations, those

whose states are as good at predicting as the ε-machine’s

causal states [28, 29].

Definition 3. A presentation is prescient if and only if,

for every past ←−x ∈ ←−X and every ρ ∈ η(←−x ):

Pr(
−→
XL|R = ρ) = Pr(

−→
XL|S = ε(←−x )) (22)

for all L ≥ 1, 2, 3, . . ..

We will also shortly discuss presentations to which one
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can or cannot synchronize—that are or are not control-

lable.

IV. STATE-BLOCK AND BLOCK-STATE

ENTROPIES

Now, we introduce two block entropies and discuss

their properties, but first, we recall some well known re-

sults from information theory [21, Sec. 4.2].

For any stationary stochastic process, ∆H[XL
0 ] is a

nonincreasing sequence of nonnegative terms that con-

verges, from above, to the entropy rate hµ. There is

a complementary result which provides an estimate of

the entropy rate that converges from below. It is typ-

ically stated in terms of the Moore (state-output) type

of hidden Markov model [21, Thm. 4.5.1], so we recast

the theorem in terms of the Mealy (edge-output) type of

hidden Markov models, used exclusively here.

Theorem 1. If R0,R1, . . . form a stationary Markov

chain and (Xi,Ri+1) = φ(Ri), then

H[XL|R0, X
L
0 ] ≤ hµ ≤ H[XL|XL

0 ] , (23)

L = 0, 1, 2, . . ., and

H[X∞|R0,
−→
X 0] = hµ . (24)

φ need not be a deterministic mapping.

Appendix B provides the proof details. Henceforth, we

refer to H[R0, X
L
0 ] as the state-block entropy.

We also define the block-state entropy to be

H[XL
0 ,RL]. As with the state-block entropy, there is

a corresponding convergence result.

Theorem 2. If R0,R1, . . . form a stationary Markov

chain and (Xi,Ri+1) = φ(Ri), then

H[XL
0 ,RL]−H[XL−1

0 ,RL−1] ≤ hµ ≤ H[XL|XL
0 ] , (25)

L = 1, 2, 3, . . ., and

lim
L→∞

(
H[XL

0 ,RL]−H[XL−1
0 ,RL−1]

)
= hµ . (26)

Again, φ need not be a deterministic mapping.

Ref. [35] provides the proof of this theorem and dis-

cusses related results in the context of crypticity and

cryptic order [24].

Note, both of these theorems hold for general

presentations—not just ε-machines—and this fact serves

as the motivation for our later generalizations.

A. Convergence Hierarchies

Just as with the block entropy H[XL
0 ], we will consider

L-derivatives and integrals of the state-block and block-

state entropies. At the first level,

∆H[R0, X
L
0 ] ≡ H[R0, X

L
0 ]−H[R0, X

L−1
0 ] , (27)

∆H[XL
0 ,RL] ≡ H[XL

0 ,RL]−H[XL−1
0 ,RL−1] . (28)

Higher-order derivatives are defined similarly to Eq. (12).

As before, the n = 0 case is an identity operator. So, for

example, ∆0H[R0, X
L
0 ] = H[R0, X

L
0 ].

We already know—Thms. 1 and 2—that both of these

quantities tend to hµ in the large-L limit, ensuring that

all higher-order derivatives tend to zero.

Now, consider the nth state-block and block-state in-

tegrals:

Kn =

∞∑
L=n

(
∆nH[R0, X

L
0 ]− lim

`→∞
∆nH[R0, X

`
0]
)
, (29)

Jn =

∞∑
L=n

(
∆nH[XL

0 ,RL]− lim
`→∞

∆nH[X`
0,R`]

)
. (30)

Note that both K0 ≥ 0 and J0 ≥ 0 while, in contrast,

I0 ≤ 0. Also, K1 ≤ 0 and J1 ≤ 0 while I1 ≥ 0. These

differences are due to the fact that the block entropy is

concave in L while the state-block and block-state en-

tropies are convex.

Consider the partial sums of K1—the state-block inte-

gral:

K1(L) =

L∑
`=1

(
∆H[R0, X

`
0]− hµ

)
= H[R0, X

L
0 ]−H[R0, X

0
0 ]− Lhµ

= H[XL
0 |R0]− Lhµ . (31)

Note that if the presentation is unifilar, then

H[XL
0 |R0] = Lhµ and K1(L) = 0. Thus, unifilarity is

a sufficient condition for K1 = 0, but it is not a neces-

sary condition.

Now, consider the partial sums of J1—the block-state

integral:

J1(L) =

L∑
`=1

(
∆H[X`

0,R`]− hµ
)

= H[XL
0 ,RL]−H[X0

0 ,R0]− Lhµ
= H[XL

0 ,RL]−H[X0
L,RL]− Lhµ

= H[XL
0 |RL]− Lhµ . (32)

Similarly, if the presentation is counifilar, then it follows
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that H[XL
0 |RL] = 0 and J1(L) = 0. So, counifilarity is a

sufficient condition for J1 = 0, but it is not a necessary

condition.

B. Asymptotics

Theorems 1 and 2 tell us H[S0, XL
0 ] and H[XL

0 ,SL]

are convex functions in L and that the slope limits to the

entropy rate. This means that each curve converges to a

linear asymptote, cf. Eq. (5):

H[R0, X
L
0 ] ∝ YSBE + hµL (33)

H[XL
0 ,RL] ∝ YBSE + hµL , (34)

where YSBE and YBSE are constants independent of L.

The pictures that one should have in mind for the growth

of these entropies are those of Figs. 1, 5, 8, 11, and 14,

which we will discuss in due course.

In fact, we will take this behavior as the definition of

the following linear asymptotes:

YSBE ≡ lim
L→∞

(
H[R0, X

L
0 ]− hµL

)
= lim
L→∞

(
H[R0] +H[XL

0 |R0]− hµL
)

= H[R0] +K1

(35)

and

YBSE ≡ lim
L→∞

(
H[XL

0 ,RL]− hµL
)

= lim
L→∞

(
H[RL] +H[XL

0 |RL]− hµL
)

= H[R0] + J1 .

(36)

These tell us that K1 and J1 are not the sublinear parts of

the state-block and block-state entropies. This is in con-

trast to the corresponding result for the block entropies:

YBE ≡ lim
L→∞

(
H[XL

0 ]− hµL
)

(37)

= lim
L→∞

(
H[X0

0 ] +H[XL
0 ]− hµL

)
(38)

= H[X0
0 ] + I1 . (39)

The term H[X0
0 ] was dropped in the earlier partial sum

formulation—i.e., Eq. (10)—since it corresponds to no

measurement being made and so is zero. It is reintro-

duced above, though, to complete the formal parallel to

the state-block and block-state entropy cases.

The result for block entropy is that the offset of the

linear asymptote was equal to the I1, the excess en-

tropy. However, the argument just given clearly estab-

lishes that, in fact, one should think of the first deriva-

tives as offsets from the initial value of their correspond-

ing curves.

Finally, recall that K1 and J1 are not greater than

zero, so YSBE and YBSE are less than or equal to the

presentation state entropy H[R0].

V. SYNCHRONIZATION

A. Duality of Synchronization and Control

Synchronization is a question about how an observer

comes to know a process’s (typically hidden) current

internal state through observations. (Recall the pic-

ture introduced in Ref. [1].) As such, it requires a no-

tion of state, either the process’s causal state (using the

ε-machine) or the state of some other presentation. In

either case we monitor the observer’s uncertainty over

the states R after having seen a series of measurements

w = x0x2 . . . xL−1 using the conditional state entropy

H[R|w]. When this vanishes, the observer is synchro-

nized and we call w a synchronizing word.

During synchronization, the observer updates her an-

swer to the question, “Which presentation states can be

reached by sequence w?” When there is a unique answer,

the observer is synchronized. If the eventual answer,

though, is only a proper subset of presentation states,

then 0 < H[R|w] ≤ H[R] and the observer can be said

to be partially synchronized.

A formal treatment of synchronization appears in

Refs. [36, 37]; here we define a related quantity.

Definition 4. A presentation is weakly asymptotically

synchronizing if and only if limL→∞H[RL|XL
0 ] = 0.

While some processes can have synchronizing words,

others have synchronizing blocks where every word of a

finite length R is a synchronizing word. Such processes

are called Markov processes. The smallest such R is the

Markov order [24, 38]. It turns out that the ε-machine

presentation for a Markov process is exactly synchroniz-

ing [36].

If a process admits a presentation that is only weakly

asymptotically synchronizing, though, then an observer

will be in various conditions of state uncertainty until

the limit L → ∞. Finitary ε-machines, as it turns out,

are always at least weakly asymptotically synchronizing

and the state uncertainty vanishes exponentially fast [37]:

Pr
(
H[S0|XL

0 ] > 0
)
∝ e−L.

The controllability properties of a process and its mod-

els are analogous. However, now there is a designer that

has built an implementation of a process. And, starting

from an unknown condition, the designer wishes to pre-

pare the process in a particular state or set of states by

imposing a sequence of inputs. Phrased this way, one sees
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that the implementation is, in effect, a presentation and

the control sequence is none other than a synchronizing

word. Due to this duality, we only discuss synchroniza-

tion in the bulk of our development, returning at the

end to briefly draw out interpretations of the results for

controllability.

B. Synchronizing to the ε-Machine

We noted that the ε-machine directly gives two impor-

tant information-theoretic properties—the entropy rate

(hµ) and the statistical complexity (Cµ)—and one (the

excess entropy E) indirectly. The difference between Cµ
and E was introduced as the crypticity [22, 23]

χ = Cµ −E (40)

to describe how much of the internal state information

(Cµ) is not locally present in observed sequences (E).

Synchronization, as we discussed, is a property of the

recurrent portion of the ε-machine and since it is unifi-

lar, if one knows its current state and follows transitions

according to the word being considered, then one will al-

ways know the ε-machine’s final state. However, it is also

useful to consider the scenario when one does not know

the ε-machine’s current state. Given no other informa-

tion, the best estimate for the current state is to draw

from the stationary state distribution Pr(S). Then, as

each symbol is observed, one updates this belief distri-

bution and estimates the next state from this updated

distribution.

As noted above, H[SL|XL
0 ] converges to zero exponen-

tially fast for all ε-machines with a finite number of re-

current causal states. At each L before that point, there

is an uncertainty in the causal state of the ε-machine. If

we add up the uncertainty at each length, then we have

the synchronization information:

S ≡
∞∑
L=0

H[SL|XL
0 ] (41)

=

∞∑
L=0

(
H[XL

0 ,SL]−H[XL
0 ]

)
. (42)

Importantly, the second line shows that synchronization

information can be visualized as the sum of all differences

between the block-state and the block entropy curves.

Rk

L [symbols]

Cµ

E

H
[b

it
s]

H[XL
0 ]

H[XL
0 ,SL]

E + Lhµ

S

T

Rk

L [symbols]

Cµ

E

H
[b

it
s]

H[XL
0 ]

H[XL
0 ,SL]

E + Lhµ

S

T

FIG. 1. Block entropy and block-state entropy growth for a
generic finitary stationary process: It is easily seen that the
synchronization information upper bounds the transient in-
formation, T ≤ S, as T is a component of S. The Markov
order R and cryptic order k are also shown in their proper re-
lationship k ≤ R: R indicates where the block entropy meets
the E + hµL asymptote and k, where the block-state entropy
meets the same asymptote.

Moreover, starting from Eq. (42) we find:

S =

∞∑
L=0

(
H[XL

0 ,SL]− (E + Lhµ)

)

−
∞∑
L=0

(
H[XL

0 ]− (E + Lhµ)

)
(43)

= J0 − I0 . (44)

We know that T = −I0. When we identify J0 with a

separate, nonnegative information quantity we conclude

immediately that S ≥ T. This relationship is shown

graphically in Fig. 1.

The cryptic order k, as defined in Ref. [24], can be

interpreted as the length at which the block-state curve

has converged to its asymptote: E + hµL. Surprisingly,

this is not the length at which an ε-machine can be con-

sidered synchronized, which is given by the Markov order

R. Given its definition as the smallest value L for which

H[SL|
−→
X 0] = 0, we see that the cryptic order can be in-

terpreted as a measure of how far back in time the state

sequence can be retrodicted using the infinite future.

For example, the Even Process consists of all bi-infinite

sequences that contain even-length stretches of 1s sepa-

rated by at least a single 0; see Ref. [12]. This process

cannot be considered synchronized at any finite length

because all the thus-far seen symbols may be 1s, and so

one does not know if the latest symbol is a 1 at an even-

or odd-valued location. In contrast, once a 0 has been

seen, we know instantly the evenness and oddness of each

preceding 1, making the cryptic order k = 0. Since the
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cryptic order k = 0 for the Even Process, one concludes

that J0 does not contribute to S and T = S.

The two pieces—J0 and I0—comprising S are both fi-

nite due to the exponentially fast convergence of the two

block-entropy curves [37]. This shows that S consists of

distinct information contributions drawn from different

process features. Referring to Fig. 1, the lower piece, the

transient information T, is information recorded due to

an over-estimation of the entropy rate hµ at block lengths

L less than the Markov order R. This over-estimation is

due, in effect, to L being shorter than the longest corre-

lations in the data. In a complementary way, the upper

portion J0 can be viewed as the amount of state informa-

tion that cannot be retrodicted, even given the infinite

future.

The relative roles of the contributions to synchroniza-

tion information can be clearly seen for one-dimensional

range-R spin systems. Reference [12] claimed that for

spin chains:

S = T +
1

2
R(R+ 1)hµ , (45)

where R is the coupling range (Markov order) of the spin

chain. This can be established rather directly, and under-

stood for the first time, using the geometric convergence

picture just introduced for S. First, Ref. [35] showed

that for a spin chain H[XL
0 ,SL] is flat (zero slope) for

0 ≤ L ≤ R, after which it converges to its asymptote.

Second, combining these, we have:

J0 =

R∑
L=0

H[XL
0 ,SL]− (E + Lhµ) (46)

=

R∑
L=0

(E +Rhµ)− (E + Lhµ) (47)

=

R∑
L=0

(R− L)hµ (48)

=
1

2
R(R+ 1)hµ . (49)

So, the amount of state information that cannot be retro-

dicted is quadratic in Markov order.

Finally, H[XL
0 ] and H[XL

0 ,SL] give lower and up-

per bounds on E, respectively: the first monotonically

approaches E + Lhµ from below and the second mono-

tonically approaches it from above. This way, given an

ε-machine, it is straightforward to compute E with any

accuracy required from the block entropies, which them-

selves can be efficiently estimated from the ε-machine.

Similarly, since H[XL
0 ] over-estimates the entropy rate

while approaching from above and H[XL
0 ,SL] under-

estimates the entropy rate while approaching from be-

low, one obtains an analogous pair of bounds on hµ. This

block-state technique for bounding the entropy rate, how-

ever, holds for any type of presentation of the process.

(Cf. Ref. [21, Sec. 4.5].)

VI. PRESENTATION QUANTIFIERS

The development and results have focused, so far, on

ε-machines and their information-theoretic properties.

Due to the ε-machine’s uniqueness, these were also prop-

erties of the corresponding processes themselves. Now,

we relax the defining characteristics of ε-machines to con-

sider generic presentations. Naturally, this destroys our

ability to directly identify presentation properties with

those of the process represented. A process’s entropy

rate (hµ) and excess entropy (E) remain unchanged, how-

ever, since they are defined solely through its observables

Pr(
←−
X,
−→
X ). Widening our purview to generic presenta-

tions leads us to briefly introduce several new proper-

ties that capture information processing in presentations.

Perhaps more distinctly, this also leads us to quantify the

kinds of information in a presentation that are not char-

acteristics of the process it represents. Section VII then

provides more detailed expositions on their meaning and

example processes to illustrate them.

A. Crypticity

The statistical complexity Cµ is the amount of infor-

mation a process stores to generate future behavior. The

crypticity χ is that part of Cµ not transmitted to the

future: χ = Cµ − E. Roughly, it can be thought of as

the irreducible overhead that arises from the process’s

causal structure. Reference [22] defined crypticity for

ε-machines as χ = H[S0|
−→
X 0]. Now, we generalize this to

define crypticity for generic presentations.

Definition 5. The presentation crypticity χ(R) is the

amount of state information shared with the past that is

not transmitted to the future:

χ ≡ I[
←−
X 0;R0|

−→
X 0] . (50)

When the presentation states are causal states, this

quantity reduces to the original definition—the process’s

crypticity. Furthermore, the crypticity is the differ-

ence between the presentation state entropy and the y-

intercept of block-state entropy curve, Eq. (34).

Theorem 3. The presentation crypticity χ(R) is the dif-

ference between the presentation state entropy H[R0]:

χ = −J1 . (51)

Proof. Starting with the length-L approximation of the
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crypticity, we work our way to the Lth partial sum of

−J1 via a straightforward calculation:

I[XL
−L;R0|XL

0 ]

= H[XL
−L|XL

0 ]−H[XL
−L|R0, X

L
0 ] (52)

= H[XL
−L|XL

0 ]−H[XL
−L|R0] (53)

= Lhµ −H[XL
−L|R0] +H[XL

−L|XL
0 ]− Lhµ (54)

= −J1(L) +H[XL
−L|XL

0 ]− Lhµ (55)

= −J1(L) +H[XL
0 |XL

−L]− Lhµ (56)

= −J1(L) +

L−1∑
j=0

H[Xj |Xj
0 , X

L
−L]− Lhµ (57)

= −J1(L) +

2L−1∑
j=L

H[Xj |XL+j
0 ]− Lhµ . (58)

Equation (53) follows because the states (in any hidden

Markov model) shield the past from the future: the fu-

ture is a function of the state. Equation (55) follows

from the definition of J1, and Eq. (56) from stationar-

ity. Equation (57) follows from the chain rule for block

entropies [21], and Eq. (58) from using stationarity again.

Finally, we take the large-L limit. By definition, we

have J1(L) → J1. The remaining difference converges

to zero due to a result in Ref. [37] that the conditional

block entropies converge to the entropy rate faster than

linearly in L.

B. Oracular Information

We now introduce a sibling of crypticity—the oracular

information.

Definition 6. The oracular information is the amount

of state information shared with the future that is not

derived from the past:

ζ ≡ I[R0;
−→
X 0|
←−
X 0] . (59)

This new quantity is always zero for the ε-machine and

nonzero only for nonunifilar presentations. We have the

following characterization.

Theorem 4. The oracular information is the difference

between the presentation state entropy H[R0] and the y-

intercept of the state-block entropy curve, Eq. (33):

ζ = −K1 . (60)

Proof. The proof proceeds almost identically to the cor-

responding result for crypticity. Namely,

I[R0;XL
0 |XL

−L] =−K1(L)

+

2L−1∑
j=L

H[Xj |Xj
0 ]− Lhµ . (61)

Then, taking the large-L limit proves the result.

C. Gauge Information

When moving away from the optimal representation

afforded by a process’s ε-machine, it is possible to en-

counter presentations containing state information that

is not justified by a process’s bi-infinite set of observables.

We call this gauge information to draw a parallel with

the descriptional degrees of freedom that gauge theory

addresses in physical systems [39].

Definition 7. The gauge information is the uncertainty

in the presentation states given the entire past and future:

ϕ ≡ H[R0|
←−
X 0,
−→
X 0] . (62)

That is, to the extent there is uncertainty in the states,

even after the past and the future are known, the presen-

tation contains state uncertainty above and beyond the

process. Thus, there are components of the model that

are not determined by the process; rather they are the

result of a choice of presentation.

Intuitively, gauge information can be related to the to-

tal state entropy, crypticity, oracular information, and

excess entropy. Later, we will discuss information dia-

grams as a useful visualization tool, but for now, we sim-

ply point out that one can “visually” verify the following

theorem from Figure 13.

Theorem 5. Gauge information is the difference be-

tween the state entropy and the sum of the crypticity,

oracular information, and excess entropy:

ϕ = H[R]− (χ+ ζ + E) . (63)

Proof. Since we are working with hidden Markov models,

the future and past are conditionally independent given

the current state. Thus, E ≡ I[
←−
X ;
−→
X ] = I[

←−
X ;R;

−→
X ].

Now, the proof proceeds as a simple verification:

χ(L) + ζ(L) + E(L) = I[
←−
XL;R|−→XL]

+ I[R;
−→
XL|←−XL]

+ I[
←−
XL;R;

−→
XL]

= H[R]−H[R|←−XL,
−→
XL] .

So, finite-length approximations to the gauge information
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can be written as:

H[R]−
(
χ(L) + ζ(L) + E(L)

)
= H[R|←−XL,

−→
XL] .

Taking the limit, we achieve our desired result.

D. Synchronization Information

As we noted, it is always possible to asymptotically

synchronize to an ε-machine with a finite number of

recurrent causal states. For some processes, synchro-

nization can happen in finite time. While in others, it

can only happen in the limit as the observation window

tends to infinity. In either case, it is always true that

H[S∞|
−→
X ] = 0.

When we generalize to presentations that differ from

ε-machines, it is no longer true that one always synchro-

nizes to the presentation states. In such cases, there is

irreducible state uncertainty, even after observing an in-

finite number of symbols. This kind of state uncertainty

cannot be reduced by past observations alone. Due to

this, the synchronization information, as previously de-

fined, diverges.

Definition 8. The presentation synchronization infor-

mation is the total uncertainty in the presentation states:

S ≡
∞∑
L=0

H[RL|XL
0 ] . (64)

We will show in Sec. VI H that this can be understood

in terms of the gauge and oracular informations.

E. Cryptic Order

The cryptic order was defined in Ref. [24] as the min-

imum length k for which H[Sk|
−→
X 0] = 0. Reference [38]

shows that the cryptic order is a topological property of

the irreducible sofic shift [32] describing the support of

the ε-machine. However, we can understand the cryp-

tic order geometrically as the length kχ at which the

block-state entropy H[XL
0 ,SL] reaches its asymptote; see

Eq. (33). It turns out that this concept generalizes di-

rectly to generic presentations.

Definition 9. The presentation cryptic order is the

length k at which the block-state entropy curve reaches

its asymptote:

kχ ≡ min
{
L : H[XL

0 ,RL] = H[R0]− χ+ hµL
}
. (65)

One would like to understand the cryptic order in

terms of an explicit limit, as done for ε-machines, where

cryptic order is the minimum k for which H[Sk|
−→
X 0] = 0.

The obvious complication for presentations, in general,

is that one might never synchronize to a particular state.

However, it turns out that one can understand the pre-

sentation cryptic order in terms of one’s uncertainty in

the distribution over distributions of states—that is, the

uncertainty in the distribution over mixed states [23, 40].

Specifically, we frame the generalized cryptic order in

terms of synchronizing to distributions over presentation

states. We outline the approach briefly; a detailed expo-

sition will appear elsewhere [38].

As measurements are made, an observer’s uncertainty

in the state of the presentation varies. However, the pat-

tern of variation becomes regular as more observations

are made. The cryptic order, then, is understood as the

number of distributions over presentation states that one

cannot know with certainty from time t = 0 given the en-

tire future. Said differently, the cryptic order is the time

at which an observer becomes absolutely certain about

the uncertainty in the presentation states.

F. Oracular Order

The oracular order definition parallels those of the

cryptic and the Markov orders.

Definition 10. The oracular order is the length kζ at

which the state-block entropy curve reaches its asymptote:

kζ ≡ min
{
L : H[R0, X

L
0 ] = H[R0]− ζ + hµL

}
. (66)

It always vanishes for ε-machines. So, this new length

scale is a property of the presentation only and not of the

process generated by the presentation.

G. Gauge Order

The gauge order definition also parallels those of the

cryptic, Markov, and oracular orders.

Definition 11. The gauge order is the length kϕ at

which H[R0|XL
−LX

L
0 ] reaches its asymptote.

kϕ ≡ min{L : H[R0|XL
−L, X

L
0 ] = ϕ} . (67)

Geometrically, we visualize the gauge order as the

length at which the difference between two curves—

H[XL
−L,R0, X

L
0 ] and H[XL

−L, X
L
0 ]—becomes fixed to

their asymptotic difference.

Theorem 6. The gauge order is the maximum of the

Markov, cryptic, and oracular orders:

kϕ = max{R, kχ, kζ} . (68)

Proof. The gauge information can be understood as the

left-over state information after the excess entropy, cryp-
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ticity, and oracular information [41] have been extracted:

ϕ = H[R0]−E− χ− ζ . (69)

Thus, as soon as the observer reaches each of the Markov,

cryptic, and oracular orders, the remaining state infor-

mation exactly equals the gauge information.

The Markov, cryptic, and oracular orders are similar in

that they refer to minimum word lengths one must exam-

ine to remove corresponding uncertainties. Unlike them,

the gauge order does not indicate a scale at which an

amount of information is contained. Rather, it is more

the opposite. The gauge order, as it is not removable

given the entire past or future, is defined in the nega-

tive. It is the minimum word length one must consider

to remove all of the above uncertainties (except gauge),

thus leaving only the gauge information as unknown. In

short, it is the length scale beyond which there is no point

attempting to extract more state information (even with

an oracle). This is so precisely because the remainder is

the gauge information and, therefore, not correlated with

the process language. It corresponds to what one calls a

gauge freedom in physics.

H. Synchronization Order

As mentioned in Sec. V B, the length at which an ob-

server has synchronized to an ε-machine is always R, the

Markov order. Recall, any order-R Markov process has

I[
−→
XR;

←−
X 0|XR

0 ] = 0. Synchronization to the ε-machine

requires that H[SL|XL
0 ] = 0, and it is straightforward to

see that this holds for L = R. As we generalize to non-

ε-machine presentations, though, we must look beyond

Markov order to address the fact that one might only

synchronize to distributions over presentation states.

Definition 12. The presentation synchronization order

is the length kS at which H[RL|XL
0 ] reaches its asymp-

tote:

kS ≡ min{L : H[RL|XL
0 ] = ϕ+ ζ} . (70)

The motivation for this definition is that the asymp-

tote is simply the difference of the asymptotes for the

block-state and block entropy curves. That is, the syn-

chronization order is also thought of as the length at

which the state uncertainty equals its irreducible state

uncertainty: ϕ+ ζ = H[R0|
←−
X 0].

Now, we show that the synchronization order must oc-

cur at either the presentation cryptic order or the Markov

order.

Theorem 7. The presentation synchronization order is

the maximum of the Markov and presentation cryptic or-

ders:

kS = max{R, kχ} . (71)

Proof. When both the block-state and block entropy

curves have reached their asymptotes the observer will

have extracted E + χ bits of state information. This

leaves H[R0] − E − χ = ϕ + ζ bits. This is exactly

the irreducible state uncertainty—that which cannot be

learned from the observables.

Note that for ε-machines: E + χ = Cµ. So, when

an observer has extracted all that can be learned about

the process from the past observables, the observer has

learned everything about the causal states.

When the synchronization order is finite, H[RL|XL
0 ] is

fixed at the presentation’s irreducible state uncertainty

for all L > kS. Then, it can be helpful to view the

presentation synchronization information as consisting of

two contributions:

S =

kS−1∑
L=0

H[RL|XL
0 ] +

∞∑
L=kS

(ϕ+ ζ) . (72)

When the synchronization order is not finite, it can be

useful to interpret the synchronization information in a

slightly different manner:

S = I0 + J0 + lim
L→∞

(ϕ+ ζ)L . (73)

I. Synchronization Time

Reference [13] defined the synchronization time τ of a

periodic process to be the average time needed to syn-

chronize to the states. Let w = w0 · · ·wp−1 be a cyclic

permutation of the word that is repeated by a periodic

process having period p. It follows that

Pr(Xp
0 = w) =

1

p
, (74)

since any cyclic permutation is just as likely as another.

Now, while each permutation has the same probability,

it is not true that each permutation is equally informa-

tive in terms of synchronization. For example, consider

the process that repeats the word 00011, indefinitely. If

an observer saw 01, then the observer would be synchro-

nized. In contrast, the observer would not be synchro-

nized if 00 had been observed instead. Reference [13]

defined τw as the synchronization time of the cyclic per-

mutations of w. Then,

τ =
∑
w

τw Pr(Xp
0 = w) . (75)
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Since hµ = 0 for all periodic processes,

Pr(Xp
0 = w) = Pr(Xτw

0 = w0 · · ·wτw−1) . (76)

Thus, we can rewrite τ suggestively as:

τ =
∑
w

τw Pr(Xτw
0 = w0 · · ·wτw−1) . (77)

Then, instead of summing over all cyclic permutations

of w, we can just sum over the set Lsync of all minimal

synchronizing words. (A word is a minimal synchronizing

word if no prefix of the word is also synchronizing.) Now,

we can extend τ to all finitary processes, not just periodic

ones.

Definition 13. The process synchronization time is the

average time required to synchronize to the ε-machine’s

recurrent causal states:

τ ≡
∑

w∈Lsync

|w|Pr
(
X
|w|
0 = w

)
. (78)

Note that any order-R Markov process has τ ≤ R.

The synchronization time gives an intuition for how long

it takes to synchronize to a stochastic process.

As an example, recall the Even Process [12]. It has

the property that there are arbitrarily long minimal syn-

chronizing words. For example, 1k0 is always a minimal

synchronizing word, for any k. Despite this fact, the syn-

chronization time of the Even Process is τ = 10/3. After

repeatedly observing sequences four symbols in length,

on average an observer will be synchronized to the states

of the ε-machine.

When considering more general presentations it is not

always the case that one can synchronize to the states, as

τ can be infinite. Just as with the cryptic order, however,

one can synchronize to distributions over the presentation

states. This motivates the presentation synchronization

time.

Definition 14. The presentation synchronization time

is the average time required to synchronize to a recurrent

distribution over presentation states.

We provide an intuitive definition here, leaving a more

detailed discussion, where notation is properly developed,

for a sequel.

VII. CLASSIFYING PRESENTATIONS

The ε-machine is frequently the preferred presenta-

tion of a process, especially when one is interested in

understanding fundamental properties of the process it-

self. However, one might be interested in the properties

of particular presentations of a process, and it would be

Minimal-Unifilar

Weakly Asymptotically
Synchronizable

Unifilar

Nonunifilar

FIG. 2. The hierarchy of presentations for a finitary pro-
cess. The gray region represents that portion to which the
ε-machine belongs.

helpful if there was an analogous theory similar to that

for ε-machines.

To develop this, we establish a classification of a

process’s presentations. The classes are defined in

terms of whether a presentation is nonunifilar, unifi-

lar, weakly asymptotically synchronizable, and minimal

unifilar. The result is shown in Fig. 2, which shows that

the presentation classes form a nested hierarchy.

The most general type of presentation is nonunifilar,

where we allow the possibility that H[R1|R0, X0] > 0.

Then, unifilar presentations are the subset of nonunifilar

presentations for which this quantity is exactly zero. In

the unifilar class, there can be redundant states—states

from which the future looks exactly the same and also

states which have the exact same histories mapping to

them. When we move to weakly asymptotically synchro-

nizable presentations, all redundant states are removed

and the remaining states must induce a partition on the

set of histories that is a refinement of the causal state

partition; cf. Ref. [29, Lemma 7]. Finally, minimal unifi-

lar presentations are the ε-machines, whose partition of

the pasts is the coarsest one possible.

In this light, one might conclude that ε-machines are

an overly restricted set of presentations. They are indeed

a restricted set, but it is a restriction with purpose: The

ε-machine is the unique minimal prescient presentation

within the set of a process’s presentations. Moreover,

all of a process’s properties can be determined from its

ε-machine. These facts allow one to purposefully conflate

properties of the ε-machine with process’s properties.

We will use a information diagram (I-diagram) [3] to

analyze what happens as one relaxes the defining prop-

erties of the ε-machine presentation’s random variables.
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With the ε-machine, we have the past
←−
X , the causal

states S, and the future
−→
X . As we move away from the

ε-machine’s causal states, we must consider in addition

the rival states R.

In total, there are four random variables to consider.

The full range of their possible information-theoretic rela-

tionships appears in the information diagram (I-diagram)

of Fig. 3. However, Appendix C shows that 7 of the

15 atoms (elemental components of the multivariate

information-measure sigma algebra) vanish. This allows

us to simplify other atoms dramatically. For example,

the atom:

I[
←−
X ;S;R;

−→
X ] (79)

= I[
←−
X ;S;

−→
X ]− I[

←−
X ;S;

−→
X |R] (80)

= I[
←−
X ;S;

−→
X ] (81)

= I[
←−
X ;
−→
X ]− I[

←−
X ;
−→
X |S] (82)

= I[
←−
X ;
−→
X ]− (I[

←−
X ;R;

−→
X |S] + I[

←−
X ;
−→
X |S,R]) (83)

= I[
←−
X ;
−→
X ] , (84)

where we made use of the atoms that vanish. Thus, the

four-way mutual information simply reduces to the mu-

tual information between the past and the future—the

excess entropy:

I[
←−
X ;S;R;

−→
X ] = E . (85)

Similar calculations reduce the other information mea-

sures in Fig. 3 correspondingly. We now consider these

reductions in turn.

A. Case: Minimal Unifilar Presentation

The set of minimal unifilar presentations corresponds

exactly to the ε-machines, up to state relabeling. The

states in these presentations, the causal states, induce a

partition of the infinite pasts via the function ε(←−x ).

The information diagram and entropy growth plot are

particularly simple, as seen in Fig. 4 and Fig. 5. This sim-

plicity derives from the efficient predictive role the causal

states play. Referring to the I-diagram, H[S|←−X ] = 0 be-

cause of determinism of the ε(←−x ) map, Eq. (18). Next,

causal states, as well as all other states we consider, are

prescient states and so I[
←−
X ;
−→
X |R] = 0. These straight-

forward requirements entirely determine the form of the

ε-machine I-diagram in Fig. 4. As we step through the

space of presentation classes, we will see these relation-

ships become more complex.

There are three quantities that require attention in this

figure. First, the state entropy H[R] is equal to Cµ—the

statistical complexity. This particular state information

is considered privileged as it is the state information asso-

ciated with the ε-machine and so the process. The excess

entropy E is the mutual information between the past

and future and is also exactly that information which

the (causal) states contain about the future. Lastly, the

crypticity χ is the amount of information “overhead” re-

quired for prediction using the ε-machine. Generally, this

overhead is associated with the presentation as well as the

process itself, due to the uniqueness of the ε-machine pre-

sentation. It is the irreducible memory associated with

the process. At any time, the process itself or a predictive

model must keep track of Cµ bits of state information,

while only E bits of this information are correlated with

the future.

The entropy growth plot, Fig. 5, is also simplified by

using causal states. In terms of our newly defined inte-

grals: Kn = 0 for all n and J1 = H[S]− I1 = χ.

A simple example that illustrates all of these points is

provided by the Golden Mean Process and its ε-machine;

see Fig. 6. When the probability p is chosen to be 1
2 , the

values of our information measures are Cµ = log2(3) −
2
3 = 0.9183 bits, χ = 2

3 bits, and E = Cµ − χ = 0.2516

bits. As we explore alternate presentations, we will re-

turn to this process as a common thread for explanation

and intuition.

B. Case: Weakly Asymptotically Synchronizable

Presentations

Let’s relax the minimality constraint leaving the

ε-machines for presentations that are nonminimal unifi-

lar and weakly asymptotically synchronizable. Again,

the states correspond to a partition of the infinite pasts,

but since they are prescient and not minimal unifilar, the

partition must be a refinement of the causal-state parti-

tion [29].

The effect of this is benign as seen in both the I-

diagram (Fig. 7) and the entropy growth plot (Fig. 8). In

Fig. 7, weakly asymptotically synchronizability ensures

that H[R|←−X ] = 0. Demanding prescient states deter-

mines the form of the I-diagram. Figure 7 indicates that

H[R] > H[S]. This is a consequence of R being a non-

trivial refinement of S.

Examining the entropy growth plot, the increased state

information is reflected in the values of the block-state

and state-block entropy curves at L = 0. Additionally,

it is interesting to note what happens to the cryptic or-

der. We generalized the definition of cryptic order to

be that length where the block-state entropy reaches its

asymptote. Since block-state entropy is nondecreasing,

this suggests that it might be forced to reach its asymp-

tote at a larger value of L than the cryptic order for the
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χ

E

ϕ

ζ

H[
←−
X ] H[

−→
X ]

H[S] H[R]

H[
←−
X |S,R,−→X ] H[

−→
X |←−X,S,R]

I[
←−
X ;S|R,−→X ] I[R;−→X |←−X,S]

H[S|←−X,R,−→X ] H[R|←−X,S,−→X ]

I[S;R|←−X,
−→
X ]

I[
←−
X ;S;R|−→X ] I[S;R;−→X |←−X ]

I[
←−
X ;S;R;−→X ]

I[
←−
X ;
−→
X |S,R]

I[
←−
X ;R|S,−→X ] I[S;−→X |←−X,R]

I[
←−
X ;R;−→X |S] I[

←−
X ;S;−→X |R]

FIG. 3. The general four-variable information diagram involving
←−
X , S, R, and

−→
X . The shaded light gray is the generalized

crypticity χ. The yellow is the excess entropy E. The dark gray is the oracular information ζ. The hatched area is the
gauge information ϕ. Note that this is only a schematic diagram of the interrelationships. In particular, potentially infinite
quantities—such as, H[

←−
X ] and H[

−→
X ]—are depicted with finite areas.

H[
←−
X ]

H[
−→
X ]

Cµ

H[R]

χ

E

FIG. 4. The information diagram for an ε-machine. The
states of the presentation are causal states and induce a parti-
tion on the past. The entropy over the states, H[R0] = H[S0],
defines the statistical complexity Cµ. The process crypticity
is the difference of the statistical complexity and the excess
entropy E.

ε-machine presentation. We can see that this is in fact

true by expanding H[XL
0 ,SL,RL] in two ways. Note that

this joint entropy term combines variables from two dif-

L [symbols]

E

Cµ

H
[b

it
s]

H[XL
0 ]

H[XL
0 ,SL]

H[S0, XL
0 ]

E + Lhµ

L [symbols]

E

Cµ

H
[b

it
s]

H[XL
0 ]

H[XL
0 ,SL]

H[S0, XL
0 ]

E + Lhµ

FIG. 5. Entropy growth for a generic ε-machine. H[XL
0 ]

and H[XL
0 ,SL] both converge to the same asymptote (dashed

line). H[S0, XL
0 ] is linear.

ferent presentations. In the first expansion,

H[XL
0 ,SL,RL] = H[SL|XL

0 ,RL] +H[XL
0 ,RL]

= H[XL
0 ,RL]

The conditional entropy is zero since the rival states R
are a refinement of the causal states S. In the second
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A Bp|1

1− p|0

1|1

FIG. 6. The ε-machine presentation of the Golden Mean Pro-
cess.

H[
←−
X ]

H[
−→
X ]

Cµ

H[R]

χ

E

FIG. 7. The information diagram for a presentation that
is weakly asymptotically synchronizable, but not necessarily
minimal unifilar. The states still induce a partition on the in-
finite past. The presentation crypticity χ(R) is the difference
of the state entropy H[R] ≥ Cµ and the excess entropy E.

expansion,

H[XL
0 ,SL,RL] = H[RL|XL

0 ,SL] +H[XL
0 ,SL]

Then, we combine these expansions to obtain:

H[XL
0 ,RL] = H[RL|XL

0 ,SL] +H[XL
0 ,SL]

≥ H[XL
0 ,SL] . (86)

This shows that the block-state curve for the nonminimal

presentation lies above or on the curve for the ε-machine

presentation. Since block and block-state entropies share

an asymptote—E+Lhµ—the nonminimal unifilar block-

state entropy will reach its asymptote at a value greater

than or equal to the process’s cryptic order. More care

will be required in the subsequent cases, as the relations

among entropy growth functions are more complicated.

To illustrate these class characteristics, consider the

following three-state presentation of the Golden Mean

Process in Fig. 9. The original causal-state partition,

{A = ∗1, B = ∗0}, has become refined. (Here, ∗ de-

notes any allowed history.) We now have {A = ∗11, B =

∗0, C = ∗01}. It is straightforward to verify that H[R] =

log2(3) = 1.585 bits. Excess entropy is unchanged as

it is a feature of the process language and not the pre-

sentation. As illustrated in Fig. 7, the crypticity grows

commensurately with H[R].

L [symbols]

E

H[R]H
[b

it
s]

H[XL
0 ]

H[XL
0 ,RL]

H[R0, XL
0 ]

E + Lhµ

L [symbols]

E

H[R]H
[b

it
s]

H[XL
0 ]

H[XL
0 ,RL]

H[R0, XL
0 ]

E + Lhµ

FIG. 8. Entropy growth for a weakly asymptotically synchro-
nizing presentation. H[XL

0 ] and H[XL
0 ,SL] both converge to

the same asymptote (dashed line). H[S0, XL
0 ] is linear. H[R]

is larger than Cµ.

A

BC

p|1

1− p|0

1|1

p|1

1− p|0

FIG. 9. A weakly asymptotically synchronizable and non-
minimal unifilar presentation of the Golden Mean Process:
observing a 0 synchronizes the observer to state B.

We have shown that for weakly asymptotically syn-

chronizable presentations the presentation cryptic order

generally will be larger than the cryptic order. It is in-

teresting to note that it is also possible for the presen-

tation cryptic order to surpass even the Markov order.

Our three-state example (Fig. 9) is 2-cryptic while the

Markov order remains R = 1 as it also depends only on

the process language.

Since the Markov order R bounds the domain of the

I0 integral and the presentation cryptic order k bounds

the domain of the J0 integral, the domain of the syn-

chronization information is bounded by max{R, k}.

C. Case: Unifilar Presentations

Removing the requirement that a presentation be

weakly asymptotically synchronizable, we no longer oper-

ate with (recurrent) states that correspond to a partition

of the infinite past, but rather to a covering of the set
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H[
←−
X ]

H[
−→
X ]

Cµ

H[R]

χ

E

ϕ

FIG. 10. The information diagram for a presentation that is
not weakly asymptotically synchronizable, but still unifilar.
The states are prescient, but no longer induce a partition on
the infinite past. Furthermore, the states contain information
that the past does not contain. The presentation crypticity is
the difference of the state entropy H[R0] ≥ Cµ and the excess
entropy E = I[

←−
X 0;
−→
X 0].

of infinite pasts. That is, η(←−x ) can be multivalued, al-

though for each ρ ∈R, η−1(ρ) is a set of pasts that is a

subset of some causal state’s set of pasts.

Every allowable infinite history induces at least one

state in the presentation—this is the definition of an al-

lowable infinite history. Additionally, any presentation

that is not weakly asymptotically synchronizable must

have a (positive measure) set of histories where each his-

tory induces more than one state.

Consider a unifilar presentation and an infinite history

that induces only one state. Due to unifilarity, we can

use this history to construct an infinite set of histories

that are also synchronizing. We conjecture that this set

of histories must have zero measure and, even stronger,

that for finite-state unifilar presentations with a single

recurrent component, there are no synchronizing histo-

ries.

This inability to synchronize, a product of the nontriv-

ial covering, is represented as the information measure ϕ

in Fig. 10. This information is not captured by the causal

states. In fact, it is not even captured by the past (or

the future). It also is not necessary for making predic-

tions with the same power as the ε-machine. Like χ(R),

ϕ is unnecessary for prediction. However, unlike χ(R),

ϕ does not capture any structural property of the pro-

cess. Instead, it represents degrees of freedom entirely

decoupled (informationally) from the process language

and prediction. For this reason, we called it the gauge

information.

The entropy growth plot of Fig. 11 has a new and sig-

nificant feature representing the change in class. The

L [symbols]

E

H[R]− χ
H[R]

H
[b

it
s]

H[XL
0 ]

H[XL
0 ,RL]

H[R0, XL
0 ]

E + Lhµ

H[R]− χ+ Lhµ

L [symbols]

E

H[R]− χ
H[R]

H
[b

it
s]

H[XL
0 ]

H[XL
0 ,RL]

H[R0, XL
0 ]

E + Lhµ

H[R]− χ+ Lhµ

FIG. 11. Entropy growth for a not weakly asymptoti-
cally synchronizable, but unifilar presentation. H[XL

0 ] and
H[XL

0 ,SL] both converge to different asymptotes (lower and
upper dashed lines, respectively). H[S0, XL

0 ] is linear. H[R]
is larger than Cµ.

asymptotes of the block entropy and block-state entropy

become nondegenerate. This has the effect of making

the synchronization information diverge. Although this

fact follows immediately from the definition of weakly

asymptotically synchronizable, it is instructive to see its

geometric representation.

Since, from this point forward, synchronization infor-

mation is always infinite, we find it necessary to re-

express what synchronization information means. It

can be denoted, recall Eq. (73), as the sum of a fi-

nite piece and the limit of a linear (in L) piece: S =

I0 +J0 + limL→∞ Lϕ. This rate of increase of the linear

piece is exactly the gauge information.

It is also interesting to note that when this informa-

tion is obtained—that is, a constraint is imposed upon

the descriptional degrees of freedom—unifilarity main-

tains synchronization as more data is produced. In this

sense, acquiring gauge information is a “one-time” cost.

The Golden Mean Process presentation in Fig. 12 illus-

trates all of the features described above. It is straightfor-

ward to see that this presentation is not weakly asymp-

totically synchronizing. Any history, finite or infinite,

has exactly two states that it induces. This degener-

acy is never broken, due to unifilarity. Rephrasing, the

gauge information value, ϕ = 1 bit, derives from the fact

that each infinite history induces one of two states with

equal likelihood. This relies on the fact that there is no

oracular information contribution—ζ = 0 bits since the

presentation is unifilar—to disentangle from the gauge

information.
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A B
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p|1
1− p|0

1|1

p|1
1− p|0

1|1

FIG. 12. A unifilar, but not weakly asymptotically synchro-
nizing, presentation of the Golden Mean Process.

D. Case: Nonunifilar Presentations

Finally, we remove the requirement of unifilarity

and examine the much larger, complementary space of

nonunifilar presentations. Only one nonunifilar state

must be present to change the class of the whole presenta-

tion. This ease of breaking unifilarity is why nonunifilar

presentations form a much larger class.

Examining the I-diagram in Fig. 13, we notice one

new feature: the oracular information ζ = I[R;
−→
X |←−X ] =

I[R;
−→
X |S] 6= 0. The oracular information is a curious

quantity and so deserves careful interpretation. It is

the degree to which the presentation state reduces un-

certainty in the future beyond that for which the past

can account. One might think of this feature as “super-

prescience”. Not only is the information from the past

being maximally utilized for prediction, but some ad-

ditional information is also injected. We make several

remarks about this.

It is well known that a process’s nonunifilar presenta-

tions may be smaller than the corresponding ε-machine.

This fact is sometimes cited [27] as providing evidence

that the smaller nonunifilar presentation is the more

“natural” one [42]. While it is true that the state infor-

mation H[R] can be smaller than Cµ, and in fact often is,

the I-diagram makes plain the fact that oracular informa-

tion must be introduced to determine R and, thus, make

a super-prescient prediction. For this reason, unless one

is transparent about allowing for oracular information, it

is not appropriate to make a judgment about naturalness

of nonunifilar presentations.

Given that we do not have the luxury of access to an

oracle, we might like to know how these presentations

perform without this information. The nonoracular part

of I[R;
−→
X ] is simply E. That is, without the oracu-

lar information, we predict just as we would with any

other prescient presentation. However, the predictions

are made using distributions over states rather than in-

dividual states. (The former are the mixed states of Ref.

[23].) More importantly, as we continue to make pre-

H[
←−
X ]

H[
−→
X ]

Cµ

H[R]

χ

E

ϕ

ζ

FIG. 13. The information diagram for a presentation that is
not unifilar. The states are super-prescient, do not induce a
partition on the past, and have information not contained in
the past. The presentation crypticity is the difference of the
state entropy H[R] and the excess entropy E. Note, the state
entropy can also be smaller than the statistical complexity
Cµ.

dictions, the state distribution evolves through a series

of distributions. These distributions are in 1-to-1 corre-

spondence with the causal states of the ε-machine. And

so, for a nonoracular user of a nonunifilar presentation

to communicate her history-induced state to another re-

quires the transmission of Cµ bits. The statistical com-

plexity is inescapable as the proper information storage

of the process.

When discussing unifilar presentations for which

H[RL|XL
0 ] 6= 0 at any finite L or even in the limit,

we indicated that the gauge information was a “one-

time” cost. Now, we ask the same question of the two

informations—gauge and oracular—that are not prod-

ucts of the past. Since we no longer have unifilarity, state

uncertainty is dynamically reintroduced as synchroniza-

tion is lost. That is, nonunifilar presentations are al-

lowed to locally resynchronize following the introduction

of state uncertainty. The net result is that over time

synchronization is repeatedly lost and reacquired.

The entropy growth plot of Fig. 14 makes one last ad-

justment to acknowledge the change in class. For the first

time, the state-block entropy is nonlinear. It approaches

its asymptote from above and, moreover, the asymptote

is independent of the block-state asymptote. The pro-

jection back onto the y-axis mirrors our final and most

general I-diagram of Fig. 13.

A nonunifilar presentation of the Golden Mean Process

is shown in Fig. 15. All of the above-mentioned quanti-

ties are nonzero for this presentation: For p = 1/2, the

crypticity χ(R) = 1/3 bits, the gauge information ϕ = 1

bit, and the oracular information ζ = 1/3 bits. The value
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0 ]
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H[R]− χ+ Lhµ

H[R]− ζ + Lhµ

FIG. 14. Entropy growth for a nonunifilar presentation. Left: H[XL
0 ] and H[XL

0 ,SL] both converge to different asymptotes;
H[S0, XL

0 ] is not linear and H[R] is larger than Cµ. Right: The same as on the left, but illustrating that χ is independent of ζ.

A B
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p|1
1− p|1

1|0

p|1
1|1

1− p|0

FIG. 15. A nonunifilar presentation of the Golden Mean Pro-
cess.

of the gauge information (1 bit) is easy to understand. It

indicates that the nonunifilar presentation is two copies

of a unifilar presentation of the Golden Mean Process su-

tured together. All of history space is covered twice and

the choice of which component of the cover is visited is

a fair coin flip. The crypticity and oracular information

(crypticity’s time-reversed analog) are the same, due to

the nonunifilar presentation respecting the time-reverse

symmetry of the Golden Mean Process [23].

VIII. CONCLUSIONS

Our development started out discussing synchroniza-

tion and control. The tools required to address these—

the block-state and state-block entropies—quickly led to

a substantially enlarged view of the space of competing

models, the rival presentations, and a new collection of

information measures that reflect their subtleties and dif-

ferences.

As milestones along the way, we gave example pre-

sentations of the well-known Golden Mean Process that

went from the ε-machine to a nonminimal nonsynchro-

nizing nonunifilar presentation. Table I summarizes the

quantitative results. It gives the entropy rate hµ, statisti-

cal complexity Cµ, excess entropy E, and the crypticity χ

for the process itself. Immediately following, it compares

the analogous measures for the range of presentations

considered. In addition, the gauge information ϕ and

the oracular information ζ, being properties of presenta-

tions, are added. Careful study of the table shows how

the measures track the presentations’ structural changes.

A few comments are in order about the tools the de-

velopment required. The first were the block-state and

state-block entropies, as noted. Analyzing their word-

length convergence properties was the backbone of the

approach—one directly paralleling the previously intro-

duced entropy convergence hierarchy [12]. Another im-

portant tool was the I-diagram. While it is not necessary

in establishing final results, it is immensely helpful in

organizing one’s thinking and in managing the compli-

cations of multivariate information measures. Method-

ologically speaking, the principal subject was the four-

variable—past, future, causal state, and presentation

state—I-diagram with its sigma algebra of 15 atoms.

Thus, the methodology of the development turned on

just two tools—block entropy convergence and presenta-

tion information measures.

As for the concrete results, we showed that there are

two mechanisms operating in processes that are hard to

synchronize to, as measured by the synchronization in-

formation which consists of two corresponding indepen-

dent contributions. The first is the transient information

which reflects entropy-rate overestimates that occur at

small block lengths. The second, new here, reflects the

state information that is not retrodictable using the fu-

ture. With these two contributions laid out, the general

connection between synchronization and transient infor-

mation, previously introduced in Ref. [12], became clear.

We also pointed out that the synchronization information
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Information Measures for Alternative Presentations

Process hµ Cµ E χ

Golden Mean 2/3 log2(3)− 2/3 log2(3)− 4/3 2/3

Presentation H[X|R] H[R] I[R;
−→
X ] χ(R) ϕ ζ

ε-Machine hµ Cµ E χ 0 0

Synchronizable hµ log2(3) E 4/3 0 0

Unifilar hµ log2(3) + 1/3 E 5/3 1 0

Nonunifilar 1/3 log2(3) + 1/3 log2(3)− 1 1/3 1 1/3

TABLE I. Comparison of information measures for presentations of the Golden Mean Process with transition parameter p = 1/2.

for nonsynchronizing presentations can diverge. This, in

turn, called for a generalized definition of synchronization

appropriate to all presentations.

We also generalized the process crypticity, beyond the

domain of ε-machine optimal presentations, to describe

the amount of presentation state information that is

shared with the past but not transmitted to the future.

A sibling of the crypticity, we introduced a new infor-

mation measure for generic presentations—the oracular

information—that is the amount of state information

shared with the future, but not derivable from the past.

Finally, to account for “components”, either explicitly

or implicitly included in a presentation, that are not jus-

tified by the process statistics, we introduced the gauge

information, intentionally drawing a parallel to the con-

cept of gauge degrees of freedom familiar from physics.

One immediate result was that the information mea-

sures allowed us to delineate the hierarchy of a process’s

presentations. The hierarchy goes from the unique, min-

imal unifilar, optimal predictor (ε-machine) to nonmini-

mal unifilar, weakly asymptotically synchronizing presen-

tations to nonsynchronizing, unifilar presentations. We

showed these are nested classes. Stepping outside to the

nonunifilar presentations leaves one in a markedly larger

class for which all of the information measures play a

necessary role.

We trust that the presentation hierarchy makes the

singular role of the ε-machine transparent. First, the

ε-machine’s minimality and uniqueness are those of the

corresponding process. This cannot be said for alterna-

tive presentations. Second, there is a wide range of prop-

erties that can be efficiently calculated, when alternative

presentations may preclude this. One cannot calculate

a process’s stored information (Cµ) or information pro-

duction rate (hµ) from, for example, nonunifilar presen-

tations. The latter must be converted, either directly or

indirectly, to the process’s ε-machine to calculate them.

Nonetheless, as discussed at some length in Ref. [27],

in varying circumstances—limited material, inference, or

compute-time resources; ready access to sources of ideal

randomness; noisy implementation substrates; and the

like—the ε-machine may not be how an observer should

model a process. A minimal nonunifilar presentation,

that is necessarily more stochastic internally than the

ε-machine [29], may be preferred due to it having a

smaller set of states.

Recalling the duality of synchronization and control,

we close by noting that essentially all of the results here

apply to the setting in which an agent attempts to steer

a process into desired states. The efficiency with which

the control signals achieve this is reflected in the ana-

logue of block entropy convergence. The very possibility

of control has its counterparts in an implementation hi-

erarchy that mirrors the presentation hierarchy, but with

controllability instead of synchronizability.

Appendix A: Notation Change for Total

Predictability

The definition for In in Eq. (14)—the total

predictability—represents a minor change in notation

from Ref. [12]. (We refer to the latter as RURO, ab-

breviating its title.) There, the minimum L was usually

n except for n = 2, when the minimum L value was

L = 1 instead. One reason for the change in definition is

that I2 now does not depend on any assumption (prior)

for symbol entropy rate and depends only on asymptotic

properties of the process.

To make this explicit, note that the original definition

of total predictability contained a boundary term:

GRURO = ∆2H(1) +
∑
L=2

∆2H(L) , (A1)
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where

∆2H(1) = hµ(1)− hµ(0) = H(1)− log2 |A| . (A2)

The logarithm term characterized the entropy rate es-

timate before any probabilities are considered. In the

modified definition of total predictability, we drop the

boundary term, giving:

G ≡ I2 =
∑
L=2

∆2H(L) . (A3)

The two quantities are related by:

GRURO = G + ∆2H(1) (A4)

= G +H(1)− log2 |A| . (A5)

This affects relationships involving G. Previously, for

example,

GRURO = −R ≤ 0 , (A6)

where R is the total redundancy. Now,

G = −R−∆2H(1) (A7)

= log2 |A| −H(1)−R . (A8)

Appendix B: State-Block Entropy Rate Estimate

In this section, we prove Thm. 1, which states that

H[XL|R0, X
L
0 ] converges monotonically (nondecreasing)

to the entropy rate.

Proof. First, we show that difference in the H[R0, X
L
0 ]

forms a nondecreasing sequence:

H[XL−1|R0, X
L−1
0 ] (B1)

= H[XL|R1, X
L−1
1 ] (B2)

= H[XL|R0, X0,R1, X
L−1
1 ] (B3)

≤ H[XL|R0, X0, X
L−1
1 ] (B4)

= H[XL|R0, X
L
0 ] . (B5)

Next, we show this sequence is bounded and, thus, has a

limit. For all k ≥ 0, we have:

H[XL|R0, X
L
0 ] (B6)

= H[XL|Xk
−k,R0, X

L
0 ] (B7)

≤ H[XL|XL+k
−k ] (B8)

= H[XL+k|XL+k
0 ] . (B9)

Since this holds for all k, it also holds in the limit as k

tends to infinity, which is the definition of the entropy

rate. Thus, H[XL|R0, X
L
0 ] is a nondecreasing sequence

and bounded above by hµ.

Finally, we show that this bounded sequence converges

to hµ. To do this, we will show that the difference

H[XL|XL
0 ]−H[XL|R0, X

L
0 ] = I[R0;XL|XL

0 ]

converges to zero. Then, since the first term (differences

in the block entropies) is known to converge to the entropy

rate, the claim will be proved. We have:

H[R0] ≥ lim
L→∞

I[R0;XL
0 , XL] (B10)

= lim
L→∞

L∑
k=0

I[R0;Xk|Xk
0 ] . (B11)

Since the sum is finite, the terms must tend to zero.

Appendix C: Reducing the Presentation I-Diagram

Proving that the various multivariate information mea-

sures vanish makes use of a few facts about states:

• H[S|←−X ] = 0.

• H[
←−
X ;
−→
X |S] = 0.

• I[
←−
X ;
−→
X |R] = H[

−→
X |R]−H[

−→
X |R,←−X ] = 0.

The last one follows from limiting ourselves to states that

actually generate the process. Thus, additional condi-

tioning on the past cannot influence the future, as the

current state alone determines the future.

The following atoms vanish:

• H[S|←−X,R,−→X ]:

H[S|←−X,R,−→X ] ≤ H[S|←−X ] = 0 .

• I[S;R|←−X,−→X ]:

I[S;R|←−X,−→X ] = H[S|←−X,−→X ]−H[S|←−X,R,−→X ]

= H[S|←−X,−→X ]− 0

≤ H[S|←−X ]

= 0 .

• I[S;R;
−→
X |←−X ]:

I[S;R;
−→
X |←−X ] = I[S;R|←−X ]− I[S;R|←−X,−→X ]

= I[S;R|←−X ]− 0

= H[S|←−X ]−H[S|R,←−X ]

= 0−H[S|R,←−X ] .
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Finally, note that

|H[S|R,←−X ]| ≤ |H[S|←−X ]|
= 0 .

• I[S;
−→
X |←−X,R]:

I[S;
−→
X |←−X,R] = H[S|←−X,R]−H[S|←−X,−→X,R]

= H[S|←−X,R]− 0

≤ H[S|←−X ]

= 0 .

• I[
←−
X ;
−→
X |S,R]:

I[
←−
X ;
−→
X |S,R] = H[

−→
X |S,R]−H[

−→
X |S,R,←−X ]

= H[
−→
X |S,R]−H[

−→
X |S,R]

= 0 .

• I[
←−
X ;R;

−→
X |S]:

I[
←−
X ;R;

−→
X |S] = I[

←−
X ;
−→
X |S]− I[

←−
X ;
−→
X |S,R]

= 0 .

• I[
←−
X ;S;

−→
X |R]:

I[
←−
X ;S;

−→
X |R] = I[

←−
X ;
−→
X |R]− I[

←−
X ;
−→
X |S,R]

= 0 .

The first four vanish due to the causal states being

a function of the past. The last three vanish since any

presentation that generates the process captures all the

information shared between past and future.

ACKNOWLEDGMENTS

This work was partially supported by the DARPA

Physical Intelligence Program. The authors thank Dave

Feldman, Nick Travers, and Luke Grecki for helpful com-

ments on the manuscript.

[1] J. P. Crutchfield and D. P. Feldman. Synchronizing to

the environment: Information theoretic limits on agent

learning. Adv. in Complex Systems, 4(2):251–264, 2001.

[2] S. Wiggins. Chaotic Transport in Dynamical Systems.

Springer, New York, 1992.

[3] R. W. Yeung. A new outlook on Shannon’s information

measures. IEEE Trans. Info. Th., 37(3):466–474, 1991.

[4] J. Klamka. Controllability of Dynamical Systems.

Springer, New York, 1991.

[5] R. J. Elliott, L. Aggoun, and J. B. Moore. Hidden Markov

models: Estimation and control. Springer, New York,

1994.

[6] B. R. Andrievskii and A. L. Fradkov. Control of chaos:

Methods and Applications. I. Methods. Automation and

Control, 64(5):673–713, 2004.

[7] B. R. Andrievskii and A. L. Fradkov. Control of chaos:

Methods and Applications. II. Applications. Automation

and Control, 65(4):505–533, 2004.

[8] J. M. Gonzalez-Miranda. Synchronization and Control

of Chaos: An Introduction for Scientists and Engineers.

World Scientific, Singapore, 2004.

[9] A. Pikovsky and J. Kurths M. Rosenblum. Synchroniza-

tion: A Universal Concept in Nonlinear Sciences. Cam-

bridge Nonlinear Science Series. Cambridge University

Press, New York, 2001.

[10] N. Jonoska. Sofic shifts with synchronizing presentations.

Theo. Comp. Sci., 158:81–115, 1996.

[11] S. Strogatz. Sync: The Emerging Science of Spontaneous

Order. Hyperion, New York, 2003.

[12] J. P. Crutchfield and D. P. Feldman. Regularities un-

seen, randomness observed: Levels of entropy conver-

gence. CHAOS, 13(1):25–54, 2003.

[13] D. P. Feldman and J. P. Crutchfield. Synchronizing to

periodicity: The transient information and synchroniza-

tion time of periodic sequences. Advances in Complex

Systems, 7(3-4):329–355, 2004.

[14] H. Marko. The bidirectional communication theory:

A generalization of information theory. IEEE Trans.

Comm., COM-21(12):1345–135, 1973.

[15] X. Feng, K. A. Loparo, , and Y. Fang. Optimal state esti-

mation for stochastic systems: An information theoretic

approach. IEEE Trans. Auto. Control, 42(6):771–785,

1997.

[16] N. U. Ahmed. Linear and Nonlinear Filtering for Engi-

neers and Scientists. World Scientific Publishers, Singa-

pore, 1998.

[17] N. H. Packard, J. P. Crutchfield, J. D. Farmer, and R. S.

Shaw. Geometry from a time series. Phys. Rev. Let.,

45:712, 1980.

[18] F. Takens. Detecting strange attractors in fluid turbu-

lence. In D. A. Rand and L. S. Young, editors, Sympo-

sium on Dynamical Systems and Turbulence, volume 898,

page 366, Berlin, 1981. Springer-Verlag.

[19] E. Ott, B.R. Hunt, I. Szunyogh aand A.V. Zimin, E. J.

Kostelich, M. Corazza, E. Kalnay, D. J. Patil, and J. A.



25

Yorke. Estimating the state of large spatio-temporally

chaotic systems. Physics Letters A, 330:365–370, 2004.

[20] M. L. Puterman. Markov Decision Processes: Discrete

Stochastic Dynamic Programming. Wiley-Interscience,

New York, 2005.

[21] T. M. Cover and J. A. Thomas. Elements of Information

Theory. Wiley-Interscience, New York, second edition,

2006.

[22] J. P. Crutchfield, C. J. Ellison, and J. R. Mahoney.

Time’s barbed arrow: Irreversibility, crypticity, and

stored information. Phys. Rev. Lett., 103(9):094101,

2009.

[23] C. J. Ellison, J. R. Mahoney, and J. P. Crutchfield.

Prediction, retrodiction, and the amount of information

stored in the present. J. Stat. Phys., 136(6):1005–1034,

2009.

[24] J. R. Mahoney, C. J. Ellison, and J. P. Crutchfield. In-

formation accessibility and cryptic processes. J. Phys. A:

Math. Theo., 42:362002, 2009.

[25] J. P. Crutchfield and K. Young. Inferring statistical com-

plexity. Phys. Rev. Let., 63:105–108, 1989.

[26] A process’s causal states consist of both transient and

recurrent states. To simplify the presentation, we hence-

forth refer only to recurrent causal states.

[27] J. P. Crutchfield. The calculi of emergence: Compu-

tation, dynamics, and induction. Physica D, 75:11–54,

1994.

[28] J. P. Crutchfield and C. R. Shalizi. Thermodynamic

depth of causal states: Objective complexity via mini-

mal representations. Phys. Rev. E, 59(1):275–283, 1999.

[29] C. R. Shalizi and J. P. Crutchfield. Computational me-

chanics: Pattern and prediction, structure and simplicity.

J. Stat. Phys., 104:817–879, 2001.

[30] In the theory of computation, unifilar is referred to as

“deterministic” [43].

[31] Specifically, each transition matrix T (x) has, at most, one

nonzero component in each row.

[32] D. Lind and B. Marcus. An Introduction to Symbolic

Dynamics and Coding. Cambridge University Press, New

York, 1995.

[33] S. Still, J. P. Crutchfield, and C. J. Ellison. Optimal

causal inference: Estimating store information and ap-

proximating causal architecture. CHAOS, page in press,

2010.

[34] A stochastic mapping, known as a mixed state, is dis-

cussed in [23].

[35] J. R. Mahoney, C. J. Ellison, Ryan G. James, and J. P.

Crutchfield. in preparation, 2010. arxiv.org:10XX.XXX

[cond-mat].

[36] N. Travers and J. P. Crutchfield. Exact synchronization

for finite-state sources. 2010. SFI Working Paper 10-08-

XXX; arxiv.org:10XX.XXXX [XXXX].

[37] N. Travers and J. P. Crutchfield. Asymptotically syn-

chronizing to finite-state sources. 2010. SFI Working

Paper 10-09-XXX; arxiv.org:10XX.XXXX [XXXX].

[38] Ryan G. James, J. R. Mahoney, C. J. Ellison, and J. P.

Crutchfield. in preparation, 2010. arxiv.org:10XX.XXX

[cond-mat].

[39] P. H. Frampton. Gauge Field Theories. Wiley-VGH Ver-

lag, Weinheim, 2008.

[40] D. R. Upper. Theory and Algorithms for Hidden Markov

Models and Generalized Hidden Markov Models. PhD

thesis, University of California, Berkeley, 1997. Published

by University Microfilms Intl, Ann Arbor, Michigan.

[41] Oracular information cannot be extracted from the past

observables. This point will be discussed further in

Sec. VII.

[42] Similar observations appeared recently; for example, see

Ref. [44]. In a sequel we compare this to the earlier results

of Refs. [27, 40].

[43] J. E. Hopcroft and J. D. Ullman. Introduction to Au-

tomata Theory, Languages, and Computation. Addison-

Wesley, Reading, 1979.

[44] W. Loehr and N. Ay. Non-sufficient memories that are

sufficient for prediction. In J. Zhou, editor, Complex Sci-

ences 2009, volume 4 of Lecture Notes of the Institute

for Computer Sciences, Social Informatics and Telecom-

munications Engineering, pages 265–276. Springer, New

York, 2009.


	Synchronization and Control in Intrinsic and Designed Computation: An Information-Theoretic Analysis of Competing Models of Stochastic Computation
	Abstract
	Contents
	Introduction
	Precis
	Synchronization and Control: Related Work

	Block Entropy and Its Convergence Hierarchy
	Stationary Stochastic Processes
	Block Entropy
	Source Entropy Rate
	Excess Entropy
	Block Entropy Asymptotics
	The Convergence Hierarchy

	Process Presentations
	The Causal State Representation
	General Presentations

	State-Block and Block-State Entropies
	Convergence Hierarchies
	Asymptotics

	Synchronization
	Duality of Synchronization and Control
	Synchronizing to the -Machine

	Presentation Quantifiers
	Crypticity
	Oracular Information
	Gauge Information
	Synchronization Information
	Cryptic Order
	Oracular Order
	Gauge Order
	Synchronization Order
	Synchronization Time

	Classifying Presentations
	Case: Minimal Unifilar Presentation
	Case: Weakly Asymptotically Synchronizable Presentations
	Case: Unifilar Presentations
	Case: Nonunifilar Presentations

	Conclusions
	Notation Change for Total Predictability
	State-Block Entropy Rate Estimate
	Reducing the Presentation I-Diagram
	Acknowledgments
	References


